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Abstract

A nonlinear feature extraction method is presented which can reduce the data dimension
down to the number of clusters, providing dramatic savings in computational costs. The di-
mension reducing nonlinear transformation is obtained by implicitly mapping the input data
into a feature space using a kernel function, and then findinga linear mapping based on an or-
thonormal basis of centroids in the feature space that maximally separates the between-cluster
relationship. The experimental results demonstrate that our method is capable of extracting
nonlinear features effectively so that competitive performance of classification can be obtained
with linear classifiers in the dimension reduced space.

Keywords. cluster structure, dimension reduction, kernel functions, Kernel Orthogonal Cen-
troid (KOC) method, linear discriminant analysis, nonlinear feature extraction, pattern classi-
fication, support vector machines

1 Introduction

Dimension reduction in data analysis is an important preprocessing step for speeding up the main
tasks and reducing the effect of noise. Nowadays, as the amount of data grows larger, extracting�The correspondence should be addressed to Prof. Haesun Park(hpark@cs.umn.edu). This work was supported
in part by the National Science Foundation grants CCR-9901992 and CCR-0204109. Any opinions, findings and
conclusions or recommendations expressed in this materialare those of the authors and do not necessarily reflect the
views of the National Science Foundation (NSF).
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the right features is not only a useful preprocess step but becomes necessary for efficient and
effective processing, especially for high dimensional data. The Principal Component Analysis
(PCA) and the Linear Discriminant Analysis (LDA) are two of the most commonly used dimension
reduction methods. These methods search optimal directions for the projection of input data onto
a lower dimensional space [1, 2, 3]. While the PCA finds the direction along which the data
scatterness is greatest, the LDA searches the direction which maximizes the between-cluster scatter
and minimizes the within-cluster scatter. However, these methods have a limitation for the data
which are not linearly separable since it is difficult to capture a nonlinear relationship with a linear
mapping. In order to overcome such a limitation, nonlinear extensions of these methods have been
proposed [4, 5, 6].

One way for a nonlinear extension is to lift the input space toa higher dimensional feature
space by a nonlinear feature mapping and then to find a linear dimension reduction in the feature
space. It is well known that kernel functions allow such nonlinear extensions without explicitly
forming a nonlinear mapping or a feature space, as long as theproblem formulation involves only
the inner productsbetween the data points and never the data points themselves[7, 8, 9]. The
remarkable success of the support vector machine learning is an example of the effective use of the
kernel functions [10, 11, 12, 13]. The kernel Principal Component Analysis (kernel PCA) [14] and
the generalized Discriminant Analysis [15, 16, 17, 18] haverecently been introduced as nonlinear
generalizations of the PCA and the LDA by kernel functions, respectively, and some interesting
experimental results are presented. However, the PCA and the LDA require solutions from the
singular value decomposition and generalized eigenvalue problem, respectively. In general, these
decompositions are expensive to compute when the training data set is large and especially when
the problem dimension becomes higher due to the mapping to a feature space. In addition, the
dimension reduction from the PCA does not reflect the clustered structure in the data well [19].

The centroid of each cluster minimizes the sum of the squareddistances to vectors within the
cluster and it yields a rank one approximation of the cluster[19]. In the Orthogonal Centroid
method [19] the centroids are taken as representatives of each cluster and the vectors of the in-
put space are transformed by an orthonormal basis of the space spanned by the centroids. This
method provides a dimension reducing linear transformation preserving the clustering structure in
the given data. The relationship between any data points andcentroids measured byL2-norm or
cosine in the full dimensional space is completely preserved in the reduced space obtained with
this transformation [19, 20]. Also it is shown that this method maximizes between-cluster scatter
over all the transformations with orthonormal vectors [21,22].

In this paper, we apply the centroid-based orthogonal transformation, the Orthogonal Cen-
troid algorithm, to the data transformed by kernel-based nonlinear mapping and show that it can
extract nonlinear features effectively, thus reducing thedata dimension down to the number of
clusters and saving the relative computational cost. In Section 2, we briefly review the Orthogo-
nal Centroid method which is a dimension reduction method based on an orthonormal basis for
the centroids. In Section 3, we derive the new Kernel Orthogonal Centroid method extending the
Orthogonal Centroid method using kernel functions to handle nonlinear feature extraction and an-
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alyze the computational complexity of our new method. Our experimental results presented in
Section 4 demonstrate that the new nonlinear Orthogonal Centroid method is capable of extracting
nonlinear features effectively so that competitive classification performance can be obtained with
linear classifiers after nonlinear dimension reduction. Inaddition, it is shown that once we obtain
a lower dimensional representation, alinear soft margin Support Vector Machine (SVM) is able
to achieve high classification accuracy with much less number of support vectors, thus reducing
prediction costs as well.

2 Orthogonal Centroid Method

Given a vector space representation,A = [a1; � � � ; an℄ 2 Rm�n
of a data set ofn vectors in am-dimensional space, dimension reduction by linear transformation
is to findGT 2 R l�m that maps a vectorx to a vector̂x for somel < m:GT : x 2 Rm�1 ! x̂ 2 R l�1 i:e: GTx = x̂: (1)

In particular, we seek for a dimension reducing transformation GT with which the cluster struc-
ture existing in the given dataA is preserved in the reduced dimensional space. Eqn. (1) can be
rephrased as finding a rank reducing approximation ofA such thatminG;Y kA�GY kF ; whereG 2 Rm�l andY 2 R l�n : (2)

For simplicity, we assume that the data matrixA is clustered intor clusters as

A = [A1; A2; � � � ; Ar℄ where Ai 2 Rm�ni ; and
rXi=1 ni = n: (3)

LetNi denote the set of column indices that belong to the clusteri. The centroidi of each clusterAi is the average of the columns inAi, i.e.,

i = 1niAiei where ei = [1; : : : ; 1℄T 2 R ni�1 (4)

and the global centroid is defined as

 = 1n nXj=1 aj: (5)
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Algorithm 1 Orthogonal Centroid method
Given a data matrixA 2 Rm�n with r clusters and a data pointx 2 Rm�1, it computes a matrixQr 2 Rm�r and gives ar-dimensional representation̂x = QrTx 2 R r�1.

1. Compute the centroidi of theith cluster for1 � i � r.
2. Set the centroid matrixC = [1; 2; � � � ; r℄.
3. Compute an orthogonal decomposition ofC, which isC = QrR.

4. x̂ = QTr x gives ar-dimensional representation ofx.

The centroid of each cluster is the vector that minimizes thesum of squared distances to vectors
within the cluster. That is the centroid vectori gives the smallest distance in Frobenius norm
between the matrixAi and the rank one approximationxeTi wherekAi � ieTi k2F = Xj2Ni kaj � ik22 = minx2Rm�1 Xj2Ni kaj � xk22 = minx2Rm�1 kAi � xeTi k2F : (6)

Taking the centroids as representatives of the clusters, wefind an orthonormal basis of the
space spanned by the centroids by computing an orthogonal decomposition

C = Q � R0 � (7)

of the centroid matrix C = [1; � � � ; r℄ 2 Rm�r ;
whereQ = [q1; � � � ; qm℄ 2 Rm�m is an orthogonal matrix with orthonormal columns andR 2R r�r is an upper triangular matrix. Taking the firstr columns ofQ, we obtainC = QrR with Qr = [q1; � � � ; qr℄; (8)

where the columns ofQr is an orthonormal basis forRange(C) spanned by the columns ofC
when the columns ofC are linearly independent. The algorithm can easily be modified when the
columns ofC are not linearly independent. The matrixQrT gives a dimension reducing linear
transformation preserving the clustering structure in thesense that the relationship between any
data item and a centroid measured usingL2-norm or cosine in the full dimensional space is com-
pletely preserved in the reduced dimensional space [19, 20]. This method is called the Orthogonal
Centroid method and is summarized in Algorithm 1. Moreover,as we show in Section 3, this
assumption is no longer needed in our new Kernel Orthogonal Centroid method.

It is shown that the linear transformation obtained in the Orthogonal Centroid method solves a
trace optimization problem, providing a link between the methods of linear discriminant analysis
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and those based on centroids [22]. Dimension reduction by the Linear Discriminant Analysis
searches for a linear transformation which maximizes the between-cluster scatter and minimizes
the within-cluster scatter. The between-cluster scatter matrix is defined as

Sb = rXi=1 Xj2Ni(i � )(i � )T = rXi=1 ni(i � )(i � )T (9)

and

trae(Sb) = rXi=1 Xj2Ni(i � )T (i � ) = rXi=1 Xj2Ni ki � k22: (10)

Let’s consider a criterion that involves only the between-cluster scatter matrix, i.e., to find a
dimension reducing transformationGT 2 R l�m such that the columns ofG are orthonormal andtrae(GTSbG) is maximized. Note thatrank(Sb) can not exceedr � 1. Accordingly,trae(Sb) = �1 + � � � + �r�1 (11)

where�i’s, 1 � i � r�1, are ther�1 eigenvalues ofSb. Denoting the corresponding eigenvectors
asui’s, for anyl � r � 1 andUl = [u1; � � � ; ul℄, we havetrae(UTl SbUl) = �1 + � � �+ �l = �1 + � � �+ �r�1: (12)

In addition, for anyG 2 Rm�l which has orthonormal columns,trae(GTSbG) � trae(Sb): (13)

Hencetrae(GTSbG) is maximized whenG is chosen asUl for anyl � r � 1 andtrae(UTl SbUl) = trae(Sb); (14)

according to Eqns. (11) and (12).
For an eigenvalue and eigenvector pair(�; u) of Sb, we have

�u = Sbu = rXi=1 ni(i � )(i � )Tu = rXi=1 (ni(i � )Tu)(i � ): (15)

Therefore,u 2 spanfi � j1 � i � rg, andu 2 spanfij1 � i � rg. Finally, the orthogonal
decompositionC = QrR of the centroid matrixC = [1; 2; � � � ; r℄ in the Orthogonal Centroid
method gives Range(Qr) = Range(C) = Range(Ur): (16)
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Eqn. (16) implies that Qr = UrW (17)

for some orthogonal matrixW 2 R r�r . Sincetrae(GTSbG) = trae(W TGTSbGW )
for any orthogonal matrixW 2 R r�r (see [21] for more details),Qr also satisfiestrae(QTr SbQr) = trae(Sb): (18)

So, instead of computing the eigenvectorsui’s, i = 1; � � � ; r � 1, we simply need to computeQr,
which is much less costly. Therefore, by computing an orthogonal decomposition of the centroid
matrix we obtain a solution that maximizestrae(GTSbG) over allG with orthonormal columns.

3 Kernel Orthogonal Centroid Method

Although a linear hyperplane is a natural choice as a boundary to separate clusters it has limitations
for nonlinearly structured data. To overcome this limitation we map input data to a feature space
(possibly an infinite dimensional space) through a nonlinear feature mapping� : S � Rm�n ! F � RN�n (19)

which transforms input data into linearly separable structure. Without knowing the feature map-
ping � or the feature spaceF explicitly, we can work on the feature spaceF through kernel
functions, as long as the problem formulation depends only on the inner products between data
points inF and not on the data points themselves. For any kernel function � satisfying Mercer’s
condition, there exists a reproducing kernel Hilbert spaceH and a feature map� such that�(x; y) =< �(x);�(y) > (20)

where< ; > is an inner product inH [9, 23, 24]. As positive definite kernel functions satisfying
Mercer’s condition, polynomial kernel�(x; y) = (1(x � y) + 2)d; d > 0 and1; 2 2 R (21)

and Gaussian kernel �(x; y) = exp(�kx� yk2=�); � 2 R (22)

are in wide use.
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Next we show how the Orthogonal Centroid algorithm can be combined with the kernel func-
tion to produce a nonlinear dimension reduction method which does not require the feature map-
ping� or the feature spaceF explicitly. Let� be a feature mapping andC be the centroid matrix
of �(A), where the input data matrixA hasr clusters. Consider the orthogonal decompositionC = QrR (23)

of C whereQr 2 RN�r has orthonormal columns andR 2 R r�r is a nonsingular upper triangular
matrix [25]. We apply the Orthogonal Centroid algorithm to�(A) to reduce the data dimension
to r, the number of clusters in the input data. Then for any data point x 2 Rm�1, the dimension
reduced representation ofx in a r-dimensional space will be given byQTr �(x).

We now show how we can calculateQTr �(x) without knowing� explicitly, i.e., without know-
ing C explicitly. The centroid matrixC in the feature space is

C = " 1n1 Xi2N1 �(ai) ; � � � ; 1nr Xi2Nr �(ai)
# 2 RN�r : (24)

Hence CTC = MTKM; (25)

whereK 2 R n�n is the kernel matrix withK(i; j) = �(ai; aj) =< �(ai);�(aj) > for 1 � i; j � n (26)

and

MT =
26664

1n1 � � � 1n1 0 � � � 00 � � � 0 1n2 � � � 1n2 0 � � � � � � 0
.. .0 � � � 0 1nr � � � 1nr

37775 2 R r�n : (27)

Since the kernel matrixK is symmetric positive definite and the matrixM has linearly independent
columns,CTC is also symmetric positive definite. The Cholesky decomposition of CTC gives a
nonsingular upper triangular matrixR such thatCTC = RTR: (28)

Since Qr = CR�1 (29)
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Algorithm 2 Kernel Orthogonal Centroid Method
Given a data matrixA 2 Rm�n with r clusters and index setsNi, i = 1; � � � ; r which denote the set
of the column indices of the data in the clusteri, and a kernel function�, this algorithm computes
nonlinear dimension reduced representationx̂ = QTr �(x) 2 R r�1 for any input vectorx 2 Rm�1.

1. Formulate the kernel matrixK based on the kernel function� asK(i; j) = �(ai; aj); 1 � i; j � n:
2. ComputeCTC = MTKM where

M(i; j) = � 1=nj if i 2 Nj0 otherwise

3. Compute the Cholesky factorR of CTC: CTC = RTR.

4. The solution̂x for the linear system

RT x̂ = 264 1n1 Pi2N1 �(ai; x)
...1nr Pi2Nr �(ai; x)

375
givesr-dimensional representation ofx.

from (23), we have

QTr �(x) = (R�1)TCT�(x) = (R�1)T 264 1n1 Pi2N1 �(ai; x)
...1nr Pi2Nr �(ai; x)

375 : (30)

Due to the assumption that the kernel function� is symmetric positive definite, the matrixCTC
is symmetric positive definite and accordingly the centroidmatrix C has linearly independent
columns. We summarize our algorithm in Algorithm 2 the Kernel Orthogonal Centroid (KOC)
method.

We now briefly discuss the computational complexity of the KOC algorithm where one flop
(floating point operation) represents roughly what is required to do one addition (or subtraction)
and one multiplication (or division) [26]. We did not include the cost for evaluating the kernel
functions�(ai; aj) and�(ai; x) since this is required in any kernel-based methods, and the cost
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depends on the specific kernel function. In Algorithm 2, the computation ofCTC = MTKM
requiresn2+ rn flops taking advantage of the special structure of the matrixM . Cholesky decom-
position ofCTC for obtaining the upper triangular matrixR in (28) takesO( r36 ) flops sinceCTC
is r � r wherer is the number of clusters. Once we obtain the upper triangular matrixR, then
the lower dimensional representationx̂ = QTr �(x) of a specific inputx can be computed without
computingR�1, but from solving a linear system

RT x̂ = 264 1n1 Pi2N1 �(ai; x)
...1nr Pi2Nr �(ai; x)

375 ; (31)

which requiresO( r22 + n) flops. Typically the number of clusters is much smaller than the total
number of training samplesn. Therefore, the complexity in nonlinear dimensional reduction by the
Kernel Orthogonal Centroid method presented in Algorithm 2isO(n2). However, the kernel-based
LDA or PCA needs to handle an eigenvalue problem of sizen�nwheren is the number of training
samples, which is more expensive to compute [14, 15, 16]. Therefore, the Kernel Orthogonal
Centroid method is an efficient dimension reduction method that can reflect the nonlinear cluster
relation in the reduced dimensional representation.

Alternatively, the dimension reduced representationQTr �(x) given by the KOC method can be
derived as follows. Represent the centroid matrixC in the feature space, given by Eqn. (24), as

C = [~1; � � � ; ~r℄ = " nXi=1 �1i�(ai) ; � � � ; nXi=1 �ri�(ai)
#

(32)

where�ji is 1nj if ai belongs to the clusterj, otherwise�ji is 0. Now, consider the orthogonal
decomposition C = QrR (33)

of C. Since the columns ofQr can be represented as a linear combination of the columns ofC, they
in turn can be expressed as a linear combination of the vectors�(ai); i = 1; � � � ; n, as

Qr = [~q1; � � � ; ~qr℄ = " nXi=1 �1i�(ai) ; � � � ; nXi=1 �ri�(ai)
# : (34)

In order to computeQTr �(x), first we will show how we can find the coefficients�ji ’s from the
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given�ji ’s where

C = " nXi=1 �1i�(ai) ; � � � ; nXi=1 �ri�(ai)
#

(35)

= " nXi=1 �1i�(ai) ; � � � ; nXi=1 �ri�(ai)
#264 ~r11 � � � ~r1r0 . . .

...0 0 ~rrr
375

without knowing� explicitly. Note that we can calculate inner products between the centroids in
the feature space through the kernel matrixK as

< ~s; ~t >=  nXi=1 �si�(ai)
!T  nXi=1 �ti�(ai)

! = (�s)TK�t; (36)

where�s = [�s1; � � � ; �sn℄T . In addition, the vectors

~ps = ~sp< ~s; ~s > and ~pt = ~t � < ~s; ~t >< ~s; ~s >~s; 1 � s � t � r; (37)

that would appear in the modified Gram-Schmidt process of computingQr are orthogonal vectors
such that spanf~ps; ~ptg = spanf~s; ~tg: (38)

From Eqns. (36) and (37), we can represent~ps and~pt as linear combinations of�(ai), i = 1; � � � ; n.
Based on these observations, we can apply the modified Gram-Schmidt method [25] to the centroid
matrix C to compute an orthonormal basis of the centroids, even though we only have an implicit
representation of the centroids in the feature space. Once the orthonormal basisQr is obtained, i.e.,
the coefficients�si ’s of ~qs = Pni=1 �si�(ai), 1 � s � r are found, then the reduced dimensional
representationQTr �(x) can be computed from

QTr �(x) =
264 Pni=1 �1i�(ai; x)

...Pni=1 �ri�(ai; x)
375 : (39)

This approach is summarized in Algorithm 3.
Algorithm 3, the Kernel Orthogonal Centroid method, requiresO( r22 n2) flops for the orthogo-

nal decomposition of the centroid matrixC andO(rn) flops for obtaining the reduced dimensional
representationQTr �(x) for any input vectorx 2 Rm�1. Hence the total complexity of Algo-
rithm 3 is slightly higher than Algorithm 2. However, the approach of finding the parameters�s
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Algorithm 3 Kernel Orthogonal Centroid method by the modified Gram-Schmidt
Given a data matrixA 2 Rm�n with r clusters and a kernel function�, this method computes the
nonlinear dimension reduced representationx̂ = QTr �(x) 2 R r�1 for any input vectorx 2 Rm�1.

1. Define�ji = � 1nj if ai belongs to the clusterj0 otherwise
for 1 � i � n; 1 � j � r.

2. Compute an orthogonal decompositionC = QrR of the centroid matrixC as in Eqn. (35)
by the modified Gram-Schmidt.

for s = 1; � � � ; r~rss = p< ~s; ~s > =p(�s)TK�s�s = �s=~rss
for t = s+ 1; � � � ; r~rst =< ~qs; ~t >= (�s)TK�t�t = �t � �s~rst
end

end

3. QTr �(x) = [Pni=1 �1i�(ai; x); � � � ;Pni=1 �ri�(ai; x) ℄T :
from the parameters�s can be applied in other context of kernel based feature extraction where
direct derivation of the kernel based method as in Algorithm2 is not possible. We have applied a
similar approach in developing nonlinear discriminant analysis based on the generalized singular
value decomposition, which works successfully regardlessof nonsingularity of the within-cluster
scatter matrix [27]. More discussions about the optimization criteria used in LDA, including the
within-cluster scatter matrix, are given in the next section.

In the Kernel Orthogonal Centroid method, the choice of kernel function will influence the
results as in any other kernel-based methods. However, a general guideline for an optimal choice
of the kernel is difficult to obtain. In the next section, we present the numerical test results that
compare the effectiveness of our proposed method to other existing methods. We also visualize the
effects of various kernels in our algorithms.

4 Computational Test Results

The Kernel Orthogonal Centroid method has been implementedin C on IBM SP at the University
of Minnesota Supercomputing Institute in order to investigate its computational performance. The
prediction accuracy of classification of the test data whosedimension was reduced to the number of
clusters by our KOC method was compared to other existing linear and nonlinear feature extraction
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methods. We used data sets available in the public domain as well as some artificial data we
generated. In addition, the input data with cluster structure are visualized in the 3-dimensional
space after dimension reduction by our proposed method to illustrate the quality of the represented
clustered structure. In the process, we also illustrate theeffect of various kernel functions. We
used two of the most commonly used kernels in our KOC method, which are polynomial kernels�(x; y) = (x � y + 1)d; d > 0
and Gaussian kernels �(x; y) = exp(�kx� yk2=�); � 2 R :

Our experimental results illustrate that when the Orthogonal Centroid method is combined
with a nonlinear mapping, as in the KOC algorithm, with an appropriate kernel function, the linear
separability of the data is increased in the reduced dimensional space. This is due to the nonlinear
dimension reduction achieved by the orthonormal basis of the centroids in the feature space which
maximizes the between-cluster scatter.

4.1 3D Representation of Nonseparable Data

The purpose of our first test is to illustrate how our method produces a lower dimensional repre-
sentation separating the data items which belong to different classes. We present the results from
the Iris plants data of Fisher [28], as well as from an artificial data set that we generated, where the
data points in three clusters in the original space are not separable.

In the Iris data, the given data set has 150 data points in a 4-dimensional space and is clustered
to 3 classes. One class is linearly separable from the other two classes, but the latter two classes
are not linearly separable. Figure 1 shows the data points which are reduced to a 3-dimensional
space by various dimension reduction methods. The leftmostfigure in Figure 1 is obtained by
an optimal rank 3 approximation of the data set from its singular value decomposition, which is
one of the most commonly used techniques for dimension reduction [25]. The figure shows that
after the dimension reduction by a rank 3 approximation fromthe SVD, two of the three classes
are still not quite separated. The second and the third figures in Figure 1 are obtained by our
KOC method with the Gaussian kernel where� = 1 and0:01, respectively. They show that our
Kernel Orthogonal Centroid method combined with the Gaussian kernel function with� = 0:01
gives a 3-dimensional representation of Iris data where allthree clusters are well separated and the
between-cluster relationship is remote.

The artificial data we generated has three classes. Each class consists of 200 data points uni-
formly distributed in the cubic region with height 1.4, width 4 and length 18.5. The three classes
intersect each other as shown in the top left figure of Figure 2, for the total of 600 given data
points. Different kernel functions were applied to obtain the nonlinear representation of these
given data points. In this test, the dimension of the original data set is in fact not reduced, since it
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was given in the 3-dimensional space, and after applying theKOC method, the final dimension is
also 3 which is the number of the clusters. The right top figureshows the new data representation
with a polynomial kernel of degree 4. The lower figures are produced using the Gaussian kernel�(x; y) = exp(�kx�yk2=�) where� = 5 (the left figure) and0:05 (the right figure ), respectively.
As with the Iris data, with the proper kernel function, the three clusters are well separated. It is
interesting to note that the within-cluster relationship also became tighter although the dimension
reduction criterion involves only the between-cluster relationship.

4.2 Performance in Classification

In our second test, the purpose was to compare the effectiveness of dimension reduction from our
KOC method in classification. For this purpose, we compared the accuracy of binary classification
results where the dimension of the data items are reduced by our KOC method as well as by
the kernel Fisher discriminant (KFD) method of Mika et al. [15]. The test results presented in
this section are for binary classifications for comparisonsto KFD which can handle two-class
cases only. For more details on the test data generation and results, see [15], where the authors
presented the kernel Fisher Discriminant(KFD) method for the binary-class with substantial test
results comparing their method to other classifiers.

The Linear Discriminant Analysis optimizes various criteria functions which involve between-
cluster, within-cluster or mixed-cluster scatter matrices [2]. Many of the commonly used criteria
involve the inverse of the within-cluster scatter matrixSw, which is defined as,

Sw = rXi=1 Xj2Ni(aj � i)(aj � i)T ; (40)

requiring this within-cluster scatter matrixSw to be nonsingular. However, in many applications
the matrixSw is either singular or ill-conditioned. One common situation whenSw becomes
singular is when the number of data points is smaller than thedimension of the space where each
data item resides. Numerous methods have been proposed to overcome this difficulty including
the regularization method [29]. A method Howland et al. recently developed called LDA/GSVD,
which is based on the generalized singular value decomposition, works well regardless of the
singularity of the within-cluster scatter matrix. (See [21].) In the KFD analysis, Mika et al. used
regularization parameters to make the within-cluster scatter matrix nonsingular.

Fisher discriminant criterion requires a solution of an eigenvalue problem which is expensive
to compute. In order to improve the computational efficiencyof KFD, several methods have been
proposed, which include the KFD based on a quadratic optimization problem using regulariza-
tion operators or a sparse greedy approximation [30, 31, 32]. In general, quadratic optimization
problems are as costly as the eigenvalue problems. A major advantage of our KOC method is
that its computational cost is substantially lower, requiring computation of a Cholesky factor and
a solution for a linear system where the problem size is the same as the number of clusters. The
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computational savings come from the fact that the within-cluster scatter matrix is not involved in
the optimal dimension reduction criterion [22].

In Table 1, we present the implementation results on seven data sets which Mika et al. have
used in their tests1 [33]. The data sets which are not already clustered or with more than two
clusters were reorganized so that the results have only two classes. Each data set has 100 pairs of
training and test data items which were generated from one pool of data items. For each data set,
the average accuracy is calculated by running these 100 cases. Parameters for the best candidate for
the kernel function and SVM are determined based on a 5 fold cross-validation using the first five
training sets. We repeat their results in the first five columns of Table 1 which show the prediction
accuracies in percentage (%) from the RBF classifier(RBF), AdaBoost(AB), regularized AdaBoost,
SVM and KFD. For more details, see [15].

The results shown in the column for KOC are obtained from thelinear soft margin SVM
classification using the softwaresvmlight [34] after dimension reduction by KOC. The test results
with the polynomial kernel with degree 3 and the Gaussian kernel with an optimal� value for
each data set are presented in Table 1. The results show that our method obtained comparable
accuracy to other methods in all the tests we performed. Using our KOC algorithm, we were able
to achieve substantial computational savings not only due to the lower computational complexity of
our algorithm, but from using alinear SVM. Since no kernel function (oridentitykernel function)
is involved in the classification process by a linear SVM, theparameterw in the representation of
the optimal separating hyperplane f(x) = wTx+ b
can be computed explicitly, saving substantial computation time in the testing stage. In addition,
due to the dimension reduction, kernel function values are computed between much shorter vectors.

Another phenomenon we observed in all these tests is that after the dimension reduction by
KOC, the linear soft margin SVM requires significantly less number of training data points as the
support vectors, compared to the soft margin SVM with the kernel function applied to the original
input data. More details can be found in the next section.

4.3 Performance of the Support Vector Machines

Using the same artificial data that we used in Section 4.1, nowwe compare the performance of
classification on the soft-margin SVMs using the data generated from our KOC, as well as using
the original data. This time, 600 more test data points are generated in addition to the 600 training
data generated for the earlier test in Section 4.1. The test data are generated following the same
rules as the training data, but independently from the training data.

In order to apply the SVMs for a three-class problem, we used the method where after a binary
classification ofC1 vs. notC1 (C1= � C1) is determined, data classified not to be in the class

1The breast cancer data set was obtained from the University Medical Center, Inst. of Oncology, Ljubljana, Yu-
goslavia. Thanks to M. Zwitter and M. Soklic for the data.
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C1 is further classified to be inC2 or C3 (C2=C3). There are three different ways to organize the
binary classifiers for a three-class problem depending on which classifierCi= � Ci, i = 1; 2; 3, is
considered in the first step. One may run all three cases to achieve better prediction accuracy. For
more details, see [35]. We present the results obtained fromC1= � C1 andC2=C3, since all three
ways produced comparable results in our tests.

In Figure 3, the prediction accuracy and the number of support vectors are shown when the
nonlinear soft margin SVM is applied in the original dimension and thelinear soft margin SVM
is applied in the reduced dimension obtained from our KOC algorithm. In both cases, Gaussian
kernels with various� values were used. While the best prediction accuracy among various�
values is similar in both cases, it is interesting to note that the number of support vectors is much
less in the case of the linear soft margin SVM with data in the reduced space. In addition, the
performance and the number of support vectors are less sensitive to the value of� after dimension
reduction by the KOC algorithm.

The test results confirm that the KOC algorithm is an effective method in extracting important
nonlinear features. Once the best features are extracted, the computation of finding the optimal
separating hyperplane and classification of new data becomemuch more efficient. An added benefit
we observed in all our tests is that after the kernel-based nonlinear feature extraction by the KOC
algorithm, another use of the kernel function in the SVM is not necessary. Hence the simple
linear SVM can be effectively used, achieving further efficiency in computation. Another merit
of the KOC method is that after its dramatic dimension reduction, in the classification stage the
comparison between the vectors by any similarity measure such as Euclidean distance (L2 norm)
or cosine becomes much more efficient, since we now compare the vectors withr components
each, rather thanm components each.

5 Conclusion

We have presented a new method for nonlinear feature extraction called the Kernel Orthogonal
Centroid (KOC). The KOC method reduces the dimension of the input data down to the number
of clusters. The dimension reducing nonlinear transformation is a composite of two mappings;
the first implicitly maps the data into a feature space by using a kernel function, and the second
mapping with orthonormal vectors in the feature space is found so that the data items belonging
to different clusters are maximally separated. One of the major advantages of our KOC method
is its computational efficiency, compared to other kernel-based methods such as kernel PCA [14]
or KFD [15, 30, 32] and GDA [16]. The efficiency compared to other nonlinear feature extrac-
tion method utilizing discriminant analysis is achieved byonly considering the between-cluster
scatter relationship and by developing an algorithm which achieves this purpose from finding an
orthonormal basis of the centroids, which is far cheaper than computing the eigenvectors.

The experimental results illustrate that the KOC algorithmachieves an effective lower dimen-
sional representation of the input data which are not linearly separable, when combined with the
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right kernel function. With the proposed feature extraction method, we were able to achieve com-
parable or better prediction accuracy to other existing classification methods in our tests. In addi-
tion, when it is used with the SVM, in all our tests the linear SVM performed as well and with far
less number of support vectors, further reducing the computational costs in the test stage.
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Figure 1: Iris data represented in a 3-dimensional space. The first figure is obtained from a rank
3 approximation by the SVD. The others are by the Kernel Orthogonal Centroid method with
Gaussian kernel�(x; y) = exp(�kx � yk2=�) where� = 1(the second) and 0:01(the third).
Using Gaussian kernel with� = 0:01, our method obtained a complete separation of the three
classes.
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Figure 2: The top left figure is the training data with 3 clusters in a 3-dimensional space. The top
right figure is generated by the Kernel Orthogonal Centroid method with a polynomial kernel of
degree 4. The bottom left and bottom right figures are from theKOC algorithm using Gaussian
kernels with width 5 and 0.05, respectively.

20



Results from [15] KOC
RBF AB ABR SVM KFD Gaussian poly. d=3

Banana 89:2 87.7 89.1 88.5 89:2 89:1 � = 0:1 65.9
B.cancer 72.4 69.6 73.5 74.0 74:2 75.0 5.0 76:4
German 75.3 72.5 75.7 76:4 76.3 76:3 6.0 74.6
Heart 82.4 79.7 83.5 84:0 83.9 83.9 49.0 84:9

Thyroid 95.5 95.6 95.4 95.2 95:8 95:5 1.8 88.9
Titanic 76.7 77.4 77.4 77:6 76.8 77:3 33.0 76.2

Twonorm 97.1 97.0 97.3 97.0 97:4 97:6 38.0 97:6
Table 1: The prediction accuracies are shown. The first part (RBF to KFD) is from [15]: classifi-
cation accuracy from a single RBF classifier(RBF), AdaBoost(AB), regularized AdaBoost, SVM
and KFD. The last two columns are from the Kernel Orthogonal Centroid method using Gaussian
kernels (optimal� values shown) and a polynomial kernel of degree 3. For each test, the best
prediction accuracy result is shown in boldface.
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Figure 3: Classification results on the artificial data usinga soft margin SVM. The left graph shows
the prediction accuracy in the full input space by a SVM with aGaussian kernel (dashed line), and
that in the reduced dimensional space obtained by our KOC method with a Gaussian kernel and a
linear SVM (solid line). The right graph compares the numberof support vectors generated in the
training process. While the best accuracy is similar in bothcases, the overall number of support
vectors is much less when the reduced dimensional representation is used in a linear SVM.
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