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Abstract

According to the volatility feedbacki®ect, an unexpected increase in squared volatility leads tmmediate decline

in the price-dividend ratio. In this paper, we consider theperties of stock price dynamics and option valuations
under the volatility feedbackfkect by modeling the joint dynamics of stock price, dividgratsd volatility in con-
tinuous time. Most importantly, our model predicts the nizgaeffect of an increase in squared return volatility on
the value of deep-in-the-money call options and, furtheemattempts to explain the volatility puzzle. We theoreti-
cally demonstrate a mechanism by which the market pricefbision return risk, or an equity risk-premiuntfects
option prices and empirically illustrate how to identifyatrmechanism using forward-looking information on option
contracts. Our theoretical and empirical results suppatrélevance of the volatility feedbackect. Overall, the
results indicate that the prevailing practice of ignorihg time-varying dividend yield in option pricing can lead to
oversimplification of the stock market dynamics.
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1. Introduction

The fundamental importance of time varying volatility hasd been recognized in statistical finance and financial
economics, and many scientific findings thereof have beeraweépted and exploited in these disciplines. The topic
is motivated by strong evidence that volatility does not agntonstant over time. Recently, in October 2008, the
volatility index of S&P 500, VIX, hit 80% whereas its avera@®90-2009) was about 20%. Empirically, also the
price-dividend ratio (or its reciprocal, the dividend yigis time-varying and one of the 'stylized facts’ of finaricia
markets is that changes in the price-dividend ratio arethagycorrelated with volatility. Many theories, ofi which
the so-called volatility feedbackifect (sometimes called the risk-premiurfiieet) is one, explain the empirically
observed negative correlation between volatility andlsfarice [see, e.g.1, 2, 3, 4, 5, 6, 7, 8]. According to the
theory of volatility feedbackfect, an unexpected increase in squared volatility leads tmenediate decline in the
stock price, because cash flows are discounted at a higkeitatrefore, an exogenous increase in squared volatility
generates additional return volatility as stock pricepoasl and adjust to new information about the cost of capital.
In addition, the relation between volatility and returna dat least partly) be explained by the leveraffea, which
extends from changes in the firm’s value to changes in staokr®and volatility. The dierence lies in causality —the
volatility feedback &ect theory contends that changes in volatility may prodetern shocks, whereas the leverage
hypothesis predicts that return shocks lead to changedatilitg. Also the leverage fect is widely examined in the
literature [see, e.g9, and references therein].

The time-varying price-dividend ratio (or the dividendlgieand its relation to stochastic volatility is well docu-
mented in the empirical literature, but the current opticigipg literature does not skiciently characterize the joint
dynamics of dividends, volatility, and stock price; inste&ypically in option pricing, dividends are either igndre
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or the dividend yield is assumed to be constant at best. snpidyper, we aim to show that the prevailing practice of
ignoring the modelling of the joint dynamics of dividends]atility, and stock prices is inconsistent not only with
respect to financial data but also with respect to financedhitself. This oversimplification can lead to mispricing
of options and a misestimation of thfects of the return risk and volatility risk on option valu€ar main goals are
as follows:

e Model the joint stochastic dynamics of return volatilityyidends, and stock price with volatility feedback in
continuous time by determining the underlying stock as acfar future random dividends with a stochastic
discount rate.

e Express the relation between dividend growth volatilitd asturn volatility and solve the volatility puzzle (i.e.
return volatility is too high compared to dividend growtHatility).

e Show that the correlation between returns and volatility loa divided into two components: leveragteet
and volatility feedbackféect.

e Demonstrate a mechanism by which the market price of refgkn or equity risk-premium, féects option
prices.

e Show that, contrary to the prevailing view, an increase uresgd return volatility canegativelyaffect the price
of deep-in-the-money call options.

e lllustrate how to obtain forward-looking estimates for thréce of ditusion return risk using information on
option contracts.

One of the main implications of Black-Scholes theory is tirelévancy of the equity risk premium in option
valuation (i.e. option values are not functions of the expecate of return). We, however, aim to show that the price
of return risk determines the sensitivity of the dividendlglito return volatility and therebyff@cts option valuations,
and consequently, the market price of return risk is needehanput to price options under our framework. This, on
the other hand, allows us to produce forward-looking optiaplied estimates for the market price of théfdsion
return risk and the volatility risk premium as a part of thélration procedure of our model. These option-based
estimates can be obtained using option data alone witheutekd of historical stock price data, which is in contrast
to the traditional literature that usually uses a seriesqoftg market indices producing backward-looking estirsate
for the market price of diusion return risk.

In the early literature, Carr and W1 (] provided a welcome exception by proposing a model that doms
capture the volatility feedbacklect and estimate the jump risk and the variance rate rislgugition data. Bakshi
and Wu [L]] specified a model to estimate market prices d@fedtent sources of risks using information on both time-
series returns and options prices. However, the approdchbese two papers filer markedly from ours. Most
importantly, they assume a constant dividend yield, anrapsion that contradicts the empirical evidence of varying
price-dividend ratio and the theory of the volatility feedhk dfect. Moreover, Carr and WUW.() try to capture the
volatility feedback &ect directly by assuming a negative statistic correlatietwieen business risk and stock price
without modeling the changes that the underlying asseepnimlergoes in volatility. In addition, in contrast to our
paper, the price of thdiffusionreturn risk does not appear in option pricing formulas uriderisk-neutral measure
in [10, 11]. Our paper is also related td%], which integrates the stochastic dynamics of interegtsiadividends,
and stock prices and valuates options accordingly. Despiseme methodological similarities between the papers,
[12] differs substantially from the present paper; whereas Kararndir?] focuses on the joint dynamics of spot rate
and dividends but ignores the volatility feedbadkeet, in this paper we investigate the stock market dynanmids a
options prices under the volatility feedback but, for siitip}, assume constant interest rates.

The paper is organized as follows. In Sectyrwe present our model setup, solve the price-dividend rgitio
it, and study stock market dynamics under our assumptionsSektion3, we show how to price options under
our settings, and in Sectighwe provide an empirical illustration. The final section disses the results and draws
conclusions.



2. Stock market dynamics

2.1. Model setup

Let {P;;t > 0} denote the stock price process dby; t > 0} the instantaneous dividend stream and let us assume
that both{P;;t > 0} and{D¢; t > 0} evolve onR,. We define the cumulative stock returns as follows:

Definition 1. Cumulative stock return. The cumulative stock return from dividends and changesigeprsatisfies

dPt + Dtdt

dR; = P

Thus{R;;t > 0} represents the instantaneous total return including g®eciations and dividends. To focus on
the characterization of stock market dynamics and valnatiooptions with volatility feedback condition, and to
maintain conciseness and readability, we employ pufasion-based models and leave extensions, including jumps
and non-&ine volatility models, for future research. In the followjnge characterize the dynamics of cumulative
stock returns and return volatility.

Assumption 1. The cumulative stock return and its volatility evolve sastically as

dR: = (1 +¥¢) dt + xdB} (1)
dX[ = —ﬂX[dt + O'dei(, (2)

where x represents instantaneous return volatility, ang,|3, andoy are constant positive real numbers. Moreover,
B" and B are Brownian motiongiB{dB; = pry:dt, and % := X, x€ R.

This assumption consists of two parts. First, in Ej.we assume that the expected rate of return (including both
price appreciation and dividend yield) depends on squaatedrr volatility and results in an ICAPM type equilibrium
[seel3, 2], wherer denotes the risk-free interest rate and where, under neatsumptions, the price offtiision
return risk,y, represents the céiecient of relative risk aversior2[ 14]. This classical risk-return tradé&aelation is
widely used in various contexts in the financial literatuithviime variation in second moments. Second, we follow
Heston [L5] and assume that volatility follows an Ornstein-Uhlenbeckcess according to Eq2)( In fact, this
volatility model in Heston’s papellp, see p. 328, Eq. (2) therein] has its roots in the Stein-Steidel [L6]. As
Heston shows, if volatility follows Eq.2), then squared volatilityy, = x?, follows the squared root process:

dhy = k(60 — hy)dt + o v/hedBY, )

wherek = 28, 0 = 02/(28), andoy, = 20. This afine model is arguably among the most widely used continuous-
time stochastic volatility models in finance. Notice that(8) the correlation between returns and volatiljby ,
is assumed to be time-varying, and as seen later, can be @molagly determined by specifying the process for the
dividend stream and by applying the transversality coaditiOriginally, and typically, the correlation is assumed t
be constant in timé.

Second, we assume that the stock (the stock index) paysdd#icontinuously with stochastic dividend growth
volatility. In particular, similarly to 17] and [18], instantaneous dividends are assumed to follow a geoo@wcess.

Assumption 2. (i) The stochastic dierential of dividends is given by
th = CL’Dtdt + ytDtdBtd

with dBJdB} = pgyxdt, where the correlation cggcient of dividend growth and return volatilitggy € [-1, 1], and
the expected rate of dividend growih,e R, are constant, and where dividend growth volatility, ig stochastic.

1 Notice that the sign ok is irrelevant. It is the squared volatility that matterse statistical properties of the stock return dynamics idiclg
the correlation between squared volatility and returns tlae same with and—x;.
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Moreover,  := D, D > 0.

(if) The covariance and correlation between dividends agtdm volatility are related according to

sign{ -Cow (D1, (€)1 = signi».

In assumptionif, a negative correlation between dividends and returntiibfecan be thought of as representing
the leveragefect: the greater (resp. less) the dividends, the greatsp( less) the stock price, and because of finan-
cial leverage, the less ( resp. greater) the return vdiatlihe assumption of lognormal instantaneous dividenash(c
flows) is quite common in the literature [see, 1,17, 20, 18, 21, 12]. Assumption {j) implies that the correlation
codficientpgyx has the same sign as the covariance between dividends aaddgeturn volatility. Consequently,
becauseyqy is assumed to be a constant, the sign of the covariance bettiidends and squared return volatility
does not change over time. Note that the standard Hestonl inqulées the same relation for the covariance between
returns and squared return volatility and the correspandanrelation cofficient.

Together Assumptionkand2 imply that the price process is given by

dPt = (r + ’thZ) Ptdt - D[dt + Xt PtdB{
= (r + ’thZ - (St) Ptdt + XtPtdB{,
wheres; := D/P; represents the time-varying instantaneous dividend yield

Assumption 3. By assuming transversality, we express the stock pri@, g), P: = p(Dx, %), as the expected value
of discounted dividends, conditional upon the presentinétion:

00 S
P(Dy, %) = ED,xf eXp[—f (r + yXﬁ) du} Dgds
t . t . . .
= DtXEXf exp[f (a—r—yxﬁ—éyﬁ)du+f yudBﬂ]ds< 0.
t t t

Here r + yx2 represents the instantaneous stochastic cost of capitahatu.

(4)

The above expression clarifies the concept of the volafiigdback &ect, according to which the stock price is
determined by the expected value of discounted dividentisrevthe cost of capital depends positively on squared
return volatility. As squared spot volatility increasdsen also the future values of return volatility are expedted
increase, and future dividends are thereby discounted mfreethrate. Then according to Edl){ the current stock
price immediately responds negatively to an increasedafasipital, generating additional return volatility ascto
prices adjust to new information [see, €3).4, 5, 6].

In contrast to our characterization, the existing literatseeks to capture the volatility feedbadleet diferently
and, in fact, in numerous ways. Typically, models are inmitetime and based on GARCH type settings [see, e.g.,
5, 6] ; continuous-time characterizations have also been m@p{see, e.g8, 10]. More importantly, many papers in
the volatility feedback literature assume that the ris&rpium depends on dividend growth volatility instead of retu
volatility [see, e.g.5, 22, and the references therein], but, on the other hand, inahditonal CAPM literature it
is the conventional ICAPM type risk-return tradé-with a linear relation between risk-premium and squarearnet
volatility that has been the primary target of investigatidcmpirically, stock return volatility is admittedly much
higher than dividend growth volatility, a phenomenon ezteely investigated in the literature, and hence estimates
of the risk-return trade{d parameter can ffer depending on whether the risk premium is assumed to depend
return volatility or dividend growth volatility. In additin, in several papers, it makes sense to work within the log-
linear approximate asset pricing framework of Campbell Shdler [23] [see, e.g.5, 22], but we show it more
worthwhile under our settings to use numerical methodslicegbe price-dividend ratio.

Under these assumptions, we aim to investigate the joinahjcs of and relation between stock price, return
volatility, and dividend stream. In particular, we seek &datmine the relations of return volatility to dividend gith
volatility and to the price-dividend ratio (and its reciped, the dividend yield).
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Definition 2. Price-Dividend Ratio. f : R — R, denotes the price-dividend ratio and satisfi€®px;) = D¢ f(x).

We can see from Eq4] that for allx > 0, p(D, X) = p(D, —x) and sof (X) = f(—x). Practically, this holds because
the stochastic cost of capital is determined by squaredilitylax?, and hence the sign of volatilitx, does not fiect
the stock price dynamics. Thus we can deduce thiatan even function, i.ef(x) = f(-X), fx(X) = —fx(-x), and
fxx(X) = fux(—X) for all x > 0, wherefy andfyx denote first and second order derivatives. Moreover, fostihek price
to be a continuously éierentiable function, we can impose tHgf0) = 0. We will use this property as a boundary
condition to solve the price-dividend ratio far> 0 .

2.2. Solution

We assume that dividend growth volatility is stochastic amerlinked with stochastic return volatility. In fact, it
is easy to show that if dividend growth is assumed to be Ii®,Y; is constant over time, then f¢ry # 1 the stock
price is not real-valued for ak > 0 under our assumptions. This is intuitive, because withstzont dividend growth
volatility the only source of stochasticity in return valdéy would be the stochastic cost of capital, which, acdogd
to CAPM, is determined by return volatility itself. On the olh, because the assumption of IID dividend growth
is not reasonable under our settings, the rest of the studsiders dividend growth volatility as an endogenously
determined time-varying and stochastic variable. \Weerahow a solution to dividend growth volatility as a function
of return volatility. Using this solution, we then presem@n-homogeneous ordinaryfidirential equation that the
price-dividend ratio must satisfy.

Proposition 1. Suppose that the above assumptions hold. Then the dividemdhgvolatility, ¥X), yi = y(X),
satisfies

2
(%) L)’ -

y(x) = _deo'xm + sign(x) \/XZ -(1- Pﬁx) (O'X )

Proof. By applying Itd’s Lemma with Definitior2 and noting thatp(x, D)/dD = f(x), the price process can be
expressed as

1
dP[ = (Q’f (Xt)D[ - ﬂX[ fx(Xt) D[ + fx(X[)pde'xyt Dt + = fxx(xt)o-iDt) dt

2
+ fr(X)oxDdBY + f(x)y;D;dB¢ (6)
_ _ fx(x) 1 5fa(X) fx(%) X d
= (a + (deO'th ﬂXt) f(Xt) + 20'X f(Xt) Ptdt + O f(Xt) PtdBt + Wt PtdBt .

The above reasoning is also applied, e.g.2if pnd [18]. From the relation between the return process, volatility
process, and dividend process we obtain witk y(x;) that

2
¥ = Y0 + B 4 209,
When we solve the above with respect/f®), we obtain
2
V) = o pe & \/xf - - (o] )

First, if x> 0, we choose the greater of the two roots above. To undergianahote that by 1td’s lemma

d
5. COM (D1, () =t = 200Y(%) Do
-

which implies under Assumptioa (ii) that sign(y(x)) = sign(x); hence we must choose the greater of the two roots
to have a strictly positivg for any x > 0. At this point, note also that i4x < O, then the first term on the right hand
side of Eq. {) is strictly negative for anyx > 0. This implies that under certain conditions, the struatparameters
are bounded. The above also implies (&) < 0 for x < 0; hence we always choose the smaller of the roots for any
x<0. O



Note that the above Proposition implies that dividend ghowdlatility y(x) = 0 if and only if return volatility
x = 0. Furthermore, dividend growth volatility(x) > 0 andy(-x) = —y(x) for any x > 0. It also follows that
under our assumptions the price of the stock would Ifigcdit to solve by Monte Carlo methods. In particular, to
compute Eq.3), we must solvey, = y(x,) iteratively, which is determined by the price-dividentdioa f(x), which
again directly determines the stock price. Therefore, wstiimok for a solution in another direction.

Using the solution for dividend growth volatility, we carrfioulate a diferential equation that the price-dividend
ratio must satisfy:

Proposition 2. Suppose that the conditions of Propositibimold. Then the price-dividend ratio satisfies the following
relation:

VR~ BRI + 502609 — (1 + 72~ @) () = 1. ®)

where ¥x) is given in Equation). For the interval x> 0O, the boundary conditions are(X) = 0as x— « and
fx(x) =0at x=0.

Proof. The result is directly obtained by matching the drift terfnttee stock price proces$) and the assumed
required rate of return minus the dividend yield; yx% — 1/ f(X).

The first boundary condition is based on the fact that futiwieleinds are discounted at an extremely high cost of
capital if the volatility of stock returns is extremely highhe second condition is imposed by thé&eientiability of
fatx=0. O

This model is hardly tractable analytically, especiallyttwiqy # O; therefore, we employ numerical methods to
solve it> The numerical solution is described in the Appendix.

In Figurel, we have plotted the price-dividend ratio as a function dfine volatility for x > 0. We do not
show the corresponding plot for the interval>ok 0 because it can be considered as a "mirror image” of Figure
asf(-x) = f(x) (f is an even function). Bakshi et ak§] estimated from option prices that the volatility of the
variance g, is about 0.4, depending on the moneyness of the optionsyingpthatoy = 0/2 ~ 0.2. Moreover, the
speed of adjustment of the squared volatility procesalmost equalled one, and th8s= «/2 ~ 0.5. We also note
that these values are consistent with their estimation efldhg-run average squared volatility (varianee) 0.04.

In addition, we assume that the instantaneous risk-freedst rate is = 0.02 and the correlation between the returns
and dividend growth ipgx = —0.5. In Figurel (a), we have plotted three curves by varying the price fitidion
return risk,y, the expected dividend growth rate,and the correlation between return volatility and dividgnowth,
pdx- In Figurel (b), we perform a sensitivity analysis by varyig@ndoy from Bakshi's estimate<p].

As expected, the stock price is a monotone decreasing mafisquared return volatility. At the origin, the first
derivative is zero, as required by the conditionfg0) = 0. Note how a greater implies a lower stock price even
with a greater expected dividend growth rate. This seensoredle, because an increasg increases the stochastic
risk premium,yx?. Note that ify were equal to zero, then AssumptiBrvould imply thata should be less than the
risk-free interest rate; otherwise the stock price woultlreowell defined. In fact, a greater stochastic risk premium
implies a greater upper bound of the expected dividend drordr example, witly = 1 ande = 0.08, the numerical
solver returns an error message and we cannot find a suitable nakeslation for the price-dividend ratio because
dividend growth would then be too high compared to the (sdstib) risk premium, but withy = 3 anda = 0.08, a
solution does exist (see Figuti

As the above analysis shows, the price-dividend rdtics f(x;), varies as return volatility changes; hence the
dividend yield,6; = 1/ f;, depends on return volatility and is stochastic. Moreabercorrelation between returns and
volatility becomes stochastic under our settings:

2With pgx = 0, Eq. @) is a non-homogeneous ODE, whose associated homogenami®adelongs to the class of degenerate hypergeometric
equations. However, the solution is very complicated articemely hard to interpret [se®, 25].
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Figure 1: The price-dividend ratid,(x), with respect to return volatilityx. In plot (a), parameters are= 0.02,8 = 0.5, ox = 0.2, pgx = -0.5
(thicker lines) orpgx = 0.5 (thinner lines), ang anda vary. In plot (b), parameters are= 0.02,y = 2, @ = 0.05, pgx = —0.5 (thicker lines)

or pgx = 0.5 (thinner lines), an@ ando vary. In particular, the relation betwegnandoy is determined withoy = /268, where the average
varianced = 0.04.

Proposition 3. Suppose that the conditions of Propositibhold. Then the correlation between returns and return
volatility, prxt = prx(X), can be expressed as

fx
1o + Y(X)pax

.02 t ’
\/0—>2( f(())(())Z +Y(X)? + 20dx0°x f(())(()) y(X)

where ¥x) is given in Equationg) and f satisfies Eq8). Note thaiorx(—X) = prx(X).

Ox

prx(X) = sign(x)

(9)

The proof of the above proposition is straightforward andnstted. The economic point here is that whereas
the correlation between dividends and return volatifity, represents the leveragffext, the diferenceorx(X) — pdx
represents the volatility feedbackect.

Also Ang and Liu [L8] provide a solution for the price-dividend ratio under ationous stochastic volatility model
and ICAPM (see Corollary 3.6 and Section 3.6 therein). Téaution, however, diers substantially from ours. First,
we assume thabtal return volatility follows the Stein-Stein or Heston typeopess, whereas irl§], squared total
return volatility comprises (i) squared dividend growthHatdity and (ii) a residual component, in which only the
residual component follows the Heston model. The residoponent represents, in fact, the volatility arising from
time-varying discount rates. Second, and more importairtlypur model investors are rewarded fotal return
volatility as the original ICAPM predicts, whereas itf], investors are rewarded for residual volatility (discorate
volatility), but not for dividend growth volatility. Techaally, their specification yields a closed-form solutidmt
economically such an assumption is questionable as théedtidigrowth risk remains unpriced. Interestingly, some
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papers in the volatility feedback literature assume thatrtbk premium depends only on dividend growth volatility
instead of total return volatility, which is exactly the aygite to what Ang and Liu assume [see, €5§.,Third, their
solution is based on a conditidi{0) = C, which they refer to as the price-dividend ratio at time 0 and match
with the unconditional price-dividend ratio. However, @ depends only on the state varialxéalso under their
settings),f(0) should refer to the price-dividend ratio with= O rather than withi = 0, i.e., with zero volatility, not
with zero time? Therefore,f(0) cannot be thought to represent the unconditional pticielend ratio. Moreover,
f(0) = C cannot be assumed to be an exogenously determined consthimoependent of and other parameters.
Indeed, as Figuré shows,f(0) depends negatively o which is very intuitive: return volatility is mean-revarg
and never remains constantly at zero; therefore, the gréeprice of dffusion return risk, the lower is the price-
dividend ratio for a given instantaneous volatility beaattse future dividends are discounted at a higher rate. Note
that under our model no expression is neededf{0), since we can us&'(0) = 0 as a boundary condition for the
interval ofx > 0, as imposed by the filerentiability. Overall, Ang and Liu’'s characterizatiorrgas implications that
are essentially dierent from ours.

2.3. Why return volatility can be greater than dividend \tiity

At this point, let us consider the relation between dividgmdwth volatility and return volatility. The early
literature dfers much evidence that return volatility is greater thaidgind growth volatility, i.e.x?> > y(x)?. Suppose
that the conditions of Propositidnhold. Then it is easy to show that > y(x)? if and only if

< _Ox fx(x)
Pax S o T

Because squared return volatility always has a non-pesiffect on the price-dividend ratio, i.ef,(x) < 0 for all

X > 0 andfy(xX) > O for all x < 0O, the right hand side of the above inequality is non-negati@onsequently, if
the correlation between dividends and return volatilitgeso or less, return volatility is higher than dividend gtow
volatility. On the other hand, if the correlation betweewnidiénds and return volatility is positive and high enough,
then return volatility can be lower than dividend growthatdlty.

According to our model, the ratio of squared return volgtito squared dividend growth volatility can be very
large. If we calculate the ratio using the same parameteesgas in Figuré&, our model can yield an extremely high
ratio of return volatility to dividend growth volatility, ith y = 3 andae = 0.08 the ratio is even higher than 10 for
all 0 < x < 0.5. In fact, ify is high enough, the ratio can be infinite. In the light of E&), 6uch a relation is easy to
understand mathematically: fpgyx < 0, y(X) would approach zero for strictly positive if ( fy/ f)? were high enough
(due to a relatively high). In fact, y(x) could even be non-negative for a strictly positixebut this would violate
Assumption2 (ii). Economically, this means that volatility feedback altredsne explains the return variance

2 f(¥? fx(X)
X (x)2 fx)

In other words, ify is relatively high, volatility feedback can amplify a vergnall but nonzero dividend growth
volatility to a relatively high return volatility. This es@me situation is illustrated in FiguBsoy increasing to 3.115.
According to plot (b), with these parameter values the rafti@turn volatility to dividend growth volatility can be as
high as 700.

Recently, Bali and Engle?[7] estimated the risk aversion daeient to be even more than 4 and to be highly
significant for S&P100 stocks [see alg§]. In the light of these empirical estimatesyafwe argue that the high ratio
of return volatility to dividend growth volatility, or thegxcess” volatility of the stock market, can be explained by
volatility feedback. Our finding is in sharp contrast to tleaeentional argument that stock market volatility is "too”
high [i.e. equity volatility puzzle, see, e.89]. Shiller, however, assumed that the cost of capital isrdatéstic and
undfected by return volatility. If the discount rate varies, #eck price can vary even with unchanged dividends, and
hence one should adopt time-varying discount rates. Tisisnagtion of a constant discount rate was later relaxed,
e.g., by Cochrane3[)]. By modeling the stochastic cost of capital, we assert thatratio of return volatility to
dividend growth volatility can be arbitrarily large.

X% = y(X)? + o + 20dxy(X)ox

4Remember that under the tranversality conditibiis the function of volatility only, and calendar time is thais irrelevant variable here.
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Figure 2:  Can high return volatility plausibly be explaifed@he figure demonstrate a possible relation of dividend tirawlatility, y(x), with
respect to return volatilityx, under teh volatility feedbackfiect. The parameters age= 3.115,a = 0.08,0x = 0.2,8 = 0.5,r = 0.02, and
pdx = —0.5. In (a), dividend growth volatility is plotted againstuet volatility, and in (b) the ratio of return volatility tonddend growth volatility

is plotted.

This study also shows that using the log-linear approxiomedioes not necessarily make sense under our settings.
In particular, we could approximate the price-dividendtras

f(x) =Cy exp(—ngz),

whereC,, C; > 0 are constants. A similar approximation is applied, e gCampbell and ViceiraZ4] and Bollerslev
et al. [31]. Note that iffy/f = —2C,x, and the implied approximation of dividend growth volailis linear in return
volatility. However, the above figures show that this is et tase under our model.

2.4. Price dynamics revised

We have now shown that under the transversality conditierptiice-dividend-ratio depends on return volatility
and is hence stochastic. Consequently, dividend yield@amnassumed constant in time, as is typically done in the
financial literature. In addition, the correlation betweaeturns and return volatility is endogenously determined a
stochastic, even though fairly stable. Instead of assuringnstant dividend yield and a constant correlation, the
stock price process could be more appropriately writterobews:

dP[ = (r + ’thz - %) Ptdt + XtP[dB{
{
(10)
1 fx(x)
_ 2 d X X
= (r + }/Xt f(Xt)) Ptdt + y(X[)P[dBt + Oy f(Xt) PtdBt,

wheref (x) satisfies Eq.§). Note that the random termgdB}, can be decomposed into a dividend tey(x,)dB¢, and
a volatility term,o ffx ;“)dBi‘; i.e., the price process is driven by changes in dividendsraturn volatility. Moreover,
return volatility was assumed to evolve according to Equef?).

To understand how this expression captures volatility fae#, suppose that return volatility is positive,> 0,
and that it increasesxd> 0. The first observation is that the expected rate of retusnyx?, increases. The positive
change in the drift term is, however, lessened or even reddsg a change in the dividend yield. As demonstrated
earlier, an increase in squared return volatility decredise price-dividend ratio, or, in other words, increases th
dividend yield, ¥ f, and thus potentially decreases the expected price apfieti resulting in a pull-down. In
addition, under these conditions, the last term on the rigind side in Eq.10, second line) is strictly negative,
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further decreasing the stock price. Therefore, an incremsquared volatility results in thredtects on the stock
price: an increased expected rate of return, an increas@tkedd yield, and a negative random shock. Moreover,
because dividend growth volatility increases togetheln wéturn volatility, the stock price becomes more sensttive
dividend shocks.

The volatility process follows the mean-reversion Ormsidhlenbeck process, which provides an exact solution
that we can simulate with arbitrary time steps; howeverugation of the stock price process is appropriate only with
short time steps:

> 1 1, d
(r+yxt oy 2% At + y(x) VAt + oy

1 - exp(-26At
Xerat = X €XP(—BAL) + 07y 4 I%e{‘,

whereed, X ~ N(0, 1), Corr?, €°) = pqy. In each stepf(x) andf(x) can be solved for a givexwith Proposition 2)
andy(x) with Propositionl. Note that the dividend process can be determined fipra P;/f(x;) or, alternatively,
simulated directly:

Piiat = Prexp

fX(Xt) X
(%) VA,

Diiat = Dy exp[(a - %y(xt)z) At + y(%) \/Eetd] . (11)

When the same random number sequences are used and thepmstsink, both approaches yield identical dividend
stream sequences wifby = Py/f(Xp). In addition, instead of simulating the return procesgdiy, the dividend
stream and return volatility can also be simulated togettittr the stock price, which is then determined using the
relationP; = D¢ f(X).

Sample paths of squared return volatility, log-price-dénd ratio, log-dividends, and log-price are illustrated i
Figure3. The prices, dividends, and their ratios are given in Idgaric form with equally stepped tics because, by the
definition of price-dividend ratio, If{) = In(D) + In(f). The figure also plots the ratio of return volatility to dieind
growth volatility and the correlation between returns aetlim volatility. We have highlighted four time instants
with large movements in return volatility with stable dieitds. Clearly, the price-dividend ratio, and then also the
stock price, has reacted negatively ( resp. positivelyhtogositive ( resp. negative) volatility movements because
of volatility feedback. For example, observe the periobbethe third highlighted time instant, in which squared
volatility increased to about 0.0% & 2.17). In this period, the dividend increased slightly and paattically no
effect on stock price movements, yet the stock price fell sultistiéy in response to an increase in the cost of capital.
The fourth highlighted time-period & 2.92) represents a situation in which the stock price leveidased due to a
decrease in the cost of capital. When the price-dividerid fat equivalently, constant dividend yield) is assumed
constant, as done traditionally, the stock price goes updfanly if dividends increase. However, our characterizati
allows stock prices and dividends to move in opposite dibast Moreover, our model implies that call prices and
the underlying stock do not necessary move in the same iiredn agreement with what was empirically observed
by Bakshi et al. 32]. In particular, a change in the call price can be positiveegative depending on whiclffect,
increased squared volatility or increased dividend yiptddominates. Option pricing under our settings is disediss
further in Sectior8.

The figure illustrates that the modeled return volatilityajgproximately 1.915 times higher than the dividend
growth volatility, and that this ratio varies slightly. Tlstimated unconditional ratio, 1.907, is close to these-the
retical values. In addition, the correlation between megtand return volatility is quite stable in time and fluctesat
around -0.892. The estimated unconditional correlatiaweenA(x?) andA In P is -0.8868, again close to the theo-
retical values, and the estimated correlation betwsed) andA In D is -0.4967, which is very close ja = —0.5.
The diference between Corx(x?), Aln P) and CorrA(x?), AIn D) can be justified with volatility feedback; in fact,
the diference could be used as a measure of volatility feedbackllfsithe figure also demonstrates volatility clus-
tering: periods of high ( resp. low) volatility are followég high ( resp. low) volatility. Because return volatilitpa
dividend growth volatility evolve hand in hand, volatilityustering is not only about returns but also about divigend
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Figure 3: Sample paths. The parametersare= 0.2, 8 = 0.5,r = 0.02, @ = 0.05, andpgx = —0.5. Moreover,xy = 0.2, Py = $100, and
At = 1/(24 x 252) years.

3. Option valuation

3.1. Risk-neutral dynamics
Under the risk-neutral probability measu@e cumulative stock return and return volatility evolve as

dR; = rdt + xdB!,
dx; = —B(x)xdt + odBY, (12)

whereB] and B} are Brownian motions under the probability measQreandj is the speed of the mean reversion
underQ. We realize immediately that the above is satisfied if

dBl = dB! + yxdt,
Ax(%)

Ox

11

dBX = dB! +

x¢dt



with

fX(Xt)
f(%)
wherely(x) = B(x) -8 represents the volatility risk premium, which is non-zesodquity [see, e.933, 34, 35]. For
simplicity, we suppose that, = 8 — g is constant. To express the dividend process under theegkal measure, we
write

%dB! = y(x)dBd + oy dBY,

x(Xt)

y(x)dBf = xdB{ - oo OB
= y(x)dB¢ - ()/th fx(( t)) /lxxt) dt,

which implies that the dividend process under the risk-raénteasure is given by

x( t)
f(x)
Therefore, the rate of expected dividend growth becomeshatgic under the risk neutral measure. Note that the
greater they, the less the expected dividend growth under the risk-akpitobability measure. Moreover, a negative
price of volatility risk, 1« < 0, afects the expected dividend growth positively under the-misidtral measure.

It is also worth observing that the price-dividend ratiosfas the same relation under both physical and risk-
neutral probability measures. To see this, suppose thatahditions of Propositiod hold. Then the stock price
evolves under risk-neutral dynamics as follows:

dD; = (a X2 + /lxxt) Dyt + y(x)DdBY. (13)

_ fX(Xt) ~ X(Xt) 1 fxx(Xt)
9P = o= s oxy w0 =) gy + 5o g P (14)
e - .
o ((;‘)) PBY + y(x)PdBY,

wheres = B + 1, and thus the terms includinig cancel each other out. Under the risk-neutral measurexgrexeed
rate of return of any asset equals the instantaneous eskifiterest rate. Now when we apply this principle and
match the drift term of the risk-neutral price proces4) (with the expected price appreciation under the risk-rautr
measurer — 1/f(x), Eq. @) follows. This means that the stock is priced equivalentiger both physical and risk-
neutral probability measures. Consequently, uiglehe stock price follows

x(%)
f(x)

wheref (x) satisfies Eq.8) and can be solved for givenwith r anda and structural parameters, 3, ¥, odx-

P.dB, (15)

dPtz(r— x ))Ptdt+y(xt)PtdBd+o-X

3.2. Option prices
Given the risk-neutral dynamics id%) and (L2), the price of a European call option can be computed as

o(t, P, %, T, K, 1, ; 6) = exp(r (T — ))E2 [(Pr - K)*], (16)

whereT is the time of maturityK the exercise price, antl= {0y, 3, 3, 7, pax} the set of structural parameters. Like,
e.g., most GARCH models and the so-called VAR volatility mio@dur model requires Monte Carlo simulations to
compute option prices [see, e.86, 37, 38]. To speed up computations, we use antithetic variates atdbdited
computing.

What is very fundamental here is that to compute the expgudgdf in Eq. (16), we needto know all the
parameters = {0, 5,53, 7, pax. Specifically, to compute the right hand side of Etg)(with Monte Carlo methods,
we simulate the discretized risk-neutral processes

_ 1 1 ~ X(Xt) ~X
Pt = Py exp[(r Tt Extz) At +y(x) VAL + o ) VAte|,

Xieat = % €XP(—BAL) + oy 1‘%@
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wheree?, & ~ N(0, 1), Corr(Ed,EX) = pdx- Even though parameteysp, anda do not directly appear in the above
expressions, they are necessary, together mith, andpqy, to computef (X) in each time step for a given Thus
future stock price distributions and hence also option @sidepend on the price offflision return risk;y. This is in
very sharp contrast to the derivative pricing literaturbich, following Black and Schole8§], considers the price of
diffusion return risk and the stock’s expected rate of retust@uant to option pricing. However, in our dynamigs,
affects option prices, mainly via dividend yield, f{x), which is expressed as a function of return volatility wjiths a
structural parameter of that function. In other wordsletermines the sensitivity of dividend yield to return wibisy
and thereby fiects option prices. In some current option pricing modgi$ion prices can be seen as dependent on
the price of the return risk, but these modelfeti essentially from ours. To understand thetence, consider, for
example, the40] model, in which@ is the leverage parameter under the physical measure veheneier the risk-
neutral measure it i& = 6 + y, wherey is the price of the return risk. Hence, one could say that fed, a change
in y affects option prices through However, to price options, all we need is the combinatiany; consequently,
we cannot separately identifyandy when estimating the Heston-Nandi model using option daiaealinder the
risk-neutral probability measure, because we can onlynesé the combinatiofi= 6 + y [see the similar discussion
of the Leverage modd6, on-line Appendix]. Moreover, because options are pricetims of the risk-neutralized
volatility process, under the standard Heston model (with parameters) option prices directly depend on the sum
of B = B + A« and only the combination ¢f + A can be estimated with historical return data. However, uode
dynamics we need both parametgsind, not only their sum, to price options. That is, we neegparatelyboth
physical and risk-neutral parameters, or, in other wordsneed the market price of thefiision return risk and
volatility risk-premium; this arrangement allows us toiesite the forward-looking, option-implied market price of
the return risk and the volatility risk-premium using optidata alone.

Figure4 illustrates the relation between option prices and thegpfdiffusion return risk. The parameter values
are expressed in the figure caption. In plot (b), we performreisivity analysis by varying ando from Bakshi’'s
estimates26].> The option prices were calculated with Monte Carlo simolagiusing antithetic variates and 10,000
pathgoption. Clearly, the greater the price offdision return risk, the greater the dividend yield and theclotlue call
price. Moreover, the greater the time to maturity, the gretite €fect of an increase in the price offilision return
risk on the call price. In addition, option prices are higivéh pqx = —0.5 than withpgyx = 0.5, and correspondingly,
initial dividend yield is lower with withogx = —0.5 than withpgx = 0.5. A doubling value of3 and a corresponding
change inr« do not dfect the results substantially, and the shape of the curneainghe same.
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Figure 4:  Hfect of the price of dfusion return risk on European call option prices. Pararsetesr = 0.02,a = 0.015, andogx = —0.5 (thicker
lines) orpgx = 0.5 (thinner lines). In plot (a)3 = 8 = 0.5, 0« = /268 = 0.2 with § = 0.04, and in plot (b)8 = 5 = 1, 0x = /268 ~ 0.2828 with
0 = 0.04. Moreoverxy = 0.2, Pp = $100,K = $100, andAt = 1/252 year.

Figure5 shows how option prices depend on the volatility risk premiin plot (a), we fix3 and varys = 5 — 1y

5Note that the values are the same as used in Fitjorexcept that: = 0.015. This is justifiable because for= 0, the stock price is well
defined only ifr > a.
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whereas in (bp is fixed and3 = 8 + 1, varies. Plot (a) shows also the dividend yield whereas irit (b)constant £
does not appear in E) and thus ignored. In both cases, an increasg mvhich represents thefikrence of3 and
B, decreases option prices. Again, a doubling valug ahd a corresponding changedn do not dfect the results
substantially.
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Figure 5: Hfect of the price of volatility risk on European call optiorigas. Parameters age= 2,r = 0.02,a = 0.05, andogyx = —0.5 (thicker
lines) orpgy = 0.5 (thinner lines). In plot(af = 0.5, ox = 0.2 and in (c),;8 = 0.5, o« = 0.2, and in plots (b} = 1, oy ~ 0.2828 and (d) = 1,
ox ~ 0.2828. On the other hand, in (a) and (B)is fixed whereas in (c) and (dj,is fixed (remember thaty, = 5 — 8). Moreover,xy = 0.2,
Po = $100,K = $100, andAt = 1/252 year.

Because in our model options prices dependatbrihe parameter&ry, 3, 3,7, pax} in addition to the risk-free
interest rates and the expected dividend growth rate, thenpeters (including’ andg) could be estimated using
information on option prices by directly minimizing prigjrerrors. This also contradicts the early empirical literat
on financial economics, where the ¢ogent of risk relative aversiory, and the speed of the “physical” volatility
mean-reversiors, have so far been estimated using time series of asset sehwhpure option pricés Therefore,
we are motivated to estimate the parameters of our modej usiormation on options prices alone, and we will use
this approach in the empirical section of this study.

At this point, it is worth pointing out that the original Hestmodel (with the Ornstein-Uhlenbeck process) can be
seen as a special case of ours. fer 0, we get thatf = 1/(r — @) is constant with respect tq implying a constant
dividend yieldr — o and equal dividend and return volatilitiegx) = x. By denotingB{ by B; andpgx by p, the

SNote that under the original Heston model (or other curreattmstic volatility models), the price offflision return risk and the speed of the
mean reversion of physical processes can be estimated pnlifig time series of asset returns, not option pricesedit@ston’s option prices are
not afected by “physical parameters.”
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risk-neutral versions of the stock price and the volatilitpcess withy = 0 can be expressed as

dPt = O’Ptdt + XtPtdB'[,
dx = —Bxdt + oydBY,

where ddB; = pdt, which corresponds exactly to Heston’s original specificat Therefore, our model should be
able to price options at least as well as Heston’s model \idividend yield of — a, or even better, as we will see
in the empirical part of this study. In fact, we could say thatler Merton’s ICAPM, Heston’s characterization of a
constant dividend yield implicitly assumegs= 0, viz. risk-neutral investors. Note also that if we get 0, option
prices no longer depend on the speed of the physical measiaeys, which cannot be estimated using pure option
data.

One interesting implication of our characterization ig ti option price can be a decreasing function of squared
return volatility. The reason here is that an increase iragepl volatility increases the dividend yield, and thus
potentially lowers the call price. The early literature aky argues the opposite, i.e., that because of the convex
paydf, return volatility has a positivefiect on the standard call option [see, €4d,,42, 43, 44, 45]. These arguments
for a positive relation between call price and volatilite ahowever, based on the assumption of a constant dividend
yield or absence of dividends.

To see how return volatility ffects options in our model, let us, for simplicity, first calesi a special case of
K | 0;i.e., the exercise price is zero and the 'option’ holdeds glee underlying stock for free at tinTe In this case,
the option price is

c(t, P, %, T, 0,1, a; 0) = expr(T - t))]EtQPT

T 1 1 T (17)
_ Q _ T2 r
= P{E, exp[ft ( fx0 2xs)ds+ft xsst}.

The price of this option is less than that of the underlyirackt because the option holder receives no dividends
until maturity, and hence the underlying price is reducethieyexpected cumulative dividends. If the current squared
return volatility x? increases, then not only the current dividend yield but giscexpected dividend yields increase
because of the persistence of stock return volatility; eqoently, the expected terminal pri@?, Pr, is lower. In fact,

we suppose here that the stock price level is rfigcéed by an increase in volatility, which, according to Digifin

2, must mean that the current level of dividends must incréasespond to a lower price-dividend ratio. Greater
dividends mean a greater shortfall for the option holdetuoing the option price. This is illustrated in figusgeplot

(a). The same could also be puffdrently. We could think of a situation in which the stock prlevel reacts to an
increase in squared return volatility, while the level ofidends remains an exogenous variable andfented, just

as the theory of volatility feedback predicts. We can thgoress the option contract in the terms of dividends, rather
than a function of the spot price:

T T
c(t, f(%)Dp, X, T, 0.1, @; 6) = f(x)DES exp[f (— 1 }xﬁ)ds+f deBrs}.
t f(x) 2 t

Becausef () is decreasing w.r.tx, an increase in squared return volatility has two negatfexes on option prices:
via increased dividend yield and via a lower stock price lle¥es figure 6, plot (b) shows, squared return volatility
can then substantially decrease the option price. In addithe grater the speed of adjustment of the volatility
processf), the less is thefeect of initial volatility on option prices as squared valifiis pushed toward the average
volatility level faster.

With strictly positive exercise pricek, > 0, the pay@f becomes convex, and thus an increase in squared volatility
can also increase the option price, depending on whigt®s, positive or negative, dominate. Intuitively, theagjes
the K, the greater the “convexityfiect” and the more squared return volatility can increas@ogirices. Figure/
illustrates how the price of an option wikh = $100 changes with return volatility. In plot (a), we keepterent spot
price fixed whereas in (b) current dividends are fixed. In tret fiase, convexity dominates the increased dividend
yield, whereas in the latter case, the option price can benanmanotonic function of return volatility. Note that in (a)
the option is at-the-money for atl> 0, whereas in (b) it is at-the-money only foe= 0 and out-of-the-money for all
x> 0. Changes i andox have a negligibleféect on the relation between return volatility and optiorcesi
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Figure 6: Hfect of return volatility on the price of a European call optiwith K = $0. Parameters ase= 2,r = 0.02,a = 0.05, andogx = —0.5
(thicker lines) orpgx = 0.5 (thinner lines). In plots (a) and (¢},= 8 = 0.5, oy = \/ﬁ = 0.2 with 6 = 0.04, and in plots (b) and (dg = 5 = 1,
ox = /208 ~ 0.2828 withg = 0.04. On the other hand, in (a) and (F)% = $100 is fixed whereas in (c) and () = $100/f(0) ~ $3.3165 is
fixed. Moreoverxy = 0.2 andAt = 1/252 year.

4. Calibration to option prices

4.1. Data and methodology

In this section, by calibrating our model to the sample of S&® call options, we illustrate how it is possible
to obtain forward-looking estimates for the price offdsion return risk using information on option contractsalo
without the need of the series of asset returns. At the same, this paper is among the first attempts to obtain
the option-implied values for the price offflision return riskyy, and the volatility risk premiumd,. The use of
information on option contracts (instead of time serieafi@tmotivated also by Chridfiersen and Jacob3¢] who
argue, “for the purpose of option valuation, it may be praiiée to estimate the parameters directly using ... option
prices.” Bakshi et al.46], among others, employ this estimation methodology usisg functions to minimize the
pricing error of options. Since their work, a wealth of la&ire has appeared on evaluation of stochastic volatility
models using empirical information on option prices [seg,, @6, 36, 47, 38, 48].

In this study, we use the sample of the daily data of S&P 50@irzhll options traded on the Chicago Board
Options Exchange (CBOE), and in particular the mid-poidt&gk quotes. Practitioners often estimate théfments
of the underlying dynamics on observed option prices thihatgtic daily calibration, but instead of using single-day
data, we use multi-day data. The option prices are samplesasf trading day in 1995, from January 3 through
December 27, a total of 21,166 observatibnBata from 1995, and the 1990s data in general, is widely used i
the literature [e.g.35, 36, 49, 50, 48], and our empirical results are thus comparable with thdseaent studies on
option pricing. The recorded S&P 500 index values are ndagietpvalues but rather from the moment an option
bid-ask quote was recorded. We use the data on daily threghniseasury bill discounts and convert them first
to annualized continuously compounded interest ratesite pptions each trading day. Moreover, we estimate the

"The data were graciously provided by Gurdip Bakshi.
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Figure 7: Hfect of return volatility on the price of a European call optisith K = $100. Parameters aye= 2,r = 0.02,a = 0.05, andogx = —0.5
(thicker lines) orpgx = 0.5 (thinner lines). In plots (a) and (¢},= 8 = 0.5, oy = \/ﬁ = 0.2 with 6 = 0.04, and in plots (b) and (dg = 5 = 1,
ox = /208 ~ 0.2828 withg = 0.04. On the other hand, in (a) and (F)% = $100 is fixed whereas in (c) and () = $100/f(0) ~ $3.3165 is
fixed. Moreoverxy = 0.2 andAt = 1/252 year.

average growth rate of dividends ~ 6.13%, from monthly data on S&P 500 dividefideom January 1995 through
December 1996, covering the lengths of all the option catgraA typical approach to take dividends into account
is to calculate their present values until the maturity afteaption and subtract them from the spot prices [see, e.g.,
26, 36, 49]. However, in our paper, dividend yield is determined eretagusly by stock return volatility.

We used some exclusionary criteria to filter out option da# tould complicate calibration. From the original
data set we excluded price data with a time stamp later tham3 pxcluded options with maturity less than 6 days;
excluded market prices below&dollars; and excluded options in conflict with the no-adgje rules. These criteria
were also used by Bakshi et a24], and similar criteria were used by Heston and Nadgj.[ To satisfy the arbitrage
restriction, the option price must fall between the uppet lawer bounds. To be precise, we must ensure that both,
ask and bid quote, are between those bounds. Thereforestheeask quotes against the upper bound rule and the
bid price against the lower bound rule. The lower bound ofivarbitrage rule i€, > P.—PVDIV —Ke"(T-Y where
PVDIV is the present value of dividends during the life of tpion. Here we used dividend data in a traditional way
to calculate the lower bounds of option prices. The uppentasi simplyC; < Px.

After applying all the above criteria, our test data set aored 18,587 quotes. We divided the data set into two
samples. First, the period from June 3, 1995 to August 4, 188%ering the first 150 trading days and denoted as
Sample A, was used exclusively for in-sample estimatiorcoBd, we used the period between August 7, 1995 and
December 29, 1995, a total of 100 trading days, as an oudtopke data set, referred to as Sample B. Tatdhows
the properties of the option data in detail.

One approach is to estimate the structural parameters angdptility on each trading day separately [see, e.g.,
26] and another to use more than one day of option prices to atgithe structural parameters [see, €§,,and

8 The monthly dividend data were made available by ProfessorobeR Shiller on his web site
http://www.econ.yale.edu/~shiller/data.htm.
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(a) In-Sample Data (b) Out-of-Sample Data

Moneyness Maturity (days to expiration) Moneyness Maturity (days to expiration)
P/K <60 60-180 >180  Subtotal P/K <60 60-180 > 180 Subtotal
<094 104 757 327 1188 <0.94 53 139 66 258
(0.73) (298) (686) (0.7) (349) (1037)
0.94-0.97 710 690 115 1515 0.94-0.97 195 92 35 322
(1.68) (7.81) (1845) (1.97) (7.31) (2173)
0.97-1.00 1196 780 117 2093 0.97-1.00 602 253 150 1005
(4.94) (1486) (271) (6.71) (1842) (3207)
1.00-1.03 1170 744 213 2127 1.00-1.03 744 455 237 1436
(1375) (2469) (3574) (16.69) (2977) (4162)
1.03-1.06 1075 732 173 1980 1.03-1.06 800 505 180 1485
(25.86) (3597) (4483) (30.28) (414) (5341)
1.06 1473 815 76 2364 > 1.06 1862 827 125 2814
(4356) (4953) (5575) (62.18) (6409) (6616)
Subtotal 5728 4518 1021 11267 Subtotal 4256 2271 793 7320

Table 1: Sample properties of the in-sample (sample A) aadth-of-sample (sample B) option data, reported by digdime data into three
groups based on maturity (trading days) and six groups bas@doneyness (R). The table shows the number of options and the average pric
(in parentheses).

references therein]. There are numerous reasons for prefer multi-day sample. First and most importantly, it is
essential that we use information on time-variation in thiegof the underlying asset and spot volatility; this can be
done only with multi-day data. Second, the first approacig(siday samples) would yieldftierent estimates of the
structural parameters for each day while, on the other hetna;tural parameters are assumed constant. Third, Cont
and Tankov $1] argue that “given that the number of calibration constisa{iption prices) is finite (and not very
large), there may be many Lévy triplets which reproducém@tes with equal precision.” Overcoming, or at least
minimizing, the instability problem was enough incentiee fis to increase the number of option price observations
using multi-date data. Fourth, assessing long-term padoce with single-day samples is problematic.

Overall, it is better to use more than one day of option prioesstimate the structural parameters. In the present
literature, such multi-day estimation have been appligd GARCH type models [see, e.d0, 36]. Then a volatility
updating rule can be used to link volatility orfiirent dates for given structural parameters g&®nline Appendix].
However, this is not possible with an option pricing modelwihich the stock return process and the instantaneous
volatility process are driven by separate random terms s€guently, we need a suitable proxy for market volatility,
which is intrinsically unobservable. The recent empirigtarature has constructed volatility proxies from vdigi
indices, like VXO and VIX. On September 22, 2003, the CBOBmeiulated its implied volatility index to use
the model-free implied volatility approach on S&P 500 andated a historical record for the changed S&P 500
VIX dating back to 1990. This reformulated VIX is used as a spot volatility proxy inge [52, 53, 54, 37]. The
Black-Scholes implied volatility could be adjusted for #féect of mean revision in volatility, but as Ait-Sahalia and
Kimmel [54] show, with VIX, this adjustment has only a margin#éleet on the results, perhaps because the current
reformulated VIX is model-free. Therefore, as BS[ and also partly in $4], we use the reformulated model-free
VIX data directly as a proxy for instantaneous volatility e precise, we use the lagged values such that yesterday’s
closing value of VIX serves as a volatility proxy for todayrsodel-based option prices. Notice that when pricing
options, volatility is modeled under the risk-neutral meas and VIX measures volatility just under the risk-nelutra
measure.

The loss function we use is the square root dollar mean-sdwaror,

n

1 R o N2
$RMSE= J - Z (&t Py Ti, Ki) = c(ti, Py %, Ti Ko 1701 a7 6)),

9See CBOE Documentation 2003.
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which is minimized with respect to the structural parangtér Heren denotes the number of contracts anﬁd?"'
the observed T-Bill rate. Moreovet(-} is the price of thd-th option,c(:; §) the corresponding model price, and
X, = VIXy_1 denotes the volatility proxy used at time

The loss function was minimized using the Nelder-Mead saxpllgorithm, a derivative-free methods for uncon-
strained multivariable function minimization, as implemed in the MirLaB fminsearch code MathWorks$5]. The
same optimization algorithm has been used with Monte Camalations at least in38]. The options are priced by
simulating 20,000 paths with antithetic variates. To spgedomputation, distributed computing has been used such
that workers (cores) calculate option prices fdfatient days independently; i.e., worker one calculates phierms
for day one, worker two for day two, and so on. This require$Wbrkers and achieves a 150-fold speedup.

4.2. Results

Table 2 shows the evaluation results for three specifications:ufl)rhodel; (ii) constanty = O; (iii) constant
v = 0 with doubled interest rates and halved dividend growté.r8efore presenting and interpreting the results,
we emphasize that our estimates concern the volatilityge®@), not directly with respect to the squared volatility
process3), though they can be converted by applying the relatiors2s, o = 207«, andd = 02/(28). Moreover,
the volatility risk premium can be presented with respeddoared volatility process als = k — k, whereas with
respect to volatility process we express itlas= 5 — 3. Clearly, our result can be converted with= 2.1,. Therefore,
when the estimated values@foy, andy are compared with the estimateswbr,, andJy, in the early literature, our
estimates should be multiplied by two.

() yfree (i)y=0 (i) y = Owith
ri=2r o = a2

B 1.2476  32.8570 1.3282
(0.0420)  (2.5897) (0.0474)
ox 0.2713 0.6659 0.2666
(0.0032)  (0.0271) (0.0035)
Odx -0.6410 0.4241 -0.8002
(0.0069)  (0.0180) (0.0033)
Ax -0.3376
(0.0128)
y 1.7929
(0.0099)
$RMSEs
Sample A 0.8111 1.1327 0.9114
Sample B 0.9355 1.6429 0.9859

Table 2: We estimate our model directly by fitting the obseéreption prices using a nonlinear least-squares code tamizai$RMSE. Only
options in Sample A (June 3 - August 4, 1995), consisting ¢278 contracts, are used in the estimation. Standard eareneported below each
parameter estimate in parentheses. At the bottom, therebtets SRMSE for samples A and B at the parameter optimaulRexe reported for
three specifications. Specification (i) represents a genevdel in whichy is a free parameter. Specification (ii) comes witk 0 (no risk-return
trade-df) as also does specification (jii), but the observed averaggetd growth rate; and T-bill ratesy 70! have been adjusted. In particular,
we use doubled T-bill rates and halved dividend growth naigi).

For specification (i), we find that the estimatesiodind o are reasonable and fairly consistent with the early
empirical results of the Heston (1993) model. Moreovercibreelation between return volatility and dividend growth
rate is negative, indicating the existence of a leverdtgre All the parameters are statistically significant. More
importantly, the estimated is about 1.8 and statistically significant. This estimatglies that the expected returns
are related to squared return volatility and that, consetiye¢he price-dividend ratio is sensitive to return vdigt
Our estimate is thus consistent with the ICAPM and the thebwplatility feedback. Recently, after a 20-year debate,
studies have, after developing estimation approacheadjiigel positive and significant relations between the etgubc
rate of return and volatility [see, e.d6, 57, 28, 58, 27] and the references therein), and our results provide éuarth
evidence of this significant and positive relation using iatirely novel approach. Moreover, we find that the estimate
of A4 is negative (-0.338), and that it has been estimated aetyras well. In addition, this estimate is consistent
with published theory and findings [sB8, 35, 60, 61]. Based on the dlierence between option-implied and realized
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volatilities, Bollerslev et al.§1] construct a volatility risk premium index and show alsoriklbetween volatility risk
premium and the price of fiusion return risk (the risk-return tradéf@odficient). Following Heston15], Bakshi
and Kapadia39], and Bollerslev et al.§1], we can, in line with our assumptions, write that

d
AX) = Y4 Cov (%, R)lz=t,

which yields withA(x) = Ax(X)x that

d
Ax(%) = '}/O'xd—corrt(xt, RO)lr=t
T

= )/O'Xer(Xt),

wherep(X) is determined according to ER)( Hence a positive price of flusion return risk and a negative corre-
lation between the returns and return volatility togetingply a volatility risk premium. Because the standard Heston
model assumes that the correlation between the return dumch neplatility is constant, then also the volatility risk
premium is constant in time. Under our transversality sg#tj the volatility risk premium becomes dependent on
return volatility and is hence time-varying and stochast@t very stable with respect to With our estimatesyx
evolves around-0.7879 and using this value together with = 0.27 andy = 1.79, we obtain an implied volatility
risk premium of about0.38. Because this is close to our unrestricted estimaty,0f0.338, the above theoretical
relation between the price offtlision return risk and the volatility risk premium seems tadhio the light of our data.
Compared to the other studies, the in-sample and out-opeaRMSES are reasonable low [see, €36, 49).

Specification (ii) assumes that= 0, excluding volatility feedback and implying that the gridividend ratio,
and then also the dividend yield, do not depend on returrtilila As explained earlier, Af = r — « is constant
and not dependent g8) hence the volatility risk premium cannot be estimated.hBbe in-sample (sample A) and
out-of-the-sample (sample B) RMSEs are substantiallydrighan in specification (i). We immediately notice that
the estimate oB is not reasonable, for it implies thais greater than 60, which is absolutely unrealistic. Moezpv
the correlation between return volatility and dividendwtio is substantially positive and contradicts the leverage
effect. On the other hand, we observe that the assumptign=00 is not consistent with the observed interest rates
and the dividend growth rate. In particular, the averagédivd growth rateq ~ 0.0613, exceeds the T-bill rates
that range from 0.054 to 0.0596 and imply that the divideraddyil/f = r — a, takes negative values and does not
satisfy the assumption of positive dividend yields. To pstrply, in 1995, the dividend growth rate was greater than
the risk-free interest rates, and this phenomenon canncapteired withy = 0. Therefore, we constructed a third
specification, by which we ensured that the dividend yielligys a positive constant.

In specification (iii), we usg = 2r " with @ = @/2, whererP" is the T-bill rate at daté Thatis, to have strictly
positive dividend yields withy = 0, we double the observed T-bill rates and halve the obseaverhge dividend
growth rate. As can be seen from Taldethis adjustment makes parameter estimates with O more realistic.
Furthermore, both the in-sample and out-of-the-sample R8Afecrease yet remain greater than in specification (i).
We emphasize here that in any interpretation of the estenatepecification (iii), it should be kept in the mind that
these adjusted interest rate and dividend growth rate saloenot represent the true economic situation in 1995.
Rather, this specification shows that the poor performandeiarealistic estimates of specification (ii) can be partly
explained by the fact that the assumptionyoE 0 contradicts the empirical observations of dividend groamd
risk-free interest rates.

5. Conclusion

This paper shows that under the volatility feedba@&at the stock price process takes a form in which the dividend
yield and the correlation between returns and return \liyatiecome time-varying and endogenously determined by
total return volatility, implying that the stock price anividend stream do not always move in the same direction and
that the ratio of total return volatility to dividend growtblatility can be relatively high. The main implication tsatt
in contrast to the current wisdom, there is a mechanism bglwthie market price of éliusion return risk (or equity
risk-premium) &ects option prices, i.e. the market price of return risk isdesl as an input to price options under
our framework. Moreover, we demonstrate how the price oflleogdion can be decreasing in squared total return
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volatility. As a part of the calibration progress, we prdasam approach to identifying the risk-return relation using
forward-looking option data. We also show how a positivi-risturn relation agrees with empirical observations of
dividend growth and risk-free interest rates. Overall, vepia that the prevailing practice of ignoring the time-\wagy
price-dividend ratio in option pricing oversimplifies thiesk market dynamics and disagrees with data and theory.
This framework has potential for further research. In jgaiér, one could examine the hedging of volatility risk
under volatility feedback, a particularly interestingimecause, as we show, depending on the moneyness, option
prices can react positively or negatively to an increaseajimased return volatility. Furthermore, it would be worth
considering, within our framework, a stochastic investtmaportunity with an intertemporal hedging component
to hedge against changes in the forecasts of future markatlitees. Such an experiment is motivated by recent
empirical evidence of a significantly negative relationvietn expected return and volatility risk [s2d. In this
paper, we aimed to illustrate how to obtain option-impliedifard-looking values for the price offélision return risk
and volatility risk-premium without the need of time-ser&ock data, but in future research, it would be interesting
to investigate the volatility feedback using data on omitmgether with stock price and dividend series. On the
other hand, direct estimation based on time-series datédvimuchallenging at best. Moreover, now that we have
focused on stock price and dividend dynamics, option prized volatility feedback with a €fusion-based volatility
model, our extension could be addressed also with moreheolatility models with jumps or nonfiine stochastic
volatility models. These general suggestions for futuseaech may, however, require increasing the number of model
parameters and computational complexity, which wouldraghallenge especially empirical analysis. Therefore, we
expect work to continue also on complementary computatewiations to ease our progress.

Technical Appendix: Numerical solution of boundary value goblem

The ordinary diferential equation boundary value problem (BVP) in Propmsi2 can be solved numerically
using general-purpose numerical solvers. We usedtpeéc solver in the MrLas interactive scientific computing
software system. Thevp4c solver uses a fourth-order collocation method with autéenaesh refinement. The
solver’s algorithms are described in Kierzenka and Shaenjig]; here we provide details of the formulation of the
problem for numerical solution.

For numerical solution the BVP solution domaire [0, ) is approximated by a finite interval [B]. We used
b = 5; this is considered adequate because repeating the catiopstwith largeb values gave the same solution to
within 4 decimals. Empirically, return volatility can hdyde greater than 100%; therefdse= 5 is also empirically
reasonable.

For largex, the dominant term on the left hand side of th&etiential equation8) is —yx?f(x). Balancing this
term with the right hand side leads to the asymptotic eseérh@) = y—}(z On the basis of this asymptotic analysis, we

used the boundary conditidi{b) = 7—11)2 in the numerical solution. The symmetry conditif0) = 0 was used as the
second boundary condition.

Thebvp4c solver supports the use of parametric continuation whetledyroblem is successively solved with
gradually changing parameter values. We exploit this fedby first solving the problem withqx = 0, then succes-
sively solving the problem withgy values gradually increasing to the desired level. Becaus®&VP withpgqx = 0
is linear, the numerical solution of the first problem can btamed directly without any Newton iterations. As the
pdx values are increased, the solution and mesh from the presmution are used as initial estimates for the Newton
process, which then typically converges in a few iterations
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