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Abstract

A nonlinear feature extraction method is presented whichreduce the data dimension
down to the number of clusters, providing dramatic savimgsamputational costs. The di-
mension reducing nonlinear transformation is obtainednlicitly mapping the input data
into a feature space using a kernel function, and then findiimgear mapping based on an or-
thonormal basis of centroids in the feature space that nelkirseparates the between-cluster
relationship. The experimental results demonstrate thanhtethod is capable of extracting
nonlinear features effectively so that competitive parfance of classification can be obtained
with linear classifiers in the dimension reduced space.

Keywords. cluster structure, dimension reduction, kernel funcjdfernel Orthogonal Cen-
troid (KOC) method, linear discriminant analysis, noniinéeature extraction, pattern classi-
fication, support vector machines

1 Introduction

Dimension reduction in data analysis is an important preggsing step for speeding up the main
tasks and reducing the effect of noise. Nowadays, as the mnodualata grows larger, extracting
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the right features is not only a useful preprocess step berbes necessary for efficient and
effective processing, especially for high dimensionabdathe Principal Component Analysis
(PCA) and the Linear Discriminant Analysis (LDA) are two bétmost commonly used dimension
reduction methods. These methods search optimal directorthe projection of input data onto
a lower dimensional space [1, 2, 3]. While the PCA finds thedion along which the data
scatterness is greatest, the LDA searches the directiachwimximizes the between-cluster scatter
and minimizes the within-cluster scatter. However, thesthods have a limitation for the data
which are not linearly separable since it is difficult to eaapta nonlinear relationship with a linear
mapping. In order to overcome such a limitation, nonlinedersions of these methods have been
proposed [4, 5, 6].

One way for a nonlinear extension is to lift the input space toigher dimensional feature
space by a nonlinear feature mapping and then to find a ling@rgion reduction in the feature
space. It is well known that kernel functions allow such muedr extensions without explicitly
forming a nonlinear mapping or a feature space, as long gxthiem formulation involves only
the inner productsbetween the data points and never the data points themdélv8s9]. The
remarkable success of the support vector machine learsgag éxample of the effective use of the
kernel functions [10, 11, 12, 13]. The kernel Principal Camgnt Analysis (kernel PCA) [14] and
the generalized Discriminant Analysis [15, 16, 17, 18] haaeently been introduced as nonlinear
generalizations of the PCA and the LDA by kernel functiomrspectively, and some interesting
experimental results are presented. However, the PCA andlDiA require solutions from the
singular value decomposition and generalized eigenvaiolelgm, respectively. In general, these
decompositions are expensive to compute when the trairatey skt is large and especially when
the problem dimension becomes higher due to the mapping @atare space. In addition, the
dimension reduction from the PCA does not reflect the claststructure in the data well [19].

The centroid of each cluster minimizes the sum of the squadistdnces to vectors within the
cluster and it yields a rank one approximation of the clugt8j. In the Orthogonal Centroid
method [19] the centroids are taken as representativeschf @aster and the vectors of the in-
put space are transformed by an orthonormal basis of theesgnned by the centroids. This
method provides a dimension reducing linear transformaii@serving the clustering structure in
the given data. The relationship between any data pointcantioids measured bi,-norm or
cosine in the full dimensional space is completely preskimehe reduced space obtained with
this transformation [19, 20]. Also it is shown that this medmaximizes between-cluster scatter
over all the transformations with orthonormal vectors [24].

In this paper, we apply the centroid-based orthogonal toamation, the Orthogonal Cen-
troid algorithm, to the data transformed by kernel-basealinear mapping and show that it can
extract nonlinear features effectively, thus reducingdh&é dimension down to the number of
clusters and saving the relative computational cost. Ini@e@, we briefly review the Orthogo-
nal Centroid method which is a dimension reduction methakbtan an orthonormal basis for
the centroids. In Section 3, we derive the new Kernel Ortihag€entroid method extending the
Orthogonal Centroid method using kernel functions to hamadinlinear feature extraction and an-
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alyze the computational complexity of our new method. Ouyegdnental results presented in
Section 4 demonstrate that the new nonlinear Orthogonat@dmethod is capable of extracting
nonlinear features effectively so that competitive cléssiion performance can be obtained with
linear classifiers after nonlinear dimension reductionaddition, it is shown that once we obtain
a lower dimensional representationljreear soft margin Support Vector Machine (SVM) is able
to achieve high classification accuracy with much less nurmobsupport vectors, thus reducing
prediction costs as well.

2 Orthogonal Centroid Method
Given a vector space representation,
A= [ala"' :an] e R™*"

of a data set of vectors in an-dimensional space, dimension reduction by linear transition
is to find GT € R*™ that maps a vector to a vector: for somel < m:

GT:z e R™! - 2 e R je Glz=3. (1)

In particular, we seek for a dimension reducing transfoiomat:” with which the cluster struc-
ture existing in the given datd is preserved in the reduced dimensional space. Egn. (1)&an b
rephrased as finding a rank reducing approximatiod stich that

min |A — GY |, whereG € R™ ! andY € R>*", (2)

For simplicity, we assume that the data matfixs clustered into clusters as
A=[A, Ay, A] where A, e R™™  and an =n. (3)
=1

Let V; denote the set of column indices that belong to the clusfEine centroid:; of each cluster
A; is the average of the columns i, i.e.,

1
c; = —Aiei where €; = [1, . 1]T € RniXI (4)
g

and the global centroidis defined as

1 n
- -Y 5



Algorithm 1 Orthogonal Centroid method

Given a data matri¥d € R™*" with r clusters and a data poimte R™*!, it computes a matrix
Q, € R™" and gives a-dimensional representatian= Q,” z € R™*!,

1. Compute the centroid of theith cluster forl < i <r.
2. Set the centroid matri&' = [cy,ca, - , ¢,
3. Compute an orthogonal decompositiorcgfwhich isC = @, R.

4. 7 = QT z gives ar-dimensional representation of

The centroid of each cluster is the vector that minimizesstma of squared distances to vectors
within the cluster. That is the centroid vectgrgives the smallest distance in Frobenius norm
between the matrix; and the rank one approximation? where

|4 —cief 5= llaj—elz= min  Ja; —zl3= min [|4 —zef (7. (6)
) rERmM X ) rcRmx1
JEN; JEN;
Taking the centroids as representatives of the clusterdjnglean orthonormal basis of the
space spanned by the centroids by computing an orthogooahgmsition

R
c-q|y ] ™
of the centroid matrix
C = [017"' acr] € Rmxr’
where@ = [q1, -+ ,¢n] € R™™ is an orthogonal matrix with orthonormal columns aRdc
R™" is an upper triangular matrix. Taking the firstolumns ofQ), we obtain
C= QTR with QT = [qh e 7qr}7 (8)

where the columns of), is an orthonormal basis faRange(C') spanned by the columns 6f
when the columns of’ are linearly independent. The algorithm can easily be mexdlifvhen the
columns ofC are not linearly independent. The matrk” gives a dimension reducing linear
transformation preserving the clustering structure indbese that the relationship between any
data item and a centroid measured usingnorm or cosine in the full dimensional space is com-
pletely preserved in the reduced dimensional space [19,1208 method is called the Orthogonal
Centroid method and is summarized in Algorithm 1. Moreoesrwe show in Section 3, this
assumption is no longer needed in our new Kernel OrthogoeatrGid method.

It is shown that the linear transformation obtained in thth@gonal Centroid method solves a
trace optimization problem, providing a link between thetmes of linear discriminant analysis
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and those based on centroids [22]. Dimension reduction byLthear Discriminant Analysis
searches for a linear transformation which maximizes thed@n-cluster scatter and minimizes
the within-cluster scatter. The between-cluster scattgririis defined as

Sp = (ci —c)ei — C)T = ni(c; —e)(c; — C)T 9

i=1 jEN; =1
and
trace(Sp) = (ci—c)'(c; —¢c) = llei — clf3. (10)
i=1 jeN; i=1 jeN;

Let’s consider a criterion that involves only the betweérster scatter matrix, i.e., to find a
dimension reducing transformati@®’ € R'*™ such that the columns @ are orthonormal and
trace(G' S,G) is maximized. Note thatank(S,) can not exceed — 1. Accordingly,

trace(Sp) = A\p + -+ A g (11)
where);’s, 1 <i < r-—1, are the-— 1 eigenvalues of,. Denoting the corresponding eigenvectors
asu;’s, foranyl > r — 1 andU, = [uy, -+, w, we have

trace(UlTSbUl) = )\1 + -+ >\l = )\1 + o4 /\T,l. (12)

In addition, for anyG € R™*! which has orthonormal columns,

trace(GTS,G) < trace(Sp). (13)
Hencetrace(GT S,G) is maximized whert is chosen ag/; for anyl > r — 1 and

trace(U;” SyU;) = trace(Sy), (14)

according to Egns. (11) and (12).
For an eigenvalue and eigenvector gaifu) of S,, we have

Au = Spu = ni(c; —c)(ci —o)Tu= " (nic; — c)"u)(c; — c). (15)

i=1 =1

Therefore,u € span{c; — ¢|/1 < i < r}, andu € span{¢;|1 < i < r}. Finally, the orthogonal
decompositiorC = @, R of the centroid matribxC' = [cy, o, -+, ¢, ] in the Orthogonal Centroid
method gives

Range(Q,) = Range(C) = Range(U,). (16)



Eqgn. (16) implies that
Q,=UW 17)
for some orthogonal matrid” € R"™*". Since
trace(G? S,G) = trace(W ' GT S,GW)
for any orthogonal matrixy € R™*" (see [21] for more detailsy), also satisfies
trace(Q” S,Q,) = trace(S)). (18)

So, instead of computing the eigenvectoys, i = 1,--- ,r — 1, we simply need to computg,,
which is much less costly. Therefore, by computing an ontimad) decomposition of the centroid
matrix we obtain a solution that maximizasce(G” S,G) over allG with orthonormal columns.

3 Kernel Orthogonal Centroid Method

Although alinear hyperplane is a natural choice as a boyrtdaeparate clusters it has limitations
for nonlinearly structured data. To overcome this limaative map input data to a feature space
(possibly an infinite dimensional space) through a nonlifeature mapping

d:S Cc R » Fc RV (19)

which transforms input data into linearly separable strrect Without knowing the feature map-
ping ® or the feature spac& explicitly, we can work on the feature spagéthrough kernel
functions, as long as the problem formulation depends onlyhe inner products between data
points inF and not on the data points themselves. For any kernel fungtgatisfying Mercer’s
condition, there exists a reproducing kernel Hilbert spdcand a feature mag such that

K(r,y) =< ®(z), 2(y) > (20)

where< , > is an inner product irff [9, 23, 24]. As positive definite kernel functions satistyin
Mercer’'s condition, polynomial kernel

K(z,y) = (n(z-y) +72)%d > 0andy;, 7, € R (21)
and Gaussian kernel
k(z,y) = exp(—[lz —y|*/0),0 € R (22)

are in wide use.



Next we show how the Orthogonal Centroid algorithm can belioed with the kernel func-
tion to produce a nonlinear dimension reduction method wiimes not require the feature map-
ping @ or the feature spacg explicitly. Let ® be a feature mapping artlbe the centroid matrix
of ®(A), where the input data matrit hasr clusters. Consider the orthogonal decomposition

C=0,R (23)

of C whereQ, € RY*" has orthonormal columns arkl € R"*" is a nonsingular upper triangular
matrix [25]. We apply the Orthogonal Centroid algorithmdi@A) to reduce the data dimension
to r, the number of clusters in the input data. Then for any datatpoc R™*!, the dimension
reduced representation ofin ar-dimensional space will be given 7 ®(x).

We now show how we can calcula@ @ (z) without knowing® explicitly, i.e., without know-
ing C explicitly. The centroid matrix in the feature space is

1 1
C=|— @), ,—  ®a;)| € RN, (24)
ny . Ny
1€ Ny 1€ N,
Hence
CT’C=M"KM, (25)

whereK € R " is the kernel matrix with

K(i,j) = k(a;,a;) =< ®(a;), ®(a;) > for1 <i,j <n (26)
and
1 ... L 9 0
%1 Tf)l 1 .. L 00 ... o 0
MT = " "o € R™", (27)
0 ) 0 - L

Since the kernel matriX” is symmetric positive definite and the matfix has linearly independent
columns,C*C is also symmetric positive definite. The Cholesky decontjmwsiof CTC gives a
nonsingular upper triangular matrik such that

C'C=R'"R. (28)
Since

Q,=CR™! (29)



Algorithm 2 Kernel Orthogonal Centroid Method

Given a data matrixd € R™*" with r clusters and index sefg;, i = 1, -- - , » which denote the set
of the column indices of the data in the clusteand a kernel functionr, this algorithm computes
nonlinear dimension reduced representatica Q7 ®(x) € R™*! for any input vectorr € R™*!.

1. Formulate the kernel matriX based on the kernel functionas
K(i,j) = k(a;,a),1 <i,j <n.
2. ComputeC”C = MT K M where

[ 1/n; ifieN,
M(i, j) = { 0 otherwise

3. Compute the Cholesky fact® of CTC: C*'C = RTR.

4. The solutionz for the linear system

n% ZieNl k(ai, )

n_lr ZieNT ’%(aia x)

givesr-dimensional representation of

from (23), we have

n% ZiEN1 ’%(ai’ l’)
Q;¢(z) = (RT)'CT®(z) = (R7")" : (30)

% ZiENT H(aia 113)

Due to the assumption that the kernel functiois symmetric positive definite, the matriX'C
is symmetric positive definite and accordingly the centnmidtrix C has linearly independent
columns. We summarize our algorithm in Algorithm 2 the Ké@ethogonal Centroid (KOC)
method.

We now briefly discuss the computational complexity of the@@lgorithm where one flop
(floating point operation) represents roughly what is regfito do one addition (or subtraction)
and one multiplication (or division) [26]. We did not incledhe cost for evaluating the kernel
functions«(a;, a;) andk(a;, z) since this is required in any kernel-based methods, anddsie c



depends on the specific kernel function. In Algorithm 2, tamputation of
C'C=M"KM

requiresn? + rn flops taking advantage of the special structure of the matri>xCholesky decom-
position of CTC for obtaining the upper triangular matriR in (28) takesO(%) flops sinceC”C
is r x r wherer is the number of clusters. Once we obtain the upper triangnédrix R, then
the lower dimensional representation= Q7 ®(z) of a specific input: can be computed without
computingR !, but from solving a linear system

neieny K@i )

R"% = : : (31)

n_lr i€EN, ’{(aiﬁ l‘)

which requires()(§ + n) flops. Typically the number of clusters is much smaller thantbtal
number of training samples Therefore, the complexity in nonlinear dimensional reatuncby the
Kernel Orthogonal Centroid method presented in Algorithisx2(n?). However, the kernel-based
LDA or PCA needs to handle an eigenvalue problem of size: wheren is the number of training
samples, which is more expensive to compute [14, 15, 16].refbee, the Kernel Orthogonal
Centroid method is an efficient dimension reduction metiad ¢an reflect the nonlinear cluster
relation in the reduced dimensional representation.

Alternatively, the dimension reduced representatdfib(x) given by the KOC method can be
derived as follows. Represent the centroid mafrir the feature space, given by Eqgn. (24), as

n n

C= [617' o 76T} = BZI(I)(az)v T B:q)(az) (32)

i=1 =1

whereﬁf is ni if a; belongs to the clustey, otherwise/Bf Is 0. Now, consider the orthogonal
.-, . J
decomposition

C=9,R (33)
of C. Since the columns d®, can be represented as a linear combination of the columihslogéy
in turn can be expressed as a linear combination of the \&®tar), i = 1,--- ,n, as

Qr = [dla e 7@7‘] = azch)(az) A O‘:Cb(al) : (34)

=1 =1

In order to computed” ®(z), first we will show how we can find the coefficientd’s from the



given3’’s where

C = ﬁilq)(ai) yT Bi®(a;) (35)
1=1 =1
n n 7:11 e 7:17‘
= O‘ilq)(ai) T O‘;ﬂq)(ai) 0
=1 =1 0 0 ’Frr

without knowing® explicitly. Note that we can calculate inner products betwéhe centroids in
the feature space through the kernel maitias

n T n
< G, Cp >= < Bf‘b(ai)) ( Bf‘b(ai)) = (") KB, (36)
i=1 i=1
wheres3® = [35,---,35]". In addition, the vectors
5 Cs ~ _ < Cg, Cp > _
s=—F——— and p=¢———— ¢, 1<s<t<m, 37
b=z s e e > ’ ' (37)

that would appear in the modified Gram-Schmidt process ofottimg Q,. are orthogonal vectors
such that

Span{ﬁsapvt} = Span{ém 675} (38)

From Egns. (36) and (37), we can repregergndp; as linear combinations df(a;),i = 1,--- , n.
Based on these observations, we can apply the modified Gclimi&t method [25] to the centroid
matrix C to compute an orthonormal basis of the centroids, even thawggonly have an implicit
representation of the centroids in the feature space. Meaarthonormal basi@, is obtained, i.e.,
the coefficientsy{’s of g, = |, ai®(a;), 1 < s < r are found, then the reduced dimensional
representatio®” ®(z) can be computed from

?:1 O‘il/{(aiv (L’)
Q) ®(z) = : : (39)

;’2:1 O‘;'ﬂn(aia x)

This approach is summarized in Algorithm 3.

Algorithm 3, the Kernel Orthogonal Centroid method, reqa(r)(gn?) flops for the orthogo-
nal decomposition of the centroid matthandO(rn) flops for obtaining the reduced dimensional
representatior@” ®(z) for any input vectorz € R™*!. Hence the total complexity of Algo-
rithm 3 is slightly higher than Algorithm 2. However, the apach of finding the parametess
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Algorithm 3 Kernel Orthogonal Centroid method by the modified Gram-Sdhm

Given a data matrixd € R™*™ with r clusters and a kernel functiot) this method computes the
nonlinear dimension reduced representatica Q" ®(z) € R™! for any input vector: € R™*!.

o L if a; belongs to the cluster
1. Defines! = ™ i 0% g 9 fori1<i<n,1<j<r.
0 otherwise

2. Compute an orthogonal decompositon= 9, R of the centroid matrixC as in Eqn. (35)
by the modified Gram-Schmidt.

fors=1,---,r
Tes = V< Cs,Cs > = £/ (B5)TK(*
a® :/Bs/fss

for t=s+1,---,r
Foo =< s, & >= (a*)" K
6t = ﬁt - asfst
end
end

3. qu’(x) = [ ?:1 ailﬁ(aivx)v T ?:1 Ozgli(ai,x)]T

from the parameters® can be applied in other context of kernel based feature aidrawhere
direct derivation of the kernel based method as in Algorithia not possible. We have applied a
similar approach in developing nonlinear discriminantlgsia based on the generalized singular
value decomposition, which works successfully regardiégsonsingularity of the within-cluster
scatter matrix [27]. More discussions about the optimaratiriteria used in LDA, including the
within-cluster scatter matrix, are given in the next settio

In the Kernel Orthogonal Centroid method, the choice of &kfanction will influence the
results as in any other kernel-based methods. However,ex@eguideline for an optimal choice
of the kernel is difficult to obtain. In the next section, wegent the numerical test results that
compare the effectiveness of our proposed method to otlsimexmethods. We also visualize the
effects of various kernels in our algorithms.

4 Computational Test Results

The Kernel Orthogonal Centroid method has been implemeant€dbn IBM SP at the University

of Minnesota Supercomputing Institute in order to investiggts computational performance. The
prediction accuracy of classification of the test data whilisension was reduced to the number of
clusters by our KOC method was compared to other existiggliand nonlinear feature extraction
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methods. We used data sets available in the public domaineisass some artificial data we

generated. In addition, the input data with cluster stmgctre visualized in the 3-dimensional
space after dimension reduction by our proposed methoblistrite the quality of the represented
clustered structure. In the process, we also illustrateeffext of various kernel functions. We

used two of the most commonly used kernels in our KOC methbdtiware polynomial kernels

Kz, y) = (z-y+1)%d >0
and Gaussian kernels
K(z,y) = exp(—|z - y|?/0),0 € R.

Our experimental results illustrate that when the Orthagd&®entroid method is combined
with a nonlinear mapping, as in the KOC algorithm, with anrappiate kernel function, the linear
separability of the data is increased in the reduced dirnaatspace. This is due to the nonlinear
dimension reduction achieved by the orthonormal basiseotémtroids in the feature space which
maximizes the between-cluster scatter.

4.1 3D Representation of Nonseparable Data

The purpose of our first test is to illustrate how our methaatipces a lower dimensional repre-
sentation separating the data items which belong to diffeskasses. We present the results from
the Iris plants data of Fisher [28], as well as from an artfidiata set that we generated, where the
data points in three clusters in the original space are rpatraéle.

In the Iris data, the given data set has 150 data points iniméfsional space and is clustered
to 3 classes. One class is linearly separable from the otfeectasses, but the latter two classes
are not linearly separable. Figure 1 shows the data pointshvdre reduced to a 3-dimensional
space by various dimension reduction methods. The leftfiguste in Figure 1 is obtained by
an optimal rank 3 approximation of the data set from its siagualue decomposition, which is
one of the most commonly used techniques for dimension teatuf25]. The figure shows that
after the dimension reduction by a rank 3 approximation ftaemSVD, two of the three classes
are still not quite separated. The second and the third guré-igure 1 are obtained by our
KOC method with the Gaussian kernel where= 1 and0.01, respectively. They show that our
Kernel Orthogonal Centroid method combined with the Gauskernel function withv = 0.01
gives a 3-dimensional representation of Iris data wherdnede clusters are well separated and the
between-cluster relationship is remote.

The artificial data we generated has three classes. Eachadasists of 200 data points uni-
formly distributed in the cubic region with height 1.4, wid¢ and length 18.5. The three classes
intersect each other as shown in the top left figure of Figyrio2the total of 600 given data
points. Different kernel functions were applied to obtdie honlinear representation of these
given data points. In this test, the dimension of the oribitzdia set is in fact not reduced, since it
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was given in the 3-dimensional space, and after applyindgK®@€ method, the final dimension is
also 3 which is the number of the clusters. The right top figl@wvs the new data representation
with a polynomial kernel of degree 4. The lower figures aredpoed using the Gaussian kernel
k(z,y) = exp(— ||z —y||* /o) whereo = 5 (the left figure) and.05 (the right figure ), respectively.
As with the Iris data, with the proper kernel function, theeth clusters are well separated. It is
interesting to note that the within-cluster relationshgoeébecame tighter although the dimension
reduction criterion involves only the between-clusteatienship.

4.2 Performance in Classification

In our second test, the purpose was to compare the effeeigasf dimension reduction from our
KOC method in classification. For this purpose, we comparedtcuracy of binary classification
results where the dimension of the data items are reducedubyX©C method as well as by
the kernel Fisher discriminant (KFD) method of Mika et al5]1 The test results presented in
this section are for binary classifications for comparistm&FD which can handle two-class
cases only. For more details on the test data generationesnits, see [15], where the authors
presented the kernel Fisher Discriminant(KFD) method ler hinary-class with substantial test
results comparing their method to other classifiers.

The Linear Discriminant Analysis optimizes various ciigifunctions which involve between-
cluster, within-cluster or mixed-cluster scatter mawsi¢2]. Many of the commonly used criteria
involve the inverse of the within-cluster scatter mat$ix, which is defined as,

Sw = (a; —ci)(a; — ;)T (40)

i=1 jGNi

requiring this within-cluster scatter matri, to be nonsingular. However, in many applications
the matrix S,, is either singular or ill-conditioned. One common situatawhen S,, becomes
singular is when the number of data points is smaller thamlitmension of the space where each
data item resides. Numerous methods have been proposeérmme this difficulty including
the regularization method [29]. A method Howland et al. ntlgedeveloped called LDA/GSVD,
which is based on the generalized singular value deconiposivorks well regardless of the
singularity of the within-cluster scatter matrix. (See][21n the KFD analysis, Mika et al. used
regularization parameters to make the within-clustertecatatrix nonsingular.

Fisher discriminant criterion requires a solution of aneeiplue problem which is expensive
to compute. In order to improve the computational efficieatiKFD, several methods have been
proposed, which include the KFD based on a quadratic opditioia problem using regulariza-
tion operators or a sparse greedy approximation [30, 31, B2¢§eneral, quadratic optimization
problems are as costly as the eigenvalue problems. A majanéage of our KOC method is
that its computational cost is substantially lower, reipgircomputation of a Cholesky factor and
a solution for a linear system where the problem size is theesas the number of clusters. The
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computational savings come from the fact that the withirstdr scatter matrix is not involved in
the optimal dimension reduction criterion [22].

In Table 1, we present the implementation results on sevens#gds which Mika et al. have
used in their tests[33]. The data sets which are not already clustered or withentisan two
clusters were reorganized so that the results have only lwgses. Each data set has 100 pairs of
training and test data items which were generated from opnegdalata items. For each data set,
the average accuracy is calculated by running these 106.daaeameters for the best candidate for
the kernel function and SVM are determined based on a 5 falssevalidation using the first five
training sets. We repeat their results in the first five colsmiTable 1 which show the prediction
accuracies in percentage (%) from the RBF classifier(RBEaB00st(AB), regularized AdaBoost,
SVM and KFD. For more details, see [15].

The results shown in the column for KOC are obtained fromlihear soft margin SVM
classification using the softwasem!9" [34] after dimension reduction by KOC. The test results
with the polynomial kernel with degree 3 and the Gaussiandewnith an optimals value for
each data set are presented in Table 1. The results showuhatethod obtained comparable
accuracy to other methods in all the tests we performed.dJsim KOC algorithm, we were able
to achieve substantial computational savings not only dtiget lower computational complexity of
our algorithm, but from using Bnear SVM. Since no kernel function (adentity kernel function)
is involved in the classification process by a linear SVM, pheametetw in the representation of
the optimal separating hyperplane

fz)=wlz +b

can be computed explicitly, saving substantial computetiime in the testing stage. In addition,
due to the dimension reduction, kernel function values angputed between much shorter vectors.

Another phenomenon we observed in all these tests is that thi® dimension reduction by
KOC, the linear soft margin SVM requires significantly lessnber of training data points as the
support vectorscompared to the soft margin SVM with the kernel functionlagapto the original
input data. More details can be found in the next section.

4.3 Performance of the Support Vector Machines

Using the same artificial data that we used in Section 4.1, weveompare the performance of
classification on the soft-margin SVMs using the data geadriicom our KOC, as well as using
the original data. This time, 600 more test data points aneigged in addition to the 600 training
data generated for the earlier test in Section 4.1. The tstale generated following the same
rules as the training data, but independently from the itngidata.

In order to apply the SVMs for a three-class problem, we usedrtethod where after a binary
classification ofC; vs. notC; (Cy/ ~ C,) is determined, data classified not to be in the class

1The breast cancer data set was obtained from the Universitiddl Center, Inst. of Oncology, Ljubljana, Yu-
goslavia. Thanks to M. Zwitter and M. Soklic for the data.
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C1 is further classified to be 6, or C5 (Cy/C3). There are three different ways to organize the
binary classifiers for a three-class problem depending dniwtlassifierC;/ ~ C;, i = 1,2, 3, is
considered in the first step. One may run all three cases tewachetter prediction accuracy. For
more details, see [35]. We present the results obtained ffpm~ C; andC,/C3, since all three
ways produced comparable results in our tests.

In Figure 3, the prediction accuracy and the number of suppmtors are shown when the
nonlinear soft margin SVM is applied in the original dimemsiand thdinear soft margin SVM
is applied in the reduced dimension obtained from our KO®@ratigm. In both cases, Gaussian
kernels with variousr values were used. While the best prediction accuracy amanguso
values is similar in both cases, it is interesting to note the number of support vectors is much
less in the case of the linear soft margin SVM with data in #@uced space. In addition, the
performance and the number of support vectors are lesdigensithe value ot after dimension
reduction by the KOC algorithm.

The test results confirm that the KOC algorithm is an effecthethod in extracting important
nonlinear features. Once the best features are extratted:oimputation of finding the optimal
separating hyperplane and classification of new data beowmbk more efficient. An added benefit
we observed in all our tests is that after the kernel-basetimear feature extraction by the KOC
algorithm, another use of the kernel function in the SVM id¢ necessary. Hence the simple
linear SVM can be effectively used, achieving further effiry in computation. Another merit
of the KOC method is that after its dramatic dimension reidugtin the classification stage the
comparison between the vectors by any similarity measuwi as Euclidean distancé{ norm)
or cosine becomes much more efficient, since we now comparegdttors withr components
each, rather tham components each.

5 Conclusion

We have presented a new method for nonlinear feature extnacalled the Kernel Orthogonal
Centroid (KOC). The KOC method reduces the dimension of ipaiti data down to the number
of clusters. The dimension reducing nonlinear transfoionait a composite of two mappings;
the first implicitly maps the data into a feature space bygaisirkernel function, and the second
mapping with orthonormal vectors in the feature space isdoso that the data items belonging
to different clusters are maximally separated. One of thpmnadvantages of our KOC method
is its computational efficiency, compared to other kerreddal methods such as kernel PCA [14]
or KFD [15, 30, 32] and GDA [16]. The efficiency compared toastimonlinear feature extrac-
tion method utilizing discriminant analysis is achieveddily considering the between-cluster
scatter relationship and by developing an algorithm whidhieves this purpose from finding an
orthonormal basis of the centroids, which is far cheaper twanputing the eigenvectors.

The experimental results illustrate that the KOC algoridchieves an effective lower dimen-
sional representation of the input data which are not ligeseparable, when combined with the
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right kernel function. With the proposed feature extrattioethod, we were able to achieve com-
parable or better prediction accuracy to other existingsifecation methods in our tests. In addi-
tion, when it is used with the SVM, in all our tests the linesf\&performed as well and with far
less number of support vectors, further reducing the coatjunal costs in the test stage.
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Figure 1: Iris data represented in a 3-dimensional space.fif$t figure is obtained from a rank

3 approximation by the SVD. The others are by the Kernel @uinal Centroid method with
Gaussian kernek(z,y) = exp(—||z — y||*/o) whereo = 1(the seconyland 0.01(the third).
Using Gaussian kernel with = 0.01, our method obtained a complete separation of the three

classes.
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Figure 2: The top left figure is the training data with 3 cluste a 3-dimensional space. The top
right figure is generated by the Kernel Orthogonal Centroedhod with a polynomial kernel of
degree 4. The bottom left and bottom right figures are fromkB®€ algorithm using Gaussian
kernels with width 5 and 0.05, respectively.
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Results from [15] KOC
RBF | AB | AB; | SVM | KFD Gaussian | poly. d=3
Banana | 89.2 | 87.7| 89.1 | 88.5|89.2 | 89.1 | 0 =0.1 65.9

B.cancer|| 72.4 | 69.6| 73.5| 74.0| 74.2 | 75.0 5.0 76.4
German || 75.3| 725 75.7 | 76.4 | 76.3 || 76.3 6.0 74.6

Heart 82.4|79.7| 83.5| 84.0 | 83.9| 83.9| 49.0 84.9
Thyroid || 95.5| 95.6| 95.4 | 95.2 | 95.8 || 95.5 1.8 88.9

Titanic 76.7 |\ 77.4| 774 | 776 | 76.8 | 77.3 33.0 76.2
Twonorm| 97.1| 97.0| 97.3| 97.0 | 974 | 97.6 38.0 97.6

Table 1: The prediction accuracies are shown. The first pBE(to KFD) is from [15]: classifi-
cation accuracy from a single RBF classifier(RBF), AdaB@}, regularized AdaBoost, SVM
and KFD. The last two columns are from the Kernel Orthogoraitt®id method using Gaussian
kernels (optimalr values shown) and a polynomial kernel of degree 3. For easthttee best
prediction accuracy result is shown in boldface.
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Figure 3: Classification results on the artificial data usisgpft margin SVM. The left graph shows
the prediction accuracy in the full input space by a SVM witBaussian kernel (dashed line), and
that in the reduced dimensional space obtained by our KOGadewith a Gaussian kernel and a
linear SVM (solid line). The right graph compares the nuntdfesupport vectors generated in the
training process. While the best accuracy is similar in lwatbes, the overall number of support
vectors is much less when the reduced dimensional repegssnis used in a linear SVM.
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