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Abstract.- We compute glueball masses for even spins ranging from 0 to 6, in the D = 2 + 1
SU(2) lattice gauge theory. We do so over a wide range of lattice spacings, and this allows a well-
controlled extrapolation to the continuum limit. When the resulting spectrum is presented in the
form of a Chew-Frautschi plot we find that we can draw a straight Regge trajectory going through
the lightest glueballs of spin 0, 2, 4 and 6. The slope of this trajectory is small and turns out to
lie between the predictions of the adjoint-string and flux-tube glueball models. The intercept we
find, α0 ∼ −1, is much lower than is needed for this leading trajectory to play a ‘Pomeron-like’
role of the kind it is often believed to play in D = 3 + 1. We elaborate the Regge theory of high
energy scattering in 2 space dimensions, and we conclude, from the observed low intercept, that
high-energy glueball scattering is not dominated by the leading Regge pole exchange, but rather by
a more complex singularity structure in the region 0 ≤ Reλ ≤ 1

2
of the complex angular momentum

λ plane. We show that these conclusions do not change if we go to larger groups, SU(N > 2), and
indeed to SU(∞), and we contrast all this with our very preliminary calculations in the D=3+1
SU(3) gauge theory.
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1 Introduction

On a Chew-Frautschi plot (J versus m2) the experimentally observed mesons and baryons appear
to lie on (nearly) linear and parallel Regge trajectories, J = α0 + α′m2, with the exchange of
the corresponding Regge poles (normally) dominating any high energy scattering that involves the
exchange of non-trivial quantum numbers [1]. The total cross-section, on the other hand, is related
by unitarity to forward elastic scattering and this is dominated by the ‘Pomeron’ which carries
vacuum quantum numbers [1, 2, 3]. The Pomeron trajectory is qualitatively different from other
Regge trajectories in that it appears to be much flatter (α′ much smaller) and it is not clear what
physical particles correspond to integer values of J . There are long-standing speculations that
these might be glueballs. Thus if one were to calculate the mass spectrum of the SU(3) gauge
theory one could investigate whether the glueball masses fall on linear trajectories and whether
these trajectories have the properties of the Pomeron.

Of course one does not expect the leading glueball trajectory to be exactly like the Pomeron
since in the real world there will be mixing between glueballs and flavour-singlet qq̄ mesons; just
as the usual meson/baryon trajectories cannot be exactly linear because the higher-J mesons are
unstable. It is only in the limit of SU(N → ∞) that one can expect exactly linear trajectories
(no decays) and the leading glueball Regge trajectory to be the Pomeron (no mixing). However
there are good heuristic arguments to believe that QCDN=3 is close to QCDN=∞ [4], and lattice
calculations support this idea to the extent that they have shown that for pure gauge theories even
N = 2 is ‘close to’ N = ∞ [5].

Although it is now easy to calculate the lightest masses of a pure gauge theory using lattice
Monte Carlo simulations, calculating masses of higher J states is more subtle because a cubic lattice
respects only a small subgroup of the full rotation group and each representation of this subgroup
contains states that correspond to different J in the continuum limit. This difficulty is compounded
by the fact that the higher J states, being heavier, are more difficult to calculate accurately. In
a recent paper [6] we have developed techniques for identifying states of arbitrary J on a lattice
and we are now in the process of applying these techniques to determine if glueballs fall on linear
Regge trajectories and if so whether the leading trajectory has the characteristics of the Pomeron.

In this paper we address this question in the context of the D = 2+ 1 SU(2) gauge theory. At
first glance this may seem far removed from the case that is of immediate physical interest, SU(3)
in D = 3 + 1, but the fact that the computations are much faster in D = 2 + 1 than in D = 3 + 1
means that we can expect to obtain more accurate results, more quickly, and so test the efficiency of
our approach. Moreover, at closer inspection, one finds that D = 2+1 non-Abelian gauge theories
resemble those in D = 3+1 in a number of relevant respects. They become free at short distances,
the coupling sets the dynamical length scale, and the (dimensionless) coupling becomes strong at
large distances. They are linearly confining, and the confining flux tube appears to behave like
a simple bosonic string at large distances [7]. The light glueball spectrum more-or-less fits the
expectations of a flux loop model, just as it does in 3+1 dimensions [8, 9, 10]. Moreover, as we
shall see below, the same simple models that serve to predict linear glueball Regge trajectories in
D = 3 + 1, predict their existence in the case of D = 2 + 1. We also note that the link to string
theories (at least at large N) can be made in D = 2 + 1 just as in D = 3 + 1 [13]. For all these
reasons we believe that our exercise is of significant theoretical interest.

At a more heuristic level, one is motivated to search for a Pomeron trajectory where one has
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high energy cross sections that are roughly constant in energy. Although the scattering of glueballs
has not been observed experimentally, one’s intuition is that they will behave as ‘black discs’, just
like the usual mesons and hadrons, and so it makes sense to speculate that the Pomeron might be
the leading (glueball) Regge trajectory in the D=3+1 SU(3) gauge theory. We do not expect this
to depend strongly on the number of colours, so it should be a property of all SU(N) gauge theories.
Finally, since we can think of no obvious reason why going from 3 to 2 spatial dimensions should
prevent colliding glueballs from having roughly constant cross-sections at high energies – although
as ‘black segments’ rather than as ‘black discs’ – we believe it makes sense to search for something
like the Pomeron in D=2+1 SU(N) gauge theories.

Although our primary aim here is to see if we can learn something about the Pomeron from
our lattice glueball calculations, the fact is that our results can also be used both to test models
and to test the accuracy of approximate analytic calculations. An example of the former is the
flux loop model for glueballs [8] which has recently been compared to the low-J glueball mass
spectrum of D = 2 + 1 SU(N) gauge theories [10]. An example of the latter is transverse lattice
light front quantisation [11]. (Which has some problems similar to ours in determining states of
arbitrary J .) Another example is the conjectured duality between supergravity and large N gauge
theories [12] and its generalisation to the non-supersymmetric case [13]. Extensive quantitative
calculations have been undertaken [14] to compute glueball masses in (2+1) and (3+1) dimen-
sions using the AdS/CFT correspondence. The spectra corresponding to the quantum numbers
2++, 1+−, 1−−, 0++, 0−− and 0−+ have been computed. It would be interesting to have a compu-
tation of the higher spin states in order to compare them to the new lattice data and to see if they
lie on straight Regge trajectories. That would require the inclusion of stringy corrections to the
low-energy effective action. However, because these higher spin states derive from string dynamics,
one can expect them to lie on straight Regge trajectories.

The contents of this paper are as follows. In the next section we remind the reader of two
simple, but plausible, models for glueballs in 3+1 dimensions and show how they directly carry
over into 2+1 dimensions where they also predict linear Regge trajectories with small slopes. In
the following section we discuss high energy scattering. We begin by showing how Regge theory
can be applied in two space dimensions (with the details relegated to Appendices A and B). We
then turn to perturbative Pomeron calculations, where there has been a great deal of work during
the last decade, and investigate what happens when one moves from 3 to 2 space dimensions. Here
we start with the old Low model, and the more recent dipole-dipole scattering approach, then we
move on to the issue of gluon Reggeisation and finish with the BFKL Pomeron. Having established
the general theoretical and phenomenological background to the problem, we turn to our lattice
calculation of how glueball masses increase with their spin J . The calculation is novel in two
respects. Firstly one has to surmount the problems posed by the limited rotational invariance of a
square lattice. This we do using the techniques recently developed in [6]. Secondly, the fact that
the higher-J glueball masses are considerably heavier makes it difficult to calculate their masses
from Euclidean correlators. Here we use a multi-level algorithm recently developed in [15], which
extends to glueballs earlier work [16] for Polyakov loops. Using these techniques we obtain quite
accurate continuum extrapolations of the J = 0, 2, 4, 6 glueball masses. We find that the lightest
glueballs of even J lie on a linear trajectory in a Chew-Frautschi plot of J versus m2, and that
the slope is small just as one would expect for a Pomeron pole. However the intercept is much too
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low to provide a constant high energy cross-section, and we discuss the physical implications of
this result. Finally we present some results for the leading glueball trajectory in SU(N > 2) gauge
theories, showing that there is no qualitative change as N varies from 2 to ∞.

We conclude with a summary, a discussion of how our calculations should be improved upon,
and a mention of the preliminary results we have obtained in a similar study of the quenched 3+1
dimensional SU(3) theory.

2 Glueball models and the large J limit

In the standard valence quark picture, a high J meson will consist of a q and q̄ rotating rapidly
around their common centre of mass. For large J they will be far apart and the chromoelectric
flux between then will be localised in a flux tube which also rotates rapidly, and so contributes to
J . In a generic model of such a system (see e.g. [17]) a simple calculation (that we shall repeat
below) shows that the spin and mass are related linearly, J = α0 + α′M2, and that the slope is
related to the tension σf of the confining string as α′ = 1/2πσf . (The subscript f indicates that
the charges and flux are in the fundamental representation. We will often follow convention and
use σ ≡ σf instead.) If one uses a phenomenologically sensible value for σf one obtains a value of
α′ very similar to that which is experimentally observed for meson trajectories. This picture might
well become exact in the large-N limit where the fundamental string will not break and all the
mesons are stable.

This picture can be generalised directly to glueballs. We have two rotating gluons joined by a
rotating flux tube that contains flux in the adjoint rather than fundamental representation. This is
the first model we consider below. However for glueballs there is another possibility that is equally
natural: the glueballs may be composed of closed loops of fundamental flux. This is the second
model we consider. The first model is natural in a valence gluon approach, while the second arises
naturally in a string theory. They are not exclusive; both may contribute to the glueball spectrum.
Indeed if there are two classes of glueball states, each with its own leading Regge trajectory, then
this might provide an explanation for why experimentally there appear to be two distinct Pomeron
trajectories, the hard ‘Pomeron’ and the ‘soft’ Pomeron [3]. However such speculations belong to
D = 3 + 1 rather than to the D = 2 + 1 gauge theories that we analyse in this paper. What is
interesting for our purposes is that both models can be motivated as easily in D = 2 + 1 as in
D = 3+1 and in both cases predict (see below) linear glueball trajectories with some Pomeron-like
properties.

2.1 Adjoint string model

In this model a high-J glueball is imagined to be composed of two gluons joined by a ‘string’ in
the adjoint representation, with the whole system rotating rapidly. This is a direct extension to
glueballs of the usual model for high-J qq̄ mesons where the q and q̄ are joined by a ‘string’ in the
fundamental representation. The adjoint string is of course unstable, once it is long enough (as it
will be at high J), but this is also true of the fundamental string in QCD. What is important for the
the model to make sense is that the decay width should be sufficiently small. (Essentially that the
lifetime of the adjoint string should be much longer than the period of rotation.) In SU(N) gauge
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theories, both the adjoint and fundamental strings become completely stable as N → ∞. So if we
are close to that limit the model should make sense. Since adjoint string breaking in SU(N) occurs
at O(1/N2) while fundamental string breaking in QCDN occurs at O(1/N), one would expect the
instability to be less of a problem in the former case. Moreover there is now considerable evidence
[18, 19, 20] from lattice calculations that the D = 3 + 1 SU(3) gauge theory is indeed ‘close’ to
SU(∞), and that this is also the case for the D = 2 + 1 SU(2) gauge theory [5].

The calculation of how J varies with the mass M of the glueball is exactly as for the qq̄ case
[17]. That is to say, we consider the string joining the two gluons as a rigid segment of length 2r0,
rotating with angular momentum J (the contribution of the valence gluons being negligible at high
enough J). The local velocity at a point along the segment is thus v(r) = r/r0 (one maximises J
at given M if the end-points move with the speed of light), so that

M = 2
∫ r0

0

σadr
√

1− v2(r)
= σaπr0 (1)

J = 2
∫ r0

0

σarv(r)dr
√

1− v2(r)
=
π

2
σar

2
0, (2)

and, eliminating r0,

J =
M2

2πσa
(3)

we obtain a linear Regge trajectory of slope α′
AS = 1

2πσa
where σa is the adjoint string tension.

So this model predicts that the slope of the leading glueball trajectory is smaller than that of the
leading meson trajectory by a factor σa/σf . For SU(3) we know that σa ≃ 2.25σf [21], so the
leading glueball trajectory will have a slope α′

AS ∼ 0.88/2.25 ∼ 0.39 GeV−2 if we input the usual
Regge slope of about α′

R = 1
2πσf

≃ 0.88 GeV−2. This is only a little larger than the actual slope

of the Pomeron. Thus to this extent the model is consistent with the idea that the Pomeron is
the leading glueball trajectory, perhaps modified by mixing with the flavour-singlet meson Regge
trajectory. Unfortunately the model cannot predict the intercept α0 of the trajectory, because it is
valid at best at large J .

Since in this model the rotating glueball lies entirely within a plane, the calculation is identical
for D = 2+1 and D = 3+1, as indeed is the motivation for the applicability of the model. Thus it
is a plausible model for the leading Regge trajectory in the D = 2+ 1 SU(2) gauge theory that we
investigate in this paper. The only difference is that in SU(2) one expects σa ≃ 8σf/3 and hence
an even flatter trajectory than in SU(3).

The above simple classical calculation can be made more rigorous in an effective Hamiltonian
approach; see [1] for a review. There the calculation is for D = 3 + 1, but the main conclusion
remains the same in 2+1 dimensions.

2.2 The flux-tube model

An ‘open’ string model of the kind described above, is essentially forced upon us if we wish to
describe high-J mesons within the usual valence quark picture. For glueballs, however, there is no
experimental or theoretical support for a valence gluon picture. A plausible alternative is to see a
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glueball as being composed of a closed loop of fundamental flux. Such a picture arises naturally in
a string theory approach to gauge theories. A simple first-quantised model of glueballs as closed
flux tubes was formulated some time ago [8] and has been tested with some success [9, 10] against
the mass spectrum of D=2+1 SU(N) gauge theories as obtained on the lattice [5].

In this model the essential component is a circular closed string (flux tube) of radius ρ. There
are phonon-like excitations of this closed string which move around it clockwise or anticlockwise
and contribute to both its energy and its angular momentum. The system is (first) quantised so
that we can calculate, from a Schrödinger-like wave equation, the amplitude for finding a loop of
a particular radius. The phonon excitations are regarded as ‘fast’ so that they contribute to the
potential energy term of the equation and the phonon occupation number is a quantum number
labelling the wave-function. If we are interested in the lowest mass at a given J , as we are for
the leading trajectory, then we want the potential energy [10] that corresponds to the minimum
number of phonons needed to provide that J

E(ρ) = 2πρσf +
J − c

ρ
(4)

and we minimise this expression with respect to ρ (in much the same way as in bag models) to
obtain the glueball mass M

M = min
ρ
E(ρ) = (8πσfJ)

1

2 . (5)

This corresponds to a linear Regge trajectory

J =
M2

8πσf
(6)

with a slope α′
FT = 1

8πσf
= 1

4
α′
R ≃ 0.22 GeV−2, if we input the usual value for the Regge slope (as

in Section 2.1). This is similar to, but somewhat smaller than, the observed Pomeron slope. This
analysis can be readily transformed into a variational calculation that minimises the Hamiltonian,
without changing the final conclusion (for large enough values of J).

The above calculation was carried out for the D = 2 + 1 version of the model. In D = 3 + 1
there are extra phonons corresponding to fluctuations of the loop that are orthogonal to the plane
of the loop, and in addition the system can acquire angular momentum through spinning about its
axis. This alters the details of the calculation, but not the qualitative conclusion.

Finally we remark that for SU(N > 3) gauge theories the fundamental string is no longer the
only one that is absolutely stable, and closed loops of these higher representation strings provide
an equally good model for glueballs [10, 7]. These extra glueballs will however be heavier and, to
the extent that we are only interested in the leading Regge trajectory, will not be relevant for the
discussion of this paper.

3 High-energy scattering in (2+1) dimensions

We begin by describing how the familiar Regge theory of 3 spatial dimensions can be taken over to
2 space dimensions. We confine ourselves to a brief summary here, leaving details to the Appendix.
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The Pomeron has been the focus of a large number of field theoretic studies, many motivated by
the ‘hard Pomeron’ and low-x physics in deep inelastic scattering. Just as we asked how glueball
models change when we go from 3+1 to 2+1 dimensions, it is interesting to know the predictions of
these perturbative approaches when we change dimension. That will be the focus of the remainder
of this Section.

3.1 Regge theory predictions

The optical theorem relates the total cross section to the dimensionless scattering amplitude T (s, t)
by

σtot =
1√
s
Im T (s, t = 0). (7)

(In two space dimensions the ‘cross section’ has dimensions of length.) As is shown in appendix A,
it is given by the following contributions:

T (s, t) = a0(s) + background integral +
∑

[

Regge pole contributions ∝
(

sα(t)
)]

, (8)

where α(t) describes the Regge trajectory in the Chew-Frautschi plot. This equality is based on the
analytic continuation of the partial waves in λ, the angular momentum, and on crossing symmetry.
There are two differences with respect to the 3+1 dimensional case: the background integral gives
a constant contribution to the amplitude, rather than decreasing as 1√

s
; and the s-wave exchange is

not included in the Sommerfeld-Watson transform. In potential scattering, and even more general
situations, it can be shown to be a branch point in the complex λ plane at threshold (see [22] and
appendix B).

3.2 QCD2 at high energies

We first give the simplest estimates of the color-singlet exchange for high energy scattering. We
then comment on the failure of gluon reggeisation and review the results of Li and Tan [23] for
color-singlet exchange obtained in the leading logarithm approximation. In order to develop some
intuition for 2+1 dimensional physics, we finish with a discussion of the momentum dependence of
hadronic structure functions.

3.2.1 Color singlet exchange in leading order

If we compute the color-singlet part of a two-gluon exchange diagram between two ‘quarks’ in 2+1
dimensions (the first perturbative Pomeron model due to F. Low in 1975 [24]), we find

A
(1)
1 = iα2

ss
N2

c − 1

N2
c

∫

dk

k2(k − q)2
, (9)

implying, by use of the optical theorem in 2+1 dimensions (appendix A),

σtot(qq → qq) = α2
s

N2
c − 1

N2
c

∫

dk

k4
(10)
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The result is completely similar to the 3+1 case, except that the IR divergence is worse by one
power – σtot has units of length. The Pomeron exchange amplitude is finite once impact factors
are introduced for the hadrons – giving the incoming quarks a slight offshellness and effectively
introducing a cutoff in the integral on the right-hand side of (10).

Another approach consists in computing dipole-dipole scattering (for an introduction, see [25]
and references therein). Proceding as in the 3+1 dimensional case, the leading order (large N)
dipole-dipole cross-section reads

σdd = 4α2
s

∫ ∞

−∞

dℓ

ℓ4
(1− cos ℓx01)(1− cos ℓx′01) = πα2x3<(3

x>
x<

− 1) (2 + 1) (11)

as compared to [25]

σdd = 2πα2
sx

2
<

(

1 + log
x>
x<

)

(3 + 1) (12)

where x> (x<) is the greater (lesser) of the two dipole sizes x01 and x′01. In both cases, we find a
constant cross-section.

To go beyond the leading contribution, several calculational schemes are available. In particular,
the BFKL Pomeron is obtained by keeping, order by order in g2, only the leading logarithmic
contribution in the perturbative expansion. The first step in calculating the amplitude for Pomeron
exchange is to establish gluon reggeisation.

3.2.2 The issue of gluon reggeisation

In the Regge limit s ≫ t ≫ g4, where s, t are the Mandelstam variables, the usual expansion in
g2 log s yields the 0, 1 and 2-loop amplitudes for color octet exchange:

A
(8)
0 = 8παsG

(8)
0

s

t
(13)

A
(8)
1 = A

(8)
0 ǫG(t) log

s

k2
(14)

A
(8)
2 =

1

2
A

(8)
0

(

ǫG(t) log
s

k2

)2

(15)

where k2 = O(t) and

αs =
g2

4π
, G

(8)
0 = τaijτ

a
kl, ǫG(t) = Ncαs

∫ +∞

−∞

dk

2π

t

k2(k − q)2
≤ 0 (t = −q2) (16)

Thus, at least formally, the gluon reggeises [26]:

A(8) = A
(8)
0

(

s

k2

)ǫG(t)

(17)

The infrared divergence in the quantity ǫG(t) is linear (as opposed to logarithmic in 3+1 dimen-
sions), and it must be so since αs carries dimension of mass. The IR “gluon mass” cutoff M has to
be introduced, in which case ǫG(t) =

Ncαs

M
. Physically M can be interpreted as a non-perturbative
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mass that the gluon acquires at the confining scale; therefore we expect g2/M = O(1). This how-
ever shows that, due to the infrared divergence, the result of the perturbative calculation has a
linear sensitivity to physics at the confinement scale g2, where the perturbative expansion breaks
down.

In the Verlinde approach [27] to high-energy scattering adopted by Li and Tan [23], gluon
reggeisation fails. However, as the authors remark, this is not necessarily in contradiction with
conventional perturbative calculations, since the really physical quantity is the color-singlet ex-
change.

3.2.3 The 2+1 perturbative Pomeron

The BFKL equation was solved exactly in the presence of a gluon mass in [26]. However when
this mass is taken to zero, the IR divergence shows up in the fact that the BFKL exponent ω0

runs as ∼ αs/M ; this fact could be guessed on dimensional grounds. Within perturbation theory,
such a mass M can only appear as an IR regulator. The situation is in radical contrast to the
3+1 dimensional case, where the cancellation of IR divergences in the BFKL equation makes it
self-consistent. In the detailed calculation, the simple structure of the infinite series is spoiled in
the M → 0 limit by the re-emergence of a power dependence on s at each order due to the IR
divergences. Thus, in this framework, a power-like dependence of the cross-section on s in the limit
of zero gluon mass is not possible in 2+1 dimensions.

A thorough investigation of QCD2 high energy scattering was undertaken by Li and Tan [23].
In their first paper, they used the Verlinde approach [27] to obtain a one-dimensional action, where
they are able to compute the (finite) color-singlet exchange exactly. They predict a

σ ∝ 1/ log s (18)

dependence of the total cross section on the center-of-mass energy. In a second publication, they
re-derive this result using the dipole picture ([25] and references therein) of high-energy scattering.
In this case all quantities are naturally IR-safe.

3.2.4 Deep inelastic scattering in 2+1 dimensions

A standard prediction of the BFKL Pomeron in 3+1 dimensions is the strong rise of the deep
inelastic structure functions at low x when Q2 is large (for an introduction, see [2]):

F (x,Q2) ∼ x−ω0

√

log 1/x
(19)

where ω0 = 4Nc

π
αs log 2 is the BFKL exponent.

On the other hand, the DGLAP equation for the evolution of the moments M(n,Q2) of the
parton distributions leads to the behaviour

M(n,Q2) = Cn

(

log
Q2

Λ2

)−An

(20)
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where the pure number An is an “anomalous dimension” computed in perturbative QCD. The Q2

dependence comes from the running of the coupling αs; in 2+1 dimensions, the equation is therefore
replaced by

∂M(n,Q2)

∂ logQ2
= An

αs

Q
M(n,Q2) (21)

yielding the following large Q2 behaviour:

M(n,Q2) =M(n,∞) exp

(

−2Anαs

Q

)

≃M(n,∞)− 2An
αs

Q
. (22)

That is to say, the structure functions tend to finite constants at large Q2. The physical reason
for this is that at large energy scales, the theory becomes free very rapidly (the effective coupling
scales as 1/E), which does not allow for an evolution of the structure functions. Thus above the
confinement scale, we qualitatively expect a rapid evolution in Q2 of the structure function toward
its asymptotic value. Once a high Q2 has been reached, the virtual photon γ∗ does not “see” more
partons when its resolution is increased, because the amplitude that they be emitted is suppressed
by αs/Q.

4 The D=2+1 SU(2) glueball spectrum

In the first part of this Section we discuss the technical aspects of the lattice calculation. In the
second part we present the results of our calculations.

4.1 Technical aspects

The identification of the continuum spin of a lattice state requires novel techniques, as does the
accurate calculation of the mass of a heavy, high-spin state, and we discuss these below. First
however we briefly summarise the more standard aspects of the calculation.

4.1.1 Masses from lattice simulations

To obtain masses we calculate Euclidean correlation functions of some well-chosen operators φi

Cii(t) ≡ 〈φ†
i(t)φi(0)〉 = 〈φ†

ie
−Htφi〉 =

∑

n

|an|2e−Ent. (23)

Here the En are the energies and an = 〈n|φi|vac〉. If the vacuum has trivial quantum numbers,
then only states with the quantum numbers of φi will have an 6= 0. Suppose we have i = 1, ..., n0

operators of the same quantum numbers and we also calculate the off-diagonal correlators Cij(t).
Then an effective way to calculate the lightest few states with these quantum numbers is to perform
a variational calculation using the basis {φi; i = 1, ..., n0}. For a recent exposition of this standard
method see [5].

To calculate such Euclidean correlation functions we use lattice Monte Carlo methods. As
usual one needs to ensure that the operators are smooth and extended, so that they have a good
projection onto the lighter physical states, and we use an iterative smearing technique for that
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purpose [28]. We use an increasing number of smearing iterations (and also increase the smearing
weights) as we approach the continuum. All our calculations use the standard Wilson action. The
update is a 1:3 mixture of heat-bath [29, 30] and over-relaxation [31] sweeps. Because we calculate
the values of many operators, the ‘measurement’ is time-consuming and we can do a significant
number of these compound sweeps between measurements without significantly increasing the total
cost of the calculation. We typically perform O(105) sweeps and collect the data in ∼ 100 bins.
Errors are estimated with a standard jackknife analysis.

4.1.2 Continuum spin on a cubic lattice

Consider the eigenstates of the transfer matrix of the lattice field theory. These will belong to
the irreducible representations of the cubic rotation group and will not, in general, possess the
rotational properties that characterise a continuum state of a definite spin. However as a → 0
each of these states will tend to an energy eigenstate of the continuum theory that possesses some
definite spin J . By continuity for sufficiently small a the rotational properties of this lattice state
will be arbitrarily close to those of a continuum state of spin J . We will therefore refer to such
a state not only by its lattice representation but also by the appropriate continuum spin J . To
be able to do this we need to identify, for each such lattice state, what continuum J it tends to
as a → 0. Once we know this then we can perform a standard continuum extrapolation of the
calculated lattice masses so as to obtain the continuum mass of the spin J glueball.

A detailed investigation into how to do this was presented in [6]. Here we shall apply a systematic
version of the method that was presented there under the name ‘Strategy II’. We briefly remind
the reader of this method.

The operators we use lie in definite lattice irreducible representations (IRs), and we use the
variational method [32] to extract estimates for the eigenstates (in our operator basis) and their
masses. In this way we calculate the mass of the lightest state and of several excited states in the
given lattice IR – typically the number is one third of the number of operators we are using. To
identify which J each of these states tends to, we do a simple Fourier analysis of the wave function
of the corresponding diagonalised operator. To do this we measure the correlations between it and a
‘probe’ operator that we are able to rotate to a good approximation by angles smaller than π

2
. This

provides a measurement of the wave function. We check the rotational properties of the probe by
measuring the vacuum wave function; typically it is found to be isotropic at the one percent level,
which is taken as evidence that the probe has good rotational properties. We are mainly interested
in the dominant component and the fact that there is an uncontrolled uncertainty of a few percent
in the measurement of the wave function does not impede significantly the procedure of determining
the spin of a state in the continuum limit. This is so because one is usually discriminating between
a constant and a change of sign behaviour of the wave function. In principle, the continuum
extrapolation of these coefficients should determine uniquely the spin of the glueball. In practice, it
usually turns out that there is already a very dominant coefficient at finite lattice spacing – except
when a crossing of states occurs – as we shall see in an example later on.
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4.1.3 The multi-level algorithm

A state with high spin will generically have a large mass, and the value of the corresponding
correlation function can be very small. Indeed, even if we have a perfect operator the value of the
correlator will be O(e−aMJnt) at t = ant and if aMJ ≫ 1 then it will be in danger of being swamped
by the statistical errors. In practice it is not possible to restrict oneself to values of a such that
aMJ ≪ 1 for all values of J that are of interest. Especially so because we need a range of a that is
large enough for a well-controlled continuum extrapolation.

To deal with this problem we make use of a recently proposed error reduction algorithm for
glueball correlators [15]. It proved very useful on all but the smallest lattice spacings (i.e. on
β = 6, 7.2, 9, 12). For 6 ≤ β ≤ 9, we used O(500) sub-sweeps, while we decreased their number to
50 at β = 12. These sub-sweeps are done on sub-lattices which represent “time-blocks” of width 4.
Our experience is that it is more efficient to do all these sweeps at one fixed time-block (that is, a
2-level algorithm) rather than splitting up the sweeps between width 2 and width 4 blocks (that is,
a 3-level algorithm). This was noted previously in [16], where a multi-level algorithm was applied
to Polyakov loop measurements, and suggested in [33].

The choice of the number of sweeps was done on the basis of the thumb-rule nsweeps = em∆t,
where in our case ∆t = 4a and the algorithm was optimised for the spin 4 glueball, that is m = m4.
Indeed when one is measuring large portions of the spectrum, a compromise has to be made. For
the lighter states, it is more efficient to do few sub-sweeps, while the heavier states require more
of them. That is, for the same computer time, we could have measured the lightest glueball mass
more accurately had we not used a 2-level algorithm, but we would then have far less accurate and
reliable results for the spin 4 and 6 glueballs – the main goal of the present simulations.

The multi-level algorithm enables us to apply the variational method on the correlation matrices
at 2 and 3 lattice spacings even on the coarsest lattice. Very often, when the correlators are
measured in the traditional way, the noise that dominates the signal of the heavier states spoils the
positivity of the correlation matrices if the method is not applied between 0 and 1 lattice spacing,
thus impeding the variational calculation. In our case however the very massive eigenstates benefit
most from the sub-averaging procedure and the positivity is maintained. Usually the orthogonalised
operators have reached their mass plateaux (within error bars) by three lattice spacings for the data
we present in this paper; this increases our confidence in the reliability of the variational method.

At β = 18, the correlation length 1/σ ≃ 12a; that would be the natural width in the Euclidean
time direction over which to do sub-sweeps. However that would mean extracting the masses at
time separations of that order. It turns out that our smeared operators have sufficiently good
overlaps onto the physical states to reach a plateau far earlier than 12 lattice spacings. For that
reason, we did not apply the multi-level algorithm to that case. Nevertheless we regard this as a
consequence of the improved smoothness of the operators close to the continuum rather than as a
defect of the multi-level algorithm.

4.2 Results

In Table 1 we list the values of the masses we calculate on L3 lattices at various values of β = 4/ag2.
The masses are in lattice units and are labelled both by the lattice IR to which they belong, and
by the spin J of the state to which they tend in the continuum limit. The latter assignment is
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achieved as described above, and an explicit example will be given below. We also have calculated
the confining string tensions as indicated. The string tension provides a natural dynamical length
scale ξ ≡ 1/

√
σ which tells us how small the lattice spacing a is, a/ξ = a

√
σ, and how large our

lattice size, aL, is, aL/ξ = aL
√
σ.

Since high-J states are expected to be very extended, it is important to check that our J =
0, 2, 4, 6 mass estimates are not subject to large volume corrections. This is the first thing we do
in this subsection. We then give an explicit example of the Fourier coefficients which we use to
identify the J of the state. Finally we discuss the extrapolation to the continuum limit.

4.2.1 Finite volume effects

As one can see from Table 1, the spatial size that we use for most of our calculations satisfies
aL

√
σ ∼ 4. This choice was based on earlier finite volume studies [5] that showed that it appeared

to be large enough for the lightest glueball states. In particular, on such a volume the lightest state
of two periodic flux loops (which can couple to local glueball operators) will be heavier than the
lightest few A1 states and the lightest A3 state. In this paper, however, we are interested in higher
spin states that may be significantly more extended than these lightest states, so it is important to
check for finite volume corrections by performing at some β the same calculations on much larger
volumes. We do this at β = 7.2, where the spatial extent of our comparison volume is twice as
large. In addition we perform a more limited comparison at a finer lattice spacing, β = 12, on a
comparison lattice that is about 30% larger.

We see from Table 1 that there is in fact no significant change in any of the masses listed when
we double the lattice size from aL

√
σ ∼ 4 to aL

√
σ ∼ 8 at β = 7.2. In particular this is true for

the J = 4 and J = 6 states where our concern is greatest. We note also that on the L = 40 lattice
a state composed of two periodic flux loops will have a mass amT ∼ 2La2σ ≃ 3.45 which is much
heavier than any of the masses listed and so it will not be a source of finite volume corrections
there. From the comparison we infer that these ‘torelon’ states cause no problem on the L = 20
lattice even though their mass amT ∼ 1.7 is light enough for it to mix with the states of interest.
This tells us that in general such mixing will not be important even where it is possible. This is
consistent with the observation [5] that in many respects SU(2) is close to SU(∞), since in the
latter case the mixing will vanish.

The more limited finite volume check at β = 12 also shows no significant volume variations for
the J = 4 and J = 6 states, as well as the J = 0 states. On the other hand there are some anomalies
in the J = 2 part of the A3 spectrum. Since on these two lattices the ‘torelon’ state has a mass
amT ∼ 0.9 and amT ∼ 1.2 respectively it is possible that it is mixing with some nearly degenerate
A3 glueball states on both the lattice sizes, and that this explains the anomalies. However we also
remark that these calculations were performed at an early stage (unlike those at β = 7.2) and a
different basis of operators was used on the two volumes. Thus it is not clear how seriously we
should take the discrepancies observed in the A3 sector.
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4.2.2 The Fourier coefficients

As described in Section 4.1.2, we determine the ‘J ’ of a lattice energy eigenstate by a Fourier
decomposition of its wavefunction. For example for a state in the trivial A1 lattice IR we have

|ψ1〉 =
∑

n≥0

cn|(j = 4n)+〉|lat with
∑

n

|cn|2 = 1. (24)

The Fourier decomposition is performed using as a probe a loop O for which we have a number
of other loops Oθ that are (to a good approximation) copies of O rotated by angles θ that are not
multiples of π/2:

〈vac|Oθ|ψ1〉 =
∑

n≥0

cOcne
i4nθ (25)

(where cO is independent of n in the limit where Oθ is an exact rotated copy of O). Note that since
the angular resolution is O(a) one can attempt to resolve spins up to Jmax ∼ O(1/a) in this way.
In Table 2 we show the Fourier coefficients calculated at the lattice spacings β = 7.2, 9, 12, 18.
The table shows the normalised |c|2 coefficients corresponding to the spin that the state is assigned
in the continuum limit. We see that the states that become 0+ have very isotropic wavefunctions
even at the finite lattice spacings considered. The spin 4 coefficients of the spin-4-to-be states vary
a lot more. Let us look at the fundamental spin 4 glueball in more detail.

The coefficient is very close to one at β = 7.2, 9 and 18, but shows a big dip at β = 12. We
attribute this to the crossing of the lightest spin 4 state and the 0+∗∗∗. Indeed looking at the
masses in table 1, we observe that these two states are always nearly degenerate, the spin 4 being
slightly heavier on the coarse lattices and slightly lighter on the finer lattices, while they are closest
precisely at β = 12. As was pointed out in [6], an “accidental” degeneracy like this automatically
leads to maximal quantum mechanical mixing between the states, since there is no lattice symmetry
to prevent that. Taking this into account, the observed evolution of the Fourier coefficient is not
implausible.

At β = 6 we did not perform a Fourier decomposition but rather chose the value of J using
the level ordering already established for the other values of β. The reason we did not perform
such a decomposition is that this calculation was originally intended as a test of the multi-level
algorithm rather than as a contribution to the present study. However given its accuracy it seemed
wasteful not to use it. We have a less accurate older study [6] where the Fourier decomposition
was performed and that supports our spin identification. In addition the mass of the identified 4−

state, and the fact that it should be (nearly) degenerate with the 4+ leaves no doubt about the
correctness of the J = 4 identification in this case as well.

4.2.3 Continuum extrapolation

Our continuum extrapolation of the states in the A1 and A3 representations is entirely conventional
and follows [5, 6]. We plot the glueball masses in units of the string tension as a function of σa2,
and attempt a linear fit

amG(a)

a
√
σ(a)

≡ mG(a)√
σ(a)

=
mG(0)√
σ(0)

+ ca2σ. (26)

13



This is motivated by the fact that we know the leading lattice correction to be O(a2) for the
plaquette action. If such a fit has a bad confidence level, then we remove the coarser lattice data
until a good fit is obtained. We require that at least three points are left.

Fig. 1 shows the actual extrapolation for the lightest state of each spin. We observe as in [6] that
the evolution is weak. Note also that thanks to the error reduction technique employed, the error
bars corresponding to the coarser lattices do not appear very much larger than those associated
with finer lattices. Table 3 gives the continuum spectrum in units of the string tension, as well
as the confidence level and the number of different lattice spacings included in the fit. For the
fundamental states of spin 0, 2, 4 and 6, the confidence levels are good and include all five lattice
spacings.

Not surprisingly, the second and third excited states have less reliable extrapolations. A slight
dependence of the masses obtained for the excited states on the basis used in the variational method
is likely to be the cause of the stronger spread of the lattice data in the extrapolation plot. Notice
for instance that all four states shown on Fig. 1 appear slightly lighter at β = 18 than at the other
lattice spacings.

5 SU(N > 2)

As we remarked in Section 1, it is only in the N → ∞ limit, where all glueballs become stable,
that one can hope to identify the ideal linear Regge trajectory. In principle all one needs to do is
to repeat the above SU(2) calculation for N = 3, 4, 5, ... We know from [5] that the approach
to N = ∞ is rapid so that the first few values of N should suffice for a good extrapolation to all
values of N . However while such a calculation is certainly feasible, it is beyond the very limited
computational resources currently available to us. Fortunately we are able to finesse this practical
problem using the fact that it has been shown in [6] that the lightest state in the lattice A2 IR,
which contains JP = 0−+, 4−+, 8−+, is in fact the 4−+ rather than the 0−+. This confirmed earlier
suggestions, based on an analysis of the predictions of flux tube models [10], that the lightest 0−+

should be much more massive than the lightest observed A2 state, while the latter was consistent
with the model prediction for the lightest 4−+ state. Due to parity doubling in D = 2 + 1 this
mass is the same as that of the 4++ (in the infinite volume continuum limit). Thus we can use
the lightest states in the A1, A3 and A2 lattice representations, as calculated for various SU(N)
groups in [5], to provide us with the lightest J = 0, 2, 4 glueball masses. (Note that this means
that the masses labelled in the tables of [5] as being those of the lightest 0−+ should in fact be
relabelled as being the lightest 4−+.) This is more limited than our explicit SU(2) calculation where
we also identify the J = 6 glueball, but it is adequate given the presumption that there will be no
qualitative change as we increase N from N = 2.

The assumption that for SU(N > 2) the lightest A2 state is the 4−+ is very reasonable given
that this is so in SU(2) [6] and that it is predicted to be so by generic flux loop models [10].
Nonetheless it is an assumption and should be checked. We have therefore performed such a check
in the SU(5) case, at β = 64, L = 24, where σ−1/2 ≃ 6a. Using a 16-fold rotated triangular probe
operator reveals that the wave function of our best A2 operator, measured at a Euclidean time
separation of one lattice spacing, behaves like sin 4x, with a normalised coefficient consistent with
1 at the few percent level. This confirms the correctness of our assumption.
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6 Physical discussion

We begin by asking what our glueball spectrum tells us about the nature of the leading glueball
Regge trajectory, both for SU(2) and for largerN . We then compare what we find to the predictions
of the simple glueball models in Section 2. Finally we discuss what role this trajectory will play in
high energy scattering.

6.1 The glueball spectrum in a Chew-Frautschi plot

In Fig. 2 we plot our continuum SU(2) glueball spectrum in a Chew-Frautschi plot of m2/σ against
the spin J . We see that the lightest J = 0, 2, 4, 6 masses appear to lie on a straight line. If we
fit them with a linear function J = α(t), where α(t) = α0 + α′t and t = m2, then we obtain

2πσα′
(m) = 0.322(16) α

(m)
0 = −1.18(11) (27)

with a confidence level of 65%. (If we drop the J = 0 state from the fit, the errors become somewhat
larger, but the trajectory is essentially the same.) Thus we reach the remarkable conclusion that
the lightest glueballs of spin J fall on a linear Regge trajectory. This is the leading trajectory,
hence the index (m) standing for ‘mother trajectory’.

Although there is more uncertainty in establishing the excited spectrum, particularly in the
spin 2 sector where finite volume effects are not completely understood, we also fit the 0+∗, 2∗∗ and
4∗ states to a straight line and find

2πσα′
(d) = 0.265(36) α

(d)
0 = −2.20(44) (28)

with a confidence level of 93%. This ‘daughter’ trajectory is approximately parallel to the leading
one, and its intercept is down by about one unit.

As we explained in Section 5, we can also say something about the leading Regge trajectory in
SU(N > 2) gauge theories, if we use the masses calculated in [5] and relabel as 4−+ the state that
is labelled there as the lightest 0−+. Since the 4−+ and 4++ are degenerate in the (infinite volume)
continuum limit, this gives us the 0++, 2++ and 4++ continuum masses for N = 2, 3, 4, 5. A
linear fit, J = α(m2) = α0 + α′m2, works in all cases and yields:

[5] data 2πσα′
(m) α

(m)
0 conf. lev.

N = 2 0.324(15) -1.150(75) 89%
N = 3 0.384(16) -1.144(71) 54%
N = 4 0.374(18) -1.068(75) 71%
N = 5 0.372(22) -1.036(88) 86%

We have also included the result for SU(2) and we note that the parameters of the trajectory are
in very good agreement with the data of this paper. It is clear that for all the number of colors
available, the linear fit has a very good confidence level.

We conclude that all SU(N) gauge theories possess approximately linear Regge trajectories,
with slopes 0.3—0.4 in units of 2πσ, and intercepts close to -1, which appear to be approaching
that value as N → ∞.
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6.2 Comparison to glueball models

As we saw in Section 2, the closed flux tube model of glueballs predicts a leading Regge trajectory
that is linear, with a slope that is independent of N :

2πσ α′
FT =

1

4
∀N (29)

The adjoint string model also predicts a linear Regge trajectory but with a slope 2πσa α
′
AS = 1

that in general depends on N through the N dependence of σa/σ. Lattice calculations [21] (and
some theoretical arguments [34]) support a dependence that is close to Casimir scaling,

σa
σ

=
CA

CF
= 2

N2

N2 − 1
. (30)

Assuming this, the slope predicted by the adjoint string model becomes

N = 2 : 2πσ α′
AS =

3

8
(31)

N = ∞ : 2πσ α′
AS = 2× (2πσ α′

FT ) =
1

2
(32)

Interestingly, for all the N considered, the lattice result for α′ is almost exactly at the midpoint
between the two model predictions. We illustrate this fact in Fig. 3. We might speculate that even
if both models are valid, thus producing two glueball trajectories with different slopes, at finite
N mixing will deform these trajectories from exact linearity and that such a deformation will be
greatest at some lower J where the states of the two trajectories are closest and also where we
perform our calculations.

We observe that the intercept of the leading Regge trajectory that we have obtained is close to
-1, and becomes perhaps even closer at larger N , as we see if we plot

∆ ≡ −(α0 + 1), (33)

in Fig. 4. Now we recall that in D=3+1 [2] the fact that the color-singlet amplitude is, order by
order, down by a factor of Nαs with respect to the color octet exchange amplitude (see Section 3.2)
can be interpreted as coming from an expansion of the signature suppression factor around J = 1,
using the fact that in this picture α(t = 0) = 1 +O(αs). A similar argument will work in D=2+1
as long as α(t = 0) is near an odd integer. We assume that α(t = 0) ≃ 1 is disfavoured since it
would lead to a rapidly rising cross-section, and so the next possibility would be α(t = 0) ≃ −1,
as observed in our calculations. This line of reasoning relies on the idea that the perturbative
calculation remains qualitatively valid even as t→ 0, which is of course not guaranteed.

At finite N Regge trajectories are not expected to rise linearly at arbitrarily large t = m2.
In particular we should expect that due to mixing between high spin glueballs and multi-glueball
scattering states, for which

α(t) ∝
√
t, (34)

the local slope of the trajectory decreases as J increases. This effect is, however, suppressed by 1
N2

in the large N limit.
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6.3 High-energy scattering prediction

The contribution of the leading glueball trajectory to the total cross-section behaves as

∆σ ∝ sα0− 1

2 , (35)

which means, given our calculated value α0 ≃ −1 , that it is suppressed as ∼ s−
3

2 . Thus the high
energy scattering of glueballs is not dominated by Regge pole exchange in 2+1 dimensions; at least
if we believe that the cross section should be constant at high energies (up to powers of log s).

Going back to section 3.1, we note that the other terms contributing to the scattering amplitude
are the isolated s-wave amplitude a0(s) and the background integral. Because there is a unitarity
bound on each partial wave separately, namely

Im an ≥ |an|2, (36)

the contribution of any partial wave amplitude to the total cross-section is bounded by ∼ s−
1

2 .
Thus this s-wave amplitude will not dominate either at high energies. That, then, only leaves
the background integral. If the partial wave amplitude a(λ, t) were meromorphic in the region
0 < Re λ < 1

2
, we would simply get additional Regge pole contributions, which should show up as

physical states by analytic continuation. Therefore there must be a more complicated singularity
structure in that region. For instance it is well known that λ = 0 is a logarithmic branch point of
the partial wave amplitude a(λ, t) at low energies ( [22]; see also appendix B). Also, Li and Tan
[23] remark in their second publication that the dipole-dipole forward scattering amplitude can be
written as a contour integral in the complex λ plane around λ = 0:

A(d, d′, s) =
2πg2d d′

Nc

1

log s
= −2πg2d d′

Nc

∫

dλ

2πi
sλ log λ (37)

where d, d′ are the sizes of the scattering dipoles; again, the logarithmic branch point seems to
dominate the scattering process. This intriguing similarity suggests a universal contribution from
the point λ = 0.

7 Conclusion

In this paper we have carried out a lattice calculation of part of the higher spin mass spectrum of
SU(2) gluodynamics in 2+1 dimensions. Such a calculation can tell us what the leading glueball
Regge trajectory looks like and, in particular, whether it resembles the Pomeron.

To provide some motivation for this question, we showed how simple glueball models predict
linear Regge trajectories, with small slopes, in both 2+1 and 3+1 dimensions. We emphasised
that, unlike the case of qq̄ mesons, there are two natural models: the open adjoint string that is
the natural extension of the usual Regge model for mesons, and the closed flux tube which has no
analogue for the usual mesons, but which arises naturally in string theory approaches to SU(N)
gauge theories. One may speculate that both models contribute and that there are two Pomerons
(for which there is some experimental evidence).

Another part of our motivation for a study in D=2+1 is an intuition that in high energy
scattering the colliding glueballs should behave like ‘black segments’ (analogous to the ‘black discs’
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of D=3+1) so that the cross-section is approximately constant at high s. Of course in D=2+1 we
have no experimental support for such an intuition and we therefore investigated how various field
theoretic approaches to high energy scattering can be translated from D=3+1 to D=2+1. The
generic change is that infrared divergences become much more severe so that, for example, one can
no longer predict directly from the BFKL equation [26] a power-like dependence of the cross section
in s. However there exist alternative analyses [23] done in the framework of leading-logarithmic
perturbative expansion that do indeed obtain cross-sections which are constant (up to logarithms).

The framework for Regge poles is Regge theory and we saw that there are significant changes
when we go from 3 to 2 spatial dimensions. In particular the l = 0 partial wave is not included in
the Sommerfeld-Watson transform and the background integral is only down by 1/

√
s. (In D=2+1

the intercept of a trajectory J = α(t) that gives a constant cross section is at α(0) = 1/2 in contrast
to α(0) = 1 in D=3+1.) One can imagine that the complicated singularity structure at Reλ = 0,
which is not associated with particles of the theory, might be promoted to a dominant contribution
to the high energy cross section.

With the above background in mind, we presented the results of our lattice calculation of the
higher spin glueball spectrum. This is a pioneering calculation and like all such calculations can be
improved upon in many respects. However we are confident in the robustness of the results that
we obtain. In particular, extrapolating our masses to the continuum limit shows that the leading
Regge trajectory in the (mass)2 versus spin plane is in fact linear (to a good approximation).
Moreover it has a small slope that lies roughly midway between the predictions of the flux tube
and adjoint string models. The intercept at t = m2 = 0 is α0 ≃ −1. We identified a parallel
daughter trajectory, lying about one unit of J lower. We were also able to determine the leading
Regge trajectory for other SU(N) groups and found that the result depends very little on N . In
particular it is essentially the same for the theoretically interesting SU(∞) limit.

The very low intercept of the leading glueball trajectory (α0 ≃ −1) indicates that the moving
Regge pole corresponding to these glueball states gives a negligible contribution to high-energy
scattering in 2+1 dimensions. We concluded that there must be a more complicated singularity
structure of the partial wave amplitude in the complex angular momentum plane λ. Evidence for a
possibly universal branch point at λ = 0 comes mainly from low-energy potential scattering (where
the result is independent of the potential [22]) and is suggested by the 1

log s
scattering amplitude

found by Li and Tan in QCD2 high-energy scattering.
These statements are all quite different to what one expects in 3+1 dimensions. There the

phenomenological Pomeron is widely thought to be related to the glueball spectrum of the SU(3)
gauge theory, in which case the leading glueball trajectory had better have an intercept α0 around
1. We are currently performing a similar calculation in D=3+1 SU(3) gluodynamics. Preliminary
results [35] indicate that a straight line passing through the 2++ and 4++ states in a Chew-Frautschi
plot does not pass through the 0++ (in contrast to what we found in D = 2+1) and has parameters
α0 = 1.03(40) and 2πσα′ = 0.27(9); the latter translating to α′ ≃ 0.22(8)GeV 2 if we use σ ≃
(0.44GeV )2. These characteristics are broadly compatible with the well known properties of the
soft Pomeron.
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— ∗ ∗ ∗ —

A Regge theory in 2+1 dimensions

The theory of the S-matrix can be developed in an entirely analogous way to the 3+1 dimensional
case, using the usual fundamental postulates [2]:

• the S-matrix is Lorentz invariant;

• the S-matrix is unitary;

• the S-matrix is an analytic function of Lorentz invariants, with only those singularities re-
quired by unitarity.

We denote by A the a+ b→ c+ d amplitude. In 3+1 dimensions, this is a dimensionless quantity,
whereas in 2+1 dimensions, it has unit of mass. Therefore we define

T (s, t) =
1√
s
A(s, t) (38)

The partial wave expansion in the s-channel reads

T (s, t) = a0(t) + 2
∑

λ≥1

aλ(t)Cλ(1 +
2s

t
). (39)

Here

1 +
2s

t
= cos θ (s− channel) (40)

in the s channel and
Cλ(cos θ) = cosλθ (41)

is a Chebyshev polynomial. The absence of a factor 2 in the first term originates from the geometric
difference between the spin 0 and the other partial waves. If we define a parity axis along the axis
of the collision, then while the left- and right-winding spin λ wave functions add up to 2 cosλθ, in
the spin 0 sector the negative parity state does not have a wave function (as is the case in 3+1
dimensions); therefore only the 0+ state contributes as a partial wave. This separation of the spin
0 sector is necessary in order to carry out the analytic continuation in λ through the Sommerfeld-
Watson transform. In 2+1 dimensions, the complications due to the signature η = ±1 also appears
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since the wave functions of spin λ are associated with a phase (−1)λ under a rotation by π. Thus
we have to introduce two analytic functions a+(λ, t) and a−(λ, t), so that

T (s, t) = a0(t) + i
∫

C
dλ

∑

η

η + e−iπλ

2

a(η)(λ, t)

sin πλ
C(λ, 1 +

2s

t
) (42)

We now want to deform the contour as is done in 3+1 dimensions. However because

Cλ(z) ∼ z|λ| (|z| → ∞), (43)

we cannot reduce the ’background integral’ by pushing it to Reλ = −1
2
. Therefore we integrate

along the imaginary axis and arrive at the following expression:

T (s, t) = a0(t) + i
∫ ǫ+i∞

ǫ−i∞
dλ

∑

η

η + e−iπλ

2

a(η)(λ, t)

sin πλ
C(λ, 1 +

2s

t
) +

∑

η

∑

n

η + e−iπαnη

2

2πResnη
(t)

sin παnη
(t)

C(αnη
(t), 1 +

2s

t
) (44)

So unless a0(t) and the background integral vanish, we obtain

T (s, t) ∼ smax(ᾱ(t),0) (45)

where ᾱ(t) is the pole with the largest real part (“leading Regge pole”). Using the optical theorem
at high energies

σtot =
1

s
Im A(s, t = 0) =

1√
s
Im T (s, t = 0), (46)

we obtain the prediction, for scattering driven by Regge-pole-exchange,

σtot ∼ sᾱ(0)−
1

2 (47)

If all Regge trajectories have negative intercept, the background term prevails at high-energy. In
the case of potential scattering, λ = 0 is an accumulation point of Regge poles when t→ 0 [22]. It
is for that reason that we kept the background integral along Reλ = ǫ.
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B Potential scattering & bound states in the plane

The Ansatz

ψ(r, ϕ) =
∞
∑

λ=−∞

φλ(r)√
r

eiλϕ (48)

plugged into the Schroedinger equation leads to the following radial equation for φλ:

− φλ(r)
′′ +

(

(λ2 − 1
4
)

r2
+ V (r)

)

φλ(r) = Eφλ(r) (49)

Thus there is a trivial correspondence between scattering in 3 dimensions and 2 dimensions via the
substitution:

ℓ = λ− 1

2
⇒ ℓ(ℓ+ 1) = λ2 − 1

4
(50)

This effective shift in the angular momentum has important consequences. Regge originally showed
for a large class of potentials in 3d scattering that the partial wave amplitudes are meromorphic in
ℓ in the region Re ℓ > −1

2
; this corresponds to the region Reλ > 0 in 2d. It was already known in

the sixties that at threshold E → 0, there is an accumulation of an infinite number of Regge poles
around λ = 0.

The point λ = 0
We momentarily restore the ordinary units of quantum mechanics. Because of the Heisenberg

uncertainty principle pr ≥ h̄/2r, we have

E ≥ h̄2

8mr2
+

h̄2

2m

λ2 − 1
4

r2
+ V, (51)

which at λ = 0 simply reduces to E ≥ V (r). Thus this exact cancellation between zero-point
quantum fluctuations implies that any attractive potential, however weak, will create a bound
state at λ = 0. Indeed, a heuristic calculation can be found in [36] showing that the binding energy
is a non-perturbative expression in the potential:

E ≃ exp− 1
∫

V (r)rdr
(52)

Low-energy potential scattering It was shown in [22] that under very general conditions, the
s-wave amplitude vanishes logarithmically at threshold. This can be interpreted as a branch point
singularity in the complex λ plane:

a0 ∼
π

2 log k
=
π

2

∫

dλ

2πi
kλ log λ (k → 0) (53)
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IR state β = 6 β = 7.2 β = 7.2 β = 9 β = 12 β = 12 β = 18
L = 16 L = 20 L = 40 L = 24 L = 32 L = 42 L = 50√

σ 0.2538(10)∗ 0.2044(5) 0.2072(46) 0.1616(6)∗ 0.1179(5)∗ 0.1179(5)∗ 0.0853(14)
A1 0+ 1.198(25) 0.981(14) 0.951(14) 0.7652(78) 0.570(11) 0.577(13) 0.3970(78)

0+∗ 1.665(43) 1.396(21) 1.394(18) 1.108(23) 0.847(18) 0.839(40) 0.584(32)
0+∗∗ 2.198(76) 1.859(25) 1.778(34) 1.426(37) 0.980(28) 1.00(60) 0.717(76)
0+∗∗∗ 2.27(10) 2.084(41) 2.067(54) 1.522(36) 1.226(17) 1.16(12) 0.845(37)
4+ 2.44(27) 2.07(33) 2.146(64) 1.570(39) 1.195(47) 1.259(98) 0.798(32)
4+∗ 2.53(13) 2.50(14) 1.700(52) 1.419(90) 1.500(48) 0.963(45)

A2 4− 2.54(12) 2.210(53) 2.270(64)
A3 2+ 1.957(48) 1.584(18) 1.567(18) 1.232(38) 0.933(11) 1.035(16) 0.634(18)

2+∗ 2.08(18) 1.870(37) 1.891(39) 1.421(44) / 1.090(19) 0.667(20)
2+∗∗ 2.34(25) 2.219(90) 2.242(77) 1.660(54) 1.152(42) 1.096(92) 0.862(14)
2+∗∗∗ 2.65(29) 2.451(71) 2.47(12) 1.746(56) 1.459(29) 1.385(36) 1.019(92)
6+ 2.93(21) 2.51(19) 2.64(15) 1.878(86) 1.438(28) 1.544(60) 0.906(69)

A4 2− 2.071(48) 1.274(37) 0.931(24) 0.643(19)
2−∗ 2.084(56) 1.359(46) / 0.676(27)
2−∗∗ 1.629(59) 1.222(19)
2−∗∗∗ 1.741(59)
6− 1.949(64) 1.411(21) 0.952(61)

Table 1: The lightest 2+1 SU(2) glueball masses on L3 lattices at the values of β indicated. An
asterisk on the string tension indicates that the value is taken from [5].
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state β = 7.2 β = 9 β = 12 β = 18
L = 20 L = 24 L = 32 L = 50

0+ 1 1 1 1
0+∗ 1 1 1 1
0+∗∗ 1 1 1 /
0+∗∗∗ 0.59(12) 0.68(62) 0.97(13) 1
4+ 0.94(9) 0.98(4) 0.38(2) 0.95(2)
4+∗ / 0.67(16) 0.59(4) 0.98(3)
2+ 1 1 1
2+∗ 1 1 1
2+∗∗ 1 1 0.97(11)
2+∗∗∗ 1 1 1
6+ / 0.87(8) 0.88(4)

Table 2: The Fourier coefficients of the spin J states given in table 1: |cJ |2 at β = 7.2, 9, 12 and
18. When the coefficient is larger than 0.99, we round it off to 1.

state m/
√
σ conf. lev. nb. of β

0+ 4.80(10) 78 5
0+∗ 7.22(24) 64 4
0+∗∗ 8.47(30) 17 5
0+∗∗∗ 11.15(45) 14 3
4+ 9.75(45) 71 5
4+∗ 12.06(88) 29 3
2+ 7.85(15) 50 5
2+∗ 7.90(25) 15 5
2+∗∗ 10.00(33) 32 5
2+∗∗∗ 13.90(71) 35 3
6+ 12.09(40) 38 5

Table 3: The lightest 2+1 SU(2) glueball masses in the continuum limit.
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Figure 1: The continuum extrapolation of the lightest 2+1 SU(2) glueball in the 0+, 2+, 4+ and
6+ sectors. The points at a2σ = 0 represent the result of the continuum extrapolation.
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Figure 2: The Chew-Frautschi plot of the continuum 2+1 SU(2) glueball spectrum
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