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Scale and conformal invariance in field theory: a physical counterexample
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In this note, we illustrate how the two–dimensional theory of elasticity provides a physical example
of field theory displaying scale but not conformal invariance.

I. INTRODUCTION

In the quantum field theory literature, scale invariance
is often assumed to imply conformal invariance, provided
the theory is local. Furthermore, both invariances are
usually considered equivalent to the tracelessness of the
stress–energy tensor. These widely held convictions, sus-
tained by the difficulty of finding counterexamples, are
actually incorrect.

Coleman and Jackiw [1] clarified this issue in the case
of four space–time dimensions, showing that conformal
invariance is not in general guaranteed by the presence
of scale invariance. A systematic analysis of the problem
for arbitrary dimensionality D was then performed by
Polchinski [2], who achieved the same conclusion for any
D 6= 2. In the particular case D = 2, however, Polchinski
proved that scale invariance implies conformal invariance
under broad conditions. In the following, we will focus
on this interesting dimensionality, providing a physical
example in which the implication does not hold.

Let us now summarize the observations presented in
Ref. [2]. Given a symmetric and conserved stress–energy
tensor Tµν(x), the property of scale invariance can be
equivalently formulated in terms of its trace as

T µ
µ (x) = −∂µKµ(x) , (1)

where Kµ(x) is some local operator. Conformal invari-
ance further requires the existence of another local oper-
ator L(x) such that

Kµ(x) = − ∂µL(x) ⇒ T µ
µ (x) = ∂µ∂µL(x) . (2)

The above property is then equivalent to the tracelessness
of the stress–energy tensor, because one can define the
‘improved’ tensor

Θµν(x) = Tµν(x) + ∂µ∂νL(x) − gµν ∂ρ∂
ρL(x) , (3)

which is both conserved and traceless. As properly em-
phasized in Ref. [2], most of the physically relevant theo-
ries display both scale and conformal invariance because
they do not have any non–trivial candidate for Kµ. We
will see in the following how this is the crucial ingredient
in our counterexample.

Besides these general remarks, Polchinski also refined
an argument by Zamolodchikov [3], demonstrating that
scale invariance implies conformal invariance in D = 2.
The proof consists of defining another kind of ‘improved’

stress–energy tensor Θ
′

µν(x), whose trace is shown to
have a vanishing two–point function:

〈Θ
′ µ
µ (x)Θ

′ σ
σ (0)〉 = 0 . (4)

The sufficient condition for constructing Θ
′

µν(x) is a dis-
crete spectrum of scaling dimensions, and, together with
the assumption of reflection positivity, (4) implies the

vanishing of the trace Θ
′ µ
µ itself. Actually, under the

above hypotheses the two ‘improved’ tensors Θµν(x) and

Θ
′

µν(x) coincide.

II. THE MODEL

Let us now introduce a physical example in which scale
invariance does not imply conformal invariance. This is
the theory of elasticity [4] in two dimensions, defined by
the Euclidean action

S =

∫

d2x L =
1

2

∫

d2x
{

2 g uµν uµν + k (u σ
σ )2

}

,

(5)
where uµν = 1

2
(∂µuν + ∂νuµ) is the so–called strain

tensor, built with the ‘displacement fields’ uµ. Greek in-
dices run over 1, 2 and we use the summation convention.
The coefficients g and k + g represent, respectively, the
shear modulus and the bulk modulus of the described
material.

The action (5) is invariant under translations, rotations
and dilatations, provided the fields uµ transform under
rotations x′ µ = Λµ

ν xν as vectors

u′

µ(x′) = Λ ν
µ uν(x) , (6)

while no change is required for fields under dilatations.
The canonical stress–energy tensor

T c

µν =
∂L

∂(∂µuσ)
∂νuσ − gµν L (7)

associated to (5) is traceless but not symmetric. How-
ever, a symmetric and conserved tensor Tµν can be con-
ventionally constructed via the Belinfante prescription:

Tµν = T c

µν + ∂ρBρµν , (8)

where
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Bρµν =
i

2

{

∂L

∂(∂ρuσ)
Sνµ uσ +

∂L

∂(∂µuσ)
Sρν uσ +

∂L

∂(∂νuσ)
Sρµ uσ

}

= −Bµρν . (9)

Sµν is an antisymmetric tensor, taking values in the rep-
resentations of the Lorentz group, which expresses the
variation of the field multiplet φ = {uµ} under infinites-
imal rotations x′ µ ≃ xµ + ωµ

ν xν :

φ′(x′) ≃

(

I −
i

2
ωρνSρν

)

φ(x) .

In our case the fields transform according to the vector
representation (6), and the only non–vanishing Euclidean
components of Sµν act as

S12 u1 = −S21 u1 = i u2

S12 u2 = −S21 u2 = − i u1

It follows from (8) that the trace of the stress–energy
tensor can be cast in the form (1)

T µ
µ = −∂µKµ with Kµ = −B ρ

µρ , (10)

in agreement with the scale invariance of the theory. In
order to investigate whether the additional property (2),
equivalent to conformal invariance, is also attained, it
is now convenient to explicitly write Kµ in Euclidean
coordinates. We have

K1 = ∂1

[

−
k

2
u2

1
+

g

2
u2

2

]

− (k + 2g)u1∂2u2 + g u2∂2u1

K2 = ∂2

[

g

2
u2

1
−

k

2
u2

2

]

− (k + 2g)u2∂1u1 + g u1∂1u2 .

(11)
It appears from (11) that Kµ cannot be entirely reduced
to a gradient[5], therefore the necessary condition (2) for
conformal invariance does not hold and the stress–energy
tensor cannot be ‘improved’ to be traceless.

The lack of conformal invariance in (5) becomes man-
ifest if we write the action in complex coordinates z =
x1 + ix2 , z̄ = x1 − ix2 . We have

S =
1

2

∫

d2z
{

(k + g)
[

∂ū + ∂̄u
]2

+ 4 g (∂u)(∂̄ū)
}

,

(12)
where ∂ = ∂

∂z
, ∂̄ = ∂

∂z̄
and u = u1 − iu2 , ū =

u1 + iu2 . The transformation (6) under rotations trans-
lates into the requirement that the fields u and ū have
spins su = 1 and sū = −1, while both their scaling di-
mensions ∆u , ∆ū have to vanish in order to ensure scale
invariance. These properties are obtained by assigning
the conformal weights

hu = h̄ū =
1

2
, h̄u = hū = −

1

2
, (13)

which are defined through

∆ = h + h̄ , s = h − h̄ .

It is then easy to see that (12) is not invariant under
a conformal transformation z → w = f(z) , z̄ →
w̄ = f̄(z̄) , where the fields transform as φ →

(f ′)−h (f̄ ′)−h̄ φ .
Conformal invariance is only recovered in the unphys-

ical case of zero bulk modulus k + g = 0, when (12)
describes a conformal field theory with central charge
c = 2. This is the familiar situation in which the two
fields u and ū are not required to transform under rota-
tions, and the corresponding symmetry is then enlarged
from O(2) to O(2) × O(2). It is worth stressing that all
conformal weights (13) now vanish, therefore this partic-
ular case cannot be described by simply evaluating the
previous results in the limit k + g → 0, but must be
separately treated. In fact, the canonical stress–energy
tensor (7) is now already symmetric, therefore no Belin-
fante construction has to be implemented, and conformal
invariance immediately follows from the tracelessness of
T c

µν .

As a final remark, we will now show that the above
observations for generic values of k + g are not in contra-
diction with the statement, proven in [2], that the stress–
energy tensor can be nevertheless ‘improved’ to a certain
degree, in order to obtain a vanishing two–point function
of its trace, as in (4). However, this is not associated
with the vanishing of the trace itself, because the theory
under examination turns out to be not reflection positive,
as we shall illustrate below.

Let us first notice that the trace of Tµν can be ex-
pressed at quantum level as

T µ
µ = (k + g)

[

: ∂ū ∂ū : + : ∂̄u ∂̄u : + 2 : ∂ū ∂̄u :
]

+

− g
[

: ∂u ∂̄ū : − : u ∂∂̄ū : − : ū ∂∂̄u :
]

, (14)

where the symbol ‘: :’ indicates normal ordering. By
using Wick theorem and the explicit expressions

〈u(z)u(w) 〉 =
k + g

4π g (k + 2g)

z̄ − w̄

z − w
,

〈 ū(z) ū(w) 〉 =
k + g

4π g (k + 2g)

z − w

z̄ − w̄
, (15)

〈u(z) ū(w) 〉 =
k + g − (k + 3g) log(z − w)(z̄ − w̄)

4π g (k + 2g)
,

it is then straightforward to check that the two–point
function of (14) does not vanish, being

〈T µ
µ (z)T σ

σ (0)〉 =
−32 g2(k + g)(k + 3g)

[4πg(k + 2g)]2
1

z2z̄2
. (16)
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However, we can guess the kind of improvement to be
performed on Tµν , by observing that the operator Kµ

defined in (10) can be partially reduced to a gradient, as

Kz = ∂ (g uū) −
k + g

2
u ∂̄u −

k + 3g

2
u ∂ū ,

Kz̄ = ∂̄ (g uū) −
k + g

2
ū ∂ū −

k + 3g

2
ū ∂̄u . (17)

It is then natural to define Θ′

µν as in (3), with L =
−g uū, and it can be easily checked that the two–point
function of its trace indeed vanishes

〈Θ
′ µ
µ (z)Θ

′ σ
σ (0)〉 = 0 , (18)

although the trace itself does not

Θ
′ µ
µ = (k + g)

[

: ∂ū ∂ū : + : ∂̄u ∂̄u :
]

+

+ 2 (k + 3g) : ∂ū ∂̄u : . (19)

suggesting therefore the failure of reflection positivity. In
fact, in a reflection positive theory eq. (18) should imply

the vanishing of any two–point function involving Θ
′ µ
µ ,

but several counterexamples occur here, for instance

〈Θ
′ µ
µ (z) : ∂u∂u : (0)〉 = −

k + g

2π2 g (k + 2g)

1

z4
.

The lack of reflection positivity can be equivalently
seen as non–unitarity in Minkowski coordinates. In fact,
the Hamiltonian associated to (5) is not positive definite,
being expressed as

H =
1

2

∫

dx

{

1

k + 2g
π2

t + g (∂xut)
2 + (20)

−
1

g
[πx − (k + g) ∂xut]

2 − (k + 2g)(∂xux)2
}

,

where the conjugate momenta to ut, ux are given by

πt = (k + 2g)∂tut ,

πx = g ∂tux + (k + g) ∂xut .

The negative signs in (20) are produced by the (1,−1)
signature of the Minkowski target space {ut, ux}, which
follows from the transformation property (6).

III. COMMENTS

In concluding this note, it is worth emphasizing that
the lack of conformal invariance in the discussed exam-
ple entirely originates from the transformation property
(6) of the fields under rotations. This is what makes the
canonical stress–energy tensor T c

µν not symmetric and
provides the non–trivial expression (10) for the trace of
the symmetrized tensor Tµν . The symmetrization proce-
dure always respects scale invariance, since the Belinfante
prescription only contributes with the divergence of a lo-
cal function Kµ to the trace T µ

µ , as shown in (10). How-
ever, Kµ has in general a non–trivial vectorial structure,
and therefore Tµν cannot be made traceless, consistently
with the fact that the theory is not conformally invariant.

Finally, it is interesting also to notice that the non–
unitarity of the theory, which reconciles our observa-
tions with Polchinski’s proof, is itself a consequence of
the vectorial nature of the fields uµ. In fact, covariance
requires both worldsheet and target space to have the
same Lorentzian signature, making the Hamiltonian (20)
not positive definite. A similar phenomenon takes place
also in electrodynamics and string theory, where the
Lorentzian signature of target space produces negative–
norm states in the Hilbert space. However, in those cases
the presence of a gauge invariance allows one to recover
unitarity in the subspace of physical states.
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