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Abstract

Tsallis’ thermostatistics with the standard linear average energy is revisited by em-
ploying S2−q, which is the Tsallis entropy with q replaced by 2 − q. We explore
the connections among the S2−q approach and the other different versions of Tsal-
lis formalisms. It is shown that the normalized q-average energy and the standard
linear average energy are related to each other. The relations among the Lagrange
multipliers of the different versions are revealed. The relevant Legendre transform
structures concerning the Lagrange multipliers associated with the normalization of
probability are studied. It is shown that the generalized Massieu potential associ-
ated with S2−q and the linear average energy is related to one associated with the
normalized Tsallis entropy and the normalized q-average energy.
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1 Introduction

Nowadays Tsallis’ thermostatistics [1,2,3] is considered as one of the gener-
alizations of the standard thermostatistics [4] based on the Tsallis entropy
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Sq ≡
∑

i(pi − pqi )/(q− 1), where pi stands for a probability of i-th state and q
is a real parameter. For the sake of simplicity the Boltzmann constant is set
to unity throughout this paper. In the q → 1 limit, Sq reduces to the standard
Boltzmann-Gibbs (BG) entropy S = −

∑

i pi ln(pi).
During the last decade, there have been vast numbers of basic studies and
applications [5,6,7], and the formalism of Tsallis’ thermostatistics has been
evolved. Tsallis’ entropy was originally introduced [1] with the standard av-
erage energy U (1) =

∑

i piEi as the internal energy constraint in the MaxEnt
procedure. (Here and hereafter, we use the superscript (i) with i = 1, 2, 3 in
order to distinguish the three different average energies in Tsallis’ thermo-
statistics.)
The second version [2] was proposed by replacing the energy constraint U (1)

with the unnormalized q-average energy U (2)
q =

∑

i p
q
iEi in order to restore the

thermodynamic stability for all values of q at the expense of the invariance of
the probability distribution function (pdf) under the uniform translation of
energy spectrum.
The role of energy constraints (U (1), U (2)

q , and U (3)
q ) within Tsallis’ thermo-

statistics was precisely studied [3], and the third (current) version was pro-
posed by replacing the definition of the energy constraint with the normalized
q-average energy U (3)

q =
∑

i p
q
iEi/

∑

j p
q
j , which is also expressed as the average

energy w.r.t. the so-called escort probability Pi ≡ pqi/
∑

j p
q
j [8]. Consequently

Tsallis’ thermostatistics has the two types of probabilities (pi and Pi), which
coincide with each other in standard thermostatistics (q = 1).
The correspondence between the two types of probabilities leads to the so
called “q ↔ 1/q”-duality [3,9]. Raggio [10] had already shown that the equiv-
alence between the first and third versions of Tsallis’ formalism by utilizing
the “q ↔ 1/q”-duality, i.e., maximizing Sq under the energy constraint of U (3)

q

is equivalent to maximizing S1/q under that of U (1).
Through the efforts [11,12] to generalize the zeroth law of thermodynamics
within Tsallis’ thermostatistics, it was revealed that the inverse temperature
is not simply the Lagrange multiplier associated with the energy constraint.
For this reason, the Tsallis variational problem and the Legendre transform
structures have been extensively studied by e.g., so-called optimal Lagrange

multiplier (OLM) formalism [13,14,15].
In the literature, some derivatives of Tsallis’ entropy have been proposed. One
of them is the normalized Tsallis entropy SN

q ≡ Sq/
∑

j p
q
j [16,17], and another

is the escort Tsallis entropy SE
q [18], which emerges from Sq by expressing pi

in terms of the escort probability Pi and then renaming Pi to pi.
Since Tsallis’ thermostatistics has been still under development, there remain
some fundamental questions to be answered. One of them is the choice of the
energy average which is used in the MaxEnt procedure of Tsallis’ thermo-
statistics. Until now there are two main different opinions: one is to employ
the standard average energy U (1); the other is to employ the normalized q-
average energy U (3)

q .
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Abe and Bagci [19] have shown that the generalized relative entropy associ-
ated with U (3)

q has nice properties, which are superior to those associated with

U (1). Di Sisto et al. [21] and Bashkirov [22] have independently shown that the
modified treatment of the variational problem for the first version of Tsallis’
thermostatistics leads to the pdf which is analogous to the pdf of the third
version.
There exists another duality which is called “q ↔ 2 − q”-duality [20] in the
q-deformed functions. Baldovin and Robledo [23] have observed that the max-
imization of S2−q with the standard constraints

∑

i piEi = U (1) and
∑

i pi = 1
leads to the q-exponential pdf. They suggested, based on the “q ↔ 2 − q”-
duality, that the mutual Sq and S2−q elegantly generalize the standard BG
entropy, and pointed out that some features are equally expressed by both
Sq and S2−q, but some others appears only via the use of either Sq or S2−q.
Finally, in Ref. [24] Naudts has analyzed both dualities of Tsallis’ thermo-
statistics based on his generalized thermostatistics [20,25], and proposed to
replace Sq with S2−q instead of introducing the normalized q-average energy
U (3)
q .

The purpose of this paper is twofold. Firstly, in order to study Naudts’ propo-
sition, and to understand a deeper relation between the formalisms employing
U (1) and the formalisms employing U (3)

q , we revisit Tsallis’ thermostatistics

with U (1) by using S2−q instead of Sq. The relationships among the Lagrange
multipliers for the different versions are obtained.
Secondly, we study a generalization of Massieu’s potential associated with ei-
ther S2−q and U (1) or SN

q and U (3)
q . The basic thermodynamic relations for

these generalized potentials are discussed.
The plane of the paper is the following. In the next section we begin with
the pdf obeying Tsallis’ q-exponential, which maximizes S2−q under the con-
straint of the linear energy U (1). It is shown that the original pdf is equivalent
to that of the (modified) first version with q replaced by 2 − q. In section 3,
the escort pdf is introduced. By utilizing the averages w.r.t. the escort pdf,
the original pdf is also shown to be equivalent to that of the third version
and to that of the version which uses the normalized Tsallis entropy [16,17].
It is found that the standard linear average energy U (1) and the normalized
q-average energy U (3)

q are related to each other as well as the corresponding
Lagrange multipliers. In section 4, following the method used by Naudts to
obtain the generalized free-energy [24,25], we obtain a generalization of the
Massieu’s potential [4] associated to the different formalisms. The final section
is devoted to our conclusion.

2 S2−q approach

Following the route developed by Naudts [25] and Abe [26] independently, we
can obtain the generalized entropy optimized by a given pdf. We here take a

3



similar approach [27,28] in order to obtain the generalized entropy which is
maximized by the Tsallis q-exponential pdf under the constraint of the linear
average energy U (1). Let us begin with the following q-exponential pdf

pi = α expq

(

−β(1)Ei − γ(1)
)

, (1)

where α, β(1) and γ(1) are real parameters to be determined later. The Tsallis
q-deformed exponential function expq(x) [1,5,6] is defined by

expq(x) ≡ (1 + (1− q)x)
1

1−q , (2)

where q is a real parameter which characterizes the deformation. The inverse
function of expq(x) is the q-logarithmic function defined by

lnq(x) ≡
x1−q − 1

1− q
. (3)

We choose the parameter α so that

d

dx

{

x lnq(x)
}

= lnq

(

x

α

)

. (4)

Then the parameter q is related with α by

1

α
= (2− q)

1
1−q . (5)

In addition, from Eq. (1), we readily see that

lnq

(

pi
α

)

= −β(1)Ei − γ(1). (6)

This relation and the property of Eq. (4) guarantee that the pdf given in Eq.
(1) is the solution of the following MaxEnt procedure [25,26,27,28]

δ

δpi



S2−q − β(1)
∑

j

pjEj − γ(1)
∑

j

pj



 = 0, (7)

where

S2−q =

∑

i

(

p2−q
i − pi

)

q − 1
= −

∑

i

pi lnq(pi), (8)

is the Tsallis entropy with q replaced by 2−q. We now see that the parameter
β(1) is the Lagrange multiplier associated with the linear average energy

U (1) ≡
∑

i

piEi, (9)

and γ(1) is that associated with the normalization of the pdf,
∑

i pi = 1.

4



From Eqs. (4), (6) and (8), we find

dS2−q

dβ(1)
= −

∑

i

d

dpi
(pi lnq(pi))

dpi
dβ(1)

= −
∑

i

lnq

(

pi
α

)

dpi
dβ(1)

=
∑

i

(

β(1)Ei + γ(1)
) dpi
dβ(1)

= β(1)dU
(1)

dβ(1)
, (10)

under the ’no work’ condition, i.e., dEi = 0, ∀Ei. In the last step we used
∑

i(dpi/dβ
(1)) = 0, which follows from the normalization of pi. We then obtain

the thermodynamic Legendre relation [29,30]

dS2−q

dU (1)
= β(1). (11)

At this point, let us confirm Eq. (1) is equivalent to the pdf of the first version
[1,3,21,22] in Tsallis’ thermostatics. By taking the average of Eq. (6) w.r.t. pi,
we have

〈

lnq

(

pi
α

)〉

= −β(1)U (1) − γ(1), (12)

and the l.h.s. is further expressed as
〈

lnq

(

pi
α

)〉

= 1− (2− q)S2−q. (13)

By combining the above two equations, we obtain

γ(1) = (2− q)S2−q − 1− β(1)U (1). (14)

Substituting this γ(1) into Eq. (1) and utilizing the identity

expq(x+ y) = expq(x) · expq

(

y

1 + (1− q)x

)

, (15)

it follows

pi = α expq

(

1− (2− q)S2−q

)

· expq

(

−β(1)(Ei − U (1))

1 + (1− q)[1− (2− q)S2−q]

)

=
1

Z̄
(1)
2−q

· expq

(

−β(1)(Ei − U (1))

(2− q)
∑

i p
2−q
i

)

, (16)

where we introduced the generalized partition function as

Z̄
(1)
2−q ≡

[

α expq (1− (2− q)S2−q)
]

−1
=

(

∑

i

p2−q
i

) 1
q−1

. (17)

From the normalization of pi, it follows that

Z̄
(1)
2−q =

∑

i

expq

(

−β(1)(Ei − U (1))

(2− q)
∑

j p
2−q
j

)

. (18)
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Note that if we replace 2− q with q in Eq. (16), it becomes the pdf which Di
Sisto et al. [21] and Bashkirov [22] have independently obtained by modifying
the treatment of the first version. We remark that the pdf of the original first
version [1] is written in

pi =
expq (−β∗Ei)

∑

i expq (−β∗Ei)
, (19)

where β∗ is not the Lagrange multiplier associated with the energy constraint.
From Eq. (1) and utilizing the identity (15), we readily obtain the relation
among β∗, β(1) and γ(1) as

β∗ =
β(1)

1− (1− q)γ(1)
. (20)

3 Connections with the other versions of Tsallis’ thermostatistics

Let us now introduce the escort probability Pi w.r.t. pi in the sense of Naudts’
generalized thermostatistics [24,25]. For the q-exponential pdf, the Pi can be
written by

Pi ≡
1

Zq
·
d expq(x)

dx

∣

∣

∣

∣

x=lnq(pi)
=

pqi
Zq

(21)

where Zq is the normalization factor and we used d expq(x)/dx =
[

expq(x)
]q
.

From the normalization of Pi, we have Zq =
∑

j p
q
j . We see then that the escort

probability of Eq. (21) is nothing but the so-called q-escort probability [3,8]

Pi =
pqi

∑

j p
q
j

, (22)

and that the average energy w.r.t. Pi is the normalized q-average energy [3]

〈Ei〉P ≡
∑

i

EiPi = U (3)
q , (23)

where 〈· · ·〉P stands for the average value w.r.t. the escort probability Pi.

Next let us confirm the original pdf of Eq. (1) is also equivalent to that of
the third version [3] in Tsallis’ thermostatics. The key point is that γ(1) is
expressed not only in terms of U (1) as Eq. (14) but also in terms of U (3)

q . By
taking the average of the both sides of Eq. (6) w.r.t. Pi, we obtain

〈

lnq

(

pi
α

)〉

P
= −β(1)U (3)

q − γ(1), (24)

and the l.h.s. is further expressed as
〈

lnq

(

pi
α

)〉

P
= 1− (2− q)SN

q , (25)
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where

SN
q ≡

Sq
∑

j p
q
j

=
1−

∑

i
pi

∑

j
pq
j

1− q
, (26)

is the normalized Tsallis entropy [16,17]. We then have

γ(1) = (2− q)SN
q − 1− β(1)U (3)

q . (27)

Substituting this γ(1) into Eq. (1) and utilizing Eq. (15), we obtain

pi = α expq

(

1− (2− q)SN
q

)

· expq

(

−β(1)(Ei − U (3)
q )

1 + (1− q){1− (2− q)SN
q }

)

=
1

Z̄
(3)
q

expq

(

−β(1)∑

k p
q
k

2− q
(Ei − U (3)

q )

)

, (28)

where Z̄(3)
q is the q-generalized partition function, and from the normalization

of pi, it can be written as

Z̄(3)
q =

∑

i

expq

(

−β(1)∑

j p
q
j

2− q
(Ei − U (3)

q )

)

. (29)

From Eq. (28) we readily confirm the following known relation [3]

Z̄(3)
q =

[

α expq

(

1− (2− q)SN
q

)]

−1
=

(

∑

i

pqi

) 1
1−q

. (30)

By comparing Eq. (17) with Eq. (30), it follows that

Z̄(1)
q = Z̄(3)

q . (31)

This result is a consequence of “q ↔ 2− q”-duality.

By the way, the pdf of the third version [3] is written by

pi =
1

Z̄
(3)
q

expq

(

−
β(3)

∑

j p
q
j

(Ei − U (3)
q )

)

, (32)

which can be obtained as the solution of the following MaxEnt problem

δ

δpi



Sq − β(3)

∑

j p
q
jEj

∑

k p
q
k

− γ(3)
∑

j

pj



 = 0, (33)

where β(3) and γ(3) are the Lagrange multipliers associated with the normalized
q-average energy U (3)

q and the normalization of the pdf, respectively. From Eq.
(33) it follows [29,30]

β(3) =
dSq

dU
(3)
q

. (34)
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By comparing Eq. (28) with Eq. (32) we find that the both pdfs are equivalent
each other, and that β(1) and β(3) are related by

β(3) =
(
∑

j p
q
j)

2

2− q
β(1). (35)

From Eq. (33) we have

qpq−1
i − 1

1− q
− β(3) qp

q−1
i

∑

j p
q
j

(

Ei − U (3)
q

)

− γ(3) = 0. (36)

Multiplying the both sides of this equation by pi and taking summation, we
obtain

γ(3) = qSq − 1. (37)

We next consider the relations with the pdf for the normalized Tsallis entropy
given in Eq. (26) [16,17]

pi =
1

Z̄
N(3)
q

expq



−βN(3) ·
∑

j

pqj ·
(

Ei − U (3)
q

)



 , (38)

where

Z̄N(3)
q =





∑

j

pqj





1
1−q

, (39)

and from the normalization of pi, it follows that

Z̄N(3)
q =

∑

i

expq



−βN(3) ·
∑

j

pqj ·
(

Ei − U (3)
q

)



 . (40)

pi can be obtained as the solution of the following MaxEnt problem

δ

δpi



SN
q − βN(3) ·

∑

j p
q
jEj

∑

k p
q
k

− γN(3) ·
∑

j

pj



 = 0, (41)

where βN(3) and γN(3) are the Lagrange multipliers associated with the nor-
malized q-average energy U (3)

q and the normalization of the pdf, respectively.
From Eq. (41) we have [29,30]

βN(3) =
dSN

q

dU
(3)
q

, (42)
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and by comparing Eq. (28) with Eq. (38) we find that the both pdfs are
equivalent each other, if

βN(3) =
β(1)

2− q
. (43)

From Eq. (41) it follows

1

(
∑

j p
q
j)

2
·

(

qpq−1
i −

∑

k p
q
k

1− q

)

− βN(3) ·
qpq−1

i
∑

j p
q
j

(

Ei − U (3)
q

)

− γN(3) = 0. (44)

Multiplying the both sides of this equation by pi and taking summation, we
obtain

γN(3) = (1− q)SN
q − 1 = −

1
∑

i p
q
i

. (45)

Until here, we have considered the pdfs of the three different versions in which
the combinations of the entropies and average energies are: i) S2−q and U (1);
ii) Sq and U (3)

q ; and iii) SN
q and U (3)

q . It is thus natural to consider the pdf for
the combination of the normalized Tsallis entropy with q replaced by 2− q,

SN
2−q ≡

S2−q
∑

j p
2−q
j

, (46)

and U (1). The associated pdf can be written as

pi =
1

Z̄
N(1)
2−q

expq

(

−
βN(1)

2 − q

∑

i

p2−q
i

(

Ei − U (1)
)

)

, (47)

which can be obtained as the solution of the following MaxEnt problem

δ

δ pi



SN
2−q − βN(1) ·

∑

j

Ej pj − γN(1) ·
∑

j

pj



 = 0 , (48)

where βN(1) and γN(1) are the Lagrange multipliers associated with the linear
average energy U (1) and the normalization of the pdf, respectively. By com-
paring this equation with Eq. (16), we find that the both pdf are equivalent
each other, if

βN(1) =
β(1)

(

∑

i p
2−q
i

)2 , (49)

and
Z̄

(1)
2−q = Z̄

N(1)
2−q . (50)

From Eq. (48) it follows

−
1

(q − 1)
∑

j p
2−q
j

(

1− (2− q)

∑

k pk
∑

ℓ p
2−q
ℓ

p1−q
i

)

− βN(1)Ei − γN(1) = 0 . (51)
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Multiplying both sides of this equation by p
i
and taking the summation, we

obtain

γN(1) = (q − 1)SN
2−q − 1 = −

1
∑

i p
2−q
i

. (52)

Summing up, the pdfs of the different versions of Tsallis’ thermostatistics are
related one another. Note that U (3)

q is automatically introduced as the average
energy w.r.t. the escort probability. This is a consequence of the “q ↔ 1/q”-
duality. In other words, U (3)

q is accompanied with U (1). From Eqs. (14) and
(27), we see that they are related by

S2−q −

(

β(1)

2− q

)

U (1) = SN
q − βN(3)U (3)

q . (53)

By taking the derivative of both sides of this equation w.r.t. β
(1)
, we obtain

(1− q) β(1) dU
(1)

d β(1)
= U (1) − U (3)

q . (54)

In our opinion, it is thus meaningless asking which of the two average energies
is correct. They cannot exclude each other.

4 Generalized Massieu potential and associated Legendre struc-

tures

Let us first remind you of some basic relations concerning with Massieu’s
potential [4] in the standard BG thermostatistics. Massieu’s potential Φ is
defined as the Legendre transform of the standard BG entropy S(U) which is
a function of internal energy U ,

Φ(β) ≡ S − βU. (55)

Massieu’s potential is thus a function of the Lagrange multiplier β associated
with energy constraint, whereas Helmholtz free energy F is defined as the
Legendre transform of the internal energy U(S) which is a function of S,

F (T ) ≡ U − TS, (56)

and consequently F is a function of temperature T . Since the temperature T
and the Lagrange multiplier β are related by T = 1/β in the standard BG
thermostatistics, Massieu’s potential is related with free energy as

Φ = −
F

T
. (57)
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By differentiating the both side of Eq. (55) and utilizing the relation

dS(β)

dβ
= β

dU(β)

dβ
, (58)

we readily obtain

dΦ

dβ
= −U. (59)

Eqs. (55), (58), and (59) are basic relations concerning with Massieu’s poten-
tial in the standard BG thermostatistics.

We next review the relation between Massieu’s potential and the Lagrange
multiplier γ associated with the normalization of probability in the standard
MaxEnt procedure,

δ

δpi



S − β
∑

j

pjEj − γ
∑

j

pj



 = 0. (60)

Its solution is the well-known BG pdf

pBG
i = exp (−βEi − γ − 1) =

1

Z
exp (−βEi) , (61)

where the partition function Z = exp (1 + γ) is introduced. By substituting
Eq. (61) into the BG entropy S, we obtain

S = −
∑

i

pBG
i ln pBG

i =
∑

i

pBG
i (βEi + γ + 1) = βU + γ + 1. (62)

Comparing this with Eq. (55), we have the known relations

Φ = 1 + γ = lnZ. (63)

We thus see that the Lagrange multiplier γ is related to Massieu’ potential Φ,
and that Eq. (59) is equivalent to the well-known relation d lnZ/dβ = −U .

Let us now focus on the generalizations of these basic relations within Tsallis’
thermostatistics. Naudts [24] has already shown that there exists a generalized
(Helmholtz) free energy associated with the average energy w.r.t. the escort
probability in his generalized thermostatistics, which contains Tsallis’ ther-
mostatistics as a special case. For a generalized entropy based on a deformed
logarithmic function, the Lagrange multiplier associated with an energy con-
straint is generally not equivalent to the inverse temperature 1/T . In our
formalism it is thus appropriate to introduce a generalized Massieu potential,
which is a function of the Lagrange multiplier β(1) or βN(3), instead of the gen-
eralized free energy, which is a function of temperature. Following the same
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method used by Naudts to derive the generalized free energy [24], let us derive
the generalized Massieu potential.

By utilizing Eqs. (5) and (15), we rewrite the original pdf of Eq. (1) as

pi = expq

(

lnq(α)
)

· expq

(

−β(1)Ei − γ(1)
)

= expq

(

−1

2− q

(

β(1)Ei + 1 + γ(1)
)

)

= expq

(

−βN(3)Ei − ΦN(3)
q

)

, (64)

where in the last step we introduced the quantity

ΦN(3)
q ≡

1 + γ(1)

2− q
, (65)

which reduces to Eq. (63) in the limit of q → 1.

By differentiating the both sides of
∑

i pi = 1 w.r.t. βN(3), and utilizing Eqs.
(21), (23) and (64), we have

0 =
∑

i

dpi
dβN(3)

= −
∑

i

(

Ei +
dΦN(3)

q

dβN(3)

)

d expq(x)

dx

∣

∣

∣

∣

x=−βN(3)Ei−Φ
N(3)
q

= −
∑

i

(

Ei +
dΦN(3)

q

dβN(3)

)

ZqPi = −Zq

(

U (3)
q +

dΦN(3)
q

dβN(3)

)

. (66)

We then obtain
dΦN(3)

q

dβN(3)
= −U (3)

q . (67)

By comparing this relation with Eq. (59), we find that ΦN(3)
q is the generalized

Massieu potential associated with the escort average energy U (3)
q . In the limit

of q → 1, Eq. (67) of course reduces to Eq. (59).

Now a natural question arises at this point: what are the generalizations of Eqs.
(55) and (58)? In other words, what is a generalized entropy whose Legendre
transform is ΦN(3)

q ? From Eq. (27) and the definition of ΦN(3)
q given by Eq.

(65), we obtain
ΦN(3)

q = SN
q − βN(3) · U (3)

q , (68)

which shows that the generalized Massieu potential ΦN(3)
q

(

βN(3)
)

is the Legen-

dre transform of SN
q

(

U (3)
q

)

. By differentiating the both sides of Eq. (68) w.r.t.

βN(3) and utilizing Eq. (67), we obtain

dSN
q

dβN(3)
= βN dU (3)

q

dβN(3)
. (69)

Eqs. (68) and (69) lead us to consider SN
q as the generalized entropy associated

with the Massieu potential ΦN(3)
q .

12



Now we’d like to point out some observations. Firstly, it is worth noting that
ΦN(3)

q is not associated with U (1) but associated with U (3)
q . In fact, from Eq.

(14), ΦN(3)
q can be also expressed as

ΦN(3)
q = S2−q −

β(1)

2− q
· U (1). (70)

By taking the derivative of the both sides of this equation w.r.t. β(1) and
utilizing Eq. (10), we have

dΦN(3)
q

dβ(1)
= −

U (1)

2− q
+

(

1− q

2− q

)

β(1)dU
(1)

dβ(1)
. (71)

This is not a form invariant generalization of Eq. (59), whereas Eq. (67) is a
natural generalization.

However, we can construct an appropriate generalization in order to overcome
this difficultly by utilizing the fact that U (1) and U (3)

q are related to each other
as shown in Eq. (53) or Eq. (54). Let us define the Massieu potential associated
with U (1) as

Φ2−q ≡ ΦN(3)
q −

(

1− q

2− q

)

β(1) · U (1) =
1 + γ(1)

2− q
−

(

1− q

2− q

)

β(1) · U (1). (72)

Substituting Eq. (14) or Eq. (70) into this equation leads to

Φ2−q = S2−q − β(1) · U (1), (73)

which shows that the generalized Massieu potential Φ2−q

(

β(1)
)

is the Legendre

transform of S2−q

(

U (1)
)

. Furthermore from Eqs. (71) and (72), we obtain

dΦ2−q

dβ(1)
= −U (1), (74)

which can be also derived by utilizing Eq. (54) in the same way as we have
derived Eq. (67).

Secondly, in the literature, the generalized free energy F (3)
q [3] associated with

the normalized q-average energy U (3)
q is known as

F (3)
q ≡ U (3)

q −
1

β(3)
· S(3)

q . (75)

The corresponding Massieu potential can be written as

Φ(3)
q ≡ −β(3)F (3)

q = S(3)
q − β(3) · U (3)

q . (76)

13



For the version which utilizes the standard linear energy average U (1) as the
constraint in the MaxEnt procedure, the Lagrange multiplier γ(1), which is
associated with the normalization of the pdf, is related with the generalized
Massieu potential in the same way of the standard BG thermostatistics.
Note that ΦN(3)

q has no relation to γN(3). In fact both the generalized Massieu

potentials ΦN(3)
q and Φ2−q are related only with γ(1). However, the situation

is different for the versions utilizing the normalized q-average energy U (3)
q , for

which the reference energy is forced to shift from zero to U (3)
q [3]. Consequently

the Lagrange multipliers γ(3) and γN(3) are related only with Sq (as shown in
Eq. (37)) and SN

q (as Eq. (45)), respectively.

It is thus difficult to obtain the Φ(3)
q or F (3)

q by applying our method, which
is based on the relation between the Lagrange multiplier associated with the
normalization of pdf and Massieu’ potential.

5 Conclusions

Based on the Tsallis’ thermostatistics with the standard linear average energy
U (1) and S2−q, we have explored the connections among the pdfs of the two
different kinds of Tsallis’ formalism: one employs U (1), and the other employs
the normalized q-average energy U (3)

q as the energy constraint.
We have shown the relations among the Lagrange multipliers associated with
energy constraints of the different versions. It is revealed that the standard
linear average energy U (1) and the normalized q-average energy U (3)

q are related
to each other.
Furthermore we have studied the relevant thermodynamic Legendre relations
concerning with the Lagrange multiplier γ(1) associated with the normalization
of the pdf. By utilizing the relation between U (1) and U (3)

q , we have constructed

the generalized Massieu potential associated with either U (1) or U (3)
q .
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