

HHS Public Access

Author manuscript *Phytochemistry*. Author manuscript; available in PMC 2016 June 01.

Published in final edited form as:

Phytochemistry. 2008 October ; 69(14): 2627–2633. doi:10.1016/j.phytochem.2008.07.010.

Non-cannabinoid constituents from a high potency *Cannabis sativa* variety

Mohamed M. Radwan^a, Mahmoud A. ElSohly^{a,b,*}, Desmond Slade^a, Safwat A. Ahmed^a, Lisa Wilson^c, Abir T. El-Alfy^c, Ikhlas A. Khan^{a,d}, and Samir A. Ross^{a,d,*}

^aNational Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

^bDepartment of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

^cDepartment of Pharmacology, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

^dDepartment of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Abstract

Six new non-cannabinoid constituents were isolated from a high potency *Cannabis sativa* L. variety, namely 5-acetoxy-6-geranyl-3-*n*-pentyl-1,4-benzoquinone (1), 4,5-dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene (2), 4-hydroxy-2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene (3), 4,7-dimethoxy-1,2,5-trihydroxyphenanthrene (4), cannflavin C (5) and β -sitosteryl-3-*O*- β -D-glucopyranoside-2'-*O*-palmitate (6). In addition, five known compounds, α -cannabispiranol (7), chrysoeriol (8), 6-prenylapigenin (9), cannflavin A (10) and β -acetyl cannabispiranol (11) were identified, with 8 and 9 being reported for the first time from cannabis. Some isolates displayed weak to strong antimicrobial, antileishmanial, antimalarial and antioxidant activities. Compounds 2–4 were inactive as analgesics.

Keywords

Cannabis sativa L.; Cannabaceae; High potency; Non-cannabinoid; Antimicrobial; Antileishmanial; Antimalarial; Anti-oxidant

1. Introduction

Cannabinoids are phenolic compounds possessing a C_{21} terpenophenolic structure uniquely found in *Cannabis sativa* L. (ElSohly and Slade, 2005). Currently, 86 cannabinoids have

^{*}Corresponding authors. Tel.: + 1-662-915-1031; fax: + 1-662-915-7989 (S.A. Ross), tel.: + 1-662-915-5928; fax: + 1-662-915-5587 (M.A. ElSohly). ; Email: sross@olemiss.edu (S.A. Ross), ; Email: melsohly@olemiss.edu (M.A. ElSohly)

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

been isolated from cannabis (Ahmed et al., 2008, ElSohly and Slade, 2005, Radwan et al., 2008). Non-cannabinoid constituents isolated from cannabis include flavonoids, spiroindans, dihydrostilbenes, dihydrophenanthrenes, sterols and alkaloids, among others (Ross and ElSohly, 1995; Turner et al., 1980). As part of our program to study the constituents of high potency cannabis and their pharmacology (Ahmed et al., 2008; Radwan et al., 2008), we herein report the isolation and structure elucidation of eleven non-cannabinoid constituents including six new (1–6) and five known (7–11) compounds as well as their antimicrobial, antileishmanial, antimalarial and antioxidant activities. The analgesic activities of 2–4 are also reported.

2. Results and Discussions

Compound 1 was obtained as an orange amorphous powder. Its positive mode HRESIMS exhibited a pseudomolecular ion at m/z 373.2425 [M+H]⁺ corresponding to a molecular formula of $C_{23}H_{32}O_4$. The IR spectrum of 1 revealed the presence of an α,β -unsaturated ketone and ester carbonyl groups at v_{max} 1663 and 1780 cm⁻¹, respectively. The ¹H NMR spectrum of **1** displayed three olefinic methyl singlets ($\delta_{\rm H}$ 1.56, 1.63 and 1.69), one primary methyl triplet (δ_H 0.87, H₃-5'), one acetoxy methyl singlet (δ_H 2.32), one aromatic singlet (δ_H 6.53, H-2) and 7 methylene resonances (δ_H 1.32–2.39). The ¹³C NMR, DEPT and HMQC spectra of 1 revealed 23 resonances including five methyl, seven methylene, one aromatic methine, two olefinic methine and eight quaternary carbons. The two carbonyl carbons resonating at $\delta_{\rm C}$ 187.1 and 180.8 are characteristic for a benzoquinone skeleton (Mossa et al., 1999), while NMR analysis suggested an acetoxy ($\delta_{\rm H}$ 2.32, $\delta_{\rm C}$ 168.1, 20.5), a geranyl (Radwan et al., 2008) and an *n*-pentyl substituent (Ahmed et al., 2008; Radwan et al., 2008), indicating that 1 is a trisubstituted-1,4-benzoquinone derivative. HMBC analysis (Fig. 1) placed the geranyl substituent at C-6 due to the correlation of H₂-1" (δ_H 3.10) with C-6 (δ_C 135.6), C-1 (δ_C 187.1) and C-5 (δ_C 149.1). The three bond HMBC correlation of H-2 ($\delta_{\rm H}$ 6.53) with C-6 ($\delta_{\rm C}$ 135.6) and C-4 ($\delta_{\rm C}$ 180.8), and the correlation of H₂-1' ($\delta_{\rm H}$ 2.39) with C-4 (δ_C 180.8) and C-2 (δ_C 132.7) placed the *n*-pentyl moiety at C-3. The location of the acetoxy group at C-5 was determined by the four bond HMBC correlation between the acetoxy methyl ($\delta_{\rm H}$ 2.32) and C-5 ($\delta_{\rm C}$ 149.1). The presence of the *n*-pentyl and geranyl groups were confirmed by COSY correlations (Fig. 1), establishing 1 as 5-acetoxy-6geranyl-3-n-pentyl-1,4-benzoquinone.

Compound **2** was isolated as a brown amorphous powder. Its molecular formula was determined as $C_{17}H_{18}O_5$ from the positive mode HRESIMS ion at m/z 325.1100 [M+Na]⁺ and ¹³C NMR spectrum. The ¹H and ¹³C NMR spectra of **2** (Table 1) displayed two sets of methylene protons [δ_H 2.64 (4H, *s*, H₂-9 and H₂-10) correlated to δ_C 30.6 (C-9) and 31.8 (C-10) in the HMQC spectrum], a pair of signals for an *ortho*-coupled AB spin system [δ_H 6.74 (1H, *d*, *J* = 8.0 Hz, H-7) and 6.79 (1H, *d*, *J* = 8.0 Hz, H-8) correlated to δ_C 109.2 (C-7) and 119.1 (C-8), respectively in the HMQC spectrum], and an isolated aromatic proton [δ_H 6.50 (*s*, H-1)] suggesting that **2** is a 2,3,4,5,6-pentasubstituted 9,10-dihydrophenanthrene (Crombie et al., 1979; Leong et al., 1997; Stermitz et al., 1983). The ¹³C NMR (Table 1) and APT spectra indicated the presence of five oxygenated quaternary aromatic carbons. Three of these carbons have methoxyl substituents as revealed by three sharp singlets in the ¹H

NMR [δ_H 3.85, 3.86 and 3.89 (3H each)], while the remaining two carbons have hydroxyl substituents as was confirmed by the presence of a characteristic absorption band at v_{max} 3420 cm⁻¹ in the IR spectrum. The ³*J*HMBC correlations between H-8 (δ_H 6.79) and C-6 (δ_C 147.6), C-4b (δ_C 121.1) and C-9 (δ_C 30.6); between H-7 (δ_H 6.74) and C-8a (δ_C 132.6) and C-5 (δ_C 141.7) and between the methoxyl group at δ_H 3.85 and C-6 (δ_C 147.6), located this methoxyl group at C-6, as was confirmed by ROESY correlation (Fig. 2). The ³*J*HMBC correlation between the isolated aromatic proton at δ_H 6.50 and C-10 (δ_C 31.8) and C-4a (δ_C 114.9) determined its location at C-1. The ROESY correlation between the remaining two methoxyl groups at δ_H 3.86 and 3.89 in conjunction with the ROESY correlation between the methoxyl group at δ_H 3.89 and H-1 (δ_H 6.50) fixed their positions at C-3 and C-2, respectively, which was confirmed by HMBC correlations (Fig. 2), establishing **2** as 4,5-dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene.

Compound **3** was isolated as a pale brownish, amorphous powder. The molecular formula of **3** was determined as $C_{18}H_{20}O_5$ from the positive mode HRESIMS at m/z 339.1279 [M +Na]⁺, a mass difference of 14 amu compared to **2**. The ¹H and ¹³C NMR spectra of **3** (Table 1) were similar to **2** except for the replacement of one hydroxyl by a methoxyl group (δ_H 3.92, δ_C 56.1). Therefore, **3** exhibited four methoxyl groups [δ_H 3.88 (3H, *s*), 3.89 (3H, *s*) and 3.92 (6H, *s*); δ_C 56.0, 56.1, 56.2 and 61.3] and one hydroxyl group. Their locations on the dihydrophenanthrene skeleton were determined by comparison to the ¹H and ¹³C NMR data of **2** (Table 1) and confirmed by HMBC and ROESY correlations, placing two methoxyl groups at C-2 and C-3 and the hydroxyl at C-4. The remaining methoxyl groups are therefore attached to ring B. The presence of a pair of isolated aromatic singlets [δ_H 6.79 (H-8) and 8.02 (H-5)] in the ¹H NMR assigned the two methoxyl groups to C-6 (δ_C 147.2) and C-7 (δ_C 147.1) (Leong et al., 1997), which was confirmed by ROESY [δ_H 3.92 (OMe-6 and OMe-7)/H-5 and H-8; H-8/H₂-9] and HMBC (H-5/C-7, C-4a; H-8/C-6, C-8a, C-9) correlations. Thus, the structure of **3** was established as 4-hydroxy-2,3,6,7- tetramethoxy-9,10-dihydrophenanthrene.

Compound 4 was isolated as a reddish brown powder. Its molecular formula was determined as $C_{16}H_{14}O_5$ from negative mode HRESIMS (m/z 571.1630 [2M–H]⁻) and ¹³C NMR data. The UV spectrum of 4 (λ_{max} 258, 282 and 303 nm) is characteristic for a phenanthrene skeleton (Leong et al., 1999). The ¹H NMR (Table 1) displayed a pair of signals for an ortho-coupled AB spin system [δ_H 8.06 (1H, d, J= 8.4 Hz, H-9), 8.12 (1H, d, J= 8.4 Hz, H-10)], two *meta*-coupled protons [$\delta_{\rm H}$ 6.82 (1H, *d*, *J* = 2.0 Hz, H-8), 6.93 (1H, *d*, *J* = 2.0 Hz, H-6)] and an isolated aromatic singlet [$\delta_{\rm H}$ 6.15 (1H, s, H-3)] indicative of a pentasubstituted phenanthrene (Rethy et al., 2006; Leong et al., 1999). The ¹H and ¹³C NMR spectra of 4 showed two aromatic methoxyl groups [δ_H 3.90 (3H, s) and 3.96 (3H, s)] and five oxygenated quaternary carbons, indicating that 4 has three hydroxyl groups. The ROESY correlation of the methoxyl group at δ_H 3.90 with the protons at δ_H 6.93 (H-6) and δ_H 6.82 (H-8) established its location at C-7 (δ 161.0), which was confirmed by HMBC [δ_H 3.90 (OMe-7)/C-7; H-8/C-7, C-6, C-8a, C-9; H-6/C-7, C-8] correlations. The ROESY and HMBC correlations of the methoxyl group at δ_H 3.96 with H-3 (δ_H 6.15) and C-4 (δ_C 161.5), respectively, assigned its location at C-4. Therefore, the structure of 4 was determined as 4,7-dimethoxy-1,2,5-trihydroxyphenanthrene.

Compound 5 was obtained as a yellow amorphous powder. Its positive mode HRESIMS displayed an $[M+Na]^+$ ion at m/z 459.1766 suggesting $C_{26}H_{28}O_6$ as the molecular formula and 13 degrees of unsaturation. The IR spectrum showed absorption bands at v_{max} 3421 and 1662 cm⁻¹ due to hydroxyl and carbonyl groups, respectively, while the UV absorption maxima at λ_{max} 275 (band I) and 340 (band II) nm were indicative of a flavone skeleton (Mabry et al., 1970). The ¹H NMR spectrum of **5** revealed a chelated hydroxyl group [$\delta_{\rm H}$ 13.05 (s, HO-5)] which was confirmed by the bathochromic UV shift (+ 25 nm) of band II upon the addition of $AlCl_3$ to a methanolic solution of **5**. Bathochromic UV shifts upon the addition of NaOMe (+61 nm) and NaOAc (+ 5 nm) suggested hydroxylation at C-4' and C-7, respectively (Mabry et al., 1970). The ¹H NMR displayed two sharp singlets at $\delta_{\rm H}$ 6.66 (1H, H-3) and 6.36 (1H, H-6), one methoxyl group (δ_H 3.98) and an ABX spin system of ring B [$\delta_{\rm H}$ 7.01 (1H, d, J = 8.0 Hz, H-5'), 7.58 (1H, d, J = 2.0 Hz, H-2'), 7.64 (1H, dd, J = 2.0, 8.0 Hz, H-6')]. The presence of a geranyl group was deduced from the three methyl singlets at δ_H 1.48, 1.53 and 1.82 and two olefinic proton triplets at δ_H 5.02 and 5.35 in the ¹H NMR spectrum (Ahmed et al., 2008; Radwan et al., 2008). The ¹³C NMR, DEPT-135 and HMQC spectra displayed 26 resonances including three methyl, one methoxyl, three methylene, seven methine and twelve quaternary carbons. The location of the methoxyl group was determined to be at C-3' from HMBC (OMe-3'/C-3'; H-5'/C-3'; H-2'/C-3', C-4') and ROESY (OMe-3'/H-2') correlations (Fig. 2). The carbon resonance at δ_C 98.9 corresponding to a proton singlet at $\delta_{\rm H}$ 6.36 in the HMQC spectrum indicated an unsubstituted C-6 position (Agrawal, 1989). The location of the geranyl group at C-8 was confirmed by the HMBC correlation of the benzylic protons [δ_H 3.57 (2H, d, J = 6.8 Hz, H₂-1")] with C-8 (δ_C 106.5), C-7 (δ_C 162.4) and C-9 (δ_C 155.4) (Fig. 2). The spectroscopic data of 5 are similar to those reported for cannflavin A (10) (Agrawal, 1989; Choi et al., ²⁰⁰⁴) except for the location of the geranyl group at C-8 instead of C-6, establishing **5** as 8geranyl-5,7,4'-trihydroxy-3'-methoxyflavone (cannflavin C).

Compound $\mathbf{6}$ was obtained as an optically active white amorphous powder. Its molecular formula was deduced from the positive mode HRESIMS $[M+Na]^+$ ion at m/z 837.6621 as $C_{51}H_{90}O_7$. The ¹H NMR displayed two tertiary [$\delta_H 0.75$ (Me-18) and 0.99 (Me-19)], three secondary [δ_H 0.63 (Me-26 and Me-27) and 0.90 (Me-21)] and one primary [δ_H 0.63 (Me-29)] methyl groups in addition to an olefinic proton at $\delta_{\rm H}$ 5.33 (*bs*, H-6), indicating a sitosterol skeleton (Kovganko et al., 2000, Takemoto et al., 1967). The presence of an anomeric proton [δ_H 4.33 (d, J = 7.6 Hz, H-1')] and carbon [δ_C 101.6 (C-1')] in the HMQC spectrum indicated monoglycosylation at C-3 (δ_{C} 80.1) (^{Ishii et al., 1977}) that was confirmed by HMBC (H-3/C-1'; H-1'/C-3) and ROESY (H-1'/H-3) correlations (Fig. 2). The sugar moiety was identified as P-D-glucopyranose by acid hydrolysis of 6 and TLC comparison with authentic sugar samples. The ¹H and ¹³C NMR data of **6** were similar to those reported for β -sitosterol-3-*O*- β -D-glucopyranoside (Chang et al., 1981) with the addition of 16 resonances characteristic for a palmitate moiety (Segre and Mannina, 1997), which was confirmed by methylation of the alkaline hydrolysis product of $\mathbf{6}$ followed by GCMS analysis. The downfield esterification shift of C-2' (+ 2 ppm), upfield shifts of C-1' (-4 ppm) and C-3' (-3 ppm) and the four bond HMBC correlation of H-1' (δ_H 4.33) and C-1" (δ_C 174.6) (Fig. 2) placed the palmitate moiety at C-2' (Terui et al., 1976; Yamasaki et al.,

¹⁹⁷⁷). Thus, the structure of **6** was established as β -sitosteryl-3-*O*- β -D-glucopyranoside-2'-*O*-palmitate.

Compound **7** was obtained as colorless prisms. Its positive mode HRESIMS gave an [M +H]⁺ ion at m/z 249.2393 corresponding to a molecular formula of $C_{15}H_{20}O_3$. The GCMS showed a molecular ion at m/z 248 (33%) and two characteristic ions at m/z 189 (100%) and 176 (65%) suggesting that **7** is a spiroindan derivative (El-Feraly et al., 1986). The ¹³C NMR, DEPT and HMQC spectra of **7** displayed 15 resonances including one methoxyl, six methylene, two aromatic methine, one sp³ oxymethine and five quaternary carbons. The spectroscopic data of 7 are similar to those reported for β -cannabispiranol (Boeren et al., 1977; Shoyama and Nashioka, 1978; Radwan et al., 2008) except for the downfield shift of the oxymethine carbon (+5.6 ppm), indicating a 4' α -configuration. Although 7 is a known cannabis constituent (Crombie et al., 1982), this is the first report of the full NMR assignments.

The flavones **8** and **9** were isolated as yellow amorphous powders. Their molecular formulae were determined from the HRESIMS as $C_{16}H_{12}O_6$ and $C_{20}H_{18}O_5$, respectively. Their spectroscopic data (UV and NMR) were in agreement with reported values for chrysoeriol (**8**) (Toth et al., 1980; Agrawal, 1989) and 6-prenylapigenin (**9**) (Abegaz et al., 1998). This is the first report of their isolation from cannabis. The NMR spectra of **10** and **11** were identical with those of cannflavin A (Agrawal, 1989; Choi et al., 2004) and β -acetyl cannabispiranol (Shoyama and Nashioka, 1978), respectively.

The antimicrobial, antileishmanial, antimalarial and anti-oxidant activities of the isolated compounds were tested. Compound **1** displayed weak anti-MRSa (IC₅₀ 15.0 µg/mL), moderate antileishmanial (IC₅₀ 13.0 µg/mL) and mild antimalarial activity against *Plasmodium falciparum* (D6 clone) and *P. falciparum* (W2 clone) with IC₅₀ values of 2.8 and 2.6 µg/mL, respectively. Compound **5**had moderate antileishmanial activity (IC₅₀ 17.0 µg/mL). Compound **9**showed moderate anti-MRSa (IC₅₀ 6.5 µg/mL), weak anticandidal (IC₅₀ 20.0 µg/mL) and mild antimalarial activity against *P. falciparum* (D6 clone) and *P. falciparum* (W2 clone) with IC₅₀ values of 2.8 and 2.0 µg/mL). Compound **9**showed moderate anti-MRSa (IC₅₀ 6.5 µg/mL), weak anticandidal (IC₅₀ 20.0 µg/mL) and mild antimalarial activity against *P. falciparum* (D6 clone) and *P. falciparum* (W2 clone) with IC₅₀ values of 2.8 and 2.0 µg/mL, respectively. Compound **10** exhibited strong antileishmanial activity (IC₅₀ 4.5 µg/mL). Compound **11** displayed weak antileishmanial activity (IC₅₀ 31.0 µg/mL).

Compounds 2, 5 and 11 displayed strong, 1, 7 and 10 moderate and 8 and 9 weak antioxidant activities in the DPPH assay, with 6 being inactive.

Compounds **2**, **3** and **4** exhibited no antinociceptive action in both tail-flick and hot-plate assays up to 120 min following injection (Supplementary data).

3. Experimental

3.1. General

¹H NMR (400 MHz), ¹³C NMR (100 MHz), DEPT-135, APT and 2D–NMR spectra were recorded using the residual solvent signal as internal standard on a Varian AS 400. IR spectra were measured on a Bruker Tensor 27. UV spectra were obtained on a Varian Cary

50 Bio UV-Visible spectrophotometer. Optical rotation was measured on an Autoplot IV automatic polarimeter. High resolution mass spectra were measured using a Bruker BioApex. HPLC was performed on a Waters Delta Prep 4000 Preparative Chromatography System connected to a Waters 486 Tunable UV Absorbance detector using Phenomenex Luna C18 and Si columns ($250 \times 21.2 \text{ mm}$, 5 µm, 100 Å). GCMS analysis was carried out on a HP 6890 series GC, equipped with a split/splitless capillary injector, a HP 6890 series injector autosampler and an Agliant DB-5ms column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$), interfaced to a HP 5973 Mass Selective Detector (MSD). The injector temperature was 250°C and 1 µL injections were performed in the splitless mode, with the splitless time set at 60 s, the split flow set at 50 ml/min and the septum purge valve set to close 60 s after the injection occurred. The oven temperature was raised from 70 to 270°C (hold 20 min) at a rate of 5°C/min, for a total run time of 60 min; the transfer line temperature was 280°C.

3.2 Plant material

C. sativa plants were grown from high potency Mexican seeds. The seeds and plants were authenticated by Dr. Suman Chandra, The University of Mississippi, and a specimen (S1310V1) was deposited at the Coy Waller Complex, The University of Mississippi. Whole buds of mature female plants were harvested, air-dried, packed in barrels and stored at low temperature (-24° C).

3.3. Extraction, isolation and characterization

The plant material (9.0 kg) was sequentially extracted with hexanes (48 L), CH₂Cl₂ (40 L), EtOAc (40 L), EtOH (40 L), EtOH/H₂O (36 L, 1:1) and H₂O (40 L) at room temperature. The extracts were evaporated under reduced pressure at 40° C to afford hexanes (1.48 kg), CH₂Cl₂ (0.15 kg), EtOAc (0.13 kg), EtOH (0.09 kg), EtOH/H₂O (0.77 kg) and H₂O (0.54 kg) extracts for a total extract of 3.16 kg (35.1%, w/w). Portions of the CH₂Cl₂, EtOAc and EtOH extracts were combined (191.0 g) since they showed similar TLC profiles (EtOAc/nhexane, 4:6) and were subjected to silica gel VLC, eluting with EtOAc/n-hexane [0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 75:25, 100:0 (2 L of each mixture)] followed by EtOH (4 L), yielding 9 fractions (A-I). Fraction B (10 g) was fractionated on a silica gel column (EtOAc/petroleum ether, 90:10) to give 16 subfractions (B_{1-16}). Subfraction B_1 (265 mg) was purified by Si HPLC (EtOAc/n-hexane, 5:95, 25 mL/min, UV 270 nm) to afford 1(12.3 mg, rt. = 4.0 min). Subfraction B₃ (236.0 mg) was purified by Si-SPE column eluting with MeOH/CH₂Cl₂ (1:19) yielding 6(21.6 mg). Fraction D (14.3 g) was subjected to silica CC (EtOAc/petroleum ether, 5:95 to 20:80) followed by C18 flash chromatography (MeOH/ H₂O, 8:2) and C18 HPLC (MeCN/H₂O, 50:50, 25 mL/min, UV 270 nm) to afford 9(5.0 mg, rt. = 3.8 min), **10**(1.2 mg, rt. = 4.6 min), **7**(15.0 mg, rt. = 6.7 min) and **2**(11.6 mg, rt. = 8.7 min) min). Fraction F (28.5 g) was chromatographed on silica gel (EtOAc/n-hexane, 10:90 to 60:40), yielding 42 fractions (F₁₋₄₂, 200 mL each). Fraction F₃₂₋₃₅ (5.5 g) was subjected to silica gel CC (MeOH/CH₂Cl₂, 3:97) to yield 24 subfractions (SF₁₋₂₄). SF₂₋₃ (210 mg) was chromatographed on Si-SPE column (EtOAc/n-hexane, 10:90) followed by C18 HPLC purification (MeOH/H₂O, 85:15, 25 ml/min, UV 279 nm) to yield **3**(2.3 mg, rt. = 6.3 min) and 4(3.9 mg, rt. = 8.8 min). SF₃₋₆ (1.9 g) was purified by Sephadex LH-20 CC (MeOH) followed by C18-SPE purification (MeOH/H₂O, 75:25) to give **5**(12.9 mg), **8** (284.5 mg) and 11 (15.0 mg).

3.3.1. 5-Acetoxy-6-geranyl-3-n-pentyl-1,4-benzoquinone (1)—Orange amorphous powder; UV λ_{max} (MeOH): 205, 270, 384 nm; IR v_{max} (neat): 1663 (C=O, ketone), 1780 (C=O, ester), 1610 (C=C) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ_{H} 0.87 (3H, *t*, *J* = 6.4 Hz, H₃-5'), 1.32 (4H, *m*, H₂-3' and H₂-4'), 1.56 (3H, *s*, H₃-8"), 1.57 (2H, *m*, H₂-2'), 1.63 (3H, *s*, H₃-9"), 1.69 (3H, *s*, H₃-10"), 1.94 (2H, *m*, H₂-4"), 2.05 (2H, *m*, H₂-5"), 2.32 (3H, *s*, OCO*CH*₃), 2.39 (2H, *t*, *J* = 7.6 Hz, H₂-1'), 3.10 (2H, *d*, *J* = 7.2 Hz, H₂-1"), 4.99 (1H, *t*, *J* = 7.2 Hz, H-2"), 5.02 (1H, *t*, *J* = 7.2 Hz, H-6"), 6.53 (1H, *s*, H-2); ¹³C NMR (CDCl₃, 100 MHz): δ_{C} 187.1 (C-1), 132.7 (C-2), 148.3 (C-3), 180.8 (C-4), 149.1 (C-5), 135.6 (C-6), 28.9 (C-1'), 27.6 (C-2'), 31.6 (C-3'), 22.6 (C-4'), 14.1 (C-5'), 23.0 (C-1"), 118.4 (C-2"), 138.4 (C-3"), 39.8 (C-4"), 26.7 (C-5"), 124.1 (C-6"), 131.8 (C-7"), 17.9 (C-8"), 25.9 (C-9"), 16.4 (C-10"), 20.5 (OCO*CH*₃), 168.1 (*OCO*CH₃); HRESIMS *m*/*z* 373.2425 [M+H]⁺ (Calc. for C₂₃H₃₃O₄, 373.2379).

3.3.2. 4,5-Dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene (2)—Brown amorphous powder; UV λ_{max} (MeOH): 220, 267, 310 nm; IR v_{max} (neat): 3420 (OH), 1610, 1537, 1462 (benzene ring) cm⁻¹; ¹H and ¹³C NMR: Table 1; HRESIMS *m*/*z* 325.1100 [M +Na]⁺ (Calc. for C₁₇H₁₈O₅Na, 325.1052).

3.3.3. 4-Hydroxy-2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene (3)—Pale brownish amorphous powder; UV λ_{max} (MeOH): 220, 267, 310 nm; IR v_{max} (neat): 3420 (OH), 1610, 1537, 1462 cm⁻¹; ¹H and ¹³C NMR: Table 1; HRESIMS *m*/*z* 339.1279 [M +Na]⁺ (Calc. for C₁₈H₂₀O₅Na, 339.12887).

3.3.4. 4,7-Dimethoxy-1,2,5-trihydroxyphenanthrene (4)—Reddish brown amorphous powder; UV λ_{max} (MeOH): 258, 282, 303 nm; IR v_{max} (neat): 3413 (OH), 1610, 1533, 1462 cm⁻¹; ¹H and ¹³C NMR: Table 1; HRESIMS *m*/*z* 571.1630 [2M–H][–] (Calc. for C₃₂H₂₇O₁₀, 571.1604).

3.3.5. 8-Geranyl-5,7,4'-trihydroxy-3'-methoxyflavone (Cannflavin C) (5)—Yellow amorphous powder; UV λ_{max} (MeOH): 275, 340, (+NaOMe) 280, 342, 401, (+NaOAc) 280, 340, (+AlCl₃) 300, 346, 360, (+AlCl₃+HCl) 300, 346, 360 nm; IR v_{max} (neat): 3421 (OH), 1662 (C=O) cm⁻¹; ¹H NMR (acetone-d₆, 400 MHz): δ_{H} 1.48 (3H, *s*, H₃-9"), 1.53 (3H, *s*, H₃-8"), 1.82 (3H, *s*, H₃-10"), 1.96 (2H, *m*, H₂-4"), 2.05 (2H, *m*, H₂-5"), 3.57 (2H, *d*, *J* = 6.8 Hz, H₂-1"), 3.98 (3H, *s*, OMe-3'), 5.02 (1H, *t*, *J* = 6.8 Hz, H-6"), 5.35 (1H, *t*, *J* = 6.8 Hz, H-2"), 6.36 (1H, *s*, H-6), 6.66 (1H, *s*, H-3), 7.01 (1H, *d*, *J* = 8.0 Hz, H-5'), 7.58 (1H, *d*, *J* = 2.0 Hz, H-2'), 7.64 (1H, *dd*, *J* = 2.0, 8.0 Hz, H-6'), 13.05 (1H, *s*, HO-5); ¹³C NMR (acetone-d₆, 100 MHz): δ_{C} 164.1 (C-2), 103.3 (C-3), 182.7 (C-4), 160.5 (C-5), 98.9 (C-6), 162.4 (C-7), 106.5 (C-8), 155.4 (C-9), 104.5 (C-10), 124.4 (C-1'), 109.7 (C-2'), 148.3 (C-3'), 151.1 (C-4'), 115.8 (C-5'), 120.7 (C-6'), 21.7 (C-1"), 123.0 (C-2"), 135.1 (C-3"), 39.7 (C-4"), 26.7 (C-5"), 124.4 (C-6"), 131.0 (C-7"), 17.9 (C-8"), 25.1 (C-9"), 16.0 (C-10"), 55.8 (OMe-3'); HRESIMS *m*/*z* 459.1766 [M+Na]⁺ (Calc. for C₂₆H₂₈O₆Na, 459.1784).

3.3.6. β-Sitosteryl-3-O-β-D-glucopyranoside-2'-O-palmitate (6)—White amorphous powder; [α]_D: + 91.3 (*c* 0.05, CHCl₃); IR v_{max} (neat): 1736 (OH), 1610 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ 0.63 (9H, *m*, H₃-26, 27, 29), 0.75 (3H, *s*, H₃–18), 0.83 (3H, *t*, *J* = 7.2 Hz, H₃–16"), 0.90 (3H, *d*, 6.8 Hz, H₃-21), 0.99 (3H, *s*, H₃-19), 1.24 (18H, *bs*, H₂-5" to

H₂-13"), 1.28–1.30 (4H, *m*, H₂-4", 15"), 2.34 (2H, *m*, H₂-2"), 3.49 (1H, *m*, H-3), 3.35–3.82 (4H, H-2' to H-5'), 4.33 (1H, *d*, J= 7.6 Hz, H-1'), 4.1–4.2 (2H, *m*, H₂-6') 5.33 (1H, *bs*, H-6); ¹³C NMR (CDCl₃, 100 MHz): δ_{C} 37.6 (C-1), 29.6 (C-2), 80.1 (C-3), 39.2 (C-4), 140.6 (C-5), 122.2 (C-6), 32.2 (C-7), 32.1 (C-8), 50.3 (C-9), 36.9 (C-10), 21.3 (C-11), 40.0 (C-12), 42.5 (C-13), 57.0 (C-14), 24.5 (C-15), 28.3 (C-16), 56.4 (C-17), 12.1 (C-18), 19.6 (C-19), 36.4 (C-20), 19.0 (C-21), 34.2 (C-22), 26.4 (C-23), 46.0 (C-24), 29.4 (C-25), 19.2 (C-26), 20.0 (C-27), 23.3 (C-28), 12.2 (C-29), 101.6 (C-1'), 73.5 (C-2'), 76.6 (C-3'), 70.8 (C-4'), 73.8 (C-5'), 64.1 (C-6'), 174.6 (C-1"), 34.5 (C-2"), 25.2 (C-3"), 29.6 (C-4" to C-13"), 30.0 (C-14"), 22.9 (C-15"), 14.3 (C-16"); HRESIMS *m*/*z* 837.6621 [M+Na]⁺ (calc. for C₅₁H₉₀O₇Na, 837.6585).

3.3.7. a-Cannabispiranol (7)—Colorless prisms (MeOH/H₂O); mp 182°C; UV λ_{max} (MeOH): 210, 222 nm; IR v_{max} (neat): 3410, 3180 (OH), 1610, 1596 cm⁻¹; ¹H NMR (C₅D₅N, 400 MHz): δ_{H} 1.75 (4H, *m*, H₂-2', 6'), 2.12 (2H, *t*, *J* = 7.2 Hz, H₂-2), 2.25 (4H, *m*, H₂-3', 5'), 2.90 (2H, *t*, *J* = 7.2 Hz, H₂-3), 3.70 (3H, *s*, OMe-5), 4.10 (1H, *m*, H-4'), 6.52 (1H, *bs*, H-4), 6.67 (1H, *bs*, H-6); ¹³C NMR (C₅D₅N, 100 MHz): δ_{C} 49.2 (C-1), 36.4 (C-2), 31.9 (C-3), 102.0 (C-4), 161.1 (C-5), 101.3 (C-6), 156.7 (C-7), 129.9 (C-8), 146.9 (C-9), 34.6 (C-2', 6'), 34.3 (C-3', 5'), 70.8 (C-4'), 55.6 (OMe-5); HRESIMS *m*/*z* 249.2393 [M+H]⁺ (Calc. for C₁₅H₂₁O₃, 249.2379); GCMS *m*/*z* (rel. int.): 248 (M⁺, 33%), 230 (13%), 215 (12%), 201 (12%), 189 (100%), 176 (65%), 161 (18%).

3.4. Acid hydrolysis of 6

Compound **6** (5 mg) was refluxed with 3% H_2SO_4 in MeOH (4 mL) for 8 hours. The reaction mixture was neutralized with Na_2CO_3 and extracted with EtOAc (3 × 10 mL). TLC comparison of the aqueous layer with authentic sugar samples (CH₂Cl₂/MeOH/H₂O, 6:4:1; *n*-BuOH/AcOH/H₂O, 5:5:1), identified the glycone as β-D-glucose.

3.5. Alkaline hydrolysis of 6 and identification of the fatty acid

Compound **6** (5 mg) was added to 10% KOH in MeOH (10 mL) and H₂O (5 mL), and after refluxing for 30 minutes, H₂O (10 mL) was added, followed by extraction with CHCl₃ (3 × 10 mL). The aqueous layer was acidified with dil. HCl to pH 5 and extracted with CHCl₃ (3 × 10 mL). The CHCl₃ layer was dried (Na₂SO₄), filtered and concentrated *in vacuo*. The filtrate was dissolved in dry ether and MeOH (4 drops), followed by methylation with trimethylsilyl-diazomethane (200 μ L). The reaction mixture was left open at room temperature for 30 minutes, concentrated under N₂ and analyzed by GCMS. The fatty acid methyl ester was identified as methyl palmitate via a library search (NIST).

3.6. Antimicrobial, antileishmanial and antimalarial bioassay

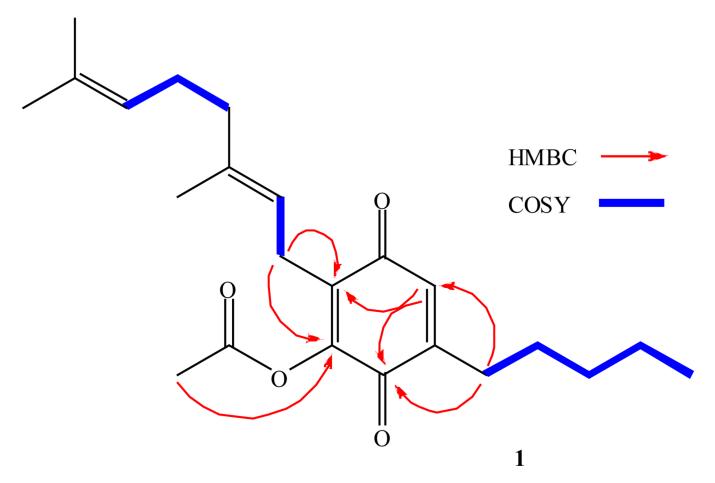
The isolated compounds were evaluated for antimicrobial (*Candida albicans* ATCC 90028, *Escherichia coli* ATCC 35218, *Pseudomonas aeruginosa* ATCC 27853, *Mycobacterium intracellulare* ATCC 23068, *Aspergillus fumigat* ATCC 90906, Methicillin Resistant *Staphylococcus aureus* ATCC 43300) (Bharate et al., 2007; Babu et al., 2006), antileishmanial (Radwan et al., 2008) and antimalarial activity [*P. falciparum* (D6 clone) and *P. falciparum* (W2 clone)] (Bharate et al., 2007).

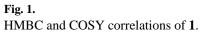
3.7. Anti-oxidant activity

A TLC autographic assay for DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging effect was used to determine anti-oxidant activity (Takamatsu et al., 2003). The isolated compounds were dissolved in DMF (2 mg/mL) and applied in the form of a spot (4 μ l, 4–5 mm in diameter) on silica gel GF plates. The residual DMF was removed under vacuum (15–20 min). A similar amount of vitamin E in DMF was used as positive anti-oxidant control. The radical-scavenging effects of the compounds were detected on the TLC plate using DPPH spray reagent (0.2% w/v in MeOH). The plate was observed 30 min after spraying. Active compounds are observed as yellow spots against a purple background. Relative radical-scavenging activity was assigned as "strong" (compounds that produce an intense bright yellow zone), "medium" (compounds that produce a clear yellow spot), "weak" (compounds that produce a weakly visible yellow spot), or "not active" (compounds that produce no sign of any yellow spot). Vitamin E produced an intense bright yellow zone.

Supplementary Material

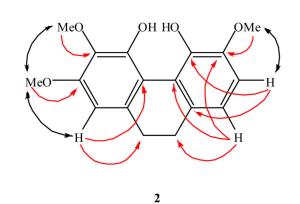
Refer to Web version on PubMed Central for supplementary material.

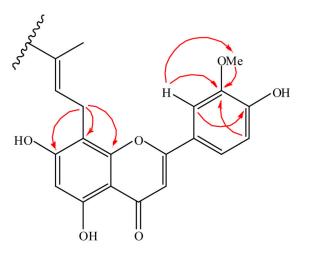

Acknowledgments

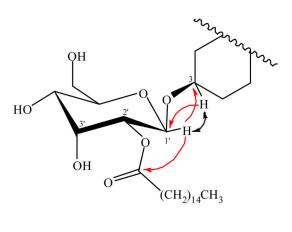

The project described was supported in part by Grant Number 5P20RR021929-02 from the National Center for Research Resources and in part by the National Institute on Drug Abuse, contract # N01DA-5-7746. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health. We are grateful to Dr. Bharathi Avula for assistance with the HRESIMS, and to Dr. Melissa Jacob, Ms. Marsha Wright and Dr. Babu Tekwani for conducting the antimicrobial and antiprotozoal testing.

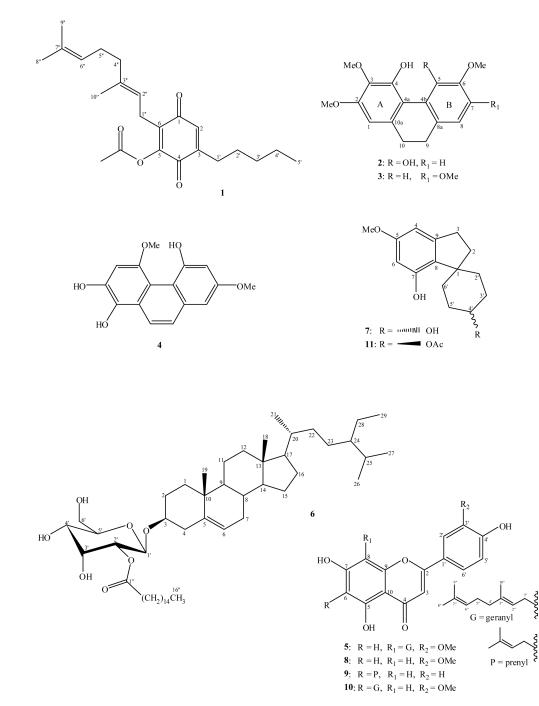
References

- Abegaz BM, Ngadjui BT, Dongo E, Tamboue H. Prenylated chalcones and flavones from the leaves of Dorstenia kameruniana. Phytochemistry. 1998; 49:1147–1150.
- Agrawal, PK. Carbon-13 NMR of Flavonoids, Studies in Organic Chemistry. Vol. 39. Amsterdam: Elsevier; 1989.
- Ahmed SA, Ross SA, Slade D, Radwan MM, Zulfiqar F, ElSohly MA. Cannabinoid ester constituents from high-potency *Cannabis sativa*. J. Nat. Prod. 2008; 71:536–542. [PubMed: 18303850]
- Babu KS, Li XC, Jacob MR, Zhang Q, Khan SI, Ferreira D, Clark AM. Synthesis, antifungal activity, and structure-activity relationships of coruscanone A analogues. J. Med. Chem. 2006; 49:7877–7886. [PubMed: 17181171]
- Bharate SB, Khan SI, Yunus NAM, Chauthe SK, Jacob MR, Tekwani BL, Khan IA, Singh IP. Antiprotozoal and antimicrobial activities of *O*-alkylated and formylated acylphloroglucinols. Bioorg. Med. Chem. 2007; 15:87–96. [PubMed: 17070063]
- Boeren EG, ElSohly MA, Turner CE, Salemink CA. β-Cannabispiranol: a new non-cannabinoid phenol from *Cannabis sativa* L. Experientia. 1977; 33:848. [PubMed: 891749]
- Chang IM, Yun HS, Yamasaki K. Revision of ¹³C NMR assignments of β-sitosterol and β-sitosteryl-3-*O*β-D-glucopyranoside isolated from *Plantago asiatica* seed. Saengyak Hakhoechi. 1981; 12:12–14.
- Choi YH, Hazekamp A, Peltenburg-Looman AMG, Frederich M, Erkelens C, Lefeber AWM, Verpoorte R. NMR assignments of the major cannabinoids and cannabiflavonoids isolated from flowers of *Cannabis sativa*. Phytochem. Anal. 2004; 15:345–354. [PubMed: 15595449]
- Crombie L, Crombie WML, Jamieson SV. Isolation of cannabispiradienone and cannabidihydrophenanthrene. Biosynthetic relationships between the spirans and dihydrostilbenes of Thailand cannabis. Tetrahedron Lett. 1979; 20:661–664.


- Crombie L, Crombie WML. Natural products of Thailand high ¹-THC-strain *Cannabis*. The bibenzyl-spiran-dihydrophenanthrene group: Relations with cannabinoids and canniflavones. J. Chem. Soc. Perkin Trans. 1982; 1:1455–1466.
- El-Feraly FS, El-Sherei MM, Al-Muhtadi FJ. Spiro-indans from *Cannabis sativa*. Phytochemistry. 1986; 25:1992–1994.
- ElSohly MA, Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005; 78:539–548. [PubMed: 16199061]
- Ishii H, Seo S, Tori K, Tozyo T, Yoshimura Y. The structures of saikosaponin-E and acetylsaikosaponins, minor components isolated from *Bupleurum falcatum* L., determined by ¹³C NMR spectroscopy. Tetrahedron Lett. 1977; 18:1227–1230.
- Kovganko NV, Nashkan ZN, Borisov EV. ¹³C NMR spectra of functionally substituted 3β-chloro derivatives of cholesterol and β-sitosterol. Chem. Nat. Compd. 2000; 36:595–598.
- Leong YW, Kang CC, Harrison LJ, Powell AD. Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid *Bulbophyllum vaginatum*. Phytochemistry. 1997; 44:157–165.
- Mabry, TJ.; Markham, KR.; Thomas, MB. The Systematic Identification of Flavonoids. New York: Springer Verlag; 1970.
- Mossa JS, Muhammad I, Ramadan AF, Mirza HH, El-Feraly FS, Hufford CD. Alkylated benzoquinone derivatives from *Maesa lanceolata*. Phytochemistry. 1999; 50:1063–1068.
- Radwan MM, Ross SA, Ahmed SA, Slade D, Zulfiqar F, ElSohly MA. Isolation and characterization of new cannabis constituents from a high potency variety. Planta Med. 2008; 74:267–272. [PubMed: 18283614]
- Ross SA, ElSohly MA. Constituents of *Cannabis sativa* L. XXVII. A review of the natural constituents: 1980–1994. Zagazig J. Pharm. Sci. 1995; 4:1–10.
- Réthy B, Kovács A, Zupkó I, Forgo P, Vasas A, Falkay G, Hohmann J. Cytotoxic phenathrenes from the rhizome of *Tamus communis*. Planta Med. 2006; 72:767–770. [PubMed: 16783700]
- Segre A, Mannina L. ¹H-NMR study of edible oils. Recent Res. Develop. Oil Chem. 1997; 1:297–308.
- Shoyama Y, Nishioka I. Cannabis. XIII. Two new spiro-compounds, cannabispirol and acetyl cannabispirol. Chem. Pharm. Bull. 1978; 26:3641–3646.
- Stermitz FR, Suess TR, Schauer CK, Anderson OP, Bye RA. New and old phenanthrene derivatives from *Oncidium cebolleta*, a peyote-replacement plant. J. Nat. Prod. 1983; 46:417–423.
- Takamatsu S, Hodges WT, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG. Marine natural products as novel anti-oxidant prototypes. J. Nat. Prod. 2003; 66:605–608. [PubMed: 12762791]
- Takemoto T, Hikino Y, Nomoto K, Hikino H. Structure of cyasterone, a novel C29 insect-moulting substance from *Cyathula capitata*. Tetrahedron Lett. 1967; 33:3191–3194.
- Terui Y, Tori K, Tsuji N. Esterification shifts in carbon-13 NMR spectra of alcohols. Tetrahedron Lett. 1976; 8:621–622.
- Toth L, Bulyaki M, Bujtas G. Flavonoids from *Odontites rubra* (Baumg.) Opiz. Pharmazie. 1980; 35:335–336.
- Turner CE, ElSohly MA, Boeren EG. Constituents of *Cannabis sativa* L. XVII. A review of the natural constituents. J. Nat. Prod. 1980; 43:169–234. [PubMed: 6991645]
- Yamasaki K, Kasai R, Masaki Y, Okihara M, Tanaka O, Oshio H, Takagi S, Yamaki M, Masuda K, Nonaka G, Tsuboi M, Nishioka I. Application of ¹³C NMR to the structural elucidation of acylated plant glycosides. Tetrahedron Lett. 1977; 14:1231–1234.







5

6

Fig. 2. HMBC and ROESY correlations of 2, 5 and 6.

Table 1

¹H (400 MHz) and ¹³C (100 MHz) NMR spectroscopic data of **2–4** (CDCl₃, δ in ppm, Jin Hz)^a

LOSIMOLI	$\delta_{\rm H}$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	$\delta_{\rm C}$
	6.50 s	104.4	6.39 s	103.9		140.2
2		152.0		150.3		140.2
3	·	136.4		134.5	$6.15 \ s$	107.6
4	·	147.2	·	146.8		161.5
4a	·	114.9		114.7		124.2
4b	·	121.1		107.8		117.4
5	·	141.7	$8.02 \ s$	111.5		156.6
9	1	147.6	ł	147.2	$6.93 \ d(2.0)$	108.9
7	$6.74 \ d(8.0)$	109.2		147.1		161.0
8	6.79 d(8.0)	119.1	$6.79 \ s$	111.1	$6.82 \ d(2.0)$	102.0
8a		132.6		125.4		129.0
6	2.64 s	30.6	$2.74 \ s$	29.5	$8.06 \ d(8.4)$	137.7
10	2.64 s	31.8	$2.74 \ s$	30.9	$8.12 \ d(8.4)$	122.9
10a		136.4		130.1		132.7
OMe-2	3.89 s	56.3	3.88 s	56.2		1
OMe-3	3.86 s	61.0	3.89 s	61.3		1
OMe-4		,		ı	3.96 s	57.2
0Me-6	3.85 s	56.1	$3.92 \ s$	56.0		1
OMe-7	ı		$3.92 \ s$	56.1	3.90 s	55.7

Phytochemistry. Author manuscript; available in PMC 2016 June 01.

Page 14