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Abstract. Divergences often play important roles for study in information science so that
it is indispensable to investigate their fundamental properties. There is also a mathematical
significance of such results. In this paper, we introduce some parametric extended divergences
combining Jeffreys divergence and Tsallis entropy defined by generalized logarithmic functions,
which lead to new inequalities. In addition, we give lower bounds for one-parameter extended
Fermi-Dirac and Bose-Einstein divergences. Finally, we establish some inequalities for the Tsallis
entropy, the Tsallis relative entropy and some divergences by the use of the Young’s inequality.

Keywords : Mathematical inequality, Tsallis relative entropy, Jeffreys divergence, Jensen-
Shannon divergence, Fermi-Dirac divergence, Bose-Einstein divergence and quasilinear diver-
gence

2010 Mathematics Subject Classification : 94A17 and 26D15

1 Introduction

For the study of multifractals, in 1988, Tsallis [27] introduced one-parameter extended entropy
of Shannon entropy by

Hq(p) ≡ −
n
∑

j=1

pqj lnq pj =

n
∑

j=1

pj lnq
1

pj
, (q ≥ 0, q 6= 1) (1)

where p = {p1, p2, · · · , pn} is a probability distribution with pj > 0 for all j = 1, 2, · · · , n and

the q−logarithmic function for x > 0 is defined by lnq(x) ≡ x1−q−1
1−q which uniformly converges

to the usual logarithmic function log(x) in the limit q → 1. Therefore Tsallis entropy converges
to Shannon entropy in the limit q → 1:

lim
q→1

Hq(p) = H1(p) ≡ −
n
∑

j=1

pj log pj . (2)

It is also known that Rényi entropy [18]

Rq(p) ≡
1

1− q
log





n
∑

j=1

pqj



 (3)
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is one -parameter extension of Shannon entropy.
For two probability distributions p = {p1, p2, · · · , pn} and r = {r1, r2, · · · , rn} we have

divergences based on these quantities (1) and (3). We denote by

Dq(p||r) ≡
n
∑

j=1

pqj(lnq pj − lnq rj) = −
n
∑

j=1

pj lnq
rj
pj

(4)

Tsallis relative entropy. Tsallis relative entropy converges to the usual relative entropy (diver-
gence, Kullback-Leibler information) in the limit q → 1:

lim
q→1

Dq(p||r) = D1(p||r) ≡
n
∑

j=1

pj(log pj − log rj). (5)

We also denote by Rq(p||r) the Rényi relative entropy [18] defined by

Rq(p||r) ≡
1

q − 1
log





n
∑

j=1

pqjr
1−q
j



 . (6)

Obviously limq→1Rq(p||r) = D1(p||r).
The divergences can be considered to be a generalization of entropies in the sense that Shan-

non entropy can be reproduced by the divergence log n−D1(p||u) for the uniform distribution
u = {1/n, 1/n, · · · , 1/n}. Therefore the study of divergences it is important for the develop-
ments of information science. In this paper, we study several mathematical inequalities related
to some generalized divergences.

2 Two parameter entropies and divergences

In this section and throughout the rest of the paper we consider p = {p1, p2, · · · , pn} and
r = {r1, r2, · · · , rn} with pj > 0, rj > 0 for all j = 1, 2, · · · , n to be probability distributions.

We start from the Tsallis quasilinear entropies and Tsallis quasilinear divergences as they
were defined in [10].

Definition 2.1 ([10]) For a continuous and strictly monotonic function ψ on (0,∞) and r ≥ 0
with r 6= 1 (the nonextensivity parameter), Tsallis quasilinear entropy (r-quasilinear entropy) is
defined by

Iψr (p) ≡ lnr ψ
−1





n
∑

j=1

pjψ

(

1

pj

)



 . (7)

In this context, as a particular case of Tsallis quasilinear entropy we have Sharma-Mittal
information measure ([16],[20],[21]), that is for ψ(x) = x1−q we have:

Ix
1−q

r (p) = lnr





n
∑

j=1

pqj





1

1−q

=

(

∑n
j=1 p

q
j

)
1−r
1−q − 1

1− r
= HS−M

r,q (p).

We find that HS−M
q,q (p) = Hq(p). Sharma-Mittal entropy is also seen in the literature as a

two-parameter extension of Rényi entropy [19, Section 5]. This also gives rise to another case of
interest

Ix
1−q

2q−1

q

(p) = ln 2q−1

q





n
∑

j=1

pqj





1

1−q

=
q

1− q











n
∑

j=1

pqj





1

q

− 1






, (8)
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which coincides with Arimoto’s entropy for q = 1/β, cf. [3], and with R-norm information
measure, for R = q, cf. [4].

Definition 2.2 ([10]) For a continuous and strictly monotonic function ψ on (0,∞), the
Tsallis quasilinear relative entropy is defined by

Dψ
r (p||r) ≡ − lnr ψ

−1





n
∑

j=1

pjψ

(

rj
pj

)



 . (9)

Sharma-Mittal divergence ([2],[17]) becomes now a particular case of Tsallis quasilinear di-
vergence:

Dx1−q

r (p||r) = − lnr





n
∑

j=1

pj

(

rj
pj

)1−q




1

1−q

= − lnr





n
∑

j=1

pqjr
1−q
j





1

1−q

=

−
{

[

(

∑n
j=1 p

q
jr

1−q
j

) 1

1−q

]1−r

− 1

}

1− r
=

1−
(

∑n
j=1 p

q
jr

1−q
j

)
1−r
1−q

1− r
= DS−M

r,q (p||r).

By analogy to the entropy computation, we find the following Arimoto type divergence:

Dx1−q

2q−1

q

(p||r) = q

1− q









1−





n
∑

j=1

pqjr
1−q
j





1

q









. (10)

Remark 2.3 In limit r → 1 we have Ix
1−q

r (p) → Ix
1−q

1 (p) = Rq(p) and Dx1−q

r (p||r) →
Dx1−q

1 (p||r) = Rq(p||r). It is known that for q 6= r the Sharma-Mittal divergence fails to conform
to Shore-Johnson theorem [23, 24, 25], that is Sharma-Mittal divergence cannot be written as a
f−divergence

DS−M
r,q (p||r) =

n
∑

j=1

pjf

(

rj
pj

)

,

for some function f. The previous limits give us a very intuitive way to conclude that Rényi
divergence has a similar failure [2]. Also this enables us to say that the two-parameter extended
relative entropy discussed in [9, Section 6] cannot be seen as a particular case of Sharma-Mittal
divergence.

Remark 2.4 For x > 0 and r ≥ 0 with r 6= 1, we define the r-exponential function as the inverse
function of the r-logarithmic function by expr(x) ≡ {1 + (1− r)x}1/(1−r), if 1 + (1 − r)x > 0,
otherwise it is undefined. Here is another connection among Sharma-Mittal entropy, Tsallis
entropy and Rényi entropy [10];[22, (B.8)]:

exprH
S−M
r,q (p) = expqHq(p) = expRq(p).

As for a connection among their divergences, we get

exp2−r
(

DS−M
r,q (p||r)

)

=
{

1 + (r − 1)DS−M
r,q (p||r)

}1/(r−1)
= {1 + (q − 1)Dq(p||r)}1/(q−1)

= exp2−q (Dq(p||r)) = expRq(p||r).
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Remark 2.5 The weighted quasilinear mean for some continuous and strictly monotonic func-
tion ψ : I → R is defined by

M[ψ](x1, x2, · · · , xn) ≡ ψ−1





n
∑

j=1

pjψ(xj)



 , (11)

where
∑n

j=1 pj = 1, pj > 0, xj ∈ I for j = 1, 2, · · · , n. It is known that M[ψ](x1, x2, · · · , xn) =
M[ϕ](x1, x2, · · · , xn) if and only if ψ and ϕ are affine maps of each other, i.e. there ex-
ist constants a, b such that ψ = aϕ + b (cf. [1, page 141], cf. also [7]). We conclude

that M[x1−q](x1, x2, · · · , xn) = M[lnq](x1, x2, · · · , xn), a fact that yields Ix
1−q

r (p) = I
lnq
r (p) =

HS−M
r,q (p) and Dx1−q

r (p||r) = D
lnq
r (p||r) = DS−M

r,q (p||r).

3 Jeffreys and Jensen-Shannon type divergences

3.1 Tsallis type divergences

We firstly review the definitions of two famous divergences.

Definition 3.1 ([8],[13]) The Jeffreys divergence is defined by

J1(p||r) ≡ D1(p||r) +D1(r||p) (12)

and the Jensen-Shannon divergence is defined as

JS1(p||r) ≡
1

2
D1

(

p||p+ r

2

)

+
1

2
D1

(

r||p+ r

2

)

. (13)

Analogously we may define the following divergences.

Definition 3.2 The Jeffreys-Tsallis divergence is

Jr(p||r) ≡ Dr(p||r) +Dr(r||p) (14)

and the Jensen-Shannon-Tsallis divergence is

JSr(p||r) ≡
1

2
Dr

(

p||p+ r

2

)

+
1

2
Dr

(

r||p+ r

2

)

. (15)

We find that Jr(p||r) = Jr(r||p) and JSr(p||r) = JSr(r||p). That is, these divergences are
symmetric in the above sense.

To show one of main results in this paper, we need the following lemma that has interest on
its own.

Lemma 3.3 The function

f (x) = − lnr
1 + expq (−x)

2

is concave for 0 ≤ r ≤ q.

Proof : The proof is a straightforward computation. The second derivative is given by

f ′′(x) = −2r−1 {1 + (q − 1)x}
2q−1

1−q

(

1 + {1 + (q − 1)x}
1

1−q

)−r−1

×
(

q + (q − r) {1 + (q − 1)x}
1

1−q

)

.

4



Therefore if q ≥ r, then the function f(x) is concave.

We wish to note here that the above result yields the fact that under the same conditions

the function − lnr
1+expq(x)

2 is also concave, as the composition of a concave function with an
affine one.

Lemma 3.4 Tsallis divergence satisfies

Dr

(

p||p+ r

2

)

≤ 1

2
D 1+r

2

(p||r).

Proof : From the famous inequality between the arithmetic and geometric means, we have

pj + rj
2

≥ √
pjrj

for all j = 1, 2, · · · , n. This implies that

Dr

(

p||p+ r

2

)

= −
n
∑

j=1

pj lnr

(

pj+rj
2

pj

)

≤ −
n
∑

j=1

pj lnr

(√
pjrj

pj

)

= −
n
∑

j=1

pj lnr

(
√

rj
pj

)

= −
n
∑

j=1

pj

(
√

rj
pj

)1−r
− 1

1− r
= −

n
∑

j=1

pj

(

rj
pj

)1− 1+r
2 − 1

1− r
= −1

2

n
∑

j=1

pj

(

rj
pj

)1− 1+r
2 − 1

1− 1+r
2

=
1

2
D 1+r

2

(p||r).

Hence we derive the following result.

Theorem 3.5 It holds that

JSr(p||r) ≤ min

{

− lnr
1 + expq

(

−1
2Jq(p||r)

)

2
,
1

4
J 1+r

2

(p||r)
}

(16)

for 0 ≤ r ≤ q.

Proof : According to Lemma 3.3,

JSr(p||r) ≡ 1

2



−
n
∑

j=1

pj lnr
1 + expq lnq

(

rj
pj

)

2
−

n
∑

j=1

rj lnr
1 + expq lnq

(

pj
rj

)

2





≤ 1

2



− lnr
1 + expq

∑n
j=1 pj lnq

(

rj
pj

)

2
− lnr

1 + expq
∑n

j=1 rj lnq

(

pj
rj

)

2





=
1

2

(

− lnr
1 + expq (−Dq(p||r))

2
− lnr

1 + expq (−Dq(r||p))
2

)

. (17)

Then

JSr(p||r) ≤ − lnr
1 + expq

(

−Dq(p||r)−Dq(r||p)
2

)

2
= − lnr

1 + expq
(

−1
2Jq(p||r)

)

2
.

We apply Lemma 3.4 whence it follows

JSr(p||r) ≤
1

4

(

D 1+r
2

(p||r) +D 1+r
2

(r||p)
)

.

Thus the proof is completed.

5



Remark 3.6 For q = r, r → 1 we have JSr(p||r) → JS1, Jr(p||r) → J1 and the inequality (16)
gives us

JS1(p||r) ≤ min

{

− log
1 + exp

(

−1
2J1(p||r)

)

2
,
1

4
J1(p||r)

}

.

Since

− log
1 + exp (−x)

2
≤ x

2

we get the main results in [6]:

JS1(p||r) ≤ − log
1 + exp

(

−1
2J1(p||r)

)

2
≤ 1

4
J1(p||r). (18)

3.2 Dual symmetric divergences

In this subsection, we introduce another type divergences and then we highlight some inequalities
for them.

Definition 3.7 The dual symmetric Jeffreys-Tsallis divergence and the dual symmetric Jensen-
Shannon-Tsallis divergence are defined by

J (ds)
r (p||r) ≡ Dr(p||r) +D2−r(r||p) (19)

respectively

JS(ds)
r (p||r) ≡ 1

2

[

Dr

(

p||p+ r

2

)

+D2−r

(

r||p+ r

2

)]

. (20)

As one can see directly from the definition, we find that J
(ds)
r (p||r) = J

(ds)
2−r (r||p) and

JS
(ds)
r (p||r) = JS

(ds)
2−r (r||p). See [22] and references therein for additive duality r ↔ 2 − r

in Tsallis statistics.
Then we get the following upper bound for JS

(ds)
r (p||r).

Proposition 3.8 For 0 ≤ r ≤ 2, we have

JS(ds)
r (p||r) ≤ 1

4
J
(ds)
1+r
2

(p||r). (21)

Proof : We infer from Lemma 3.4 that

D2−r(p||
p+ r

2
) ≤ 1

2
D 3−r

2

(p||r).

Consequently

JS(ds)
r (p||r) ≤ 1

2

(

D 1+r
2

(p||r) +D 3−r
2

(p||r)
)

=
1

4
J
(ds)
1+r
2

(p||r).

This completes the proof.

In order to derive further results regarding the dual symmetric divercences, we need the
following lemmas.

Lemma 3.9 The function expq x is monotone increasing in q, for x ≥ 0.

6



Proof : We have

d expq x

dq
=

{1 + (1− q)x}
q

1−q hq(x)

(1− q)2
,

where
hq(x) ≡ (q − 1)x+ {1 + (1− q)x} log {1 + (1− q)x} .

Then
dhq(x)

dx
= (1− q) log {1 + (1− q)x} ≥ 0

for x ≥ 0 and q ≥ 0. Therefore hq(x) ≥ hq(0) = 0. Thus we have
d expq x

dq ≥ 0, as asserted.

Lemma 3.10 For 1 < r ≤ 2 and x > 0, we have

− ln2−r x ≤ − lnr x

and
exp2−r x ≤ expr x.

Proof : Since we have x1−r + xr−1 ≥ 2, which implies xr−1 − 1 ≥ 1 − x1−r, we have for
1 < r ≤ 2,

ln2−r x =
xr−1 − 1

r − 1
≥ 1− x1−r

r − 1
= lnr x.

The second inequality is a consequence of Lemma 3.9.
Our next result reads as follows.

Theorem 3.11 The following inequality holds

max
{

JS(ds)
r (r||p), JS(ds)

r (p||r)
}

≤ − lnr
1 + expq

(

−1
2Jq(p||r)

)

2
, (22)

for all 1 < r ≤ 2 and r ≤ q.

Proof : By Jensen’s inequality, applying Lemma 3.3, we have

JS(ds)
r (p||r) ≡ 1

2



−
n
∑

j=1

pj lnr
1 + expq lnq

(

rj
pj

)

2
−

n
∑

j=1

rj ln2−r
1 + expq lnq

(

pj
rj

)

2





≤ 1

2

(

− lnr
1 + expq (−Dq(p||r))

2
− ln2−r

1 + expq (−Dq(r||p))
2

)

.

Thus, via Lemma 3.10, it turns out that

JS(ds)
r (p||r) ≤ 1

2

(

− lnr
1 + expq (−Dq(p||r))

2
− lnr

1 + expq (−Dq(r||p))
2

)

≤ − lnr
1 + expq

(

−1
2Jq(p||r)

)

2
.

Further we also have 0 ≤ 2 − r < 1 and the computation is similar for JS
(ds)
2−r (p||r), hence we

get (using the additive duality)

JS(ds)
r (r||p) = JS

(ds)
2−r (p||r) ≤ − lnr

1 + expq
(

−1
2Jq(p||r)

)

2
.

7



Remark 3.12 For q = r, r → 1 we have JS
(ds)
r (p||r) → JS

(ds)
1 (p||r) = JS1(p||r), J (ds)

r (p||r) →
J
(ds)
1 (p||r) = J1(p||r) and the inequality (22) yields again the left side inequality of (18).

Remark 3.13 The inequality (22) does not hold for 0 ≤ r ≤ q < 1, in general. We have the
following counter-example. We consider the probability distributions p = {2/5, 2/5, 1/5} and
r = {1/10, 1/10, 4/5}. Then for r = q = 0.1, we have

− lnr
1 + expq

(

−1
2Jq(p||r)

)

2
− JS(ds)

r (p||r) ≃ −0.141646.

Open problem 3.14 Prove, disprove or find conditions such that the following inequality holds:

JS(ds)
r (p||r) ≤ − lnr

1 + expr

(

−1
2J

(ds)
r (p||r)

)

2
, r ∈ [0, 2]\{1}. (23)

We have not yet found any counter-example of (23). One may try to follow the same argument
as in the proof of Theorem 3.11. This means that one should prove

1

2

(

− lnr
1 + expr(−Dr(p||r))

2
− ln2−r

1 + exp2−r(−D2−r(r||p))
2

)

≤ − lnr
1 + expr

(

−1
2J

(ds)
r (p||r)

)

2
. (24)

For 0 ≤ r < 1, we have considered already over 100 particular cases without finding any counter-
example for (24). For 1 < r ≤ 2 we have the following counter-example. Assume r = 1.3,
p = {0.14, 0.01, 0.85} and r = {0.07, 0.48, 0.45}. Then the right hand side in (24) minus the left
hand side in (24) approximately equals −0.0125861. Therefore in the case of 1 < r ≤ 2 the proof
of (23) (if it holds) couldn’t begin with Jensen’s inequality as a first step.

3.3 More quasilinear divergences

We generalize the above definitions.

Definition 3.15 Let the quasilinear Jeffreys-Tsallis divergence be

Jψr (p||r) ≡ Dψ
r (p||r) +Dψ

r (r||p),

respectively the quasilinear Jensen-Shannon-Tsallis divergence be

JSψr (p||r) ≡
1

2

[

Dψ
r (p||

p+ r

2
) +Dψ

r (r||
p+ r

2
)

]

.

The above quasilinear divergences are symmetric in the sense that we have Jψr (p||r) =

Jψr (r||p) and JSψr (p||r) = JSψr (r||p). For ψ(x) = x1−q we obtain Jx
1−q

r (p||r) = Jr(p||r) and
JSx

1−q

r (p||r) = JSr(p||r).

Proposition 3.16 Let ψ be a continuous and strictly monotonic function on (0,∞). Suppose

that ψ
(

1+ψ−1(x)
2

)

is concave. Then

JSψr (p||r) ≤ − lnr
1 + expq

(

−1
2J

ψ
q (p||r)

)

2
,

for all 0 ≤ r ≤ q.

8



Proof : Since

JSψr (p||r) ≡ −1

2
lnr ψ

−1





n
∑

j=1

pjψ





1 + ψ−1
(

ψ
(

rj
pj

))

2









−1

2
lnr ψ

−1





n
∑

j=1

rjψ





1 + ψ−1
(

ψ
(

pj
rj

))

2







 ,

by Jensen’s inequality, due to the monotonicity and from Lemma 3.3, we just compute

JSψr (p||r) ≤
1

2



− lnr
1 + ψ−1

(

∑n
j=1 pjψ

(

rj
pj

))

2
− lnr

1 + ψ−1
(

∑n
j=1 rjψ

(

pj
rj

))

2





=
1

2



− lnr
1 + expq

(

−Dψ
q (p||r)

)

2
− lnr

1 + expq

(

−Dψ
q (r||p)

)

2





≤ − lnr
1 + expq

(

−1
2J

ψ
q (p||r)

)

2
.

4 Fermi-Dirac and Bose-Einstein type divergences

As one-parameter extension of Fermi-Dirac entropy and Bose-Einstein entropy (see also [11, 26]),
that is of

IFD1 (p) ≡ −
n
∑

j=1

pj log pj −
n
∑

j=1

(1− pj) log(1− pj)

and

IBE1 (p) ≡ −
n
∑

j=1

pj log pj +
n
∑

j=1

(1 + pj) log(1 + pj),

the Fermi-Dirac-Tsallis entropy was introduced in [26]. Similarly, we may define the Bose-
Einstein-Tsallis entropy.

Definition 4.1 The Fermi-Dirac-Tsallis entropy is given by

IFDr (p) ≡
n
∑

j=1

pj lnr
1

pj
+

n
∑

j=1

(1− pj) lnr
1

1− pj
(25)

and the Bose-Einstein-Tsallis entropy is defined as

IBEr (p) ≡
n
∑

j=1

pj lnr
1

pj
−

n
∑

j=1

(1 + pj) lnr
1

1 + pj
. (26)

Based on the above extensions, we may introduce Fermi-Dirac-Tsallis divergence and Bose-
Einstein-Tsallis divergence in the following way.
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Definition 4.2 Let

DFD
r (p||r) ≡ −

n
∑

j=1

pj lnr
rj
pj

−
n
∑

j=1

(1− pj) lnr
1− rj
1− pj

(27)

and

DBE
r (p||r) ≡ −

n
∑

j=1

pj lnr
rj
pj

+

n
∑

j=1

(1 + pj) lnr
1 + rj
1 + pj

. (28)

Then DFD
r is called the Fermi-Dirac-Tsallis divergence and DBE

r is called the Bose-Einstein-
Tsallis divergence.

Lemma 4.3 For 0 < x, y < 1 we have

− x lnr
y

x
− (1− x) lnr

1− y

1− x
≥ 4r

r + 1

[

yr+1 (1− x)r + xr (1− y)r+1 − xr (1− x)r
]

≥ 0. (29)

Proof : Following the idea of [5, Lemma 11.6.1] we denote

f (x, y) ≡ −x lnr
y

x
− (1− x) lnr

1− y

1− x
− 4r

r + 1

[

yr+1 (1− x)r + xr (1− y)r+1 − xr (1− x)r
]

.

We get
df (x, y)

dy
=

[

1

yr (1− y)r
− 4r

]

[yr (1− x)r − xr (1− y)r] .

We can easily check that 1
y(1−y) ≥ 4 under the assumption 0 < y < 1. For y ≤ x (which implies

y (1− x) ≤ x (1− y)) we establish that the function f is decreasing in its second variable, hence

f (x, y) ≥ f (x, x) = 0. Clearly for the case y ≥ x we have similarly df(x,y)
dy ≥ 0, which leads

again f(x, y) ≥ f(x, x) = 0.
Our next step is to take

g(x, y) ≡ yr+1 (1− x)r + xr (1− y)r+1 − xr (1− x)r .

For y ≥ x we may write that

dg (x, y)

dy
= (r + 1) [yr(1− x)r − xr(1− y)r] ≥ 0.

Therefore g(x, y) ≥ g(x, x) = 0. For the case of y ≤ x, one can show that g(x, y) ≥ 0 by the
similar way.

Proposition 4.4 The Fermi-Dirac-Tsallis divergence satisfies

DFD
r (p||r) ≥ 4r

r + 1

n
∑

j=1

[

rr+1
j (1− pj)

r + prj (1− rj)
r+1 − prj (1− pj)

r
]

≥ 0. (30)

Proof : Via Lemma 4.3, putting x = pj and y = rj , then taking the sum on both sides, it
follows the claimed result.

Lemma 4.5 For 0 < x, y < 1 we have

−x lnr
y

x
+(1+x) lnr

1 + y

1 + x
≥ 1

2r (r + 1)

[

(1 + x)r yr+1 − (1 + y)r+1 xr + (1 + x)r xr
]

≥ 0. (31)
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Proof : Consider the function

f(x, y) ≡ −x lnr
y

x
+ (1 + x) lnr

1 + y

1 + x
− 1

2r (r + 1)

[

(1 + x)r yr+1 − (1 + y)r+1 xr + (1 + x)r xr
]

.

Differentiating f yields

df (x, y)

dy
= [(1 + x)r yr − (1 + y)r xr]

[

1

yr(1 + y)r
− 1

2r

]

.

Obviously one has y(1+y) ≤ 2 provided 0 < y < 1. For the case x ≥ y (i.e. x(1+y) ≥ y(1+x)),

we have df(x,y)
dy ≤ 0 so that f(x, y) ≥ f(x, x) = 0. One checks that for x ≤ y we get df(x,y)

dy ≥ 0,
so that f(x, y) ≥ f(x, x) = 0.

Next, we put
g(x, y) ≡ (1 + x)r yr+1 − (1 + y)r+1 xr + (1 + x)r xr.

For y ≥ x
dg (x, y)

dy
= (r + 1) [yr(1 + x)r − xr(1 + y)r] ≥ 0,

whence g(x, y) ≥ g(x, x) = 0. Further, for the case y ≤ x, one can prove similarly that g(x, y) ≥ 0
holds, which ends the proof.

Proposition 4.6 The Bose-Einstein-Tsallis divergence satisfies

DBE
r (p||r) ≥ 1

2r (r + 1)

n
∑

j=1

[

(1 + pj)
r rr+1

j − (1 + rj)
r+1 prj + (1 + pj)

r prj

]

≥ 0. (32)

Proof : According to Lemma 4.5, putting x = pj and y = rj , then taking the sum on both
sides, it follows the claimed result.

Remark 4.7 Proposition 4.4 and Proposition 4.6 give refined lower bounds for the Fermi-Dirac-
Tsallis divergence and the Bose-Einstein-Tsallis divergence, respectively. At the same time, they
assure the nonnegativity of DFD

r (p||r) and DBE
r (p||r). Tsus we easily find that the following

inequality for the Tsallis relative entropy holds

Dr(p||r) ≥ max







n
∑

j=1

(1− pj) lnr
1− rj
1− pj

,−
n
∑

j=1

(1 + pj) lnr
1 + rj
1 + pj







.

Corollary 4.8 The following inequalities hold

DFD
1 (p||r) ≥ 2

n
∑

j=1

(pj − rj)
2

and

DEB
1 (p||r) ≥ 1

4

n
∑

j=1

(pj − rj)
2 .

Here DFD
1 (p||r) is called the Fermi-Dirac divergence, respectively DBE

1 (p||r) is called the Bose-
Einstein divergence and their definition corresponds to the limit r → 1 in Definition 4.1.

Proof : Put r → 1 in Proposition 4.4 and Proposition 4.6.
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5 Young’s inequality and Tsallis entropies with finite sum

We establish more inequalities involving Tsallis entropy and Tsallis relative entropy applying
Young’s inequality.

Lemma 5.1 (Young’s inequality) Let m, n ≥ 0 and p, q ∈ R such that 1
p +

1
q = 1. If p < 0

(then 0 < q < 1) or 0 < p < 1 (then q < 0), then one has mp

p + nq

q ≤ mn.

Lemma 5.2 (i) Let p, q ∈ R satisfying 1
1−p+

1
1−q = 1. If p > 1 and 0 < q < 1, or if 0 < p < 1

and q > 1, then
lnp x+ lnq y ≤ xy − 1.

(ii) Let p, q ∈ R satisfying 1
p−1 +

1
q−1 = 1. If p < 1 and 1 < q < 2, or if 1 < p < 2 and q < 1,

then

lnp
1

x
+ lnq

1

y
≥ −xy + 1.

Proof :

(i) Using Lemma 5.1, we obtain

lnp x+ lnq y =
x1−p − 1

1− p
+
y1−q − 1

1− q
≤ xy − 1.

(ii) Lemma 5.1 leads to

lnp
1

x
+lnq

1

y
=
xp−1 − 1

1− p
+
yq−1 − 1

1− q
= −

(

xp−1

p− 1
+
yq−1

q − 1

)

+

(

1

p− 1
+

1

q − 1

)

≥ −xy+1.

Then we have the following proposition.

Proposition 5.3 (i) Let p, q ∈ R satisfying 1
1−p +

1
1−q = 1. If 1 < p < 2 and 0 < q < 1, or

if 0 < p < 1 and 1 < q < 2, then

Dp(p||r) +H2−q(p) ≥ 1−
n
∑

j=1

pjrj (33)

and

D2−p(p||r) +Hq(p) ≤
n
∑

j=1

pj
rj

− 1. (34)

(ii) Let p, q ∈ R satisfying 1
p−1 + 1

q−1 = 1. If 0 < p < 1 and 1 < q < 2 or if 1 < p < 2 and
0 < q < 1, then

Dp(p||r) +H2−q(p) ≤
n
∑

j=1

pj
rj

− 1 (35)

and

D2−p(p||r) +Hq(p) ≥ 1−
n
∑

j=1

pjrj. (36)

Proof :
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(i) In (i) of Lemma 5.2, since we have lnq y = − ln2−q
1
y for all y > 0, we get

lnp x+ lnq y = lnp x− ln2−q
1

y
≤ xy − 1.

Putting x =
rj
pj

and y = pj and multiplying −pj and then taking the sum on both sides, it

follows

−
n
∑

j=1

pj lnp
rj
pj

+
n
∑

j=1

pj ln2−q
1

pj
≥

n
∑

j=1

(pj − pjrj) ,

which implies the inequality (33). We also have the inequality (34) from

lnp x+ lnq y = − ln2−p
1

x
+ lnq y ≤ xy − 1.

(ii) Using (ii) of Lemma 5.2 we have two inequalities (35) and (36) by the similar way to the
proof of (i).

Remark 5.4 We have a pair of additive duality (p, 2 − q) ↔ (2 − p, q) between (i) and (ii) of
Proposition 5.3.

A cross-entropy type formula [15] of two probability distributions is the following:

H(p, r) = D1(p||r) +H1(p).

One may see the left side terms in Proposition 5.3 as some generalizations of H(p, r).

Corollary 5.5 The following inequalities holds:

0 ≤ 1−
n
∑

j=1

pjrj ≤ H(p, r) ≤
n
∑

j=1

pj
rj

− 1.

Proof : In Proposition 5.3, we take q → 1.

Corollary 5.6 The following inequalities hold:

0 ≤ 1−
n
∑

j=1

p2j ≤ H1(p) ≤ n− 1.

Proof : In Corollary 5.5, we take r = p.

Proposition 5.7 Let p, q ∈ R satisfying 1
p−1 +

1
q−1 = 1. If p < 1 and 1 < q < 2, or if 1 < p < 2

and q < 1, then

IFDp (p) + IFDq (p) ≥ 3

n
∑

j=1

pj (1− pj) .
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Proof : From Lemma 5.2, (ii), putting x = y = pj and multiplying pj and then taking the
sum on both sides, it follows

n
∑

j=1

pj lnp
1

pj
+

n
∑

j=1

pj lnq
1

pj
≥ −

n
∑

j=1

p3j + 1.

Putting x = y = 1− pj and multiplying 1− pj and then taking the sum on both sides, it follows

n
∑

j=1

(1− pj) lnp
1

1− pj
+

n
∑

j=1

(1− pj) lnq
1

1− pj
≥ −

n
∑

j=1

(1− pj)
3 + n− 1.

Summing up these two inequalities we get

IFDp (p) + IFDq (p) ≥ n−
n
∑

j=1

p3j −
n
∑

j=1

(1− pj)
3 = 3

n
∑

j=1

pj (1− pj) .

We also find that the following interesting inequalities on finite sum hold true.

Proposition 5.8 For two probability distributions p = {p1, p2, · · · , pn} and r = {r1, r2, · · · , rn},
we have the following relations.

(i) If 0 ≤ q < 1, then we have
∑n

j=1 p
q
jr

1−q
j ≤ 1 ≤∑n

j=1 p
2−q
j rq−1

j .

(ii) If 1 < q ≤ 2, then we have
∑n

j=1 p
q
jr

1−q
j ≥ 1 ≥∑n

j=1 p
2−q
j rq−1

j .

Proof : From the nonnegativity of Tsallis relative entropy Dq(p||r) ≥ 0 and D2−q(p||r) ≥ 0,
we have the statements.

6 Concluding remarks

We close this paper giving further generalized entropy and divergence by the use of two-
parameter extended logarithmic function.

Definition 6.1 For a continuous and strictly monotonic function ψ on (0,∞) and r, q ≥ 0 with
r, q 6= 1, the (r, q)-quasilinear entropy is defined by

Iψr,q(p) ≡ lnr,q ψ
−1





n
∑

j=1

pjψ

(

1

pj

)



 . (37)

Here the two-parameter extended logarithmic function [19] is given by lnr,q (x) = lnq exp lnr (x) .
Correspondingly, the inverse function of lnr,q is denoted by expr,q . For ψ(x) = lnr,q (x) we recover
the entropy used in [19, Section 4].

For ψ(x) = x1−r, we have an extension of Tsallis entropy

Ix
1−r

r,q (p) = lnq expHr(p) ≡ Hr,q(p).

For ψ(x) = x1−p, we have

Ix
1−p

r,q (p) = lnq expH
S−M
r,p (p) ≡ Hr,q,p(p)

that extends Sharma-Mittal entropy to a three-parameter entropy.

14



Definition 6.2 For a continuous and strictly monotonic function ψ on (0,∞) and r, q ≥ 0 with
r, q 6= 1, the (r, q)-quasilinear divergence is defined by

Dψ
r,q(p||r) ≡ − lnr,q ψ

−1





n
∑

j=1

pjψ

(

rj
pj

)



 . (38)

For ψ(x) = x1−r, we get the following extension of Tsallis relative entropy

Dx1−r

r,q (p||r) = lnq expDr(p||r) ≡ Dr,q(p||r).

For ψ(x) = x1−p, we have

Dx1−p

r,q (p||r) = lnq expD
S−M
r,p (p||r) ≡ Dr,q,p(p||r)

that extends Sharma-Mittal divergence to a three-parameter divergence.
For a three parametrization extension of the logarithmic function see for instance [12] and

the references cited therein. With such extensions the quasilinear entropies can be analogously
extended to three parametric classes too. This is not the purpose of the present paper.
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