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Abstract

Multi-label canonical correlation analysis (ml-CCA) has been developed for

cross-modal retrieval. However, the computation of ml-CCA involves dense

matrices eigendecomposition, which can be computationally expensive. In

addition, ml-CCA only takes semantic correlation into account which ig-

nores the cross-modal feature correlation. In this paper, we propose a novel

framework to simultaneously integrate the semantic correlation and feature

correlation for cross-modal retrieval. By using the semantic transformation,

we show that our model can avoid computing the covariance matrix explicitly

which is a huge save of computational cost. Further analysis shows that our

proposed method can be solved via singular value decomposition which has

linear time complexity. Experimental results on three multi-label datasets

have demonstrated the accuracy and efficiency of our proposed method.
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1. Introduction

With the huge surge in multimodal data such as image, text, video, cross

modal retrieval has recently attained considerable attention [1, 2]. Cross-

modal retrieval aims to take one type of data as the query and return the

relevant data in other modalities. However, cross-modal retrieval is a chal-

lenging task since different modalities have inconsistent representations. One

popular solution to deal with this problem is to learn a common space where

multimodal data can be projected into such common space and compare

their similarity [3]. Canonical correlation analysis(CCA) [4] is one of the

most popular unsupervised space learning methods to achieve this goal. C-

CA aims to find the common space by maximizing the correlation between

the projections of the two modalities. It has shown promising performance

for cross-media retrieval [5, 6, 7].

It should be aware that existing algorithms are designed for single-label

dataset. However, many large scale datasets such as Imagenet [8] and the

MIRFlickr [9] are labeled with multiple labels. Therefore, it is importan-

t to design cross-modal algorithms that naturally take multiple labels into

account. Recently, a multi-label canonical correlation analysis (ml-CCA)

has been developed in [10]. ml-CCA needs to compute and store the simi-

larity matrix between the corresponding multi-label vectors, which requires

quadratic time complexity. In addition, solving the eigen-value problem of

ml-CCA requires cubic time complexity even with the fast implementation

proposed in [10].

In this paper, we propose a scalable multi-label canonical correlation anal-

ysis (sml-CCA) for cross-modal retrieval. Our method build upon ml-CCA.
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Unlike ml-CCA, we incorporate the feature correlation in the formulation

of ml-CCA to boost the performance. In addition, we introduce a semantic

transformation to compute the label similarity matrix which avoids quadratic

time complexity. Furthermore, we propose an efficient algorithm for solving

the optimization problem. In summary, the main contributions of this paper

are outlined as follows:

• We develop a novel framework that can integrate the feature correlation

and semantic correlation to boost retrieval performance.

• A semantic transformation is developed to effectively approximate the

label similarity matrix without explicitly computing the pairwise se-

mantic similarity matrix. Hence, the O(n2) computation cost and s-

torage cost can be avoided, which makes our proposed method suitable

for large-scale applications with quick response.

• The optimal solution of the new formulation can be efficiently solved

by singular value decomposition which has linear time complexity in

terms of the number of samples.

• Experimental results on several multi-label datasets have demonstrated

the effectiveness of our proposed method.

2. Related work

Due to the ever-increasing amount of multimedia data on the web, cross-

modal retrieval has attained considerable attention in relevant research areas.

One commonly used technique for cross-modal retrieval is learning a com-

mon space for different modalities. Canonical correlation analysis (CCA) [4]
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is the main technique for learning a couple of mappings to maximize the

correlations between two variables. Rasiwasia et al. [5] integrate labels with

CCA to perform semantic matching. Gong et.al [11] proposed a multi-view

embedding to learn a common space with images, tags and the correspond-

ing semantics. Generalized multiview analysis (GMA), which is a supervised

extension of CCA, has been developed in [12]. Cao et al. [13] developed a

unified framework with graph embedding for multi-view embedding. Yuan

et al. [14] developed a fractional-order embedding canonical correlation anal-

ysis (FECCA) for multi-modal data feature extraction. Similar to CCA,

cross-modal factor analysis [15] has been proposed to process multimedia

information. Besides, graph based cross-modal retrieval methods have also

been investigated in the literature. A joint graph regularized heterogeneous

metric learning (JGRHML) algorithm has been developed in [16] to integrate

the structure of different media. Zhai et al. [17] proposed a joint learning

framework to explore the correlation and semantic information with sparse

and semisupervised regularization. Peng et al. [18] further proposed a unified

patch graph regularization based semi-supervised cross-media feature learn-

ing method. Zhang et al. [19] proposed the generalized semi-supervised struc-

tured subspace learning method for cross-modal retrieval. Specifically, they

use a label graph constraint to ensure the intrinsic geometric structures of

different modalities consistent with the label space. Dictionary learning has

also been introduced for cross-modal retrieval. Zhuang et al. [20] proposed a

supervised coupled dictionary learning with group structure for cross-modal

retrieval. A cross-modality submodular dictionary learning which incorpo-

rates the maximum mean discrepancy has been proposed in [21]. Shang et
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al. [22] proposed a dictionary learning based adversarial cross-modal retrieval

to explore the complex statistical properties of multimodal data.

The above methods are usually shallow learning methods which main-

ly learn linear projections for cross-modal retrieval. Recently, due to the

successful application of deep neural networks (DNN) in single-modal tasks

such as image classification, DNN based cross-modal retrieval methods have

been investigated in the literature. Some works attempt to extend tradition-

al models to deep learning models. Typical examples include deep canonical

correlation analysis (DCCA) [23], deep canonically correlated autoencoders

(DCCAE) [24]. DCCA [23] employs two deep networks to learn a pair of

highly correlated representation. DCCAE [24] is an extension of DCCA with

an extra auto-encoder regularization term in the formulation of DCCA. To

further preserve the discrimination among the samples from different seman-

tic categories and eliminate the cross-modal discrepancy, deep supervised

cross-modal retrieval (DSCMR) has been developed in [25]. The work in [26]

utilize the inter- and intra- modality correlation to learn a more represen-

tative common subspace. Recently, multi-modal semantic autoencoder [27]

has been developed for cross-modal retrieval.

Unfortunately, the above studies on cross-modal retrieval mainly focus

on single-label dataset, which means they cannot capture the multi-label

semantic information. Recently, by taking into account the high level se-

mantic information in the form of multi-label annotations, multi-label CCA

(ml-CCA) has been developed in [10]. However, ml-CCA involves huge com-

putational cost which limits their application.
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3. Brief review of ml-CCA

Let X = [x1, x2, · · · , xnx ] ∈ Rdx×nx and Zx = [z1, z2, · · · , znx ] ∈ Rc×nx be

the first modality data matrix and corresponding label matrix respectively.

Similarly, Y = [y1, y2, · · · , yny ] ∈ Rdy×ny and Zy = [z1, z2, · · · , zny ] ∈ Rc×ny

be the second modality data matrix and the corresponding label matrix,

respectively. Let f be a similarity function which assigns a high value to the

similar label pair (zi, zj), and a low value to the dissimilar label pair (zi, zj).

In particular, the similarity function f is usually defined as

f(zi, zj) = e−
∥zi−zj∥

2
2

σ (1)

where σ is a constant factor.

The formulation of ml-CCA [10] can be defined as

ρ = max
w,v

wTCxyv√
wTCxxw

√
vTCyyv

(2)

where

Cxy =
1
N

nx∑
i=1

ny∑
j=1

f(zi, zj)xiy
T
j

Cxx = 1
N

nx∑
i=1

αixix
T
i

Cyy =
1
N

ny∑
j=1

βjyjy
T
j

are the weighted covariance matrices, N = nx × ny is the total number of

pairs across the two modalities, αi =
∑ny

j=1 f(zi, zj) and βi =
∑nx

i=1 f(zi, zj).

Let F ∈ Rnx×ny , where Fij = f(zi, zj). With simple linear algebraic

manipulation, we can rewrite Cxy, Cxx, Cyy in the following matrix form

Cxy =
1
N
XFY T

Cxx = 1
N
XDxX

T

Cyy =
1
N
Y DyY

T

(3)

6



where Dx, Dy are diagonal matrices whose diagonal elements are given by

Dx(i, i) =
∑ny

j=1 Fij, Dy(j, j) =
∑nx

i=1 Fij respectively.

Since ρ is invariant to the scaling of w and v, ml-CCA can be formulated

equivalently as the following optimization problem

max
w,v

wTCxyv

s.t. wTCxxw = 1, vTCyyv = 1
(4)

According to the Lagrange dual function in optimization theory, it can be

easily shown that w is the eigen-vector corresponding to the largest eigenvalue

of the following eigenvalue problem:

C−1
xx CxyC

−1
yy Cxyw = λ2w (5)

For projection vector v, we have

v =
C−1

yy Cyxw

λ2
(6)

However, the above approach suffers from several limitations. First, ml-CCA

needs to precompute and store the similarity function f(zi, zj) which requires

huge storage for large number samples. Specifically, both computing and

storing the similarity matrix require O(n2). Second, C−1
xx CxyC

−1
yy Cxy involves

matrix inversion which has cubic complexity. In addition, C−1
xx CxyC

−1
yy Cxy is

usually not symmetric, thus many efficient methods for symmetric eigenvalue

problems cannot be applied [28].

4. Proposed method

In this section, we present our scalable multi-label cross-modal model,

dubbed sml-CCA. We first introduce an extra feature correlation term in our
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framework to boost the performance. A semantic transformation is further

introduced to avoid computing the semantic similarity matrix and the weight-

ed covariance matrix explicitly. Finally, an efficient SVD based optimization

algorithm is employed to solve the model.

4.1. Formulation

First, to further boost the performance of ml-CCA, we integrate the cross-

modal feature correlation in the formulation of ml-CCA. Mathematically, our

proposed model can be formulated as follow:

max
w,v

wTCxyv

s.t. wTXDxX
Tw = 1, vTY DyY

Tv = 1
(7)

where

Cxy = XFY T + ηXY T (8)

and η is a parameter to control the relative importance of semantic correlation

part XFY T and feature correlation part XY T . As shown in ml-CCA, the

optimization problem (7) can be solved by the following generalized problem

C−1
xx CxyC

−1
yy Cxyw = λ2w (9)

However, this approach involves the explicit computation of the semantic

similarity matrix F and dense matrix inversion leading to expensive compu-

tational cost.

4.2. Semantic transformation

In this section, we propose a semantic transformation to approximately

compute the pairwise semantic similarity without explicitly formulating F .
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We first define p(z) as follow:

p(z) =

[√
2(e2 − 1)

eσ
e−

∥z∥2
σ z;

√
e2 + 1

e
e−

∥z∥2
σ

]
(10)

where z ∈ Rc. Given two vectors zi ∈ Rc, zj ∈ Rc, it is easy to show that

p(zi)
Tp(zj) = 2

[
e2−1
2e

× 2zTi zj
σ

+ e2+1
2e

]
e−

∥zi∥
2+∥zj∥

2

σ

≈ 2e−
∥zi∥

2+∥zj∥
2−2zTi zj

σ

= 2e−
∥zi−zj∥

2

σ

(11)

Here we use an approximation e2−1
2e

a + e2+1
2e

≈ ea for a ∈ [−1, 1], which is

shown in Figure 1. To make the approximation sensible, we require −1 ≤
2
σ
zTi zj ≤ 1. This can be achieved by setting σ = 2max{∥zi∥22}ni=1.

It should be pointed out that the semantic transformation is inspired

by SGH [29], which is proposed for binary codes learning with single-labels.

Unlike SGH, we use semantic transformation to compute the similarity for

multi-label vectors.

By using this semantic transformation, it is easy to show that the simi-

larity matrix F and the two diagonal matrices can be computed as follows:

F = P (Z)TP (Z)

Dx = diag(P (Z)TP (Z)e)

Dy = diag(eTP (Z)TP (Z))

(12)

where P (Z) = [ 1√
2
p(z1),

1√
2
p(z2), · · · , 1√

2
p(zn)] ∈ Rc′×n, c′ = c + 1 and e ∈

Rn×1 is a vector with elements are all ones.

Please note that the time complexity is stillO(n2) if we explicitly compute

F via (12). However, we use only P (Z) for computation, but do not explicitly

formulating F in our following learning algorithm. Hence O(n2) complexity

can be elegantly avoided in our learning algorithm.
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Figure 1: Approximation of semantic transformation

4.3. Optimization

We are now ready to present our learning algorithm. Let X̃ = XD
1
2
x , Ỹ =

Y D
1
2
y , Eq.(7) is equivalent to the following expression

max
w,v

wT C̃xyv

s.t. wT C̃xxw = 1, vT C̃yyv = 1
(13)
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where

C̃xy = X̃D
− 1

2
x P̃ T P̃D

− 1
2

y Ỹ T

C̃xx = X̃X̃T

C̃yy = Ỹ Ỹ T

P̃ =

 P
√
ηI


Similar to ml-CCA [10], we can solve the following eigenvalue problem to

get the optimal projection vector w

C̃−1
xx C̃xyC̃

−1
yy C̃yxw = λw (14)

To make the computational process stable, we modify C̃xx as C̃xx = X̃X̃T +

λxI, where λx is a regularization parameter to prevent singularity. Similarly,

we have C̃yy = Ỹ Ỹ T + λyI. Direct solving (14) is infeasible since we cannot

take full advantage of the symmetric matrix. In addition, matrix inversion

is usually computational expensive which requires O(d3x) time complexity.

In the following, we develop an efficient approach to solve the eigenvalue

problem (14).

Let

X̃ = UΣV T (15)

be the singular value decompositon (SVD) [28] of X̃ , where U ∈ Rdx×dx

and V ∈ Rn×n are orthogonal, Σ = diag(Σt, 0) ∈ Rdx×n is diagonal, and

t = rank(X̃). Let U = [U1, U2], where U1 ∈ Rdx×t, U2 ∈ Rdx×(dx−t), V =

[V1, V2],V1 ∈ Rn×t, V2 ∈ Rn×(n−t), and Σt consists of the first t rows and the

first t columns of Σ. Similarly, Let

Ỹ = ŨΣ̃Ṽ T (16)
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be the singular value decompositon (SVD) of Ỹ , where Ũ ∈ Rdy×dy and Ṽ ∈

Rn×n are orthogonal, Σ̃ = diag(Σ̃t̃, 0) ∈ Rdy×n is diagonal, and t̃ = rank(Ỹ ).

Let Ũ = [Ũ1, Ũ2], where Ũ1 ∈ Rdy×t̃, Ũ2 ∈ Rdy×(dy−t̃), Ṽ = [Ṽ1, Ṽ2],Ṽ1 ∈

Rn×t̃, Ṽ2 ∈ Rn×(n−t̃), and Σ̃t consists of the first t̃ rows and the first t̃ columns

of Σ̃.

Hence we have

C̃−1
xx C̃xyC̃

−1
yy C̃yx

= (X̃X̃T + λxI)
−1X̃D

− 1
2

x P̃ T P̃D
− 1

2
y Ỹ T (Ỹ Ỹ T + λyI)

−1Ỹ D
− 1

2
y P̃ T P̃D

− 1
2

x X̃T

= U1(Σ
2
t + λxI)

−1ΣtV
T
1 D

− 1
2

x P̃ T P̃D
− 1

2
y Ỹ T (Ỹ Ỹ T + λyI)

−1Ỹ D
− 1

2
y P̃ T P̃D

− 1
2

x X̃T

= U1(Σ
2
t + λxI)

−1ΣtV
T
1 D

− 1
2

x P̃ T P̃D
− 1

2
y Ṽ1Σ̃t̃(Σ̃

2
t̃
+ λyI)

−1Σ̃t̃Ṽ
T
1 D

− 1
2

y P̃ T P̃D
− 1

2
x X̃T

= U1(Σ
2
t + λxI)

−1ΣtV
T
1 D

− 1
2

x P̃ TBBT P̃D
− 1

2
x V1ΣtU

T
1

(17)

where

B = P̃D
− 1

2
y Ṽ1Σ̃t̃(Σ̃

2
t̃
+ λyI)

−0.5 ∈ R(n+c′)×t̃ (18)

and the second and third equalities follow from the fact that UT
2 X̃ = 0 and

ŨT
2 Ỹ = 0 respectively.

Let

B = UbΣbV
T
b (19)

be the SVD of B, where Ub ∈ R(n+c′)×s, Vb ∈ Rt̃×s, Σb ∈ Rs×s is diagonal

and s = rank(B) is the rank of matrix B. It follows that BBT = UbΣ
2
qU

T
b .

Hence we have

C̃−1
xx C̃xyC̃

−1
yy C̃yx

= U1(Σ
2
t + λxI)

−1ΣtV
T
1 D

− 1
2

x P̃ TBBT P̃D
− 1

2
x V1ΣtU

T
1

= U1(Σ
2
t + λxI)

−1ΣtV
T
1 D

− 1
2

x P̃ TUbΣ
2
bU

T
b P̃D

− 1
2

x V1ΣtU
T
1

= U1(Σ
2
t + λxI)

−1ΣtQQTΣtU
T
1

(20)
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where Q = V T
1 D

− 1
2

x P̃ TUbΣb. Define two diagonal matrices as follows

Λ1 = (Σ2
t + λxI)

−1Σt

Λ = Λ
1
2
1Σ

− 1
2

t

(21)

It is easy to show that Λ−1Λ1 = ΣtΛ. Hence, we have

C̃−1
xx C̃xyC̃

−1
yy C̃yx

= U1(Σ
2
t + λxI)

−1ΣtQQTΣtU
T
1

= U1Λ(Λ
−1Λ1)QQTΣtΛΛ

−1UT
1

= U1ΛΛ̃QQT Λ̃Λ−1UT
1

(22)

where Λ̃ = Λ−1Λ1 = ΣtΛ. Denote Φ = Λ̃Q ∈ Rt×rb and Φ = MSNT be the

SVD of Φ, where M ∈ Rt×rb , N ∈ Rrb×rb and S ∈ Rrb×rb is diagonal. It

follows that

C̃−1
xx C̃xyC̃

−1
yy C̃yx

= U1ΛΛ̃QQT Λ̃Λ−1UT
1

= U1ΛΦΦ
TΛ−1UT

1

= U1ΛMSNTNSTMTΛ−1UT
1

= U1ΛMSSTMTΛ−1UT
1

(23)

Therefore, the eigen-decomposition of the matrix C̃−1
xx C̃xyC̃

−1
yy C̃yx is sum-

marized in the following theorem:

Theorem 1. There are ℓ nonzeros eigenvalues for the matrix C̃−1
xx C̃xyC̃

−1
yy C̃yx.

Specifically, the solution to problem (14), which consists of the eigenvectors

corresponding to the top eigenvalues of C̃−1
xx C̃xyC̃

−1
yy C̃yx is given by

W = U1ΛMℓ (24)

where Mℓ represents the first ℓ columns of M .

Table 1 summarizes the overall algorithm for solving (14).
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Table 1: Algorithm:sml-CCA

Input: Cross-modal data matrices X, Y , label matrix Z, η

Output: Projection matrices W,V

Use the semantic projection (10) to compute P (Z)

Compute the SVD of X̃ and Ỹ

Compute B according to Equation (18)

Compute the SVD of B = UbΣbV
T
b

Compute Λ1,Λ and Λ̃

Compute the SVD of Φ = MSNT

Compute W = U1ΛMℓ

Compute V according to (6)

4.4. Complexity analysis

In this section, we analyze the computational complexity of our proposed

method. From above optimization process, we can avoid explicitly compute

and store the weight covariance matrix. However, we still need to compute

Dx and Dy. If we write Dx as Dx = diag(P (Z)T (P (Z)e)), we can compute

Dx with O(nc) time complexity, where c is the number of labels and n is the

number of samples. Similar result can be observed for Dy. Therefore, the

main computational cost of our algorithm is dominated by the SVD of X̃, Ỹ ,

B and Φ. Specifically, the SVD for X̃ and Ỹ take O(nd2) time complexity

assuming n > d, where d = max{dx, dy}. The SVD of B takes O((n+ c′)t̃2)

time complexity. Similarly, the SVD of Φ takes O(ts2) time complexity.

Table 2 summarizes the relevant matrices and their associated compu-

tational complexities. Typically, for cross-modal retrieval tasks, we usually
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have n ≫ d, where d = max(dx, dy). Therefore, t, t̃ and s are relatively small.

Thus, the cost of the proposed algorithm for computing the eigenvectors is

dominated by the cost for computing the SVD of X̃ and Ỹ . It can be con-

cluded from Table 2 that our proposed method has linear time complexity

in terms of the number of samples.

Table 2: Summary of relevant matrices and the associated complexity of each relevant

matrix

Matrix Size Computation Complexity

X̃ dx × n SVD O(nd2x)

Ỹ dy × n SVD O(nd2y)

B (n+ c)× t̃ SVD O((n+ c)t̃2)

Q s× t SVD O(ts2)

5. Experiments

In this section, three multimedia datasets namely Pascal VOC dataset [30],

NUS-WIDE [31] and MIRFlickr [9] are used to verify the effectiveness of our

proposed scalable cross-modal retrieval method. In addition, Two cross-

modal tasks: use an image query to search the relevant texts from the text

view (denoted as I2T) and use text query to search the relevant image in the

image view (denoted as T2I) are carried out to evaluate the retrieval perfor-

mance of the compared algorithms. We describe the details of experimental

settings and results in the following.

5.1. Datasets and features

Details of the above-mentioned three datasets are as follows:
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• The Pascal VOC dataset [30] consists of 9963 images with their tags

pairs categorized into 20 classes. Each image is described by a 576-

dimension feature vector which consists of a 512-dimensional GIST

feature vector and a 64-dimensional HSV color histograms, while the

text is represented by the relative and absolute tag ranks. We use 4952

pairs for the query samples and the rest are used as training set.

• NUS-WIDE [31] contains 269,648 images and the associated tags, with

a total number of 5,018 unique tags. In our experiment, we randomly

select 1000 samples for query and 10000 samples for the training set.

We use the AlexNet [32] to extract deep fc7 features for each image by a

4096-dimensional vectors, and use bag-of- word vector to represent each

text. The corresponding annotated tags of each image is represented

by a 1000-D vector, where each dimension is a binary value to indicate

whether a tag appears or not.

• The MIRFlickr [9] dataset consists of 25,000 images collected from

Flickr website. Each image is associated with several textual tags. In

our experiment, we select those pairs which have at least 20 textual

tags. We also use the AlexNet [32] to extract deep fc7 features for

each image by a 4096-dimensional vectors, and use bag-of- word vector

to represent each text. We randomly select 2000 samples to form the

query set and the rest are used as the training set.

5.2. Compared methods and evaluation metric

Our proposed algorithm is compared against the following seven state-of-

the-art methods:

16



• PCA. We apply principal component analysis (PCA) to each modal

separately.

• CCA. Canonical correlation analysis [4] learns a common subspace by

maximizing the correlation of two modalities. In our implementation,

we use the matlab function canoncorr which is highly optimized and

fast.

• CCA3. Multiview canonical correlation analysis proposed in [11]. C-

CA3 learns the projection matrices by incorporating the semantic ma-

trix as the third view.

• ml-CCA. multi-label correlation analysis proposed in [10] for cross-

modal retrieval.

• DCCA. Deep canonical correlation analysis which is a nonlinear exten-

sion of traditional CCA with deep learning technique [23].

• DCCAE. Deep canonically correlated autoencoders which consists of

two autoencoders and optimizes the combination of canonical correla-

tion and the reconstruction errors of the autoencoders [24].

• MMSAE. MMSAE is a two stage cross-modal retrieval method which

employs autoencoder to preserve feature and semantic information [27].

For all the compared methods , we empirically set the dimension of the

common subspace to 10 (i.e. ℓ = 10). An in-depth experimental verification

is presented in Section 5.4.
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Two popular criteria: mean average precision (mAP) and precision-recall

curve are utilized to evaluate the performance of different methods. These

two criteria are defined as follows.

• mAP: The average precision (AP) is defined as AP(q) = 1
R′

R∑
r=1

Pq(r)δq(r)

, where R′ is the total number of relevant samples in the retrieved set,

R is the number of retrieved samples. Pq(r) denotes the top-r precision

of the q-th query, and δq(r) = 1 if the r-th data item is relevant to the

q-th query;otherwise δq(r) = 0. Clearly, the larger the mAP value, the

better the performance. The mAP over Q queries can be computed by

mAP =
1

Q

Q∑
q=1

AP(q)

• Precision-recall: The precision and recall are defined as

precision = the number of retrieved relevant items
the number of all retrieved items

recall = the number of retrieved relevant items
the number of all relevant items

Precision-recall reflects the precision values at different recall levels.

Typically, the area under the precision-recall curve is computed and a

larger value indicates better performance.

In addition to these two metrics, we also report the score of precision@K

(P@K) to evaluate the performance of the compared methods. Specifically,

we include precision values at top 5 results (P@5), top 10 results (P@5) and

top 15 results (P@15).
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5.3. Experimental results

The mAP values on three datasets are presented in Tables 3 to 5 for I2T

and T2I tasks. Note that DCCA, DCCAE and MMSAE are deep learning

based methods. Several observations can be made from these tables. First,

ml-CCA, MMSAE and sml-CCA which utilize the multi-label information

to learn the common subspace outperform the other compared methods.

This implies the importance of integrating semantic multiple labels for cross-

modal retrieval tasks. Second, our sml-CCA achieves better results than

traditional common subspace learning algorithms PCA, CCA, CCA3 and ml-

CCA. Specifically, compared with ml-CCA, our sml-CCA improves average

mAP values of two tasks 2.4%, 14.3%, 4.0% on Pascal Voc, NUS-WIDE and

MIRFlickr data sets respectively. In addition, our sml-CCA even outperform

deep learning based methods DCCA and DCCAE because of taking semantic

information into account.

Tables 6-8 depict precisions at different K (P@K). It is clear from Tables 6

and 8 that MMSAE and sml-CCA outperform the other compared methods.

This again shows that integrating semantic information can significantly im-

prove retrieval performance. It is interesting to note that MMSAE achieves

the best performance. This can be attribute to the powerful representation

learning ability of autoencoder introduced in MMSAE. Moreover, unlike D-

CCA and DCCAE, MMSAE can integrate the semantic information to learn

discriminant representation.

In addition to mAP and P@K, the precision-recall curves are plotted

in Figures 2 to 4. The results keep consistent with the mAP values and

P@K values reported in the previous tables, which further demonstrates the
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effectiveness of our proposed sml-CCA.

Table 3: mAP values on Pascal VOC dataset

Task PCA CCA CCA3 ml-CCA DCCA DCCAE MMSAE sml-CCA

I2T 0.2737 0.3686 0.2460 0.4686 0.4052 0.4087 0.4871 0.4510

T2I 0.2286 0.3759 0.2583 0.4846 0.4067 0.4104 0.5258 0.5661

Avarage 0.2511 0.3722 0.2521 0.4766 0.4060 0.4479 0.4485 0.4884

Table 4: mAP values on NUS-WIDE dataset

Task PCA CCA CCA3 ml-CCA DCCA DCCAE MMSAE sml-CCA

I2T 0.7339 0.7099 0.7053 0.7325 0.7185 0.7165 0.8338 0.8328

T2I 0.7046 0.7107 0.7886 0.7205 0.7147 0.7166 0.8331 0.8290

Average 0.7192 0.7103 0.7470 0.7265 0.7166 0.7166 0.8335 0.8309

Table 5: mAP values on MIRFlickr dataset

Task PCA CCA CCA3 ml-CCA DCCA DCCAE MMSAE sml-CCA

I2T 0.5983 0.6342 0.5536 0.6813 0.6558 0.6444 0.7387 0.6985

T2I 0.5698 0.6426 0.6450 0.6826 0.6564 0.6450 0.7655 0.7193

Average 0.5796 0.6384 0.5993 0.6820 0.6561 0.6447 0.7521 0.7089

5.4. Dimension of common space analysis

In our previous experiments, we empirically set ℓ = 10. In this subsection,

we analysis the effect of dimension ℓ of common subspace for cross-modal

retrieval task on three datasets. We change ℓ in the range of [2, 20] with

other parameters fixed.
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Table 6: Top K precision on Pascal VOC dataset

Task Method P@5 P@10 P@15

I2T

PCA 0.2573 0.2523 0.2479

CCA 0.4225 0.4198 0.4177

CCA3 0.2504 0.2406 0.2381

ml-CCA 0.5200 0.5198 0.5193

DCCA 0.4834 0.4811 0.4785

DCCAE 0.4788 0.4757 0.4736

MMSAE 0.5483 0.5474 0.5455

sml-CCA 0.4864 0.4837 0.4801

T2I

PCA 0.2141 0.2015 0.1979

CCA 0.5395 0.5307 0.5257

CCA3 0.2488 0.2465 0.2426

ml-CCA 0.7485 0.7401 0.7346

DCCA 0.6372 0.6354 0.6301

DCCAE 0.6409 0.6284 0.6286

MMSAE 0.7583 0.7387 0.7336

sml-CCA 0.8112 0.7986 0.7928

Figures 5 to 7 depict the mAP values versus dimension. Figure 5 reveals

that our method sml-CCA can get better performance than the other com-

pared methods when the dimension is larger than 6. Similar observations

can be drawn from Figures 6 and 7.

In summary, these results show that our method perform well in a wide

range of dimension. Hence our choice of ℓ in the experiments is reasonable.
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Table 7: Top K precision on NUS-WIDE dataset

Task Method P@5 P@10 P@15

I2T

PCA 0.7888 0.7827 0.7797

CCA 0.8128 0.7803 0.7658

CCA3 0.6334 0.6583 0.6724

ml-CCA 0.7834 0.7829 0.7813

DCCA 0.7530 0.7514 0.7508

DCCAE 0.8351 0.8177 0.8096

MMSAE 0.9177 0.9183 0.9178

sml-CCA 0.9110 0.9134 0.9142

T2I

PCA 0.6570 0.6810 0.6828

CCA 0.8205 0.7890 0.7614

CCA3 0.7417 0.7468 0.7496

ml-CCA 0.7568 0.7569 0.7533

DCCA 0.7685 0.7638 0.7600

DCCAE 0.8519 0.8356 0.8232

MMSAE 0.9486 0.9456 0.9445

sml-CCA 0.9380 0.9366 0.9383

5.5. Parameter sensitivity analysis

In this section, we conduct parameter analysis to empirically show how

to choose the value of η.

Figure 8 shows the influence of the mAP values with respect to η on three

datasets. We can observe that mAP values on Pascal VOC dataset go up

as the value η increases from 1 to 10 while the mAPs values on NUS-WIDE

22



Table 8: Top K precision on MIRFlickr dataset

Task Method P@5 P@10 P@15

I2T

PCA 0.6345 0.6328 0.6322

CCA 0.7473 0.7464 0.7460

CCA3 0.5581 0.5559 0.5569

ml-CCA 0.8368 0.8350 0.8338

DCCA 0.8283 0.8293 0.8298

DCCAE 0.7786 0.7810 0.7831

MMSAE 0.8559 0.8545 0.8545

sml-CCA 0.8475 0.8468 0.8480

T2I

PCA 0.5781 0.5775 0.5723

CCA 0.7832 0.7837 0.7844

CCA3 0.6574 0.6579 0.6578

ml-CCA 0.7917 0.7900 0.7907

DCCA 0.8237 0.8214 0.8210

DCCAE 0.8003 0.7966 0.7951

MMSAE 0.8806 0.8814 0.8823

sml-CCA 0.8698 0.8687 0.8679

and MIRFlickr datasets reach relative stable between 1 and 10. Therefore,

we can choose the optimal value within the range of [1, 10].

From the above analysis, we can conclude that sml-CCA can achieve

stable performance under a wide range of parameter values.
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Figure 2: Precision-recall curves of Pascal VOC dataset in I2T (left) and T2I (right) tasks
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Figure 3: Precision-recall curves of NUS-WIDE dataset in I2T (left) and T2I (right) tasks
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Figure 4: Precision-recall curves of MIRFlickr dataset in I2T (left) and T2I (right) tasks

5.6. Scalability evaluation

In this experiment, we use datasets Pascal VOC and MIRFlickr to com-

pare the scalability of sml-CCA, MMSAE, ml-CCA and CCA. More precisely,
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Figure 5: Effect of the dimension of the common subspace in I2T (left) and T2I (right)

tasks on Pascal Voc dataset
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Figure 6: Effect of the dimension of the common subspace in I2T (left) and T2I (right)

tasks on Nuswide dataset
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Figure 7: Effect of the dimension of the common subspace in I2T (left) and T2I (right)

tasks on MIRFlickr dataset
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we evaluate the computational time for the steadily increasing data dimen-

sion under the fixed number of data samples and vice versa.

Figure 9 displays the computational time of the compared methods with

growing size of training sample under fixed dimension. We can see that

sml-CCA is much faster than ml-CCA. This is due to the fact that sml-

CCA has the linear time complexity in terms of the number of samples,

while ml-CCA has the quadratic complexity. On top of that, Figure 10

displays the computation time of the compared methods as data dimension

increases when the number of training samples fixed . Similar trends can be

observed as in Figure 9. Note that sml-CCA requires onlyO(d2) computation

time complexity, which is smaller than that of ml-CCA with O(d3) time

complexity. From Figure 9 and 10, we arrive at the conclusion that the

proposed sml-CCA is potentially much more scalable than ml-CCA.

It is interesting to note that CCA is much faster than sml-CCA. We con-

jecture that CCA does not involve the computation of semantic similarity

matrix which is a huge save of computation cost. Moreover, in our imple-

mentation, we use the highly optimized matlab function canoncorr for CCA.

6. Conclusion

In this paper, we have proposed a scalable multi-label canonical corre-

lation analysis (sml-CCA) for cross-modal retrieval. sml-CCA combines the

merits of feature correlation and semantic correlation to boost the perfor-

mance. A novel semantic transformation is further introduced to elegant-

ly avoid the expensive computation of the semantic similarity matrix. We

then design an efficient learning algorithm to learn the projection vectors.
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Experimental results on three multi-label datasets have demonstrated the

effectiveness and efficiency of the proposed approach.

In the future, we will extend our current work to learn nonlinear projec-

tions by using the kernel technique. In addition, deep learning can also be

employed in our framework to learn more powerful projections.
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Figure 8: Parameter sensitivity analysis of η on Pascal Voc (top), NUS-WIDE (middle)

and MIRFlickr (bottom) datasets 32
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Figure 9: Comparison of computation time for sml-CCA, MMSAE, ml-CCA and CCA on

Pascal Voc (left) and MIRFlickr (right) datasets as the sample size increases.
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Figure 10: Comparison of computation time for sml-CCA, MMSAE, ml-CCA and CCA

on Pascal Voc (left) and MIRFlickr (right) datasets as the dimension increases.
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