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Abstract

According to the volatility feedback effect, an unexpected increase in squared volatility leads to an immediate decline
in the price-dividend ratio. In this paper, we consider the properties of stock price dynamics and option valuations
under the volatility feedback effect by modeling the joint dynamics of stock price, dividends, and volatility in con-
tinuous time. Most importantly, our model predicts the negative effect of an increase in squared return volatility on
the value of deep-in-the-money call options and, furthermore, attempts to explain the volatility puzzle. We theoreti-
cally demonstrate a mechanism by which the market price of diffusion return risk, or an equity risk-premium, affects
option prices and empirically illustrate how to identify that mechanism using forward-looking information on option
contracts. Our theoretical and empirical results support the relevance of the volatility feedback effect. Overall, the
results indicate that the prevailing practice of ignoring the time-varying dividend yield in option pricing can lead to
oversimplification of the stock market dynamics.
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1. Introduction

The fundamental importance of time varying volatility has long been recognized in statistical finance and financial
economics, and many scientific findings thereof have been well accepted and exploited in these disciplines. The topic
is motivated by strong evidence that volatility does not remain constant over time. Recently, in October 2008, the
volatility index of S&P 500, VIX, hit 80% whereas its average(1990–2009) was about 20%. Empirically, also the
price-dividend ratio (or its reciprocal, the dividend yield) is time-varying and one of the ’stylized facts’ of financial
markets is that changes in the price-dividend ratio are negatively correlated with volatility. Many theories, ofi which
the so-called volatility feedback effect (sometimes called the risk-premium effect) is one, explain the empirically
observed negative correlation between volatility and stock price [see, e.g.,1, 2, 3, 4, 5, 6, 7, 8]. According to the
theory of volatility feedback effect, an unexpected increase in squared volatility leads to an immediate decline in the
stock price, because cash flows are discounted at a higher rate. Therefore, an exogenous increase in squared volatility
generates additional return volatility as stock prices respond and adjust to new information about the cost of capital.
In addition, the relation between volatility and returns can (at least partly) be explained by the leverage effect, which
extends from changes in the firm’s value to changes in stock returns and volatility. The difference lies in causality – the
volatility feedback effect theory contends that changes in volatility may produce return shocks, whereas the leverage
hypothesis predicts that return shocks lead to changes in volatility. Also the leverage effect is widely examined in the
literature [see, e.g.,9, and references therein].

The time-varying price-dividend ratio (or the dividend yield) and its relation to stochastic volatility is well docu-
mented in the empirical literature, but the current option pricing literature does not sufficiently characterize the joint
dynamics of dividends, volatility, and stock price; instead, typically in option pricing, dividends are either ignored
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or the dividend yield is assumed to be constant at best. In this paper, we aim to show that the prevailing practice of
ignoring the modelling of the joint dynamics of dividends, volatility, and stock prices is inconsistent not only with
respect to financial data but also with respect to financial theory itself. This oversimplification can lead to mispricing
of options and a misestimation of the effects of the return risk and volatility risk on option values.Our main goals are
as follows:

• Model the joint stochastic dynamics of return volatility, dividends, and stock price with volatility feedback in
continuous time by determining the underlying stock as a claim for future random dividends with a stochastic
discount rate.

• Express the relation between dividend growth volatility and return volatility and solve the volatility puzzle (i.e.
return volatility is too high compared to dividend growth volatility).

• Show that the correlation between returns and volatility can be divided into two components: leverage effect
and volatility feedback effect.

• Demonstrate a mechanism by which the market price of return risk, or equity risk-premium, affects option
prices.

• Show that, contrary to the prevailing view, an increase in squared return volatility cannegativelyaffect the price
of deep-in-the-money call options.

• Illustrate how to obtain forward-looking estimates for theprice of diffusion return risk using information on
option contracts.

One of the main implications of Black-Scholes theory is the irrelevancy of the equity risk premium in option
valuation (i.e. option values are not functions of the expected rate of return). We, however, aim to show that the price
of return risk determines the sensitivity of the dividend yield to return volatility and thereby affects option valuations,
and consequently, the market price of return risk is needed as an input to price options under our framework. This, on
the other hand, allows us to produce forward-looking option-implied estimates for the market price of the diffusion
return risk and the volatility risk premium as a part of the calibration procedure of our model. These option-based
estimates can be obtained using option data alone without the need of historical stock price data, which is in contrast
to the traditional literature that usually uses a series of equity market indices producing backward-looking estimates
for the market price of diffusion return risk.

In the early literature, Carr and Wu [10] provided a welcome exception by proposing a model that aimsto
capture the volatility feedback effect and estimate the jump risk and the variance rate risk using option data. Bakshi
and Wu [11] specified a model to estimate market prices of different sources of risks using information on both time-
series returns and options prices. However, the approachesin these two papers differ markedly from ours. Most
importantly, they assume a constant dividend yield, an assumption that contradicts the empirical evidence of varying
price-dividend ratio and the theory of the volatility feedback effect. Moreover, Carr and Wu [10] try to capture the
volatility feedback effect directly by assuming a negative statistic correlation between business risk and stock price
without modeling the changes that the underlying asset price undergoes in volatility. In addition, in contrast to our
paper, the price of thediffusionreturn risk does not appear in option pricing formulas underthe risk-neutral measure
in [10, 11]. Our paper is also related to [12], which integrates the stochastic dynamics of interest rates, dividends,
and stock prices and valuates options accordingly. Despiteof some methodological similarities between the papers,
[12] differs substantially from the present paper; whereas Kanniainen [12] focuses on the joint dynamics of spot rate
and dividends but ignores the volatility feedback effect, in this paper we investigate the stock market dynamics and
options prices under the volatility feedback but, for simplicity, assume constant interest rates.

The paper is organized as follows. In Section2, we present our model setup, solve the price-dividend ratiowith
it, and study stock market dynamics under our assumptions. In Section3, we show how to price options under
our settings, and in Section4 we provide an empirical illustration. The final section discusses the results and draws
conclusions.
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2. Stock market dynamics

2.1. Model setup

Let {Pt; t ≥ 0} denote the stock price process and{Dt; t ≥ 0} the instantaneous dividend stream and let us assume
that both{Pt; t ≥ 0} and{Dt; t ≥ 0} evolve onR+. We define the cumulative stock returns as follows:

Definition 1. Cumulative stock return. The cumulative stock return from dividends and changes in prices satisfies

dRt =
dPt + Dtdt

Pt
.

Thus{Rt; t ≥ 0} represents the instantaneous total return including priceappreciations and dividends. To focus on
the characterization of stock market dynamics and valuation of options with volatility feedback condition, and to
maintain conciseness and readability, we employ pure diffusion-based models and leave extensions, including jumps
and non-affine volatility models, for future research. In the following, we characterize the dynamics of cumulative
stock returns and return volatility.

Assumption 1. The cumulative stock return and its volatility evolve stochastically as

dRt =
(

r + γx2
t

)

dt + xtdBr
t (1)

dxt = −βxtdt + σxdBx
t , (2)

where xt represents instantaneous return volatility, and r, γ, β, andσx are constant positive real numbers. Moreover,
Br and Bx are Brownian motions,dBr

t dBx
t = ρrx,tdt, and x0 := x, x∈ R.

This assumption consists of two parts. First, in Eq. (1) we assume that the expected rate of return (including both
price appreciation and dividend yield) depends on squared return volatility and results in an ICAPM type equilibrium
[see13, 2], wherer denotes the risk-free interest rate and where, under certain assumptions, the price of diffusion
return risk,γ, represents the coefficient of relative risk aversion [2, 14]. This classical risk-return tradeoff relation is
widely used in various contexts in the financial literature with time variation in second moments. Second, we follow
Heston [15] and assume that volatility follows an Ornstein-Uhlenbeckprocess according to Eq. (2). In fact, this
volatility model in Heston’s paper [15, see p. 328, Eq. (2) therein] has its roots in the Stein-Steinmodel [16]. As
Heston shows, if volatility follows Eq. (2), then squared volatility,ht = x2

t , follows the squared root process:

dht = κ(θ − ht)dt + σh

√

htdBx
t , (3)

whereκ = 2β, θ = σ2
x/(2β), andσh = 2σx. This affine model is arguably among the most widely used continuous-

time stochastic volatility models in finance. Notice that in(3) the correlation between returns and volatility,ρrx,t,
is assumed to be time-varying, and as seen later, can be endogenously determined by specifying the process for the
dividend stream and by applying the transversality condition. Originally, and typically, the correlation is assumed to
be constant in time.1

Second, we assume that the stock (the stock index) pays dividends continuously with stochastic dividend growth
volatility. In particular, similarly to [17] and [18], instantaneous dividends are assumed to follow a geometric process.

Assumption 2. (i) The stochastic differential of dividends is given by

dDt = αDtdt + ytDtdBd
t

with dBd
t dBx

t = ρdxdt, where the correlation coefficient of dividend growth and return volatility,ρdx ∈ [−1, 1], and
the expected rate of dividend growth,α ∈ R, are constant, and where dividend growth volatility, yt, is stochastic.

1 Notice that the sign ofx is irrelevant. It is the squared volatility that matters: the statistical properties of the stock return dynamics, including
the correlation between squared volatility and returns, are the same withxt and−xt .

3



Moreover, D0 := D, D > 0.

(ii) The covariance and correlation between dividends and return volatility are related according to

sign

(

d
dτ

Covt

(

Dt, (x2
t

)

)|τ=t

)

= sign(ρdx).

In assumption (i), a negative correlation between dividends and return volatility can be thought of as representing
the leverage effect: the greater ( resp. less) the dividends, the greater ( resp. less) the stock price, and because of finan-
cial leverage, the less ( resp. greater) the return volatility. The assumption of lognormal instantaneous dividends (cash
flows) is quite common in the literature [see, e.g.,19, 17, 20, 18, 21, 12]. Assumption (ii ) implies that the correlation
coefficientρdx has the same sign as the covariance between dividends and squared return volatility. Consequently,
becauseρdx is assumed to be a constant, the sign of the covariance between dividends and squared return volatility
does not change over time. Note that the standard Heston model implies the same relation for the covariance between
returns and squared return volatility and the corresponding correlation coefficient.

Together Assumptions1 and2 imply that the price process is given by

dPt =
(

r + γx2
t

)

Ptdt − Dtdt + xtPtdBr
t

=
(

r + γx2
t − δt

)

Ptdt + xtPtdBr
t ,

whereδt := Dt/Pt represents the time-varying instantaneous dividend yield.

Assumption 3. By assuming transversality, we express the stock price, p(Dt, xt), Pt = p(Dt, xt), as the expected value
of discounted dividends, conditional upon the present information:

p(Dt, xt) = ED,x

∫ ∞

t
exp

[

−
∫ s

t

(

r + γx2
u

)

du

]

Dsds

= Dt × Ex

∫ ∞

t
exp

[

∫ s

t

(

α − r − γx2
u −

1
2

y2
u

)

du+
∫ s

t
yudBd

u

]

ds< ∞.
(4)

Here r+ γx2
u represents the instantaneous stochastic cost of capital attime u.

The above expression clarifies the concept of the volatilityfeedback effect, according to which the stock price is
determined by the expected value of discounted dividends, where the cost of capital depends positively on squared
return volatility. As squared spot volatility increases, then also the future values of return volatility are expectedto
increase, and future dividends are thereby discounted at a higher rate. Then according to Eq. (4), the current stock
price immediately responds negatively to an increased costof capital, generating additional return volatility as stock
prices adjust to new information [see, e.g.,3, 4, 5, 6].

In contrast to our characterization, the existing literature seeks to capture the volatility feedback effect differently
and, in fact, in numerous ways. Typically, models are in discrete-time and based on GARCH type settings [see, e.g.,
5, 6] ; continuous-time characterizations have also been proposed [see, e.g.,8, 10]. More importantly, many papers in
the volatility feedback literature assume that the risk-premium depends on dividend growth volatility instead of return
volatility [see, e.g.,5, 22, and the references therein], but, on the other hand, in the conditional CAPM literature it
is the conventional ICAPM type risk-return trade-off with a linear relation between risk-premium and squared return
volatility that has been the primary target of investigation. Empirically, stock return volatility is admittedly much
higher than dividend growth volatility, a phenomenon extensively investigated in the literature, and hence estimates
of the risk-return trade-off parameter can differ depending on whether the risk premium is assumed to dependon
return volatility or dividend growth volatility. In addition, in several papers, it makes sense to work within the log-
linear approximate asset pricing framework of Campbell andShiller [23] [see, e.g.,5, 22], but we show it more
worthwhile under our settings to use numerical methods to solve the price-dividend ratio.

Under these assumptions, we aim to investigate the joint dynamics of and relation between stock price, return
volatility, and dividend stream. In particular, we seek to determine the relations of return volatility to dividend growth
volatility and to the price-dividend ratio (and its reciprocal, the dividend yield).
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Definition 2. Price-Dividend Ratio. f : R→ R+ denotes the price-dividend ratio and satisfies p(Dt, xt) = Dt f (xt).

We can see from Eq. (4) that for allx > 0, p(D, x) = p(D,−x) and sof (x) = f (−x). Practically, this holds because
the stochastic cost of capital is determined by squared volatility, x2, and hence the sign of volatility,x, does not affect
the stock price dynamics. Thus we can deduce thatf is an even function, i.e.,f (x) = f (−x), fx(x) = − fx(−x), and
fxx(x) = fxx(−x) for all x > 0, wherefx and fxx denote first and second order derivatives. Moreover, for thestock price
to be a continuously differentiable function, we can impose thatfx(0) = 0. We will use this property as a boundary
condition to solve the price-dividend ratio forx ≥ 0 .

2.2. Solution
We assume that dividend growth volatility is stochastic andinterlinked with stochastic return volatility. In fact, it

is easy to show that if dividend growth is assumed to be IID, i.e.,yt is constant over time, then for|ρdx| , 1 the stock
price is not real-valued for allx ≥ 0 under our assumptions. This is intuitive, because with constant dividend growth
volatility the only source of stochasticity in return volatility would be the stochastic cost of capital, which, according
to CAPM, is determined by return volatility itself. On the whole, because the assumption of IID dividend growth
is not reasonable under our settings, the rest of the study considers dividend growth volatility as an endogenously
determined time-varying and stochastic variable. We offer now a solution to dividend growth volatility as a function
of return volatility. Using this solution, we then present anon-homogeneous ordinary differential equation that the
price-dividend ratio must satisfy.

Proposition 1. Suppose that the above assumptions hold. Then the dividend growth volatility, y(x), yt = y(xt),
satisfies

y(x) = −ρdxσx
fx(x)
f (x)

+ sign(x)

√

x2 − (1− ρ2
dx)

(

σx
fx(x)
f (x)

)2

. (5)

Proof. By applying Itô’s Lemma with Definition2 and noting that∂p(x,D)/∂D = f (x), the price process can be
expressed as

dPt =

(

α f (xt)Dt − βxt fx(xt)Dt + fx(xt)ρdxσxytDt +
1
2

fxx(xt)σ
2
xDt

)

dt

+ fx(xt)σxDtdBx
t + f (xt)ytDtdBd

t

=

(

α + (ρdxσxyt − βxt)
fx(xt)
f (xt)

+
1
2
σ2

x
fxx(xt)
f (xt)

)

Ptdt + σx
fx(xt)
f (xt)

PtdBx
t + ytPtdBd

t .

(6)

The above reasoning is also applied, e.g., in [17] and [18]. From the relation between the return process, volatility
process, and dividend process we obtain withyt = y(xt) that

x2 = y(x)2 + σ2
x

fx(x)2

f (x)2
+ 2ρdxy(x)σx

fx(x)
f (x)
.

When we solve the above with respect toy(x), we obtain

y(x) = −ρdxσx
fx(x)
f (x)

±

√

x2
t − (1− ρ2

dx)

(

σx
fx(x)
f (x)

)2

. (7)

First, if x > 0, we choose the greater of the two roots above. To understandthis, note that by Itô’s lemma

d
dτ

Covt

(

Dt, (x2
t )
)

|τ=t = 2σxxty(xt)Dtρdx,

which implies under Assumption2 (ii ) that sign(y(x)) = sign(x); hence we must choose the greater of the two roots
to have a strictly positivey for anyx > 0. At this point, note also that ifρdx < 0, then the first term on the right hand
side of Eq. (7) is strictly negative for anyx > 0. This implies that under certain conditions, the structural parameters
are bounded. The above also implies thaty(x) < 0 for x < 0; hence we always choose the smaller of the roots for any
x < 0. �
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Note that the above Proposition implies that dividend growth volatility y(x) = 0 if and only if return volatility
x = 0. Furthermore, dividend growth volatilityy(x) > 0 andy(−x) = −y(x) for any x > 0. It also follows that
under our assumptions the price of the stock would be difficult to solve by Monte Carlo methods. In particular, to
compute Eq. (3), we must solveyu = y(xu) iteratively, which is determined by the price-dividend ratio, f (x), which
again directly determines the stock price. Therefore, we must look for a solution in another direction.

Using the solution for dividend growth volatility, we can formulate a differential equation that the price-dividend
ratio must satisfy:

Proposition 2. Suppose that the conditions of Proposition1 hold. Then the price-dividend ratio satisfies the following
relation:

(y(x)σxρdx− βx) fx(x) +
1
2
σ2

x fxx(x) − (r + γx2 − α) f (x) = −1, (8)

where y(x) is given in Equation (5). For the interval x≥ 0, the boundary conditions are f(x) = 0 as x→ ∞ and
fx(x) = 0 at x= 0.

Proof. The result is directly obtained by matching the drift term of the stock price process (6) and the assumed
required rate of return minus the dividend yield,r + γx2 − 1/ f (x).

The first boundary condition is based on the fact that future dividends are discounted at an extremely high cost of
capital if the volatility of stock returns is extremely high. The second condition is imposed by the differentiability of
f at x = 0. �

This model is hardly tractable analytically, especially with ρdx , 0; therefore, we employ numerical methods to
solve it.2 The numerical solution is described in the Appendix.

In Figure1, we have plotted the price-dividend ratio as a function of return volatility for x ≥ 0. We do not
show the corresponding plot for the interval ofx ≤ 0 because it can be considered as a ”mirror image” of Figure1
as f (−x) = f (x) ( f is an even function). Bakshi et al. [26] estimated from option prices that the volatility of the
variance,σh is about 0.4, depending on the moneyness of the options, implying thatσx = σh/2 ≈ 0.2. Moreover, the
speed of adjustment of the squared volatility process,κ, almost equalled one, and thusβ = κ/2 ≈ 0.5. We also note
that these values are consistent with their estimation of the long-run average squared volatility (variance),θ ≈ 0.04.
In addition, we assume that the instantaneous risk-free interest rate isr = 0.02 and the correlation between the returns
and dividend growth isρdx = −0.5. In Figure1 (a), we have plotted three curves by varying the price of diffusion
return risk,γ, the expected dividend growth rate,α, and the correlation between return volatility and dividend growth,
ρdx. In Figure1 (b), we perform a sensitivity analysis by varyingβ andσx from Bakshi’s estimates [26].

As expected, the stock price is a monotone decreasing function of squared return volatility. At the origin, the first
derivative is zero, as required by the condition offx(0) = 0. Note how a greaterγ implies a lower stock price even
with a greater expected dividend growth rate. This seems reasonable, because an increase inγ increases the stochastic
risk premium,γx2. Note that ifγ were equal to zero, then Assumption3 would imply thatα should be less than the
risk-free interest rate; otherwise the stock price would not be well defined. In fact, a greater stochastic risk premium
implies a greater upper bound of the expected dividend growth. For example, withγ = 1 andα = 0.08, the numerical
solver3 returns an error message and we cannot find a suitable numerical solution for the price-dividend ratio because
dividend growth would then be too high compared to the (stochastic) risk premium, but withγ = 3 andα = 0.08, a
solution does exist (see Figure1).

As the above analysis shows, the price-dividend ratio,ft = f (xt), varies as return volatility changes; hence the
dividend yield,δt ≡ 1/ ft, depends on return volatility and is stochastic. Moreover,the correlation between returns and
volatility becomes stochastic under our settings:

2With ρdx = 0, Eq. (8) is a non-homogeneous ODE, whose associated homogeneous equation belongs to the class of degenerate hypergeometric
equations. However, the solution is very complicated and extremely hard to interpret [see24, 25].

3 Matlab bvp4c
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Figure 1: The price-dividend ratio,f (x), with respect to return volatility,x. In plot (a), parameters arer = 0.02,β = 0.5, σx = 0.2, ρdx = −0.5
(thicker lines) orρdx = 0.5 (thinner lines), andγ andα vary. In plot (b), parameters arer = 0.02, γ = 2, α = 0.05, ρdx = −0.5 (thicker lines)
or ρdx = 0.5 (thinner lines), andβ andσx vary. In particular, the relation betweenβ andσx is determined withσx =

√

2θβ, where the average
varianceθ = 0.04.

Proposition 3. Suppose that the conditions of Proposition1 hold. Then the correlation between returns and return
volatility, ρrx,t = ρrx(xt), can be expressed as

ρrx(x) = sign(x)
σx

fx(x)
f (x) + y(x)ρdx

√

σ2
x

fx(x)2

f (x)2 + y(x)2 + 2ρdxσx
fx(x)
f (x) y(x)

, (9)

where y(x) is given in Equation (5) and f satisfies Eq. (8). Note thatρrx(−x) = ρrx(x).

The proof of the above proposition is straightforward and isomitted. The economic point here is that whereas
the correlation between dividends and return volatility,ρdx, represents the leverage effect, the differenceρrx(x) − ρdx

represents the volatility feedback effect.
Also Ang and Liu [18] provide a solution for the price-dividend ratio under a continuous stochastic volatility model

and ICAPM (see Corollary 3.6 and Section 3.6 therein). Theirsolution, however, differs substantially from ours. First,
we assume thattotal return volatility follows the Stein-Stein or Heston type process, whereas in [18], squared total
return volatility comprises (i) squared dividend growth volatility and (ii) a residual component, in which only the
residual component follows the Heston model. The residual component represents, in fact, the volatility arising from
time-varying discount rates. Second, and more importantly, in our model investors are rewarded fortotal return
volatility as the original ICAPM predicts, whereas in [18], investors are rewarded for residual volatility (discount rate
volatility), but not for dividend growth volatility. Technically, their specification yields a closed-form solution,but
economically such an assumption is questionable as the dividend growth risk remains unpriced. Interestingly, some
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papers in the volatility feedback literature assume that the risk premium depends only on dividend growth volatility
instead of total return volatility, which is exactly the opposite to what Ang and Liu assume [see, e.g.,5]. Third, their
solution is based on a conditionf (0) = C, which they refer to as the price-dividend ratio at timet = 0 and match
with the unconditional price-dividend ratio. However, since f depends only on the state variablex (also under their
settings),f (0) should refer to the price-dividend ratio withx = 0 rather than witht = 0, i.e., with zero volatility, not
with zero time.4 Therefore,f (0) cannot be thought to represent the unconditional price-dividend ratio. Moreover,
f (0) = C cannot be assumed to be an exogenously determined constant and independent ofγ and other parameters.
Indeed, as Figure1 shows, f (0) depends negatively onγ, which is very intuitive: return volatility is mean-reverting
and never remains constantly at zero; therefore, the greater the price of diffusion return risk, the lower is the price-
dividend ratio for a given instantaneous volatility because the future dividends are discounted at a higher rate. Note
that under our model no expression is needed forf (0), since we can usef ′(0) = 0 as a boundary condition for the
interval ofx ≥ 0, as imposed by the differentiability. Overall, Ang and Liu’s characterization carries implications that
are essentially different from ours.

2.3. Why return volatility can be greater than dividend volatility

At this point, let us consider the relation between dividendgrowth volatility and return volatility. The early
literature offers much evidence that return volatility is greater than dividend growth volatility, i.e.,x2 > y(x)2. Suppose
that the conditions of Proposition1 hold. Then it is easy to show thatx2 > y(x)2 if and only if

ρdx < −
σx

2x
fx(x)
f (x)
.

Because squared return volatility always has a non-positive effect on the price-dividend ratio, i.e.,fx(x) ≤ 0 for all
x ≥ 0 and fx(x) ≥ 0 for all x ≤ 0, the right hand side of the above inequality is non-negative. Consequently, if
the correlation between dividends and return volatility iszero or less, return volatility is higher than dividend growth
volatility. On the other hand, if the correlation between dividends and return volatility is positive and high enough,
then return volatility can be lower than dividend growth volatility.

According to our model, the ratio of squared return volatility to squared dividend growth volatility can be very
large. If we calculate the ratio using the same parameter values as in Figure1, our model can yield an extremely high
ratio of return volatility to dividend growth volatility, with γ = 3 andα = 0.08 the ratio is even higher than 10 for
all 0 ≤ x < 0.5. In fact, ifγ is high enough, the ratio can be infinite. In the light of Eq. (5), such a relation is easy to
understand mathematically: forρdx ≤ 0, y(x) would approach zero for strictly positivex, if ( fx/ f )2 were high enough
(due to a relatively highγ). In fact, y(x) could even be non-negative for a strictly positivex, but this would violate
Assumption2 (ii ). Economically, this means that volatility feedback almost alone explains the return variance

x2 = y(x)2 + σ2
x

fx(x)2

f (x)2
+ 2ρdxy(x)σx

fx(x)
f (x)
.

In other words, ifγ is relatively high, volatility feedback can amplify a very small but nonzero dividend growth
volatility to a relatively high return volatility. This extreme situation is illustrated in Figure2 by increasingγ to 3.115.
According to plot (b), with these parameter values the ratioof return volatility to dividend growth volatility can be as
high as 700.

Recently, Bali and Engle [27] estimated the risk aversion coefficient to be even more than 4 and to be highly
significant for S&P100 stocks [see also28]. In the light of these empirical estimates ofγ, we argue that the high ratio
of return volatility to dividend growth volatility, or the “excess” volatility of the stock market, can be explained by
volatility feedback. Our finding is in sharp contrast to the conventional argument that stock market volatility is ”too”
high [i.e. equity volatility puzzle, see, e.g.29]. Shiller, however, assumed that the cost of capital is deterministic and
unaffected by return volatility. If the discount rate varies, thestock price can vary even with unchanged dividends, and
hence one should adopt time-varying discount rates. This assumption of a constant discount rate was later relaxed,
e.g., by Cochrane [30]. By modeling the stochastic cost of capital, we assert thatthe ratio of return volatility to
dividend growth volatility can be arbitrarily large.

4Remember that under the tranversality condition,f is the function of volatility only, and calendar time is thusan irrelevant variable here.
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Figure 2: Can high return volatility plausibly be explained? The figure demonstrate a possible relation of dividend growth volatility, y(x), with
respect to return volatility,x, under teh volatility feedback effect. The parameters areγ = 3.115,α = 0.08,σx = 0.2, β = 0.5, r = 0.02, and
ρdx = −0.5. In (a), dividend growth volatility is plotted against return volatility, and in (b) the ratio of return volatility to dividend growth volatility
is plotted.

This study also shows that using the log-linear approximation does not necessarily make sense under our settings.
In particular, we could approximate the price-dividend ratio as

f̃ (x) = C1 exp
(

−C2x2
)

,

whereC1,C2 > 0 are constants. A similar approximation is applied, e.g., by Campbell and Viceira [24] and Bollerslev
et al. [31]. Note that if f̃x/ f̃ = −2C2x, and the implied approximation of dividend growth volatility is linear in return
volatility. However, the above figures show that this is not the case under our model.

2.4. Price dynamics revised

We have now shown that under the transversality condition the price-dividend-ratio depends on return volatility
and is hence stochastic. Consequently, dividend yield cannot be assumed constant in time, as is typically done in the
financial literature. In addition, the correlation betweenreturns and return volatility is endogenously determined and
stochastic, even though fairly stable. Instead of assuminga constant dividend yield and a constant correlation, the
stock price process could be more appropriately written as follows:

dPt =

(

r + γx2
t −

1
f (xt)

)

Ptdt + xtPtdBr
t

=

(

r + γx2
t −

1
f (xt)

)

Ptdt + y(xt)PtdBd
t + σx

fx(xt)
f (xt)

PtdBx
t ,

(10)

wheref (x) satisfies Eq. (8). Note that the random term,xtdBr
t , can be decomposed into a dividend term,y(xt)dBd

t , and
a volatility term,σx

fx(xt)
f (xt)

dBx
t ; i.e., the price process is driven by changes in dividends and return volatility. Moreover,

return volatility was assumed to evolve according to Equation (2).
To understand how this expression captures volatility feedback, suppose that return volatility is positive,xt > 0,

and that it increases, dxt > 0. The first observation is that the expected rate of return,r + γx2
t , increases. The positive

change in the drift term is, however, lessened or even reversed by a change in the dividend yield. As demonstrated
earlier, an increase in squared return volatility decreases the price-dividend ratio, or, in other words, increases the
dividend yield, 1/ f , and thus potentially decreases the expected price appreciation, resulting in a pull-down. In
addition, under these conditions, the last term on the righthand side in Eq. (10, second line) is strictly negative,
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further decreasing the stock price. Therefore, an increasein squared volatility results in three effects on the stock
price: an increased expected rate of return, an increased dividend yield, and a negative random shock. Moreover,
because dividend growth volatility increases together with return volatility, the stock price becomes more sensitiveto
dividend shocks.

The volatility process follows the mean-reversion Ornstein-Uhlenbeck process, which provides an exact solution
that we can simulate with arbitrary time steps; however, simulation of the stock price process is appropriate only with
short time steps:

Pt+∆t = Pt exp

[(

r + γx2
t −

1
f (xt)

− 1
2

x2
t

)

∆t + y(xt)
√
∆tǫdt + σx

fx(xt)
f (xt)

√
∆tǫxt

]

,

xt+∆t = xt exp(−β∆t) + σx

√

1− exp(−2β∆t)
2β

ǫxt ,

whereǫd, ǫx ∼ N(0, 1), Corr(ǫd, ǫx) = ρdx. In each step,f (x) and fx(x) can be solved for a givenx with Proposition (2)
andy(x) with Proposition1. Note that the dividend process can be determined fromDt = Pt/ f (xt) or, alternatively,
simulated directly:

Dt+∆t = Dt exp

[(

α − 1
2

y(xt)2

)

∆t + y(xt)
√
∆tǫdt

]

. (11)

When the same random number sequences are used and the time steps shrink, both approaches yield identical dividend
stream sequences withD0 = P0/ f (x0). In addition, instead of simulating the return process directly, the dividend
stream and return volatility can also be simulated togetherwith the stock price, which is then determined using the
relationPt = Dt f (xt).

Sample paths of squared return volatility, log-price-dividend ratio, log-dividends, and log-price are illustrated in
Figure3. The prices, dividends, and their ratios are given in logarithmic form with equally stepped tics because, by the
definition of price-dividend ratio, ln(P) = ln(D)+ ln( f ). The figure also plots the ratio of return volatility to dividend
growth volatility and the correlation between returns and return volatility. We have highlighted four time instants
with large movements in return volatility with stable dividends. Clearly, the price-dividend ratio, and then also the
stock price, has reacted negatively ( resp. positively) to the positive ( resp. negative) volatility movements because
of volatility feedback. For example, observe the period before the third highlighted time instant, in which squared
volatility increased to about 0.05 (t ≈ 2.17). In this period, the dividend increased slightly and hadpractically no
effect on stock price movements, yet the stock price fell substantially in response to an increase in the cost of capital.
The fourth highlighted time-period (t ≈ 2.92) represents a situation in which the stock price level increased due to a
decrease in the cost of capital. When the price-dividend ratio (or equivalently, constant dividend yield) is assumed
constant, as done traditionally, the stock price goes up if and only if dividends increase. However, our characterization
allows stock prices and dividends to move in opposite directions. Moreover, our model implies that call prices and
the underlying stock do not necessary move in the same direction, in agreement with what was empirically observed
by Bakshi et al. [32]. In particular, a change in the call price can be positive ornegative depending on which effect,
increased squared volatility or increased dividend yield,predominates. Option pricing under our settings is discussed
further in Section3.

The figure illustrates that the modeled return volatility isapproximately 1.915 times higher than the dividend
growth volatility, and that this ratio varies slightly. Theestimated unconditional ratio, 1.907, is close to these theo-
retical values. In addition, the correlation between returns and return volatility is quite stable in time and flucturates
around -0.892. The estimated unconditional correlation between∆(x2) and∆ ln P is -0.8868, again close to the theo-
retical values, and the estimated correlation between∆(x2) and∆ ln D is -0.4967, which is very close toρdx = −0.5.
The difference between Corr(∆(x2),∆ ln P) and Corr(∆(x2),∆ ln D) can be justified with volatility feedback; in fact,
the difference could be used as a measure of volatility feedback. Finally, the figure also demonstrates volatility clus-
tering: periods of high ( resp. low) volatility are followedby high ( resp. low) volatility. Because return volatility and
dividend growth volatility evolve hand in hand, volatilityclustering is not only about returns but also about dividends.
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Figure 3: Sample paths. The parameters areσx = 0.2, β = 0.5, r = 0.02, α = 0.05, andρdx = −0.5. Moreover,x0 = 0.2, P0 = $100, and
∆t = 1/(24× 252) years.

3. Option valuation

3.1. Risk-neutral dynamics

Under the risk-neutral probability measureQ, cumulative stock return and return volatility evolve as

dRt = rdt + xtdB̃r
t ,

dxt = −β̃(xt)xtdt + σxdB̃x
t , (12)

whereB̃r
t and B̃x

t are Brownian motions under the probability measureQ, andβ̃ is the speed of the mean reversion
underQ. We realize immediately that the above is satisfied if

dB̃r
t = dBr

t + γxtdt,

dB̃x
t = dBx

t +
λx(xt)
σx

xtdt
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with

xtdB̃r
t = y(xt)dB̃d

t + σx
fx(xt)
f (xt)

dB̃x
t ,

whereλx(xt) = β̃(xt)−β represents the volatility risk premium, which is non-zero for equity [see, e.g.,33, 34, 35]. For
simplicity, we suppose thatλx = β̃− β is constant. To express the dividend process under the risk-neutral measure, we
write

y(xt)dBd
t = xtdBr

t − σx
fx(xt)
f (xt)

dBx
t

= y(xt)dB̃d
t −

(

γx2
t −

fx(xt)
f (xt)

λxxt

)

dt,

which implies that the dividend process under the risk-neutral measure is given by

dDt =

(

α − γx2
t +

fx(xt)
f (xt)

λxxt

)

Dtdt + y(xt)DtdB̃d
t . (13)

Therefore, the rate of expected dividend growth becomes stochastic under the risk neutral measure. Note that the
greater theγ, the less the expected dividend growth under the risk-neutral probability measure. Moreover, a negative
price of volatility risk,λx < 0, affects the expected dividend growth positively under the risk-neutral measure.

It is also worth observing that the price-dividend ratio satisfies the same relation under both physical and risk-
neutral probability measures. To see this, suppose that theconditions of Proposition1 hold. Then the stock price
evolves under risk-neutral dynamics as follows:

dPt =

(

α − γx2
t + λxxt

fx(xt)
f (xt)

+
(

ρdxσxy(xt) − β̃xt

) fx(xt)
f (xt)

+
1
2
σ2

x
fxx(xt)
f (xt)

)

Ptdt

+ σx
fx(xt)
f (xt)

PtdB̃x
t + y(xt)PtdB̃d

t ,

(14)

whereβ̃ = β+ λx, and thus the terms includingλx cancel each other out. Under the risk-neutral measure, the expected
rate of return of any asset equals the instantaneous risk-free interest rate. Now when we apply this principle and
match the drift term of the risk-neutral price process (14) with the expected price appreciation under the risk-neutral
measure,r − 1/ f (x), Eq. (8) follows. This means that the stock is priced equivalently under both physical and risk-
neutral probability measures. Consequently, underQ, the stock price follows

dPt =

(

r − 1
f (xt)

)

Ptdt + y(xt)PtdB̃d
t + σx

fx(xt)
f (xt)

PtdB̃x
t , (15)

where f (x) satisfies Eq. (8) and can be solved for givenx with r andα and structural parametersσx, β, γ, ρdx.

3.2. Option prices
Given the risk-neutral dynamics in (15) and (12), the price of a European call option can be computed as

c(t,Pt, xt,T,K, r, α; θ) = exp(−r(T − t))EQ
t
[

(PT − K)+
]

, (16)

whereT is the time of maturity,K the exercise price, andθ = {σx, β, β̃, γ, ρdx} the set of structural parameters. Like,
e.g., most GARCH models and the so-called VAR volatility model, our model requires Monte Carlo simulations to
compute option prices [see, e.g.,36, 37, 38]. To speed up computations, we use antithetic variates and distributed
computing.

What is very fundamental here is that to compute the expectedpayoff in Eq. (16), we needto know all the
parametersθ = {σx, β, β̃, γ, ρdx}. Specifically, to compute the right hand side of Eq. (16) with Monte Carlo methods,
we simulate the discretized risk-neutral processes

Pt+∆t = Pt exp

[(

r − 1
f (xt)

− 1
2

x2
t

)

∆t + y(xt)
√
∆tǫ̃dt + σx

fx(xt)
f (xt)

√
∆tǫ̃xt

]

,

xt+∆t = xt exp
(

−β̃∆t
)

+ σx

√

√

1− exp
(

−2β̃∆t
)

2β̃
ǫ̃xt ,
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where ˜ǫd, ǫ̃x ∼ N(0, 1), Corr
(

ǫ̃d, ǫ̃x
)

= ρdx. Even though parametersγ, β, andα do not directly appear in the above
expressions, they are necessary, together withr, σx, andρdx, to computef (x) in each time step for a givenx. Thus
future stock price distributions and hence also option prices depend on the price of diffusion return risk,γ. This is in
very sharp contrast to the derivative pricing literature, which, following Black and Scholes [39], considers the price of
diffusion return risk and the stock’s expected rate of return irrelevant to option pricing. However, in our dynamics,γ
affects option prices, mainly via dividend yield, 1/ f (x), which is expressed as a function of return volatility withγ as a
structural parameter of that function. In other words,γ determines the sensitivity of dividend yield to return volatility
and thereby affects option prices. In some current option pricing models, option prices can be seen as dependent on
the price of the return risk, but these models differ essentially from ours. To understand the difference, consider, for
example, the [40] model, in whichθ is the leverage parameter under the physical measure whereas under the risk-
neutral measure it is̃θ ≡ θ + γ, whereγ is the price of the return risk. Hence, one could say that for fixedθ, a change
in γ affects option prices through̃θ. However, to price options, all we need is the combinationθ + γ; consequently,
we cannot separately identifyθ andγ when estimating the Heston-Nandi model using option data alone under the
risk-neutral probability measure, because we can only estimate the combinatioñθ ≡ θ + γ [see the similar discussion
of the Leverage model36, on-line Appendix]. Moreover, because options are priced in terms of the risk-neutralized
volatility process, under the standard Heston model (with two parameters) option prices directly depend on the sum
of β̃ = β + λx and only the combination ofβ + λ can be estimated with historical return data. However, under our
dynamics we need both parameters,β andβ̃, not only their sum, to price options. That is, we needseparatelyboth
physical and risk-neutral parameters, or, in other words, we need the market price of the diffusion return risk and
volatility risk-premium; this arrangement allows us to estimate the forward-looking, option-implied market price of
the return risk and the volatility risk-premium using option data alone.

Figure4 illustrates the relation between option prices and the price of diffusion return risk. The parameter values
are expressed in the figure caption. In plot (b), we perform a sensitivity analysis by varyingβ andσx from Bakshi’s
estimates [26].5 The option prices were calculated with Monte Carlo simulations using antithetic variates and 10,000
paths/option. Clearly, the greater the price of diffusion return risk, the greater the dividend yield and the lower the call
price. Moreover, the greater the time to maturity, the greater the effect of an increase in the price of diffusion return
risk on the call price. In addition, option prices are higherwith ρdx = −0.5 than withρdx = 0.5, and correspondingly,
initial dividend yield is lower with withρdx = −0.5 than withρdx = 0.5. A doubling value ofβ and a corresponding
change inσx do not affect the results substantially, and the shape of the curves remain the same.
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Figure 4: Effect of the price of diffusion return risk on European call option prices. Parameters arer = 0.02,α = 0.015, andρdx = −0.5 (thicker
lines) orρdx = 0.5 (thinner lines). In plot (a),β = β̃ = 0.5,σx =

√

2θβ = 0.2 with θ = 0.04, and in plot (b),β = β̃ = 1,σx =
√

2θβ ≈ 0.2828 with
θ = 0.04. Moreover,x0 = 0.2, P0 = $100,K = $100, and∆t = 1/252 year.

Figure5 shows how option prices depend on the volatility risk premium. In plot (a), we fixβ̃ and varyβ = β̃ − λx

5Note that the values are the same as used in Figure1b, except thatα = 0.015. This is justifiable because forγ = 0, the stock price is well
defined only ifr > α.
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whereas in (b)β is fixed andβ̃ = β + λx varies. Plot (a) shows also the dividend yield whereas in (b)it is constant (̃β
does not appear in Eq.8) and thus ignored. In both cases, an increase inλx, which represents the difference of̃β and
β, decreases option prices. Again, a doubling value ofβ and a corresponding change inσx do not affect the results
substantially.
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Figure 5: Effect of the price of volatility risk on European call option prices. Parameters areγ = 2, r = 0.02,α = 0.05, andρdx = −0.5 (thicker
lines) orρdx = 0.5 (thinner lines). In plot(a)̃β = 0.5,σx = 0.2 and in (c),β = 0.5, σx = 0.2, and in plots (b)̃β = 1, σx ≈ 0.2828 and (d),β = 1,
σx ≈ 0.2828. On the other hand, in (a) and (b),β̃ is fixed whereas in (c) and (d),β is fixed (remember thatλx = β̃ − β). Moreover,x0 = 0.2,
P0 = $100,K = $100, and∆t = 1/252 year.

Because in our model options prices depend onall the parameters{σx, β, β̃, γ, ρdx} in addition to the risk-free
interest rates and the expected dividend growth rate, the parameters (includingγ andβ) could be estimated using
information on option prices by directly minimizing pricing errors. This also contradicts the early empirical literature
on financial economics, where the coefficient of risk relative aversion,γ, and the speed of the “physical” volatility
mean-reversion,β, have so far been estimated using time series of asset returns, not pure option prices.6 Therefore,
we are motivated to estimate the parameters of our model using information on options prices alone, and we will use
this approach in the empirical section of this study.

At this point, it is worth pointing out that the original Heston model (with the Ornstein-Uhlenbeck process) can be
seen as a special case of ours. Forγ = 0, we get thatf = 1/(r − α) is constant with respect tox, implying a constant
dividend yieldr − α and equal dividend and return volatilities,y(x) = x. By denotingBd

t by Bt andρdx by ρ, the

6Note that under the original Heston model (or other current stochastic volatility models), the price of diffusion return risk and the speed of the
mean reversion of physical processes can be estimated only by using time series of asset returns, not option prices, since Heston’s option prices are
not affected by “physical parameters.”
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risk-neutral versions of the stock price and the volatilityprocess withγ = 0 can be expressed as

dPt = αPtdt + xtPtdB̃t,

dxt = −β̃xtdt + σxdB̃x
t ,

where dBtdBx
t = ρdt, which corresponds exactly to Heston’s original specification. Therefore, our model should be

able to price options at least as well as Heston’s model with the dividend yield ofr − α, or even better, as we will see
in the empirical part of this study. In fact, we could say thatunder Merton’s ICAPM, Heston’s characterization of a
constant dividend yield implicitly assumesγ = 0, viz. risk-neutral investors. Note also that if we setγ = 0, option
prices no longer depend on the speed of the physical mean revision,β, which cannot be estimated using pure option
data.

One interesting implication of our characterization is that the option price can be a decreasing function of squared
return volatility. The reason here is that an increase in squared volatility increases the dividend yield, and thus
potentially lowers the call price. The early literature usually argues the opposite, i.e., that because of the convex
payoff, return volatility has a positive effect on the standard call option [see, e.g.,41, 42, 43, 44, 45]. These arguments
for a positive relation between call price and volatility are, however, based on the assumption of a constant dividend
yield or absence of dividends.

To see how return volatility affects options in our model, let us, for simplicity, first consider a special case of
K ↓ 0; i.e., the exercise price is zero and the ’option’ holder gets the underlying stock for free at timeT. In this case,
the option price is

c(t,Pt, xt,T, 0, r, α; θ) = exp(−r(T − t))EQ
t PT

= PtE
Q
t exp

[∫ T

t

(

− 1
f (xs)

− 1
2

x2
s

)

ds+
∫ T

t
xsdB̃r

s

]

.
(17)

The price of this option is less than that of the underlying stock, because the option holder receives no dividends
until maturity, and hence the underlying price is reduced bythe expected cumulative dividends. If the current squared
return volatility x2

t increases, then not only the current dividend yield but alsothe expected dividend yields increase
because of the persistence of stock return volatility; consequently, the expected terminal price,E

Q
t PT , is lower. In fact,

we suppose here that the stock price level is not affected by an increase in volatility, which, according to Definition
2, must mean that the current level of dividends must increaseto respond to a lower price-dividend ratio. Greater
dividends mean a greater shortfall for the option holder, reducing the option price. This is illustrated in figure6, plot
(a). The same could also be put differently. We could think of a situation in which the stock price level reacts to an
increase in squared return volatility, while the level of dividends remains an exogenous variable and unaffected, just
as the theory of volatility feedback predicts. We can then express the option contract in the terms of dividends, rather
than a function of the spot price:

c(t, f (xt)Dt, xt,T, 0, r, α; θ) = f (xt)DtE
Q
t exp

[∫ T

t

(

− 1
f (xs)

− 1
2

x2
s

)

ds+
∫ T

t
xsdB̃r

s

]

.

Becausef (x) is decreasing w.r.t.x, an increase in squared return volatility has two negative effects on option prices:
via increased dividend yield and via a lower stock price level. As figure6, plot (b) shows, squared return volatility
can then substantially decrease the option price. In addition, the grater the speed of adjustment of the volatility
process (β), the less is the effect of initial volatility on option prices as squared volatility is pushed toward the average
volatility level faster.

With strictly positive exercise prices,K > 0, the payoff becomes convex, and thus an increase in squared volatility
can also increase the option price, depending on which effects, positive or negative, dominate. Intuitively, the greater
the K, the greater the “convexity effect” and the more squared return volatility can increase option prices. Figure7
illustrates how the price of an option withK = $100 changes with return volatility. In plot (a), we keep thecurrent spot
price fixed whereas in (b) current dividends are fixed. In the first case, convexity dominates the increased dividend
yield, whereas in the latter case, the option price can be a non-monotonic function of return volatility. Note that in (a)
the option is at-the-money for allx ≥ 0, whereas in (b) it is at-the-money only forx = 0 and out-of-the-money for all
x > 0. Changes inβ andσx have a negligible effect on the relation between return volatility and option prices.
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(a) Fixed P0, β = β̃ = 0.5, σx = 0.2
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(c) Fixed D0, β = β̃ = 0.5, σx = 0.2

0 0.2 0.4 0.6 0.8
90

92

94

96

98

100

Initial return volatility, x0

O
p
ti
on

P
ri
ce

,
c(

P
0
,x

0
)

(b) Fixed P0, β = β̃ = 1, σx ≈ 0.2828
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(d) Fixed D0, β = β̃ = 1, σx ≈ 0.2828
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Figure 6: Effect of return volatility on the price of a European call option with K = $0. Parameters areγ = 2, r = 0.02,α = 0.05, andρdx = −0.5
(thicker lines) orρdx = 0.5 (thinner lines). In plots (a) and (c),β = β̃ = 0.5,σx =

√

2θβ = 0.2 with θ = 0.04, and in plots (b) and (d),β = β̃ = 1,
σx =

√

2θβ ≈ 0.2828 withθ = 0.04. On the other hand, in (a) and (b),P0 = $100 is fixed whereas in (c) and (d),D0 = $100/ f (0) ≈ $3.3165 is
fixed. Moreover,x0 = 0.2 and∆t = 1/252 year.

4. Calibration to option prices

4.1. Data and methodology

In this section, by calibrating our model to the sample of S&P500 call options, we illustrate how it is possible
to obtain forward-looking estimates for the price of diffusion return risk using information on option contracts alone
without the need of the series of asset returns. At the same time, this paper is among the first attempts to obtain
the option-implied values for the price of diffusion return risk,γ, and the volatility risk premium,λx. The use of
information on option contracts (instead of time series data) is motivated also by Christoffersen and Jacobs [36] who
argue, “for the purpose of option valuation, it may be preferable to estimate the parameters directly using . . . option
prices.” Bakshi et al. [26], among others, employ this estimation methodology using loss functions to minimize the
pricing error of options. Since their work, a wealth of literature has appeared on evaluation of stochastic volatility
models using empirical information on option prices [see, e.g.,46, 36, 47, 38, 48].

In this study, we use the sample of the daily data of S&P 500 index call options traded on the Chicago Board
Options Exchange (CBOE), and in particular the mid-point bid-ask quotes. Practitioners often estimate the coefficients
of the underlying dynamics on observed option prices through static daily calibration, but instead of using single-day
data, we use multi-day data. The option prices are samples ofevery trading day in 1995, from January 3 through
December 27, a total of 21,166 observations.7 Data from 1995, and the 1990s data in general, is widely used in
the literature [e.g.,35, 36, 49, 50, 48], and our empirical results are thus comparable with those of recent studies on
option pricing. The recorded S&P 500 index values are not closing values but rather from the moment an option
bid-ask quote was recorded. We use the data on daily three-month Treasury bill discounts and convert them first
to annualized continuously compounded interest rates to price options each trading day. Moreover, we estimate the

7The data were graciously provided by Gurdip Bakshi.
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(a) Fixed P0, β = β̃ = 0.5, σx = 0.2
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(c) Fixed D0, β = β̃ = 0.5, σx = 0.2
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(b) Fixed P0, β = β̃ = 1, σx ≈ 0.2828
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(d) Fixed D0, β = β̃ = 1, σx ≈ 0.2828
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Figure 7: Effect of return volatility on the price of a European call option with K = $100. Parameters areγ = 2, r = 0.02,α = 0.05, andρdx = −0.5
(thicker lines) orρdx = 0.5 (thinner lines). In plots (a) and (c),β = β̃ = 0.5,σx =

√

2θβ = 0.2 with θ = 0.04, and in plots (b) and (d),β = β̃ = 1,
σx =

√

2θβ ≈ 0.2828 withθ = 0.04. On the other hand, in (a) and (b),P0 = $100 is fixed whereas in (c) and (d),D0 = $100/ f (0) ≈ $3.3165 is
fixed. Moreover,x0 = 0.2 and∆t = 1/252 year.

average growth rate of dividends, ¯α ≈ 6.13%, from monthly data on S&P 500 dividends8 from January 1995 through
December 1996, covering the lengths of all the option contracts. A typical approach to take dividends into account
is to calculate their present values until the maturity of each option and subtract them from the spot prices [see, e.g.,
26, 36, 49]. However, in our paper, dividend yield is determined endogenously by stock return volatility.

We used some exclusionary criteria to filter out option data that could complicate calibration. From the original
data set we excluded price data with a time stamp later than 3 p.m.; excluded options with maturity less than 6 days;
excluded market prices below 3/8 dollars; and excluded options in conflict with the no-arbitrage rules. These criteria
were also used by Bakshi et al. [26], and similar criteria were used by Heston and Nandi [40]. To satisfy the arbitrage
restriction, the option price must fall between the upper and lower bounds. To be precise, we must ensure that both,
ask and bid quote, are between those bounds. Therefore, we test the ask quotes against the upper bound rule and the
bid price against the lower bound rule. The lower bound of theno-arbitrage rule isCt ≥ Pt−PVDIV−Ke−r(T−t), where
PVDIV is the present value of dividends during the life of theoption. Here we used dividend data in a traditional way
to calculate the lower bounds of option prices. The upper bound is simplyCt ≤ Pt.

After applying all the above criteria, our test data set contained 18,587 quotes. We divided the data set into two
samples. First, the period from June 3, 1995 to August 4, 1995, covering the first 150 trading days and denoted as
Sample A, was used exclusively for in-sample estimation. Second, we used the period between August 7, 1995 and
December 29, 1995, a total of 100 trading days, as an out-of-sample data set, referred to as Sample B. Table1 shows
the properties of the option data in detail.

One approach is to estimate the structural parameters and spot volatility on each trading day separately [see, e.g.,
26] and another to use more than one day of option prices to estimate the structural parameters [see, e.g.,36, and

8 The monthly dividend data were made available by Professor Robert Shiller on his web site
http://www.econ.yale.edu/~shiller/data.htm.
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(a) In-Sample Data

Moneyness Maturity (days to expiration)

P/K < 60 60 - 180 ≥ 180 Subtotal

< 0.94 104 757 327 1188
(0.73) (2.98) (6.86)

0.94-0.97 710 690 115 1515
(1.68) (7.81) (18.45)

0.97-1.00 1196 780 117 2093
(4.94) (14.86) (27.1)

1.00-1.03 1170 744 213 2127
(13.75) (24.69) (35.74)

1.03-1.06 1075 732 173 1980
(25.86) (35.97) (44.83)

1.06 1473 815 76 2364
(43.56) (49.53) (55.75)

Subtotal 5728 4518 1021 11267

(b) Out-of-Sample Data

Moneyness Maturity (days to expiration)

P/K < 60 60 - 180 ≥ 180 Subtotal

< 0.94 53 139 66 258
(0.7) (3.49) (10.37)

0.94-0.97 195 92 35 322
(1.97) (7.31) (21.73)

0.97-1.00 602 253 150 1005
(6.71) (18.42) (32.07)

1.00-1.03 744 455 237 1436
(16.69) (29.77) (41.62)

1.03-1.06 800 505 180 1485
(30.28) (41.4) (53.41)

≥ 1.06 1862 827 125 2814
(62.18) (64.09) (66.16)

Subtotal 4256 2271 793 7320

Table 1: Sample properties of the in-sample (sample A) and the out-of-sample (sample B) option data, reported by dividing the data into three
groups based on maturity (trading days) and six groups basedon moneyness (P/K). The table shows the number of options and the average price
(in parentheses).

references therein]. There are numerous reasons for preferring a multi-day sample. First and most importantly, it is
essential that we use information on time-variation in the price of the underlying asset and spot volatility; this can be
done only with multi-day data. Second, the first approach (single-day samples) would yield different estimates of the
structural parameters for each day while, on the other hand,structural parameters are assumed constant. Third, Cont
and Tankov [51] argue that “given that the number of calibration constraints (option prices) is finite (and not very
large), there may be many Lévy triplets which reproduce call prices with equal precision.” Overcoming, or at least
minimizing, the instability problem was enough incentive for us to increase the number of option price observations
using multi-date data. Fourth, assessing long-term performance with single-day samples is problematic.

Overall, it is better to use more than one day of option pricesto estimate the structural parameters. In the present
literature, such multi-day estimation have been applied with GARCH type models [see, e.g.,40, 36]. Then a volatility
updating rule can be used to link volatility on different dates for given structural parameters [see36, Online Appendix].
However, this is not possible with an option pricing model, in which the stock return process and the instantaneous
volatility process are driven by separate random terms. Consequently, we need a suitable proxy for market volatility,
which is intrinsically unobservable. The recent empiricalliterature has constructed volatility proxies from volatility
indices, like VXO and VIX. On September 22, 2003, the CBOE reformulated its implied volatility index to use
the model-free implied volatility approach on S&P 500 and created a historical record for the changed S&P 500
VIX dating back to 1990.9 This reformulated VIX is used as a spot volatility proxy in, e.g., [52, 53, 54, 37]. The
Black-Scholes implied volatility could be adjusted for theeffect of mean revision in volatility, but as Aı̈t-Sahalia and
Kimmel [54] show, with VIX, this adjustment has only a marginal effect on the results, perhaps because the current
reformulated VIX is model-free. Therefore, as in [53] and also partly in [54], we use the reformulated model-free
VIX data directly as a proxy for instantaneous volatility. To be precise, we use the lagged values such that yesterday’s
closing value of VIX serves as a volatility proxy for today’smodel-based option prices. Notice that when pricing
options, volatility is modeled under the risk-neutral measure, and VIX measures volatility just under the risk-neutral
measure.

The loss function we use is the square root dollar mean-squared error,

$RMSE=

√

√

1
n

n
∑

i

(

ĉ(ti ,Pti ,Ti,Ki) − c(ti ,Pti , xti ,Ti,Ki , rT-bill
i , ᾱ; θ)

)2
,

9See CBOE Documentation 2003.
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which is minimized with respect to the structural parameters, θ. Heren denotes the number of contracts andrT-bill
i

the observed T-Bill rate. Moreover, ˆc(·) is the price of thei-th option,c(·; θ) the corresponding model price, and
xti ≡ VIX ti−1 denotes the volatility proxy used at timeti .

The loss function was minimized using the Nelder-Mead simplex algorithm, a derivative-free methods for uncon-
strained multivariable function minimization, as implemented in the Matlab fminsearch code MathWorks [55]. The
same optimization algorithm has been used with Monte Carlo simulations at least in [38]. The options are priced by
simulating 20,000 paths with antithetic variates. To speedup computation, distributed computing has been used such
that workers (cores) calculate option prices for different days independently; i.e., worker one calculates the options
for day one, worker two for day two, and so on. This requires 150 workers and achieves a 150-fold speedup.

4.2. Results

Table2 shows the evaluation results for three specifications: (i) full model; (ii) constantγ = 0; (iii) constant
γ = 0 with doubled interest rates and halved dividend growth rate. Before presenting and interpreting the results,
we emphasize that our estimates concern the volatility process (2), not directly with respect to the squared volatility
process (3), though they can be converted by applying the relationsκ = 2β, σh = 2σx, andθ = σ2

x/(2β). Moreover,
the volatility risk premium can be presented with respect tosquared volatility process asλh = κ̃ − κ, whereas with
respect to volatility process we express it asλx = β̃−β. Clearly, our result can be converted withλh = 2λx. Therefore,
when the estimated values ofβ, σx, andλx are compared with the estimates ofκ, σh, andλh in the early literature, our
estimates should be multiplied by two.

(i) γ free (ii) γ = 0 (iii) γ = 0 with
r i = 2rT-bill

i , α = ᾱ/2

β̃ 1.2476 32.8570 1.3282
(0.0420) (2.5897) (0.0474)

σx 0.2713 0.6659 0.2666
(0.0032) (0.0271) (0.0035)

ρdx -0.6410 0.4241 -0.8002
(0.0069) (0.0180) (0.0033)

λx -0.3376
(0.0128)

γ 1.7929
(0.0099)

$RMSEs
Sample A 0.8111 1.1327 0.9114
Sample B 0.9355 1.6429 0.9859

Table 2: We estimate our model directly by fitting the observed option prices using a nonlinear least-squares code to minimize $RMSE. Only
options in Sample A (June 3 - August 4, 1995), consisting of 11,276 contracts, are used in the estimation. Standard errorsare reported below each
parameter estimate in parentheses. At the bottom, the tablereports $RMSE for samples A and B at the parameter optima. Results are reported for
three specifications. Specification (i) represents a general model in whichγ is a free parameter. Specification (ii) comes withγ = 0 (no risk-return
trade-off) as also does specification (iii), but the observed average dividend growth rate, ¯α, and T-bill rates,rT-bill , have been adjusted. In particular,
we use doubled T-bill rates and halved dividend growth rate in (iii).

For specification (i), we find that the estimates ofβ̃ andσx are reasonable and fairly consistent with the early
empirical results of the Heston (1993) model. Moreover, thecorrelation between return volatility and dividend growth
rate is negative, indicating the existence of a leverage effect. All the parameters are statistically significant. More
importantly, the estimatedγ is about 1.8 and statistically significant. This estimate implies that the expected returns
are related to squared return volatility and that, consequently, the price-dividend ratio is sensitive to return volatility.
Our estimate is thus consistent with the ICAPM and the theoryof volatility feedback. Recently, after a 20-year debate,
studies have, after developing estimation approaches, identified positive and significant relations between the expected
rate of return and volatility [see, e.g.,56, 57, 28, 58, 27] and the references therein), and our results provide further
evidence of this significant and positive relation using an entirely novel approach. Moreover, we find that the estimate
of λx is negative (-0.338), and that it has been estimated accurately as well. In addition, this estimate is consistent
with published theory and findings [see59, 35, 60, 61]. Based on the difference between option-implied and realized
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volatilities, Bollerslev et al. [61] construct a volatility risk premium index and show also a link between volatility risk
premium and the price of diffusion return risk (the risk-return trade-off coefficient). Following Heston [15], Bakshi
and Kapadia [35], and Bollerslev et al. [61], we can, in line with our assumptions, write that

λ(xt) = γ
d
dτ

Covt(xt,Rt)|τ=t,

which yields withλ(x) = λx(x)x that

λx(xt) = γσx
d
dτ

Corrt(xt,Rt)|τ=t

= γσxρrx(xt),

whereρrx(x) is determined according to Eq. (9). Hence a positive price of diffusion return risk and a negative corre-
lation between the returns and return volatility together imply a volatility risk premium. Because the standard Heston
model assumes that the correlation between the return and return volatility is constant, then also the volatility risk
premium is constant in time. Under our transversality settings, the volatility risk premium becomes dependent on
return volatility and is hence time-varying and stochastic, yet very stable with respect tox. With our estimates,ρrx

evolves around−0.7879 and using this value together withσx = 0.27 andγ = 1.79, we obtain an implied volatility
risk premium of about−0.38. Because this is close to our unrestricted estimate ofλx, −0.338, the above theoretical
relation between the price of diffusion return risk and the volatility risk premium seems to hold in the light of our data.
Compared to the other studies, the in-sample and out-of-sample RMSEs are reasonable low [see, e.g.,36, 49].

Specification (ii) assumes thatγ = 0, excluding volatility feedback and implying that the price-dividend ratio,
and then also the dividend yield, do not depend on return volatility. As explained earlier, 1/ f = r − α is constant
and not dependent onβ; hence the volatility risk premium cannot be estimated. Both the in-sample (sample A) and
out-of-the-sample (sample B) RMSEs are substantially higher than in specification (i). We immediately notice that
the estimate ofβ is not reasonable, for it implies thatκ is greater than 60, which is absolutely unrealistic. Moreover,
the correlation between return volatility and dividend growth is substantially positive and contradicts the leverage
effect. On the other hand, we observe that the assumption ofγ = 0 is not consistent with the observed interest rates
and the dividend growth rate. In particular, the average dividend growth rate, ¯α ≈ 0.0613, exceeds the T-bill rates
that range from 0.054 to 0.0596 and imply that the dividend yield, 1/ f = r − α, takes negative values and does not
satisfy the assumption of positive dividend yields. To put it simply, in 1995, the dividend growth rate was greater than
the risk-free interest rates, and this phenomenon cannot becaptured withγ = 0. Therefore, we constructed a third
specification, by which we ensured that the dividend yield isalways a positive constant.

In specification (iii), we user i = 2rT-bill
i with α = ᾱ/2, whererT-bill

i is the T-bill rate at datei. That is, to have strictly
positive dividend yields withγ = 0, we double the observed T-bill rates and halve the observedaverage dividend
growth rate. As can be seen from Table2, this adjustment makes parameter estimates withγ = 0 more realistic.
Furthermore, both the in-sample and out-of-the-sample RMSEs decrease yet remain greater than in specification (i).
We emphasize here that in any interpretation of the estimates of specification (iii), it should be kept in the mind that
these adjusted interest rate and dividend growth rate values do not represent the true economic situation in 1995.
Rather, this specification shows that the poor performance and unrealistic estimates of specification (ii) can be partly
explained by the fact that the assumption ofγ = 0 contradicts the empirical observations of dividend growth and
risk-free interest rates.

5. Conclusion

This paper shows that under the volatility feedback effect the stock price process takes a form in which the dividend
yield and the correlation between returns and return volatility become time-varying and endogenously determined by
total return volatility, implying that the stock price and dividend stream do not always move in the same direction and
that the ratio of total return volatility to dividend growthvolatility can be relatively high. The main implication is that
in contrast to the current wisdom, there is a mechanism by which the market price of diffusion return risk (or equity
risk-premium) affects option prices, i.e. the market price of return risk is needed as an input to price options under
our framework. Moreover, we demonstrate how the price of a call option can be decreasing in squared total return
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volatility. As a part of the calibration progress, we present an approach to identifying the risk-return relation using
forward-looking option data. We also show how a positive risk-return relation agrees with empirical observations of
dividend growth and risk-free interest rates. Overall, we argue that the prevailing practice of ignoring the time-varying
price-dividend ratio in option pricing oversimplifies the stock market dynamics and disagrees with data and theory.

This framework has potential for further research. In particular, one could examine the hedging of volatility risk
under volatility feedback, a particularly interesting topic, because, as we show, depending on the moneyness, option
prices can react positively or negatively to an increase in squared return volatility. Furthermore, it would be worth
considering, within our framework, a stochastic investment opportunity with an intertemporal hedging component
to hedge against changes in the forecasts of future market volatilities. Such an experiment is motivated by recent
empirical evidence of a significantly negative relation between expected return and volatility risk [see27]. In this
paper, we aimed to illustrate how to obtain option-implied forward-looking values for the price of diffusion return risk
and volatility risk-premium without the need of time-series stock data, but in future research, it would be interesting
to investigate the volatility feedback using data on options together with stock price and dividend series. On the
other hand, direct estimation based on time-series data would be challenging at best. Moreover, now that we have
focused on stock price and dividend dynamics, option prices, and volatility feedback with a diffusion-based volatility
model, our extension could be addressed also with more elaborate volatility models with jumps or non-affine stochastic
volatility models. These general suggestions for future research may, however, require increasing the number of model
parameters and computational complexity, which would again challenge especially empirical analysis. Therefore, we
expect work to continue also on complementary computational solutions to ease our progress.

Technical Appendix: Numerical solution of boundary value problem

The ordinary differential equation boundary value problem (BVP) in Proposition 2 can be solved numerically
using general-purpose numerical solvers. We used thebvp4c solver in the Matlab interactive scientific computing
software system. Thebvp4c solver uses a fourth-order collocation method with automatic mesh refinement. The
solver’s algorithms are described in Kierzenka and Shampine [62]; here we provide details of the formulation of the
problem for numerical solution.

For numerical solution the BVP solution domainx ∈ [0,∞) is approximated by a finite interval [0, b]. We used
b = 5; this is considered adequate because repeating the computations with largerb values gave the same solution to
within 4 decimals. Empirically, return volatility can hardly be greater than 100%; thereforeb = 5 is also empirically
reasonable.

For largex, the dominant term on the left hand side of the differential equation (8) is −γx2 f (x). Balancing this
term with the right hand side leads to the asymptotic estimate f (x) = 1

γx2 . On the basis of this asymptotic analysis, we

used the boundary conditionf (b) = 1
γb2 in the numerical solution. The symmetry conditionfx(0) = 0 was used as the

second boundary condition.
Thebvp4c solver supports the use of parametric continuation wherebythe problem is successively solved with

gradually changing parameter values. We exploit this feature by first solving the problem withρdx = 0, then succes-
sively solving the problem withρdx values gradually increasing to the desired level. Because the BVP withρdx = 0
is linear, the numerical solution of the first problem can be obtained directly without any Newton iterations. As the
ρdx values are increased, the solution and mesh from the previous solution are used as initial estimates for the Newton
process, which then typically converges in a few iterations.
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1405–1440.
[48] P. Christoffersen, C. Dorion, K. Jacobs, K. Wang, Volatility components: Affine restrictions and non-normal innovations, Journal of Business

and Economic Statistics forthcoming (2011).
[49] P. Christoffersen, K. Jacobs, C. Ornthanalai, Y. Wang, Option valuationwith long-run and short-run volatility components, Journal of

Financial Economic 90 (2008) 272297.
[50] G. Bakshi, C. Cao, Z. Chen, Option pricing and hedging performance under stochastic volatility and stochastic interest rates, in: C. H. C.-F.

Lee (Ed.), Handbook of Quantitative Finance and Risk Management, Springer, 2010.
[51] R. Cont, P. Tankov, Non-parametric calibration of jump-diffusion option pricing models, Journal of Computational Finance 7 (2004) 1–50.

22



[52] C. Jones, The dynamics of stochastic volatility: Evidence from underlying and options markets, Journal of Econometrics 116 (2003) 181–224.
[53] G. Bakshi, N. Ju, H. Ou-Yang, Estimation of continuous-time models with an application to equity volatility dynamic, Journal of Financial

Economics 82 (2006) 227–249.
[54] Y. Aı̈t-Sahalia, R. Kimmel, Maximum likelihood estimation of stochastic volatility models, Journal of FinancialEconomics 83 (2007)

413–452.
[55] T. MathWorks, Optimization Toolbox 5: User’s Guide, 2010.
[56] E. Ghysels, P. Santa-Clara, R. Valkanov, There is a risk-return trade-off after all, Journal of Financial Economics 76 (2005) 509–548.
[57] T. G. Bali, L. Peng, Is there a risk-return trade-off? evidence from high-frequency data, Journal of Applied Econometrics 21 (2006)

1169–1198.
[58] G. Bekaert, E. Engstrom, Y. Xing, Risk, uncertainty, and asset prices, Journal of Financial Economics 91 (2009) 59–82.
[59] J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics 3 (1996)

15–102.
[60] P. Carr, L. Wu, Variance risk premiums, Review of Financial Studies 22 (2009) 1311–1341.
[61] T. Bollerslev, M. Gibson, H. Zhou, Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized

volatilities, Journal of Econometrics 160 (2011) 102–118.
[62] J. Kierzenka, L. F. Shampine, A BVP solver based on residual control and the Matlab PSE, ACM Transactions on Mathematical Software

27 (2001) 299–316.

23


	1 Introduction
	2 Stock market dynamics
	2.1 Model setup
	2.2 Solution
	2.3 Why return volatility can be greater than dividend volatility
	2.4 Price dynamics revised

	3 Option valuation
	3.1 Risk-neutral dynamics
	3.2 Option prices

	4 Calibration to option prices
	4.1 Data and methodology
	4.2 Results

	5 Conclusion

