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Abbreviations 

BOLD Blood oxygen level dependent 
CO2 Carbon dioxide 
DSC Dynamic susceptibility contrast 
ECG Electrocardiography 
EEG Electroencephalography 
EPI Echo planar imaging 
EVI Echo volumnar imaging 
FFT Fast Fourier transform 
fMRI Functional Magnetic Resonance Imaging 
FOV Field of view 
FSL FMRIB software library 
IC Independent component 
ICA Independent component analysis 
INI Inverse imaging 
GIN Generalized inverse imaging 
DMN Default mode network 
DMNpcc Posterior cingulate cortex default mode network 
DMNvmpf Ventromedial default mode network 
MCFLIRT Motion correction tool for fMRI time series 
MEG Magnetoencephalography 
M/EEG Magneto- and electroencephalography 
MELODIC Multivariate exploratory linear optimized decomposition into 
independent components 
MNI Montreal neurological institute 
MPRAGE Magnetization-prepared rapid acquisition with gradient echo 
MREG Magnetic resonance encephalography 
NIBP Non-invasive blood pressure 
NIRS Near-infrared spectroscopy 
PSD Power spectral density 
RSN Resting state networks 
SD Standard deviation 
sICA Spatial ICA 
stICA Spatiotemporal independent component analysis 
SpO2 Pulse oximeter oxygen saturation 
TE Echo time 
tICA  Temporal ICA 
TR Repetition time 
VLFF Very low frequency fluctuations 
VLF Very low frequency 
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ABSTRACT 

This study investigated lag structure in the resting-state fMRI by applying a novel independent 

component (ICA) method to magnetic resonance encephalography (MREG) data. Briefly, the spatial ICA 

(sICA) was used for defining the frontal and back nodes of the default mode network (DMN), and the 

temporal ICA (tICA), which is enabled by the high temporal resolution of MREG (TR=100ms), was used 

to separate both neuronal and physiological components of these two spatial map regions. Subsequently, 

lag structure was investigated between the frontal (DMNvmpf) and posterior (DMNpcc) DMN nodes 

using both conventional method with all-time points and a sliding-window approach.  

 

A rigorous noise exclusion criterion was applied for tICs to remove physiological pulsations, motion and 

system artefacts. All the de-noised tICs were used to calculate the null-distributions both for expected lag 

variability over time and over subjects. Lag analysis was done for the three highest correlating denoised 

tICA pairs.  

 

Mean time lag of 0.6 s (± 0.5 std) and mean absolute correlation of 0.69 (± 0.08) between the highest 

correlating tICA pairs of DMN nodes was observed throughout the whole analyzed period. In dynamic 2 

min window analysis, there was large variability over subjects as ranging between 1-10 sec. 

Directionality varied between these highly correlating sources an average 28.8% of the possible number 

of direction changes. 

 

The null models show highly consistent correlation and lag structure between DMN nodes both in 

continuous and dynamic analysis. The mean time lag of a null-model over time between all denoised 

DMN nodes was 0.0 s and, thus the probability of having either DMNpcc or DMNvmpf as a preceding 

component is near equal. All the lag values of highest correlating tICA pairs over subjects lie within the 

standard deviation range of a null-model in whole time window analysis, supporting the earlier findings 

that there is a consistent temporal lag structure across groups of individuals. However, in dynamic 

analysis, there are lag values exceeding the threshold of significance of a null-model meaning that there 
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might be biologically meaningful variation in this measure. Taken together the variability in lag and the 

presence of high activity peaks during strong connectivity indicate that individual avalanches may play an 

important role in defining dynamic independence in resting state connectivity within networks. 

 

Keywords: 

spatiotemporal ICA | MREG | resting state fMRI | default mode network | lag structure | network dynamics  
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1 INTRODUCTION 

 

The sources affecting spontaneous very low frequency fluctuations (VLFFs) of blood-oxygen-level 

dependent (BOLD) signal have remained unclear for over two decades (Biswal et al., 1995). Even though 

the VLFFs occur over the brain cortex with strong correlation to physiological variables, still independent 

signal sources having strong VLFFs present highest correlation within voxels of specific 

neurophysiological functional networks  (Beckmann et al., 2005; Birn et al., 2006; Damoiseaux et al., 

2006; Greicius et al., 2004; Kiviniemi et al., 2003). 

 

Recent evidence with increased temporal resolution of combined magneto- and electroencephalography 

(M/EEG) recordings and magnetic resonance encephalography (MREG) suggest that the VLFF could be 

series of neuronal avalanches within functional network structures (Barbieri and Shimono, 2012; Liu and 

Duyn, 2013; Palva et al., 2013; Rajna et al., 2015; Tagliazucchi et al., 2011). Over several minutes 

subsequent avalanches are presented in a single voxel or a small ROI in temporal signal, but their 

dynamic spatial spread over time varies markedly from peak to peak (Rajna et al., 2015, Kiviniemi et al., 

2011). The lag structure of the VLFFs over the whole brain has been extrapolated to be ~1 s with non-

critically sampled TR 3 second BOLD data (Mitra et al., 2015a; Mitra et al., 2014). By studying temporal 

lags in the resting-state BOLD signal, it has been recently shown that spontaneous BOLD fluctuations 

consist of remarkably reproducible patterns of whole brain propagation (Mitra et al, 2015a). These 

consistent infra-slow lags have recently been observed using electrocorticograph (EcoG) (Mitra et al., 

2016) and with optical imaging of gcamp6 in mouse models (Matsui et al., 2016).   In addition, previous 

fMRI work has shown the temporal lag to be consistent across groups of individuals (Amemiya et al., 

2016; Mitra et al., 2014).  

 

According to Nyquist theorem a critical sampling rate has to be at least two times faster than the 

measured signal. If the measured signal is not critically sampled, the estimation of lag structure cannot be 

unequivocal but needs to be estimated by extrapolation of data (Mitra et al., 2014). This is not a trivial 
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matter since the brain was shown to present strong cardiorespiratory pulsations and ubiquitous very low 

frequency (VLF < 0.1 Hz) vasomotor waves propagate spatially over the whole brain. The 

cardiorespiratory pulsations aliases in classical TR > 400 ms BOLD signal (Kiviniemi et al., 2005; 

Kiviniemi et al., 2015; Majeed et al., 2011; Thompson et al., 2014; Thompson et al., 2015). Non-critically 

sampled pulsations in different frequencies also mix with natural motion artifacts, which will distort time 

signals in a unique pattern in each voxel and produce virtually un-recoverable signal changes in 2D echo 

planar imaging (EPI) data (Beall and Lowe, 2014). In addition to the previous problems the hemodynamic 

delay has been thought to vary significantly between distinct resting state networks (RSNs) and render 

causality/directionality analyses inaccurate (Biswal et al., 2003; Smith et al., 2011; Smith et al., 2012). In 

short, the separation of both neurovascular delay and electrophysiological lag in resting state data calls for 

both critically sampled signal and data driven analysis that offers spatiotemporally accurate way to 

separate signal sources simultaneously.   

 

Independent component analysis (ICA) has been shown to separate sources linked to stable neuronal 

networks from functional magnetic resonance images (fMRI) of the brain (Beckmann et al., 2005; 

Calhoun et al., 2001; Damoiseaux et al., 2006; Esposito et al., 2005; Greicius et al., 2004; Kiviniemi et 

al., 2003; McKeown et al., 1998; van de Ven, Vincent G et al., 2004). ICA can be used in two ways, in 

spatial or in temporal domain. In temporal ICA (tICA) analysis temporal BOLD signal vector of each 

voxel serves as a source of density histograms for ICA, whereas in spatial ICA (sICA) all subsequent 

voxels per each brain volume form the histogram (Biswal and Ulmer, 1999; Calhoun et al., 2005; Jafri et 

al., 2008; McKeown et al., 1998).  In classical 2-3 second TR BOLD fMRI data, sICA has been almost 

exclusively used; the whole brain coverage offers an order of magnitude larger histograms ensuring 

robust signal source estimation. Moreover, tICA of the whole brain data is often computationally 

intractable with classical BOLD due to relatively low number of time points. 

 

While sICA can produce only one time signal per each separated spatial fMRI signal source, tICA can be 

used to give multiple temporal signals. In theory tICA can also be spatially overlapping and can nicely 
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represent the diversity of a given functional unit or area (Boubela et al., 2013; Smith et al., 2012). Recent 

study of 0.35 s TR BOLD, showed that tICA resting state networks are spatially nearly identical to sICA 

results and also present similar splitting of RSNs like default mode network (Boubela et al., 2013).  There 

is an increasing tendency towards faster scanning, and some spatially still very accurate techniques are 

utilizing multiband acceleration schemes on conventional EPI (Chiew et al., 2015; Chiew et al., 2016; 

Narsude et al., 2015). 

 

Even faster 3D imaging techniques like echo volumnar imaging (EVI) (Posse et al., 2013) and inverse 

imaging techniques like inverse imaging (InI), generalized inverse imaging (GIN) and MREG offer 0.1 s 

or less time resolution with whole brain coverage, which can critically sample both cardiac and 

respiratory pulsations (Assländer et al., 2013; Boyacioglu et al., 2013; Boyacioğlu and Barth, 2013; Lin et 

al., 2013; Lin et al., 2014). The inverse imaging techniques offers more time points for tICA density 

distributions in order to be both tractable computationally and accurate mathematically. Thus MREG 

allows sub-second lag structure estimation and robust differentiation of frequencies contributing to 

connectivity dynamics (Assländer et al., 2013; Lee et al., 2013; Posse et al., 2013). Estimation of lag can 

be made precise with ultra-fast imaging with results paralleling magnetoencephalography (MEG) results 

(Lin et al., 2013; Lin et al., 2014). Furthermore recent InI results suggest that the hemodynamic delay is 

not that variable and thus not a confounding major factor in lag analysis (Lin et al., 2013; Lin et al., 

2014).  

 

In this study we combine strengths of spatial and temporal ICA with ultrafast MREG data in order to 

obtain effective separation of resting-state neurophysiological and neurovascular signal sources within the 

default mode network. Spatial ICA was first used to separate functional RSN sources to minimize 

artefacts and the number of time vectors fed to tICA. Secondly, tICA was then used to obtain independent 

temporal signal sources. Our aim was to measure continuous and dynamic VLFF lag structure between 

ventromedial prefrontal (DMNvmpf) and posterior cingulate cortex default mode network (DMNpcc) with 

critically sampled MREG data. 
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2 MATERIALS AND METHODS 

 

2.1 Subjects 

Twenty-five healthy volunteers (15 males/10 females, mean age 24.8, SD 6.1 years) were imaged 

between years 2013 and 2015. Written informed consent was obtained from each subject prior to 

scanning, in accordance with the Helsinki declaration. The study protocol was approved by the ethical 

committee of Oulu University Hospital. During the 10 min MREG resting state study, subjects were 

instructed to lie still in the scanner with their eyes open fixating a cross in the screen and thinking nothing 

particular.   

 

2.2 Measurements 

Measurements were done using our novel multimodal imaging system – Hepta scan– that combines 

MREG, electroencephalography (EEG), non-invasive blood pressure (NIBP) and near-infrared 

spectroscopy (NIRS) with anesthesia monitor data (GE Datex-Ohmeda
TM

; Aestiva/5 MRI) including 

respiration carbon dioxide (respCO2), peripheral capillary oxygen saturation (SpO2) and 

electrocardiography (ECG) (Korhonen et al., 2014). All data were accurately synchronized. The fMRI 

imaging was performed using Siemens 3T SKYRA scanner with a 32-channel head coil. We utilized 

MREG sequence obtained from Freiburg University via collaboration with Jürgen Hennig group (Lee et 

al., 2013; Zahneisen et al., 2012). MREG is a single-shot three dimensional (3D) sequence that utilizes 

spherical stack of spirals and undersamples 3D k-space trajectory (Assländer et al., 2013). It allows 20-25 

times faster scanning than conventional fMRI by sampling the brain at the frequency of 10 Hz (TR=100 

ms, TE=36 ms, and flip angle=25º, FOV=(192 mm)
3
, voxel size = (3 mm)

3
)

 
. The data were reconstructed 

using L2-Tikhonov regularization with lambda=0.1, with the latter regularization parameter determined 

by the L-curve method (Hugger et al., 2011); an analysis of the point-spread function revealed that the 

resulting effective spatial resolution was 4.5 mm. Sampling rate of anesthesia monitor data was 300 Hz. 

In this study, MREG and anesthesia monitor data were utilized for analysis. 
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2.3 Pre-processing 

MREG data were preprocessed with FSL pipeline (Jenkinson et al., 2012). The data were high-pass 

filtered with cut-off frequency of 0.0025 Hz (400 s) and one hundred eighty time points (18 s) were 

removed from the beginning of the data for minimizing T1-relaxation effects. Motion correction was 

performed using FSL MCFLIRT. Brain extraction was carried with FSL BET using the following 

parameters; fractional intensity=0.25, threshold gradient=0.22 with neck and bias-field correction option. 

Spatial smoothing was carried out using 5 mm FWHM Gaussian Kernel. MREG images were aligned to 

three-dimensional (MPRAGE) anatomical images in MNI152 standard space (full-search, 12 DOF) in 4 

mm resolution prior to independent component analysis.  

 

2.4 stICA workflow 

The workflow of stICA is briefly presented in Figure 1 and is based on the following steps. Spatial ICA 

was run to the whole brain volume using FSL MELODIC’s ‘multi-session temporal concatenation’ to 

define the uniform 70 independent components for all subjects. Here, two IC components, ventromedial 

prefrontal (DMNvmpf) and posterior cingulate cortex default mode network (DMNpcc), were selected for 

further study. Spatial ICA thresholded with z-score 3 produced 1444 voxels for DMNpcc and 1828 for 

DMNvmpf. The time series of voxels within DMNpcc and DMNvmpf ICs were chosen for tICA analysis. 

 

Temporal ICA was carried out individually for each subject using FastICA algorithm (Hyvärinen and Oja, 

1997). In FastICA data is centered and whitened before tICA,. All the vector components are uncorrelated 

and their variances equal unity after whitening process. Moreover, the dimensionalities of the data were 

reduced so that the dimension of the transformed data vector equals the number of independent 

components (Hyvärinen and Oja, 1997). Other used parameters were; approach=deflation, 

nonlinearity=tanh, stabilization=on. The restriction of the algorithm is that neither the signs or nor the 

energies of the independent components can be estimated (Hyvärinen and Oja, 1997). Nevertheless, 

FastICA algorithm provides a robust way to inspect the independent temporal patterns in the specific 

spatial area of the brain. TICA analysis was carried out using MATLAB software.    
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Figure 1. General workflow of stICA. First, spatial ICA is run to the whole brain volume using FSL MELODIC’s 

‘multi-session temporal concatenation’ and two IC components DMNvmpf and DMNpcc are selected (lef box). The 

time series of voxels within DMNvmpf and DMNpcc IC maps that exceed the selected threshold (z>3) are chosen for 

tICA analysis. Right box presents example tICs of an individual subject. 

 

2.5 Experiment setup for analysis 

Analyses were done for the first 7 minutes (4200 brain volumes) of the measurement. We decided to 

exclude the last 3 mins of 10 mins study since the data in three subjects had absent off-resonance 

correction in the image reconstruction during the last three minutes of the scanning. We selected model 

orders of 10, 30 and 50 tICA for analysis.  
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2.6 Identification and exclusion criteria for tICs 

2.6.1 Exclusion of potentially motion affected tICs 

MCFLIRT motion correction data of MREG measurements were used to exclude motion disrupted tICs. 

Velocity information was calculated by differentiating rotational and translational correction data in each 

x-, y- and z-dimension along time dimension. Separately, the absolute values of rotational and 

translational velocity data were summed in all three MNI spatial dimensions, resulting in a rotational and 

translational speed representation. The previous steps were done similarly with Rajna and co-workers 

(Rajna et al., 2015). Next, all tICs and eight motion signals were band pass filtered (0.009-0.1 Hz) and 

correlated. Temporal ICAs, having correlation > 0.25 with any of motion signals, were abandoned from 

the analysis.        

 

2.6.2 Exclusion of the 1 Hz helium pump noise 

Power spectral density (PSD) estimates using FFTs were calculated for each tIC. Next, trapezoidal 

numerical integration (trapz function in MATLAB) was performed for each tIC in the frequency band of 

0.9976-1.0024 Hz. To exclude significant amount of helium pump noise from tICs, within each spatial 

ROI, the mean and standard deviation of trapz values were calculated from all tICs. Those tICs whose 

trapz value exceeded the sum of mean and standard deviation, were declared significant and thus 

excluded from the analysis.  

 

2.6.3 Exclusion of cardiac and respiratory tICs 

FFTs of SpO2 and respCO2 signals were calculated to verify cardiac and respiratory frequencies. From 

SpO2, the frequency location of maximum magnitude in FFT was declared as cardiac frequency. 

Respiratory frequency was defined similarly from the FFT of respCO2 signal. Seven subjects did not have 

a proper SpO2 and respCO2 signals. For those subjects we defined the respiratory and cardiac frequencies 

from the FFT of MREG sICA components. Next, frequency bands +/- 0.1 Hz were formed around both 

cardiac and respiratory frequencies. Using the PSDs calculated earlier, the trapezoidal numerical 

integration was calculated for both cardiac and respiration frequency bands.  To exclude tICs with 
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significant respiratory information, within each spatial ROI, the mean and standard deviation of trapz 

values were calculated from all tICs. Those tICs whose trapz value exceeded the sum of mean and 

standard deviation, were declared significant respiratory tICs and thus excluded from the analysis. 

Cardiac tICs were excluded similarly, using the cardiac frequency band respectively.  

 

2.6.4 Exclusion of tICs with significant warming effect 

First order polynomial fitting was calculated for each tIC in the time range of first 120 s using polyfit 

function in MATLAB to define the regression slope coefficient. Based on the phantom test (see 

supplements), warming causes a raising (either raising or decreasing in ICA) curve in the MREG signal, 

i.e. large regression slope coefficient in the first 120 s of the measurement. This warming effect seems to 

be specific to MREG sequence. Within each spatial ROI, the mean and standard deviation of slope 

coefficient values were calculated from 50 tICs.  Those tICs, whose slope coefficient value exceeded the 

sum of mean and 2 × standard deviation, were declared significant and thus excluded from the analysis.  

   

2.7 Estimation of connectivity time lag between DMNvmpf and DMNpcc components 

The remaining tICs that passed the exclusion criteria were detrended and bandpass filtered from 0.009 Hz 

to 0.1 Hz to estimate connectivity time lag. DMNvpmf tICs were then correlated with DMNpcc tICs. The 

three highest correlating signal pairs (nodes) were selected. Within the selected signal pair, the other 

signal was shifted sample by sample using +/- 100 sample range, i.e. 20 s time range and the time lag that 

gave the strongest correlation was declared as time lag between DMN front and back components (see 

Figure 2A). The absolute correlation in that specific time lag was listed as the corresponding correlation 

value in the results section. The connectivity lag estimates were calculated for each of the three nodes.  
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2.8 Estimation of connectivity dynamics 

The highest correlating signal pairs were selected for the dynamics analysis. In recent studies it has been 

reported that the minimum window length to avoid the spurious fluctuations arising due to sliding 

window correlation itself should be at least equal to 1/fmin, where fmin is the minimum frequency in the 

simplified correlating signal (Leonardi and Van De Ville, 2015; Shakil et al., 2015).  Therefore, we 

selected the window length to be 120 s (1/fmin = 111.1 s) with 60 s overlap by forming six time windows 

in the 7 mins long signal. In each of the six time windows, the other signal was shifted sample by sample 

using +/- 100 sample range (see Figure 2B), and the time lag and correlation giving the strongest absolute 

correlation were listed in the results section.   

 

2.9. Null-distributions for correlation coefficients and time lags 

The null model histograms for both correlation coefficients and time lags were formed from all denoised 

tICA pair values.  
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Figure 2. A. Estimation of connectivity time lag. Once the best correlating tICs between two spatial ROIs (here 

DMNpcc and DMNvmpf) were selected after strict tICA exclusion criteria, the selected tICs were band pass filtered 

0.009-0.1 Hz and then correlated. The other signal was shifted by sample +/- 100 samples, i.e. 10 s and the time 

lag that gave the strongest correlation was declared as time lag between DMN front and back components. The 

elevated activity is seen in both tICs. B. Estimation of connectivity dynamics. Connectivity dynamics calculations 

were applied to the best correlating and BP filtered (0.009-0.1 Hz) tICs in Figure 2A. We formed six time windows 

of 2 mins length and 1 mins overlap. In each time window the other signal was shifted by sample +/- 100 samples, 

i.e. 10 s and the time lag that gave the strongest correlation was declared as time lag between DMN front and back 

components.  
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3 RESULTS 

 

3.1 tICA signal overview 

An example of tICA signals of DMNvmpf of a single subject is illustrated in Figure 3. Cardiovascular 

pulses can be readily identified from sharp arterial type negative pulses. In distinction to 

venous/glymphatic pulsations, the arterial tICs have a sharper negative peak and present aortic valve 

notch, which emphasizes the 2
nd

 harmonic frequency in FFT spectrum (see Figure 3B). Respiratory tICs 

have a slower but rather regular sinusoidal signal fluctuation that corresponds to external respiration 

measurements. 

 

Hardware warming effects present typical slow drift in the beginning of the scan, c.f. Supplementary 

Figure 1. Skyra helium pump presents a non-physiologically narrow 1 Hz power peak in FFT, 

cardiorespiratory peaks are wider due to physiological heart rate variability. Sudden motion tIC peaks can 

be correlated with FSL MCFLIRT motion estimates. More subtle MREG signal effects of motion were 

estimated from MCFLIRT motion parameters which were derivative into velocity estimates, both 

rotational and translational.  
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Figure 3. A. Overview of signal sources of a single subject including time signals and corresponding FFTs is 

presented in Figure 7. Temporal ICs are named based on our identification and exclusion criteria (see section 

Identification and exclusion criteria for tICAs) referring to the most prominent feature (cardiac, respiration, 

helium, warming, motion and VLFF) in tICA. Signals 1 and 2 represent VLFF signals typical to RSN’s as they have 

passed all exclusion criteria. B.  Typical cardiac (above) and respiratory (bottom) signals of DMNvmpf calculated 

with stICA. The cardiac tIC includes a clear M-shape that is seen in the enlarged section (100-120 s) of the signal, 

presents the aortic closure wedge on the arterial pulse.  
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3.2 Source separation vs. tICA model order 

In order to estimate the effect of model order, we calculated 10, 30 and 50 tIC components from each 

dataset. The retained eigenvalues in ICA calculation explained roughly 94 % of the variance in 10 tICA, 

98.5% in 30 tICA and 99.5% in 50 tICA. 

 

Based on our tICA exclusion criteria (presented in section Identification and exclusion criteria for tICs), 

calculation of model order 10 tICs was too small as in nine subjects all 10 tICs were excluded from the 

analysis due to excessive amount of physiological noise, motion or other artefacts in the signals. In model 

order 30, roughly 10 tICs passed our exclusion criteria. Model order 50 tICA was able to separate more 

targeted VLFF signal sources relative to model order that were not excluded. Illustration of the number of 

excluded components in the model orders 10, 30 and 50 in shown in Supplementary Figure 2.  On 

average in model order 50 tICA, 29 (± 4 std) tICs in DMNvmpf and 27 (± 4) tICs in DMNpcc of a single 

subject were excluded based on our exclusion criteria. Our signal identification and exclusion criteria 

claimed that in 50 tICA, DMNvmpf component had significant amount of respiratory activity in 7 tICs (± 

2), cardiac in 4 (± 2) tICs, helium in 5 (± 2) tICs, warming in 3 (± 1) tICs and motion in 20 (± 5) tICs. 

Whereas, DMNpcc component had significant amount of respiratory activity in 6 (± 2) tICs, cardiac in 6 (± 

2) tICs, helium in 6 (± 2) tICs, warming in 3 (± 1) tICs and motion in 17 (± 5) tICs. It is noteworthy that 

even after 99.5 % coverage of signal variance the tICs have contributions from physiological pulsations, 

motion and system artifacts in > 50 % of IC’s. Multiple independent physiological signal sources to be 

observed were caused by temporal phase fluctuations (see Figure 4), i.e. all physiological components had 

difference phase even within the same RSN node.  
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Figure 4. Illustration of phase shift differences in physiological tIC signals. The signals are enlarged sections of 

time signals of an individual subject who had 4 cardiac tICs and 5 respiratory tICs identified in DMNvmpf 50 tICA 

calculation. Notably, all of these physiological signals had a different phase within the spatial IC.  

 

3.3 Defining statistically significant correlation coefficients and lag values 

Statistical significance of the correlation coefficients and lag values were validated by creating histograms 

from all denoised tICA pair correlation and lag values of 25 subjects (see Figure 5A). The data group 

consisted of 11 291 data values with mean correlation coefficient of 0.00 and standard deviation of 0.17. 

Therefore, the threshold of mean ± 3 std (µ ± 3 σ) was 0.51, indicating that 99.7 % of the correlation 

coefficients lie within ± 0.51 value range. The mean lag value (see Figure 5B) over all subjects was 0.0 s 

with standard deviation of 4.0 s.   
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Figure 5. A) A Histogram of correlation coefficients (between all denoised tICA pairs of all subjects). µ ± 2σ 

indicates that 95.5 % of the values lie within that range whereas 99.7 % of the values lie within µ ± 2σ range. B) A 

histogram lag values (between all denoised tICA pairs of all subjects), with the mean lag of 0.0 s and standard 

deviation of 4.0 s. C) Correlation versus time lags scatterplots of three first nodes in the model order 30 and 50 

tICA. The directionality of the leading DMN component is marked by triangle and circle symbols. Correlation 

values are absolute values. The line of µ ± 3σ indicates the threshold of statistical significance validated in Figure 

5A.   
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3.4. Cross-individual variability 

Cross-individual variability was measured by calculating the lag values between all denoised tICA pairs 

for all subjects. The null distributions of lag values for all subjects are presented in Figure 6. The results 

show that the mean lag varies between -0.3…0.5 s and standard deviation vary between 3.6…4.5 s over 

subjects.  

 

Figure 6. Subject variability in lag histograms (whole time window). The mean lag over subjects varies between -

0.3…0.5s with standard deviation of 3.6...4.5.  

 

3.5 Continuous and dynamic connectivity 

Model order 30 vs 50 tICA connectivity lag estimates of three highest correlating tIC pairs are illustrated 

in Figure 5C. Lag estimates were not calculated for model order 10 tICA, as only 16 of the 25 subjects 

had connectivity signal pairs available after exclusion. In each of the nodes, model order 50 tICA showed 

higher mean absolute correlation values than model order 30 tICA (1st node: 0.69 vs 0.59, 2nd node: 0.60 
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vs 0.53 and 3rd node: 0.56 vs 0.47). The mean absolute correlation values decreased in both model order 

of 30 and 50 tICA, as a function of increasing node order. In the first node of model order 50 tICA, each 

subject had correlation value > 0.55. Moreover, the highest correlating connectivity pairs of all 25 

subjects in 50 tICA exceeded the correlation coefficient threshold of 0.51 (µ ± 3 σ), indicating a 

probability of 99.7 % to be statistically significant results.  Based on the results, the first node of model 

order 50 tICA was chosen for further analysis. 

 

The mean absolute connectivity time lag was 0.6 s (± 0.5) and mean absolute correlation was 0.69 (± 

0.08) in the first node of model order 50 tICA. The directional connectivity between the DMN areas’ 

varied as DMNvmpf preceded DMNpcc in 10 and DMNpcc preceded in 12 cases. Three subjects had a zero 

lag. Those subjects who had DMNvmpf as preceding component, the mean time lag was 0.6 s (± 0.5) and 

mean absolute correlation 0.70 (± 0.08). Furthermore, when taking account only the subject results of 

DMNpcc as preceding component, mean time lag was 0.8 s (± 0.5) and mean absolute correlation 0.70 (± 

0.09). Notably > 80 % of the high correlating signal pairs had an elevated activity event peaking in the 

signal, c.f. Figure 2.  

 

In dynamic connectivity analytics, the correlation coefficient in different time windows was 0.62 ± 0.08. 

Maximum correlation was on average 0.82 ± 0.07 with a lag of 0.8 s ± 0.7. Subsequent changes in 

directionality were detected in 1.44 ± 0.9 times of 5 (28.8%) possible number direction changes. The null 

distributions of correlation coefficients and lag values for each time window are presented in Figure 7, 

showing marginal sampling variability over time windows. In all time windows, µ=0.00 and σ=0.25 in 

correlation coefficients, µ=-0.1…0.0 s and σ=4.1…4.2 s in lag values. Detailed dynamic connectivity 

results of all individual subjects are listed in Supplementary Table I. In 23 of the 25 subjects the mean 

correlation of all dynamic windows exceeds the µ ± 2   (± 0.50). Two subjects whose mean correlation 

(0.47 & 0.45) didn’t exceed the µ ± 2 had still significant correlations in some of the dynamic time 

windows, i.e. highest correlations being 0.77 & 0.91.  
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Figure 7. A) Six histograms of correlation coefficients, presenting six time windows. In all time windows µ=0.00 

and σ =0.25. B) The lag value histograms for six time windows. The mean lag is close to zero (-0.1...0.0) in all time 

windows with almost constant standard deviation (4.1…4.2) over all time windows.   

 

3.6. Spatial distribution of tICA connectivity 

Despite individual spatial variability the most highly correlated  tICA VLF signals are confined within the 

typical DMN nodes. Figure 8 illustrates examples of five subjects showing some variability in the spatial 

distribution of the three most highly correlated tICA nodes. However there seems to be some spatial 

overlap between individuals as well in the activity states between DMN areas.     

 

Figure 8. Spatial distributions of tICA connectivity in five randomly selected subjects. Those voxels whose VLF 

(0.009-0.1Hz) time signals temporally correlates > 0.3 with tICA are color encoded, .i.e. red color indicating 

DMNpcc and green DMNvmpf areas. All images are shown in x=24, y=17, z=22 plane. 
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4 DISCUSSION 

 

In this study of MREG data, we extended sICA into a focused tICA in order to obtain robust time domain 

signals that could enable accurate lag structure estimates between the two opposite ends of DMN. Lag 

structure estimates were calculated for the highest correlating tICA pairs. Mean time lag of 0.6 s (± 0.5 

std) and mean absolute correlation of 0.69 (± 0.08) between the highest correlating tICA pairs of DMN 

nodes was observed throughout the whole analyzed period. In dynamic 2 min window analysis (of 1200 

brain volumes), there was large variability over subjects as in some subjects the lags varied within 1s and 

in some subjects within 10s time range. Directionality varied between these highly correlating sources an 

average 28.8% of the possible number of direction changes. 

 

 All the de-noised tICs were used to calculate the null-distributions both for expected lag variability over 

time and over subjects. The null-distributions show highly consistent lag and correlation structure both in 

continuous and dynamic sliding-window analysis, parallel with prior literature (Mitra et al., 2014; Mitra 

et al., 2015a).  The results support the earlier findings of consistent temporal lags across groups of 

individuals (Amemiya et al., 2016; Mitra et al., 2014).  

 

Based on the new lag results it seems that is actually very difficult to draw any conclusions that which is 

the ‘leading component’ between DMNpcc and DMNvmpf, which support the conclusions by Mitra and 

co-workers (Mitra et al., 2014) that “each RSN encompasses a range of early and late regions, and no 

network leads or follows any other network”. Rather, lags are equivalently distributed within RSNs”. The 

null-distributions suggest that, when having reasonable amount of samples (nodes), the mean time lag 

between the DMN nodes is zero, and the probability of having either DMNpcc or DMNvmpf as a 

‘preceding component’ is near equal. Moreover, the standard deviation of time lags in whole time 

window (Figure 5B) is around 4s, which suggest that all the presented first node lag results lie within the 

standard deviation, supporting the earlier findings that there is a consistent temporal lag structure across 
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groups of individuals (Amemiya et al., 2016; Mitra et al., 2014).  Therefore, it might be difficult to draw 

any deep conclusions on average lag results of whole time window since there are only 25 subjects with 

one lag value. However, these first node results may indicate the largest mutual information change (with 

highest correlation) which points out that some variability in lag is evident between the highest 

correlating nodes.  

 

In dynamic analysis, there are lag values exceeding the limits of significance of a null-model meaning 

that there might be biologically meaningful variation in this measure. Notable, in some subjects the lags 

seem to have only minor variations (< 1.0 s) over all measured time windows while some subjects there is 

large variation in the scale of 10 s. It would be interesting to further explore whether this temporal long 

time lag could mean that there is some strong functional connection between some other RSNs while 

there is less connectivity within DMN nodes. However, in this study, we have explored the same tICA 

pair (highest correlating in whole time window) over all time windows. Therefore, the highest 

connectivity tICA pair can potentially differ dynamically giving much shorter time lag.   

 

Recently, there has been a concern that dynamic BOLD correlations during resting-state could be largely 

explained by sampling variability, head motion and drowsiness (Laumann et al., 2016). In this study, 

however, the null-distributions of all time windows suggest that the results in this study do not likely arise 

from sapling sampling variability since the lag structure shows consistent patterns and lag measures over 

all time windows. Secondly, in this study the head motion plays very minimal role on dynamics due to the 

strict motion exclusion criteria we have applied to the data. Thirdly, the drowsiness, could in theory infer 

some dynamics. However, we have used the initial 7 mins scan for the analysis. Therefore the subjects 

should be fairly vigilant, since the vigilance is always checked (orally) between each scan.  

 

Mitra and co-workers extrapolated a highly reproducible lags on the order of ~1s by application of 

parabolic interpolation of 3 s TR resting state BOLD data (Mitra et al., 2015a), which matched relatively 

well to lag values of highest correlating tICA pairs obtained with critically sampled data of this study. 
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Furthermore, Mitra et al., demonstrated multiple lag threads, some of which can be physiological like 

hemodynamic and some neurophysiological in origin (Mitra et al., 2015a). First of all many tICA sources 

are affected by cardiorespiratory pulses that have different phases since the pulses move in the brain. 

Furthermore, we were also able to depict several other connectivity tICs that were not noise sources, 

which also support the finding of multiple lag threads in the data, even within DMN key sub-network 

nodes.  

 

The VLFF signal in the RSN’s including the DMN can be thought of as a series of repeating signal 

intensity peaks similar to neuronal avalanches (Liu & Duyn 2013, Palva et al., 2014). It has been shown 

that the DMN splitting into several spatially independent signal sources follows individual paths of these 

neuronal avalanches (Abou Elseoud et al., 2011; Kiviniemi et al., 2009; Rajna et al., 2015). A preliminary 

finding in animal experiments supports this, as the white matter DMN connections are anatomically 

patchy (Heilbronner SR, 2014). Interestingly the spatial distributions of the highest connectivity tIC nodes 

show very similar anatomical moment to moment variability most likely stemming from segregated and 

unique sources of connectivity (Kiviniemi et al., 2011).  

 

Also as ICA has a tendency towards sparseness, the tICA may select a signal source based on strong 

individual events in the data (Daubechies et al., 2009). The finding of strong signal peaks during high 

connectivity supports the idea of neuronal avalanches driving the dynamic connectivity; individual brain 

activity avalanches present strong connectivity patterns that sum up into a VLFF signal pattern when 

averaged over a longer period in time (Liu and Duyn, 2013; Palva et al., 2013; Rajna et al., 2015). It 

remains to be seen whether these temporally subsequent avalanches form the statistical independence that 

ICA picks up. 

 

We believe that the lag variations even within sources with highest connectivity across subjects can be 

reflecting previously described dynamic rather than the stable nature of functional connectivity (Chang 

and Glover, 2010; Hutchison et al., 2013; Kiviniemi et al., 2011). As most changes in neural processing 
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occur in the millisecond range, our current MREG data takes 20 more accurate step towards that temporal 

resolution. Due to the increased temporal accuracy, we are also now more sensitive to moment to moment 

changes also in directionality.  

 

In order to maximize the probability of analyzing functional connectivity within the DMN we focused 

solely on highest connectivity signal pairs. Notably > 80 % of the high correlating DMN signal pairs had 

an elevated activity event peaking in the signal (see Figure 3). We believe that these elevated activities 

represent neuronal avalanches (Liu et al., 2013; Palva et al., 2013; Rajna et al., 2015) and as sparse events 

the avalanches dominate the connectivity structure. Our strict exclusion criterion minimizes the 

probability that those elevated signal peaks are not caused by physiological noise, motion or system 

artefacts. However, the dynamic 4D mapping of individual neuronal avalanches might reveal a more 

accurate description of the lag structure and especially dynamics in directionality, which we intend to 

investigate in the future (Liu and Duyn, 2013; Palva et al., 2013; Rajna et al., 2015).  

 

Future work 

Since the brain pulsates strongly, it is mandatory to separate the physiological pulsations from neuronal 

activity (Birn at al., 2006; Kiviniemi et al., 2015). In this study we show that tICA, even with signals 

focused on DMN by sICA pre-processing, tICs are still affected by noise sources like motion and 

pulsations to varying extent. This implies that the physiological pulsations are not temporally independent 

nor sparse but rather continuous and omnipresent (Kiviniemi et al., 2015). In critically sampled data, the 

same physiological pulses extend over the brain in repeating waves. This implies that in de facto each 

neighboring voxel has a temporally phase shifted signal in cardiorespiratory as well as very low 

frequencies that may also interference in unexpected ways within the same RSN. These multiple phase 

representations of signal sources seem to become detected as separate temporal IC. Despite the idea of 

superior performance of tICA in the detection of neuronal events, the physiological pulsations driving the 

brain glymphatic system may actually mask the neuronal events. This needs to be countered with higher 
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model order of tICs, which complicates analysis. However advanced filtering prior to tICA needs to be 

analyzed in the future.  

 

It would be interesting to know how tICA would improve, if the continuous noise sources such as 

pulsations would be removed a priori using sICA approaches. Fully automatic spatial noise detection 

algorithm, such as FIX “FMRIB’s ICA based X-noisifier”), could in theory offer a valuable pre-

processing step before stICA procedure for denoising fMRI data via accurate classification of ICA 

components (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). We aim to automate RSN tICs 

detection and explore how the connectivity dynamics are affecting the lag thread structure and 

directionality with a matrix approach. The identification of disruptions in the lag structure of the brain can 

be useful for clinical applications such as studying patients with variable neuronal and psychiatric brain 

diseases. Recent work by Mitra and co-workers has already shown that lag-structure of intrinsic activity is 

focally altered in high functioning adults with autism (Mitra et al., 2015b). 
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5 CONCLUSIONS 

Combined spatiotemporal ICA (stICA) of critically sampled MREG data separated accurately the VLF 

signals from physiological, motion and other artefact signal sources which further enabled accurate lag 

structure estimates between DMN nodes. The null model distributions show highly consistent correlation 

and lag structure between DMN nodes both in continuous and dynamic analysis. The mean time lag of a 

null model between DMN nodes was 0.0 s and thus the probability of having either DMNpcc or 

DMNvmpf as a preceding component is near equal. All the lag values of highest correlating tICA pairs 

over subjects lie within the standard deviation range of a null-model in whole time window analysis, 

supporting the earlier findings that there is a consistent temporal lag structure across groups of 

individuals. However, in dynamic analysis, there are lag values exceeding the limits of significance of a 

null-model meaning that there might be biologically meaningful variation in this measure. Furthermore, 

most of the signal sources with highest tICA connectivity pairs show a momentary activity peaks in the 

signals that dominate the connectivity structure over the measured period, suggesting that individual 

avalanches may play an important role in defining dynamic independence in resting state connectivity 

within networks. 
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Supplements 

Supplement Figure 1 

 

Figure presents the signal warming behavior verified by phantom test using the same MREG imaging setup. The 

warming causes the signal amplitude to rise strongly during the first 120 s before it reaches its maximum. FFT 

shows that significant amount of 1 Hz (Skyra helium pump) noise is included in the warming curve. 
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Supplement Figure 2 

 

Illustration of excluded temporal ICA components in each of the 25 subjects. Panel (A) shows 10 tICA, (B) 30 tICA 

and (C) 50 tICA. X-axis indicates the number of excluded tICAs in DMNpcc and y-axis in DMNvmpf. Next, the 

excluded component pairs that included more than 1 subject are listed. In 10 tICA; 9 subjects (10 VMPF excluded, 

10 PCC excluded), 7 subjects (9,9), 2 subjects (8,9), 2 subjects (8,8), 2 subjects (9,7). In 30 tICA; 2 subjects 

(25,23), In 50 tICA; 2 subjects (21,19),  2 subjects (30,32).  
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Supplementary Table I. Dynamic connectivity results of each of the individual subjects. 

50 

tICA 

Dynamics (6 time windows, 2 mins long, 1 min overlap) 
1 2 3 4 5 6   

subject corr 

lag 

corr 

lag 

corr 

lag 

corr 

lag 

corr 

lag 

corr 

lag 

mean corr 

mean lag 

corr std 

lag std 

1 

 

-0.74 

0.4 

-0.68 

-0.4 

-0.62 

-0.4 

-0.8 

1.4 

-0.61 

-0.4 

-0.42 

-5.9 

0.65 

1.5 

0.13 

2.2 

2 

 

0.51 

0.6 

0.53 

0.3 

0.60 

-0.8 

0.54 

-1.6 

0.80 

-0.6 

0.71 

-0.4 

0.62 

0.7 

0.12 

0.5 

3 

 

-0.78 

1.9 

-0.76 

1.7 

-0.80 

0.1 

-0.87 

1.1 

-0.83 

1.4 

-0.63 

0.8 

0.78 

1.2 

0.08 

0.7 

4 

 

0.15 

2.7 

0.67 

0.0 

0.62 

1.2 

0.45 

-1.6 

0.63 

-1.1 

0.86 

-0.5 

0.56 

1.2 

0.24 

0.9 

5 

 

0.67 

0.0 

0.69 

0.8 

0.62 

1.0 

0.81 

0.1 

0.81 

-0.3 

0.59 

-0.5 

0.70 

0.5 

0.09 

0.4 

6 

 

0.68 

1.2 

0.82 

1.3 

0.89 

0.4 

0.89 

-0.7 

0.65 

-0.4 

0.5 

-1.5 

0.74 

0.9 

0.16 

0.5 

7 

 

0.60 

1.9 

0.50 

-1.1 

0.66 

-1.5 

0.89 

-0.3 

0.91 

0 

0.84 

0.5 

0.73 

0.9 

0.17 

0.7 

8 

 

-0.22 

3.8 

0.33 

-4.0 

0.75 

0.2 

0.77 

0.4 

0.51 

1.6 

0.26 

2.2 

0.47 

2.0 

0.24 

1.6 

9 

 

0.70 

-1.0 

0.43 

-0.5 

0.69 

0.2 

0.83 

-1.4 

0.88 

-1.7 

0.85 

-2.2 

0.73 

1.2 

0.17 

0.8 

10 

 

-0.32 

1.2 

-0.46 

0.2 

-0.71 

-0.4 

-0.63 

0.3 

-0.85 

0.0 

-0.86 

0.5 

0.64 

0.4 

0.22 

0.4 

11 

 

-0.38 

-10.0 

-0.59 

-0.7 

-0.56 

-3.6 

-0.71 

-2.9 

-0.59 

-1.8 

-0.78 

-0.8 

0.60 

3.3 

0.14 

3.5 

12 

 

-0.35 

1.1 

-0.23 

1.5 

-0.48 

0.2 

-0.55 

-0.2 

-0.66 

-0.3 

-0.74 

0.1 

0.50 

0.6 

0.19 

0.6 

13 

 

0.58 

0.4 

0.63 

-0.3 

0.48 

-2.8 

0.61 

1.1 

0.58 

0.9 

0.64 

0.1 

0.59 

0.9 

0.06 

1.0 

14 

 

-0.70 

-0.9 

-0.54 

-0.8 

-0.68 

0.0 

-0.87 

-0.3 

-0.84 

-0.5 

-0.39 

10.0 

0.67 

2.1 

0.18 

3.9 

15 

 

0.30 

0.9 

0.60 

-0.7 

0.66 

-0.8 

0.85 

2.4 

0.77 

2.2 

0.35 

-8.2 

0.59 

2.5 

0.22 

2.9 

16 

 

0.54 

-0.7 

0.52 

-1.3 

0.67 

-1.0 

0.68 

-0.5 

0.63 

-1.0 

0.64 

-1.0 

0.61 

0.9 

0.07 

0.3 

17 

 

-0.64 

10.0 

0.52 

1.0 

0.86 

1.6 

0.77 

1.2 

0.50 

-10 

0.45 

-0.9 

0.62 

4.1 

0.17 

4.6 

18 

 

0.91 

0.5 

0.46 

1.4 

0.43 

1.7 

0.27 

9.8 

0.36 

-4.6 

0.28 

-4.3 

0.45 

3.7 

0.24 

3.4 

19 

 

-0.45 

-10.0 

-0.91 

0.6 

-0.92 

0.6 

-0.65 

-0.5 

-0.46 

-1.0 

-0.35 

-10.0 

0.62 

3.8 

0.25 

4.8 

20 

 

0.39 

0.8 

0.73 

2.1 

0.63 

1.6 

0.75 

1.8 

0.79 

2.1 

0.61 

1.5 

0.65 

1.7 

0.15 

0.5 

21 

 

0.75 

-0.1 

0.63 

-0.7 

0.57 

-0.5 

0.61 

0.7 

0.56 

0.3 

0.52 

0.4 

0.61 

0.5 

0.08 

0.2 

22 

 

0.46 

4.8 

-0.27 

-9.1 

-0.36 

-5.3 

-0.83 

-2.2 

-0.87 

-1.9 

-0.66 

-0.1 

0.58 

3.9 

0.25 

3.2 
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23 

 

-0.33 

-3.0 

-0.41 

-1.6 

-0.67 

-0.4 

-0.58 

-0.1 

-0.87 

1.4 

-0.91 

1.6 

0.63 

1.4 

0.24 

1.0 

24 

 

0.66 

-0.1 

0.62 

-0.1 

0.63 

-0.7 

0.45 

-1.3 

0.72 

0.0 

0.78 

0.1 

0.64 

0.4 

0.11 

0.5 

25 

 

0.40 

-9.4 

0.48 

-7.3 

-0.45 

7.8 

-0.69 

-1.0 

-0.76 

-0.7 

-0.70 

0.0 

0.58 

4.4 

0.15 

4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Raatikainen et al.  

39 
 

Figure captions 

 

Figure 1. General workflow of stICA. First, spatial ICA is run to the whole brain volume using FSL MELODIC’s 

‘multi-session temporal concatenation’ and two IC components DMNvmpf and DMNpcc are selected (lef box). The 

time series of voxels within DMNvmpf and DMNpcc IC maps that exceed the selected threshold (z>3) are chosen for 

tICA analysis. Right box presents example tICs of an individual subject. 

 

Figure 2. A. Estimation of connectivity time lag. Once the best correlating tICs between two spatial ROIs (here 

DMNpcc and DMNvmpf) were selected after strict tICA exclusion criteria, the selected tICs were band pass filtered 

0.009-0.1 Hz and then correlated. The other signal was shifted by sample +/- 100 samples, i.e. 10 s and the time 

lag that gave the strongest correlation was declared as time lag between DMN front and back components. The 

elevated activity is seen in both tICs. B. Estimation of connectivity dynamics. Connectivity dynamics calculations 

were applied to the best correlating and BP filtered (0.009-0.1 Hz) tICs in Figure 2A. We formed six time windows 

of 2 mins length and 1 mins overlap. In each time window the other signal was shifted by sample +/- 100 samples, 

i.e. 10 s and the time lag that gave the strongest correlation was declared as time lag between DMN front and back 

components.  

 

Figure 3. A. Overview of signal sources of a single subject including time signals and corresponding FFTs is 

presented in Figure 7. Temporal ICs are named based on our identification and exclusion criteria (see section 

Identification and exclusion criteria for tICAs) referring to the most prominent feature (cardiac, respiration, 

helium, warming, motion and VLFF) in tICA. Signals 1 and 2 represent VLFF signals typical to RSN’s as they have 

passed all exclusion criteria. B.  Typical cardiac (above) and respiratory (bottom) signals of DMNvmpf calculated 

with stICA. The cardiac tIC includes a clear M-shape that is seen in the enlarged section (100-120 s) of the signal, 

presents the aortic closure wedge on the arterial pulse.  

 

Figure 4. Illustration of phase shift differences in physiological tIC signals. The signals are enlarged sections of 

time signals of an individual subject who had 4 cardiac tICs and 5 respiratory tICs identified in DMNvmpf 50 tICA 

calculation. Notably, all of these physiological signals had a different phase within the spatial IC.  

 



 Raatikainen et al.  

40 
 

Figure 5. A) A Histogram of correlation coefficients (between all denoised tICA pairs of all subjects). µ ± 2σ 

indicates that 95.5 % of the values lie within that range whereas 99.7 % of the values lie within µ ± 2σ range. B) A 

histogram lag values (between all denoised tICA pairs of all subjects), with the mean lag of 0.0 s and standard 

deviation of 4.0 s. C) Correlation versus time lag scatterplots of three first nodes in the model order 30 and 50 

tICA. The directionality of the leading DMN component is marked by triangle and circle symbols. Correlation 

values are absolute values. The line of µ ± 3σ indicates the threshold of statistical significance validated in Figure 

5A.   

 

Figure 6.  Subject variability in lag histograms (whole time window). The mean lag over subjects varies between -

0.3…0.5s with standard deviation of 3.6...4.5.  

 

Figure 7. A) Six histograms of correlation coefficients, presenting six time windows. In all time windows µ=0.00 

and σ =0.25. B) The lag value histograms for six time windows. The mean lag is close to zero (-0.1..0.0) in all time 

windows with almost constant standard deviation (4.1-4.2) over all time windows.   

 

Figure 8. Spatial distributions of subconnectivities in five control subjects. Those voxels whose VLF time signals 

correlates > 0.3 with tICA are color encoded, .i.e. red color indicating DMNpcc and green DMNvmpf areas. All 

images are shown in x=24, y=17, z=22 plane. 

 

 

 

 

 

 


