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ABSTRACT

Object proposal has been successfully applied in recent supervised and weakly supervised visual object
detection tasks to improve the computational efficiency. The classical grouping-based object proposal
approach can produce region proposals with high localization accuracy, but incorporates significant
redundancy for the lack of object confidence to evaluate the proposals. In this paper, we propose
leveraging the essential properties of images, i.e., contour and symmetry, to score the redundant region
proposals. Specifically, the contour and symmetry are extracted by a Simultaneous Contour and Sym-
metry Detection Network (SCSDN) and used to score the bounding box with a Bayesian framework,
which guarantees that the scoring procedure is adaptive to general objects. A subset of high-scored
proposals reserves the recall rate, while can also significantly decrease the redundancy. Experimental
results show that the proposed approach improves the baseline by increasing the recall rate from 0.87
to 0.89 on the PASCAL VOC 2007 dataset. It also outperforms the state-of-the-art on AUC and uses
much fewer object proposals to achieve comparable recall rate.

1. Introduction

Object localization is the first important step for visual ob-
ject detection. Conventional detection approaches (Dalal and
Triggs, 2005; Dollár et al., 2014; Felzenszwalb et al., 2010)
which use a sliding-window strategy to localize objects tend
to generate up to millions of candidate windows. The classi-
fication of such a big number of windows in the subsequent
steps is computationally expensive, particularly when complex
features and/or classification methods are used. Recently, an
alternative way, i.e., object proposal, has been investigated to
improve the efficiency of object localization. Object proposal
tends to produce much fewer (up to two orders of magnitude)
windows than the sliding-window strategy, which by no doubts
significantly improves the computational efficiency (Girshick
et al., 2014). Besides, object proposal is necessary for weakly
supervised object detection (Wan et al., 2016; Ye et al., 2017)
and instance-based semantic segmentation (Dai et al., 2016).
As there is only image level annotation without object bound-
ing boxes in these tasks, it is a good choice to discovery object
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candidates in an unsupervised way. Higher recall rate with the
fewer number of object proposals can increase the robust of
models and reduce the object-level search space.

Object proposal approaches in literatures can be coarsely cat-
egorized into two: grouping-based and objectness-based ones.
In the first category, bounding boxes are produced via hierar-
chically merging super-pixels. With various super-pixel/region
grouping strategies, the generated proposals contribute to high
recall rate and localization accuracy, but the generated propos-
als are redundant and lack object confidences. In the second
category, a multi-scale sliding window strategy is used to pro-
duce object bounding boxes. Delicate objectness measurement
is then designed to measure how likely a bounding box is an
interesting object. Nevertheless, such objectness approaches,
without precise segmentation procedure, reports lower recall
rate and localization accuracy than the grouping-based ones.
Considering that missed objects cannot be recovered in the sub-
sequent stages, objectness-based approaches are not competent
for tasks where recall rate is the first concern.

In this paper, we propose a new object proposal approach
that fully utilizes the advantages of both super-pixel grouping
and objectness strategies. Our approach first produces redun-
dant bounding boxes using super-pixel grouping approaches to
achieve a high recall rate. It then scores each bounding box us-
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Fig. 1: Flowchart of the proposed approach. For an input image, a uniform deep network, i.e, Simultaneous Contour and Symmetry Detection Network (SCSDN) is
designed to extract deep contour and symmetry maps. On the other hand, hierarchical super-pixel grouping is used to generate redundant bounding boxes, each of
which is scored with Bayesian scoring using deep contour and symmetry. High-scored bounding boxes are outputted as object proposals (green boxes). As we use
the pre-trained SCSDN to extract contour and symmetry, our approach is still unsupervised manner.

ing multiple objectness properties, i.e., deep contour and sym-
metry, as well as choosing a subset of high-scored proposals
as solution. Our motivation is that a true object region should
have one or more distinct properties contrasting with its sur-
roundings, i.e., some objects could have clear contour, while
the others have distinct symmetry parts, or both. Such prop-
erties are beneficial to reduce effectively the redundant regions
produced by the super-pixel grouping approaches. The contri-
butions of our approach are summarized as follows:

• We propose the Simultaneous Contour and Symmetry De-
tection Network (SCSDN), which can uniformly extract
image properties including contour and symmetry.

• We propose Similarity Adaptive Search (SAS) to generate
object bounding boxes, which improves Selective Search
by adaptively calculating the similarity between super-
pixel subsets.

• We propose using the Bayesian framework to score redun-
dant bounding boxes and choose a subset of high-scored
proposal as solution. Experiments demonstrate that we
can use significant fewer high-scored object proposals to
achieve comparable recall rates with the baseline Selective
Search.

The remaining parts of this paper are organized as follows:
the related works are represented in Section 2. The proposed
approach is detailed in Section 3. Experimental results are
given in Section 4, and we finally conclude the approach in Sec-
tion 5.

2. Related works

Object proposal approaches are coarsely categorized into
grouping-based and objectness-based ones. Grouping-based

approaches usually root in image segmentation and region
grouping strategies, in a bottom-up manner. Objectness-based
approaches, in contrast, adopts a sliding window strategy to
generate object candidates, in a top-down manner.

The extensively investigated image segmentation algorithms,
e.g., Constrained Parametric Min-Cuts (CPMC) (Carreira and
Sminchisescu, 2012), can be directly used to generate object
proposals. Considering that segmented regions are insufficient
to cover objects with a high recall rate, Uijlings et al. propose
a hierarchical strategy to merge color homogeneous regions
and generate object proposals. They leverage multiple low-
level features and multiple merging functions, named Selective
Search, to generate redundant bounding boxes so that as many
objects as possible are covered (Uijlings et al., 2013). Manen et
al. further improve the merging strategy in Selective Searcing
by using learned weights as measurement to merge super-pixels
(Manen et al., 2013). Different with Selective Search that uses
single-scale segmentation, MCG (Arbeláez et al., 2014), ex-
plores multi-scale hierarchical segmentation regions for merg-
ing, achieving higher recall rate, at the cost of computational
efficiency. By taking advantages of both CPMC and Selective
Search, Rantalankila et al. propose using a grouping process
with a large pool of features and generate segmentations using
a CPMC-like process (Rantalankila et al., 2014). Xiao et al.
propose a complexity-adaptive metric distance for super-pixel
merging, which improves region grouping in different levels of
complexity (Xiao et al., 2015). Chen et al. focus on the ob-
ject proposal localization bias and propose multi-thresholding
straddling expansion (MTSE) to reduce localization bias using
super-pixel tightness (Chen et al., 2015).

Although grouping-based approaches produce region pro-
posals with a high recall rate, they tend to produce many re-
dundant proposals. Furthermore, their involved fundamental
image segmentation procedure is usually time-consuming. Re-
cently, more and more attempts are made to generate object
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Fig. 2: The convolutional neural network architecture of Simultaneous Contour and Symmetry Detection Network (SCSDN), which outputs contour and symmetry
maps Simultaneous. We add buffer convolutional layers (CBuf and SBuf) on the trunk network to form contour branch network and symmetry branch network and
the two branches are trained orderly.

proposal based on the object confidence of sliding windows,
which avoid the image segmentation procedure, increasing the
computational efficiency, and decreasing the proposal number.

Objectness (Alexe et al., 2012), scoring how likely a detec-
tion window contains an object, is the pioneer exploring sliding
window based object proposal. The score is estimated based on
a combination of multi-cues including saliency, color contrast,
edge density, location and size statistics. Feng et al. score slid-
ing windows with saliency cues and Randomized-Seeds score
it with super-pixel straddling (Feng et al., 2011). Cheng et
al. propose Binarized Normed Gradients (BING) using sliding
window for object proposal, based on an efficient weak classi-
fier trained using binarized gradients. With a delicate design of
binary computations, a low computation cost of BING can be
guaranteed, which, as reported, reaches 300 FPS on a PC plat-
form (Cheng et al., 2014). EdgeBoxes is conducted in a sliding
window manner of multiple scales and multiple aspect-ratios
(Zitnick and Dollár, 2014). The scores of objects are estimated
by the number of complete contours detected with the structure
forest method.

To take the implemented advantages of grouping-based and
objectness-based approaches to reduce the number of object
proposals, Krhenbh and Koltun train a regressor model to com-
pute the object confidence with the object ground-truth and the
binary segmentation masks. However, it is in an supervised way
and limited by the trained regressor as most object datasets are
without segmentation masks. (Krähenbühl and Koltun, 2015,
2014).

The power of Convolutional Neural Networks (CNN) has
been explored to compute objectness recently. In (Karianakis
et al., 2015) the shallow CNN layers are fed into fast deci-
sion forests to produce robust object proposals. In (Kuo et al.,
2015), a deep score is learned by CNN and is used for updating
the confidence of object proposal of EdgeBoxes. Region Pro-
posal Network (RPN) (Ren et al., 2016) utlizes deep learning

features to score the sliding window. Benefit from the pow-
erfull representation of convolutional features, the RPN needs
only hundreds of bounding boxes to achieve a similar recall
rate with other objectness-based approaches that usually output
thousands of proposals. Pinheiro et al., train a CNN model to
output segmentation masks as well as object confidence (Pin-
heiro et al., 2015). They also refine the segmentation results by
a bottom-up/top-down CNN architecture (Pinheiro et al., 2016).
Nevertheless, they are all data-driven and requires preciese an-
notated training samples to achieve high accuracy, which limits
its applications in many tasks, e.g., semantic segmentation and
weakly supervised object detection, where no precise object an-
notation is available.

3. Methodology

The proposed approach, as shown in Fig. 1, first produces
redundant bounding boxes by grouping super-pixels hierarchi-
cally and extracts general object properties, i.e., deep contour
and symmetry, with a uniform fully convolutional neural net-
work. With the extracted object properties, Bayesian scoring
is then proposed to score each bounding box. A subset of
high-scored proposals is selected to guarantee a high recall rate,
while significantly decreases the proposal number.

3.1. Deep contour and symmetry extraction

Contour is pixel-based low-level feature representation with
good generalization ability. Usually, a trained contour model
can be directly used on other images (Zitnick and Dollár, 2014),
that is to say, contour is used with unsupervised manner. The
symmetry factor has similar property. Instead of using tradi-
tional counter and symmetry approaches, we use Convolutional
Neural Network (CNN) to extract the low level features. The
recent developed Fully Convolutional Networks (FCN) (Long
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et al., 2015) makes it possible to output a pixel-based response
map. Holistically-Nested Edge Detection (HED) (Xie and Tu,
2015) integrates FCN with deeply supervision on the side-
outputs of a trunk network for contour detection. Considering
symmetry has the similar property with contour, we use the sim-
ilar architecture of HED to extract symmetry map. In order to
reduce the computation time and the network size, we use only
one trunk network for both contour and symmetry detection,
as shown in Fig. 2. Using the 16-layer VGG (Chatfield et al.,
2014) as the trunk network, the contour buffer convolutional
layer (CBuf) and symmetry buffer convolutional layer (Ebuf)
are added to each stage of VGG to form contour branch and
symmetry branch. The uniform network is named Simultane-
ous Contour and Symmetry Detection Network (SCSDN). As
the contour and symmetry detection are performed in an end-
to-end manner with fully convolution, it takes about a hundred
of millisecond to process one image.

In SCSDN, both contour branch and symmetry branch af-
fects the parameters of the trunk network, which leads to some
instability during the multi-task learning. Compared to HED,
the buffer convolutional layers are added to prevent the loss of
each branch from being back-propagated directly to the trunk
network. With buffer layers, the two branches of SCSDN can
be learned orderly.

In the training phase, supervision is taken on both side-
outputs and the fused-output, i.e., weighted side-outputs. The
loss functions for the contour branch the symmetry branch are

L = Lside(Wt,Wc,Φc) +L f used(Wt,Wc,Φc,hc), (1)

L = Lside(Wt,Ws,Φs) +L f used(Wt,Ws,Φs,hs). (2)

where Wt,Wc,Ws are the parameters of the trunk network, the
buffer layers for the contour and symmetry branch; Φc and Φs

are the classifiers of each side outputs; hc and hs are the fusing
weights of the side-outputs;Lside andL f used are the loss of side-
outputs and fused-output, respectively. In the testing phase, the
contour and symmetry maps are extracted by taking sigmoid
processing on the fused-outputs.

Discussion: In the experiments of (Xie and Tu, 2015), one
HED model is effective and efficient for edge detection com-
paring with the traditional contour detection methods. If we use
one HED model for contour and another for symmetry, it takes
2× parameters and computational time of one HED model. In
SCSDN, the parameters and computational time is similar with
only one HED as parameter sharing in trunk network. It keeps
the advantages of detection performance as well as saving com-
putational resources.

3.2. Redundant bounding boxes generation

Given an image, we follow the idea of Selective Search (Ui-
jlings et al., 2013) to generate redundant bounding boxes. In
this paradigm, the image is partitioned into hundreds of super-
pixels, and then group the super-pixels hierarchically with dif-
ferent similarity metrics of the adjacent super-pixel pairs. The
initial super-pixel regions are generated by the fast segmenta-
tion method (Felzenszwalb and Huttenlocher, 2004). Similar-
ity of all adjacent super-pixel pairs are then calculated and the

(a) Bounding boxes (b) Super-pixel subsets

Fig. 3: Illustration of region grouping. (a) each super-pixel group is bounded
with a solid line box. The super-pixel groups are {c}, {a1, a2}, {b1, b2}, and
{b1, b2, b3}. (b) the new super-pixel subsets after grouping.

two most similar regions are grouped together. By iteratively
grouping, Selective Search ends until all the regions are merged
together. The minimized bounding box is outputted which con-
tains the merged super-pixel pairs, as shown in Fig. 3(a). The
similarity for the region pair (ri, r j) is measured as:

d(ri, r j) = a1 · dc(ri, r j) + a2 · dt(ri, r j)
+a3 · ds(ri, r j) + a4 · d f (ri, r j),

(3)

where dc, dt, ds, and d f are four base similarity measures, indi-
cating to preferentially grouping the similar color, similar tex-
ture, small size and the region pair that fits into each other, re-
spectively; ai ∈ {0, 1} is a indicator about using or disabling the
base similarity measure. That is to say, it takes the similarity
measurement when ai = 1 or otherwise. The final redundant
region pool is constituted with different combination of ai.

3.2.1. Similarity Adaptive Search
To further improve the recall rate, we propose to use more

powerful similarity measurements to update the classical Se-
lective Search method. In its hierarchical grouping procedure,
super-pixel subsets are generated, shown as the region A, B,
and C in Fig. 3(b). The color and texture similarity of subset
pair in Selective Search is calculated as

Dmean(Rm,Rn) = a1 · dc(Rm,Rn) + a2 · dt(Rm,Rn), (4)

where Rm and Rn are two super-pixel subsets that are seemed
as adjacent super pixels. That is to say, merging A with B or
merging A with C is only determined by the mean color and/or
texture similarity of the whole regions in Fig. 3(b).

Usually, super-pixel subsets are complex that the mean color
and texture of the two subsets are significantly different but the
connected super-pixels in the subsets are similar. Taking Fig.
3 and color similarity as an example, merging A with B or
merging A with C is not only determined by dc(A, B) but also
by dc(a1, b2) and dc(a2, c). Considering the connected super-
pixels, the low and high complexity similarities in (Xiao et al.,
2015) are respectively defined as:

DL(Rm,Rn) = min{a1 ·dc(ri, r j)+a2 ·dt(ri, r j)|ri ∈ Rm, r j ∈ Rn},(5)

DH(Rm,Rn) = max{a1·dc(ri, r j)+a2·dt(ri, r j)|ri ∈ Rm, r j ∈ Rn}.(6)

In our Similarity Adaptive Search (SAS), the distance be-
tween two super-pixels are calculated as

D(Rm,Rn) = b1 · Dmean(Rm,Rn)
+b2 · (ρm,nDL(Rm,Rn) + (1 − ρm,n) · DH(Rm,Rn))
+b3 · Ds(Rm,Rn) + b4 · D f (Rm,Rn),

(7)
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where bi ∈ {0, 1} denotes whether the similarity measure is used
or not; ρm,n indicates the complexity level of super-pixel subsets
Rm and Rn; Ds and D f are defined in Eq. (1). When Rm and Rn

are individual super-pixels, Eq. (5) is equivalent with Eq. (1).
With defined similarity measures, we use the hierarchical

merging procedure to obtain redundant bounding boxes. We
also follow (Chen et al., 2015)) using tightness to rectify the
bounding boxes so that the location of bounding boxes is more
accuracy.

Discussion: Comparing with Selective Search (Uijlings
et al., 2013), the proposed SAS considering not only the sim-
ilarity of single super-pixel, but also the similarity of subsets
of super-pixels. Selective Search is a part of SAS when com-
plexity similarity is not considered, i.e., b2 = 0. SAS keeps the
diversity of super-pixel merging as well as increases the adap-
tivity.

3.3. Bayesian Scoring
Contour score: Following the hypotheses that the number

of contours contained in a bounding box is indicative of the
likelihood of the box containing an object (Zitnick and Dollár,
2014), we use the complete contour number as the objectness
measurement, which is an orientation consistency edge group.

The contour response map is produced by the SCSDN is
shown in Fig. 4(b). Every point is seemed as an edge point.
Supposing the set of edge groups in an image is S = {si}, the
edge group in a bounding box b is S b ⊂ S , and T = {ti j} is the
pixels on si. The score based on complete contour is computed
as

we =

∑
i

wb(si)mi

2(bw + bh)κ
, (8)

where mi is the magnitude of si; bw and bh are the width and
height of the bounding boxes. The perimeter of the bounding
box is used for normalization, and κ > 1 is a parameter to offset
the bias of larger windows having more edges on average and
we set κ = 2 following EdgeBoxes (Zitnick and Dollár, 2014) .
The score wb(si) of every edge group si is computed by

wb(si) =


1 if si is in b

1 −max
P

|P|−1∏
j=1

a(t j, t j+1) if si overlap b ,

0 if si is out of b

(9)

where a
(
t j, t j+1

)
is the affinity of the orientations of t j and t j+1,

and P is an ordered path of si with length |P|, which is from
t1 ∈ b to the end of si.

On the pre-computed contour map, the confidence score for
each region is calculated with Eq. (8). The larger the score is,
the more compete contours exist in the box, which accounts for
a higher confidence that the box is an object.

Symmetry score: Symmetry is an important object property,
which has been explored in visual tasks including object de-
tection (Bai et al., 2009) and object recognition (Zhang et al.,
2015). If a bounding box has a considerable number of sym-
metry axes, it is more likely to contain an object. With the
symmetry map, the objectness based on symmetry is calculated
same with Eq. (8). A symmetry map is shown in Fig. 4(c).

(a) Color image

(b) Contour map

(c) Symmetry map

Fig. 4: Illustration of contour map and symmetry map. The green bounding
box is more potential to contain an object than the blue one as the green one
contains more complete contours and symmetry parts.

Bayesian Scoring: Let B = {b1, b2, · · · , bN} denotes a set of
bounding boxes, and H = {(w j

e,w
j
s)}Nj=1 denotes the objectness

corresponding to contour and symmetry, respectively. In the
Bayesian framework, the score y = f (H, B) is drawn from a
probabilistic model:

p(y|DN) ∝ p(DN |y), (10)

where DN = {(H j, b j)}Nj=1. we and ws are assumed conditional
independent and we have

p(DN |y) =

2∏
i=1

P(Di
N |y), (11)

where D1
N = {(w j

e, b j)}Nj=1 and D2
N = {(w j

s, b j)}Nj=1. Sigmoid
function is applied on we and ws to transform them to prob-
ability to measure how likely the bounding box might be an
object, namely, P((we, b)|y) = sigmoid(we) and P((ws, b)|y) =

sigmoid(ws). As contour and symmetry are two independent
low-level factors, we assume that they make equal contribu-
tion to the Bayesian score. Given a new bounding box b and
h = (we,ws), the probability of the box to be an object is calcu-
lated with

p(y|(b, h)) ∝ P((we, b)|y) · P((ws, b)|y). (12)

4. Experimental results

4.1. Metrics

Dataset. Following (van de Sande et al., 2011; Alexe et al.,
2012; Zitnick and Dollár, 2014; Hosang et al., 2014), we eval-
uate the proposed approach on the PASCAL VOC 2007 dataset
(Everingham et al., 2015). The dataset consists of training
(4501 images), validation (2510 images) and test datasets (4510
images). We compared our approach with baseline on val-
idation dataset and with the state-of-the-art on test datasets.
We also verify the performance of the proposed approach on
the challenging MS COCO validation dataset, which contains
40504 images with 80 object categories. (Lin et al., 2014).
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Fig. 5: Comparison with the baseline. SS is Selective Search (Uijlings et al., 2013), SAS is our proposed Similarity Adaptive Search, F+C denotes re-ranked results
with contour score, and F+C+S with contour and symmetry scores, respectively.

Evaluation procedures. We follow the same evaluation pro-
cedure as (Hosang et al., 2014), using recall rate, proposal num-
ber, and proposal-object overlap (Intersection over Union, IoU).

• Recall rate: With higher recall rate, the following classi-
fier is more potential to get high detection accuracy. Once
some object is lost in the object proposal stage, the classi-
fier can no longer detect the object.

• Proposal number: Less proposal number is the efficiency
guarantee of the following classifier.

• IoU: Larger IoU means more accuracy localization, so
that the following feature extraction approachs can extract
more efficiency features.

Better approaches are recognized by smaller proposal num-
bers and larger IoU, while keeping high recall rate. There are
three commonly used experimental setups: recall rate vs. win-
dow number with given IoU, recall rate vs. IoU with given pro-
posal number, and the minimum proposal number with given
recall rate and IoU.

Contour and symmetry detector. We use the dataset BSDS
(Arbelaez et al., 2011) to train contour branch and the dataset
SYMMAX (Tsogkas and Kokkinos, 2012) to train symmetry
branch, which are not fine-tuned any more with the dataset for
evaluation the performance of object proposal.

The hyper-parameters of SCSDN include: mini-batch size
(1), learning rate (1e-6 for contour branch and 1e-8 for sym-
metry branch), momentum (0.9), weight decay (0.002). The
number of training iterations (10,000, 8,000, 6,000, 4000, 2000,
1000 and 1000 for contour branch and symmetry branch or-
derly).

With this setting, the proposed SCSDN can output contour
and symmetry response map at about 10 fps using single core
GPU with better performance than the Structure Edge detector
(Dollár and Zitnick, 2013) in EdgeBoxes.

4.2. Comparison with baseline
We evaluate the efficiency of the combination of grouping

and objectness on PASCAL-VOC validation datasets. Fig. 5 in-
dicates the comparison between our approach and the baseline
approach, i.e., Selective Search (Uijlings et al., 2013). With the
region generated by Similarity Adaptive Search (SAS) in Sec-
tion 3.2, the contour and symmetry are cooperated orderly, as
F+C and F+C+S shown in Fig. 5.

Recall rate vs. the number of proposals is shown in Fig. 5(a)
with IoU=0.7. It can be seen that our approach has improved
the recall rate by more than 10% when using 100 or 1000 pro-
posals. Recall rate is improved to 0.89 while Selective Search is
0.85, respectively. In addition, our approach needs only 601 de-
tection proposals to get 75% recall rate, while Selective Search
needs 1777.

Recall rate vs. IoU is shown in Fig. 5(b) when using 1000
detection proposals. In Fig. 5(b), it can be seen that our ap-
proach is better than the baseline when IoU locates between
0.5 and 0.80. When IoU is larger than 0.80, our approach re-
ports a lower recall rate than Selective Search. The reason lies
in that our approach further employs a Nox-Maximum Sup-
pression (NMS) procedure. Considering that the IoU=0.5 or
IoU=0.7 are the two typical setting in the supervised / weakly-
superwised object detection tasks, one can conclude from Fig.
5(b) that our approach outperforms the baseline on recall vs.
IoU to get object candidates.

4.3. Comparisons with state-of-the-art
We compare the proposed approach with recent unsupervised

approaches including Rahtu (Rahtu et al., 2011), Objectness
(Alexe et al., 2012), CPMC (Carreira and Sminchisescu, 2012),
Selective Search (Uijlings et al., 2013), RandomizedPrims (Ma-
nen et al., 2013), Rantalankila (Rantalankila et al., 2014), MCG
(Arbeláez et al., 2014), BING (Cheng et al., 2014), EdgeBoxes
(Zitnick and Dollár, 2014), Endres (Endres and Hoiem, 2014),
Rigor (Humayun et al., 2014), MTSE (Chen et al., 2015), and
CA(Xiao et al., 2015). The results of the compared approaches
are provided by (Hosang et al., 2014), and curves are generated
using the Structured Edge Detection Toolbox V3.0 (Zitnick and
Dollár, 2014).

Recall rate versus number of proposal is illustrated in Fig. 6,
and we compare recent approaches using IoU thresholds of 0.5,
0.6, and 0.7. The red curves show the recall performance of
our approach. It can be seen in Fig. 6 that the maximum recall
rate of our approach slightly outperforms the state-of-the-art,
in particular when IoU = 0.7. Recall rate vs. IoU is shown
in Fig. 7. The number of proposals is set to 100, 500, and
1000, respectively. Varying IoU from 0.5 to 0.7, Endres, CPMC
and MCG perform slightly better than our approach with 100
proposals. But our approach achieves the highest recall rate
given 500 and 1000 proposals.
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Fig. 6: Comparisons with the state-of-the-art using recall rate versus number of proposals (Best viewed in color).
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Fig. 7: Comparisons with state-of-the-art using recall rate versus IoU (Best viewed in color).

Table 1: of proposal numbers at 25%, 50% and 75% recall rate.

Method AUC N@25% N@50% N@75% Recall
BING (Cheng et al., 2014) 0.20 302 - - 0.28
Rantalankila (Rantalankila et al., 2014) 0.25 146 520 - 0.70
Objectness (Alexe et al., 2012) 0.27 28 - - 0.38
RandomizedPrims (Manen et al., 2013) 0.35 42 358 3204 0.79
Rahtu(Rahtu et al., 2011) 0.36 29 310 - 0.70
Rigor (Humayun et al., 2014) 0.38 25 367 1961 0.81
Selective Search (Uijlings et al., 2013) 0.39 29 210 1416 0.87
CPMC (Carreira and Sminchisescu, 2012) 0.41 17 112 - 0.65
MTSE (Chen et al., 2015) 0.41 18 175 1112 0.89
CA (Xiao et al., 2015) 0.42 27 167 1418 0.88
Endres (Endres and Hoiem, 2014) 0.44 7 112 - 0.66
MCG (Arbeláez et al., 2014) 0.46 10 86 1562 0.82
EdgeBoxes (Zitnick and Dollár, 2014) 0.47 12 96 655 0.88
Our approach (C) 0.48 12 91 535 0.89
Our approach (C+S) 0.49 10 71 476 0.89
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Fig. 8: Localization accuracy and recall rate comparison of the proposed approach in the first row and Selective Search in the second row. From the fist three
columns, it is illustrated that the proposed approach has higher IoU, i.e., overlap between the object proposals (dashed line boxes) and the ground-truth (solid line
boxes). From the last two columns, it can be seen that the proposals by Selective Search miss three true positives (red boxes), while the proposals by our proposed
approach contain all true positives.
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(b) Recall rate vs. IoU.

Fig. 9: Comparison results on MS COCO.

In Table 1, we compare the numbers of object proposal re-
quired by each approach with 25%, 50% and 75% recall rates
and IoU 0.7. It can be seen that our approach keeps the high-
est recall rate of 0.89 compared to other methods. The AUC
(Area Under the Curve) is increased to 0.48 when the countour
is used, and to 0.49 when contour and symmetry are used. It
was a trade-off between the recall rate and the number of ob-
ject proposal and the recall rate about 75% is a good choice.
To achieve 75% recall rate, our approach needs 476 detection
proposals, which is the best among all compared approaches,
showing that it can effectively reduce the redundancy. Fig. 8
shows examples about how our approach increases the local-
ization accuracy and increase the recall rate.

4.4. Evaluation on MS COCO

In order to verify the performance of our proposed approach,
we evaluate it on MS COCO (Lin et al., 2014), as shown in Fig.
9. We just compare the typical Selective Search based on super-
pixel merging and EdgeBoxes based on objectness. As the im-
ages and objects in COCO are more challenge than PASCAL
VOC, the recall rate is much lower. However, our approach still
gets performance gain and the recall rate is improved from 57%
to 63%.

5. Conclusion

Object proposal methods can reduce object candidate win-
dows from millions to thousands. Our motivation is that the
proper integration of general object properties, i.e., color, con-
tour, and symmetry contributes to fewer but better object pro-
posal. To fully integrate advantages of grouping approaches
with objectness based approaches, we propose a deep contour-
symmetry scoring strategy in a Bayesian framework to further
improve the performance of object proposal. Furthermore, the
contour and symmetry properties are extracted with Simulta-
neous Contour and Symmetry Detection Network (SCSDN).
Experiments demonstrate that a subset of high-scored proposal
can guarantee the recall rate while decreasing the object pro-
posal number, significantly. Our approach is easy to extend to
some other proposal generation approaches and reduce the ob-
ject proposal number.
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