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Abstract
Advances in modern neuroimaging in combination with behavioral genetics have allowed
neuroscientists to investigate how genetic and environmental factors shape human brain structure
and function. Estimating the heritability of brain structure and function via twin studies has
become one of the major approaches in studying the genetics of the brain. In a classical twin
study, heritability is estimated by computing genetic and phenotypic variation based on the
similarity of monozygotic and dizygotic twins. However, heritability has traditionally been
measured for univariate, scalar traits, and it is challenging to assess the heritability of a spatial
process, such as a pattern of neural activity. In this work, we develop a statistical method to
estimate phenotypic variance and covariance at each location in a spatial process, which in turn
can be used to estimate the heritability of a spatial dataset. The method is based on a
dimensionally-reduced model of spatial variation in paired images, in which adjusted least squares
estimates can be used to estimate the key model parameters. The advantage of the proposed
method compared to conventional methods such as a voxelwise or mean-ROI approaches is
demonstrated in both a simulation study and a real data study assessing genetic influence on
patterns of brain activity in the visual and motor cortices in response to a simple visuomotor task.
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Introduction
In a classical twin study, the heritability of a trait is assessed by estimating genetic and
phenotypic variation based on the similarity (i.e. intraclass correlation) of monozygotic
(MZ) and dizygotic (DZ) twins. Conventionally, heritability is measured for univariate,
scalar traits (e.g. IQ, body mass index, etc.); however, there are cases where the trait is
defined by a spatial process (e.g. a pattern of neural activation estimated from neuroimaging
studies). For example, a number of neuroimaging studies have studied twins in order to
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investigate the heritability of brain structure and function (Blokland et al., 2008; Brun et al.,
2009; Cote et al., 2007; Jahanshad et al., 2010; Koten et al., 2009; Lee et al., 2010;
Matthews et al., 2007; Polk et al., 2007; Schmitt et al., 2009; Thompson et al., 2001). These
studies make structural measurements and/or estimate neural activation at tens of thousands
of data points. Even if the researcher restricts the focus of investigation to a smaller region
of interest (ROI), these regions still often include hundreds or thousands of voxels. So how
we can assess the heritability of a measure that is multivariate and spatial in nature?

One straightforward way is to estimate heritability at each voxel (or vertex) separately. In
this approach, images from all twins are first normalized into a standard space. Then, genetic
modeling is performed using the classical twin design at each voxel, which provides a
measure of heritability at every voxel across the entire brain. This “voxelwise” approach has
been used in many studies investigating heritability in structural neuroimaging data (e.g.
Thompson et al., 2001). Since the voxelwise approach ignores the spatial relationships
among voxels, it does not make the most efficient use of the information in the data. With
relatively high signal-to-noise ratio and reliability in high-resolution anatomical images, the
voxelwise approach may maintain adequate power for some structural neuroimaging studies.
But the voxelwise approach becomes more troublesome in functional neuroimaging studies
in which the data typically have much lower signal-to-noise ratio at the voxel level (Huettel
et al., 2004), which may result in highly variable estimates, particularly with smaller sample
size.

One way to account for the noisy nature of functional neuroimaging data is to restrict
heritability estimation to a smaller region of interest (ROI). Except for one study using an
extended twin design that maximizes power to detect heritability (Koten et al., 2009), most
functional neuroimaging twin studies have adopted the “mean-ROI” approach, in which
heritability estimation is based on mean intensity values across voxels within an ROI
(Blokland et al., 2008; Cote et al., 2007; Matthews et al., 2007). The mean-ROI approach
estimates the heritability of a function of the data (i.e. spatial average) and allows traditional
heritability estimation schemes for scalar-valued traits to be applied in an imaging study. If
the ROI is functionally homogeneous, averaging intensity values within the ROI increases
the signal-to-noise ratio. However, if there are inherent spatial correlations and
inhomogeneity within the ROI (which is likely), this approach may result in a significant
loss of power (Friston et al., 2006). For example, if only a subregion of the ROI shows
heritable activation, this mean-ROI approach would show an intermediate level of
heritability at a constant level throughout the ROI. Furthermore, recent fMRI studies have
demonstrated that multivariate spatial patterns can contain unique information over and
above univariate intensity values (Haynes & Rees, 2006; Norman et al., 2007).

Finally, it is possible to assess genetic influences on a spatially measured trait using
statistical association measures that are not directly related to heritability. For example, Polk
et al., (2007) considered the correlation across voxels within each twin pair, and compared
the averages of these correlations for MZ and DZ twin pairs. This provides a quantitative
assessment of familiality using a familiar and stable statistical approach, but does not
provide estimates of genetic heritability.

In this work, we develop a statistical method for heritability estimation in functional
neuroimaging studies of twins that addresses the main limitation of the mean-ROI method as
well as the voxelwise method. The proposed method estimates correlation for MZ and for
DZ twin pairs at each position in an ROI (or the whole brain), which in turn are used to
estimate heritability. The method for estimating the correlation values is based on a
statistical model in which the variation in the measured trait at each spatial position is
viewed as arising from a linear combination of spatial basis volumes. In a simulation study,
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we report the feasibility of this “spatial decomposition” method and explore its relative
advantages compared to the conventional mean-ROI method and the voxelwise method. The
relative advantage of the proposed method is also examined in a real fMRI study of a simple
visuomotor task. We first assess the role of genetics in the functional neural architecture by
comparing the intraclass correlation (ICC) of activation maps from MZ and DZ pairs. We
then utilize the proposed spatial decomposition method to estimate the heritability of neural
patterns in the visual and motor cortices by incorporating the structural equation model
(SEM) approach to estimating heritability (Neale, 1998, 2003).

Statistical Method
Overall description

The spatial data Y for each individual is modeled as a linear combination of basis volumes
Xp, scaled by unobserved random coefficients βp. The Xp's represent underlying spatial
patterns for the given phenotypic trait. The βp's have unknown mean and variance, and
unknown covariance between individuals in a twin pair, but are independent between twin
pairs. The goal is to use the model to estimate these variance and covariance parameters,
which in turn determine the correlation (or ICC1) at each spatial point. As demonstrated
below, these parameters can be estimated using fixed effects regression (i.e. ordinary least-
squares regression), followed by some additional processing of the fitted regression
parameters to account for uncertainty in the fixed effects estimates.

Model
Let Yij represent spatial data from a given ROI (possibly the whole brain) from the jth twin
in the ith pair (i=1… n, j=1,2). For instance, Yij can be a vectorized representation of three-
dimensional volumetric fMRI data (e.g. contrast maps, percent signal change maps, or t-
maps) as a vector of ν elements where ν is the size of the ROI. Conditioning on the βp's, the
data Yi1 and Yi2 for a single twin pair is then modeled as a linear combination of a number of
basis volumes Xp as follows:

(1)

In this paper, particularly in the subsequent real data study, the basis volumes Xp were
constructed from the neural activation patterns of an independent group of subjects
performing the same task. The eigenvectors obtained from a singular value decomposition of
these data were used as the basis volumes2. This serves to focus the heritability analyses on
the more variable spatial components in the data. The coefficients, βpij, are viewed as
random variables with unknown mean and variance. The residual, ε, is viewed as centered
errors uncorrelated across the voxels with constant variance across voxels.

1See Appendix for the working definition of intraclass correlation.
2X0 is an intercept volume that is created to be orthogonal to the rest of the basis volumes.
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Correlation Estimation
Using the model, we now estimate the voxel-level variance of Yij, var(Y•j), and the voxel-
level covariance between Yi1 and Yi2, cov(Y•1, Y•2). That is, var(Y•j) and cov(Y•1, Y•2) are
both vectors, with as many elements as there are voxels in the ROI. We note that in the
conventional voxelwise approach, these variance and covariance values are estimated
directly using the usual sample variance and covariance estimators at each voxel separately.
We also note that in the conventional mean-ROI approach, the mean Yij across the entire
ROI is first computed, after which variance and covariance of the mean values are
estimated. Our aim here is to use the regression model to improve the precision of these
estimates, by borrowing information within spatial regions.

The first step is to use ordinary least squares, applied separately to each twin pair, to predict
the βpij values. The model-implied variance, var(Y•j), and covariance, cov(Y•1, Y•2), can then
be estimated as follows:

(2)

(3)

where Xp
2 represents element-wise squares. Here, vâr(βp•j) and côv(βp•1,βp•2) are bias

corrected versions of the standard empirical variance and the empirical covariance,
respectively (see Appendix). The residual variance (σ2) can be estimated from the mean of
the error variance across all voxels. The covariance of residuals between pairs is assumed to
be zero, and is therefore omitted in Equation 3.

As correlation is defined by the ratio of covariance and variance, the correlation of two
spatial patterns can then be estimated by performing element-wise divisions as follows:

(4)

Genetic Effects and Heritability Estimation
A classical twin study asserts that the variance of a phenotype can be decomposed into
additive genetics, common environment, and unique environment with twins that are reared
together (Falconer and Mackay, 1996). The comparison between the ICC of MZ pairs and of
DZ pairs provides a quick and easy way to assess genetic effects on the phenotypic trait.
Since MZ pairs share all of their alleles while DZ twins share 50% on average, phenotypic
covariance for MZ twins should be more similar than that of DZ twins if genes account for
variation between individuals.

While the comparison between the ICC of MZ twins and DZ twins can be a useful tool to
examine the genetic influence in the phenotypic trait, modern covariance modeling methods
provide a quantitative estimate of heritability (Christian et al., 1995; Neale, 2003). As
described above, the variance var(Y•j) and the sibling covariance cov(Y•1, Y•2) can be
estimated using the spatial decomposition approach. These values can then be fed into a
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maximum-likelihood model-fitting algorithm using structural equation modeling (SEM)
implemented in Mx (Neale et al., 2003) in order to estimate genetic and environmental
components of phenotypic variance.

Simulation Study
Methods

A simulation study was conducted in order to evaluate the model-based point estimates of
the correlation parameters in terms of bias, variance, and mean squared error. Patterns of
neural activation (Yij) were simulated in a 3-D space of 512 (8×8×8) voxels from pairs (n =
10, 20, 40) of data as in Equation 1. The set of basis volumes (X0… Xp) was derived from the
eigenvectors of the covariance matrix of the entire voxel space. A rational quadratic
covariance function with both parameters equal to 1 was used to determine the spatial
structure of the simulated trait data. In this simulation study, we wanted to examine in
particular the effect of underspecification (i.e. a model with fewer basis volumes than what
was used to construct the full data) and overspecification (i.e. a model with more basis
volumes than what was used to construct the full data). Therefore, we arbitrarily decided to
use the first 32 eigenvectors of the covariance matrix as the spatial structure of the trait
values.

The coefficients for each these 32 basis volumes, βpij, are drawn randomly from a bivariate
normal distribution. The mean of this bivariate normal distribution was 0, and the variance
was set in a monotonically decreasing order to mimic real data3. The covariance of this
bivariate random distribution was manipulated so that the correlation was fixed at r. Various
levels of correlation between 0 and 1 were considered in order to examine the effect of
similarity between pairs on the point estimates. The errors (ε) were drawn from a normal
distribution with mean of zero and standard deviation of σ, which was set at various values
between 0 and 1.

For each case in the parameter space, simulated data were generated 500 times and the
correlation was estimated for each sample using three different methods. Firstly, the
correlation was estimated using the proposed spatial decomposition method. Here, five
different types of models were used to estimate the correlation. Note that the simulated data
were generated based on 32 basis volumes. In five different models, the first 4, the first 8,
the first 16, the first 32, and the first 64 (i.e. including all the basis volumes used in the
simulated data but also 32 more basis volumes from the initial set of eigenvectors) were
used, respectively, to estimate the correlation. In the first three cases, the model is
underspecified in terms of the basis volumes, and in the last case, the model is overspecified.
Secondly, the correlation was estimated using the conventional voxelwise method. Thirdly,
the correlation was estimated using the mean-ROI approach, in which mean values of the
entire voxel space for pairs were correlated.

In all three of these methods, the mean root squared error (RMSE), root integrated squared
bias (RISB), and integrated variance (IVAR) were computed by comparing the simulated
results and the voxel-level true correlation. Given the parameters r and σ and the basis
volumes that went into simulating the data, the true voxel-level correlation at each voxel can
be computed from Equation 4. Then, RMSE between the estimated correlation and the true
correlation was computed at every repetition, and the mean RMSE over 500 repetitions was
computed. The variance of the correlation estimates over 500 repetitions at each voxel was
also computed, and the integrated variance (IVAR) was measured by computing the mean of

3That is, the variance of the coefficients associated with pth basis volume was exponentially decreasing defined as exp(33-p) / exp(32)
× 3,000, where p = 1, 2, … 32.
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these variance measures across all voxels. Likewise, the mean of the correlation estimates
over 500 repetitions was compared with the true correlation, which resulted in root
integrated squared bias (RISB).

Results
Figure 1 illustrates RMSE, IVAR, and RISB of the correlation estimates from three different
methods simulating data from 20 pairs4. Similar RMSE values were observed among the
results from the five different model fitting approaches in the spatial decomposition method.
However, a closer look at RISB revealed some systematic patterns in underspecified (P=4,
8, or 16) models. That is, RISB increased (particularly when r was high) as the model was
more underspecified, although this reduced RISB was not visually observable after P=8.
There were no visually observable effects of overspecification at least in this parameter
space. In general, RISB remained low in the entire parameter space, which indicates that the
bias introduced when estimating the ratio between two unbiased estimates (the numerator
and denominator of Equation 4) is small in the setting of this simulation study (see Stuart
and Ord, 2009).

The results from the voxelwise method and the mean-ROI method demonstrate that RMSE
from these two methods is larger than RMSE from the spatial decomposition method. This
increase was driven by larger RISB and IVAR in both methods compared to the spatial
decomposition method (except in the cases when the model was extremely underspecified).
There was a slight advantage of reduced IVAR in the mean-ROI method (average IVAR
across the parameter space was 0.0294) compared to the voxelwise method (average IVAR
was 0.0300). The mean-ROI approach resulted in much greater RISB than the voxelwise
method (particularly when σ and r were high).5

Real Data Study
Method

Participants—Thirteen pairs of right-handed MZ twins (nine female pairs, four male pairs,
ages 18-29 with a mean age of 21.3) and eleven pairs of DZ twins (seven female pairs, four
male pairs, ages 18-23, mean age 19.9) reared together participated in the study. Zygosity
was determined by comparing seven to eight highly variable DNA markers (D5S818,
D13S317, D7S820, D16S539, vWA, TH01, TPOX, CSF1PO) from the buccal cells of twins
collected by swabbing the cheek of each participant. DNA was amplified using the
polymerase chain reaction technique. Twins in whom all the markers matched were
classified as monozygotic and twins in whom some markers mismatched were classified as
dizygotic. Additionally, data from an independent group of nineteen subjects (12 females,
ages 18-23, mean age of 19.9) were collected.

Experimental Procedure and Data Acquisition—During a functional MRI session,
participants performed a simple visuomotor task. Participants were instructed to fixate on
the “+” at the center of the screen. Every 16 seconds, a circular checkerboard flickered at the
rate of 8 Hz at the center of the screen for 2 seconds, and the participants were asked to
press a button once with the right index finger as soon as they saw the flickering
checkerboard. This session lasted for five minutes.

High-resolution T1-weighted anatomical images were collected in a GE 3T scanner using
spoiled-gradient-recalled acquisition (SPGR) in axial slices parallel to the AC/PC line with a

4See Supplementary Figure S1 for results with 10 and 40 pairs.
5See Supplementary Figure S2 for a discussion about the bias in the mean-ROI method.
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resolution of 0.9375×0.9375×5.0 mm. Neural activity was estimated based on the blood-
oxygen level dependent (BOLD) signal using a spiral acquisition sequence with the
following parameters: TR = 2000 ms, TE = 30 ms, flip angle = 90°, slice thickness = 5 mm,
in-plane resolution = 3.75×3.75 mm, number of slices = 30, and field of view = 24cm.

Preprocessing and Data Modeling—The functional images for each participant
underwent reconstruction, slice timing correction, and realignment as part of preprocessing.
The high-resolution anatomical image for each participant was coregistered to the mean of
all functional images. Then, the anatomical image was segmented using SPM8 (Wellcome
Department of Cognitive Neurology, London) to separate gray and white matter voxels
using the International Consortium of Brain Mapping (ICBM) tissue probability maps, and
affine normalization parameters were calculated from those maps in standard MNI space.
The functional images for each individual were then normalized to the template space with a
resolution of 3×3×3 mm and spatially smoothed with a Gaussian kernel of 8×8×8mm.

We followed a conventional voxel-by-voxel approach for reducing the temporal data to a
single activation map. For each participant, a general linear model (GLM) corrected for
temporal autocorrelation (using an AR(1) model) with regressors corresponding to the
experimental condition (i.e. presentation of the flickering checkerboard) using SPM8. The
resulting parameter estimates of the GLM, henceforth referred to as the activation maps,
were used in further analyses.

Regions of Interest—The regions of interest (ROIs) were defined in the left visual
cortex, right visual cortex, and the left motor cortex. The left and right visual cortices were
constructed as the union of the calcarine sulcus, lingual gyrus, and cuneus separately in the
left and the right hemisphere using the PickAtlas AAL software toolbox (Maldjian et al.,
2003; Tzourio-Mazoyer et al., 2002). The left motor cortex was constructed as the pre-
central gyrus from the same toolbox. These three masks were resliced to match the voxel
space of the functional data. This procedure resulted in a mask with 783 voxels in the left
visual cortex, 913 voxels in the right visual cortex, and 428 voxels in the left motor cortex.

Intraclass Correlation Differences—The brain activation maps within the left and the
right visual cortex from an independent group of nineteen subjects were mean-centered and
underwent singular value decomposition which resulted in nineteen eigenvectors. These
eigenvectors served as the basis volumes of the given neural pattern elicited by the
visuomotor task within the two masks. Then, the brain activation maps from twin
participants were entered into the proposed model (Eq. 1) separately for MZ twin pairs and
DZ twin pairs. After fixed effects regression and a bias correction procedure (see Statistical
Model), the variances and covariances of the β values were estimated (see Equation 2 and 3)
from which the ICC for each twin group was estimated6. The estimated error standard
deviation, σ, was 0.686 (left visual), 0.823 (right visual), and 0.435 (left motor) in MZ pairs
and 0.547 (left visual), 0.606 (right visual), and 0.393 (left motor) in DZ pairs.

There were no significant effects of age (b=0.0591, p=0.429 in the left visual cortex;
b=0.0246, p=0.783 in the right visual cortex; b=0.0883, p=0.073 in the left motor cortex) or
sex (b=0.4200, p=0.278 in the left visual cortex; b=0.2668, p=0.566 in the right visual
cortex; b=0.2144, p=0.410 in the left motor cortex) on the mean activation values across all
subjects, and therefore the activation maps were not adjusted for age or sex when estimating
ICC.

6ICC is truncated at zero if negative.
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ICC maps of MZ and DZ pairs7 were then compared by taking the difference between the
two, ICCMZ – ICCDZ. If there is genetic influence on the neural activation pattern, then the
difference map should be positive. Regions with positive differences were identified, and the
statistical significance of the cluster size was computed based on a clusterwise correction for
multiple comparisons (Holmes et al., 1996; Nichols & Holmes, 2002). To be specific, a
simulation was used to derive the distribution of the maximum cluster size under the null
hypothesis. The null distribution, under the assumption that there is no difference between
the ICCMZ and ICCDZ, was constructed by permuting the zygosity label of each twin pair
(Chiang et al., 2008). First, a heritability map was derived from many repetitions (10,000)
while permuting the zygosity. At each repetition, clusters of heritable regions were defined
by contiguous voxels exceeding a certain magnitude threshold (i.e. the top 95 percentile
value). The volume of the largest cluster defined at this magnitude threshold level was
recorded after each repetition, and these measures served as the null distribution of the size
of the cluster at a given threshold.

Heritability—Heritability of the neural activation pattern was estimated using a maximum-
likelihood model fitting approach via SEM (using the Mx software). Variance maps (Eq. 2)
and covariance maps (Eq. 3) were constructed8 from twins separately for MZ and DZ pairs
using the proposed spatial decomposition method. The variance and covariance measures at
each voxel were fit to a univariate AE model to estimate additive genetic (A) and unique
environmental (E) contributions to the variation in the neural activation pattern (see
Voxelwise Method below for the motivation for an AE model). Heritability (h2) was defined
as the proportion of variance from all components (additive genetics and unique
environmental, A+E) that was explained by additive genetics (A) alone. As in the case of
identifying regions showing greater ICCMZ than ICCDZ within the bilateral visual cortex,
clusterwise correction for multiple comparisons incorporating permutation (1,000) was used
to assess significantly heritable regions within the visual cortex.

Voxelwise Method—ICC difference and heritability was also estimated using the
conventional voxelwise method. More specifically, ICC was computed at each voxel
separately for MZ twin pairs and DZ twin pairs9, and the difference between the resulting
ICC maps was computed. For the voxelwise estimation of heritability, variance and
covariance measures were computed at each voxel, then heritability was estimated at each
voxel initially using the ACE model in Mx. The ACE model, however, returned negligible
estimation of common environmental effect in many of the voxels (73.6% of the voxels in
the left visual ROI, 71.3% of the voxels in the right visual ROI, and 64.0% of the voxels in
the left motor ROI). In addition, the observation of the ICCMZ and ICCDZ maps revealed
that ICCDZ was less than half of ICCMZ in the majority of voxels. Thus, an AE model was
fit for parsimony. As in the case of the spatial decomposition method, statistical inference on
the ICC difference and heritability was made using a clusterwise correction for multiple
comparisons.

Mean-ROI Method—Lastly, ICC difference and heritability were estimated using the
conventional mean-ROI method. Neural activity values were averaged across all the voxels
within each ROI, and these summary measures were used in the subsequent ICC and
heritability estimation. As in the other methods, an AE model was used for heritability
estimation, and the statistical significance of the estimates was assessed using the
permutation method.

7See Supplementary Figures S3 and S4 for ICC maps of MZ and DZ pairs computed using the spatial decomposition method.
8Conventional variance and covariance were used with appropriate bias correction instead of the covariance and variance formula
used in Fisher's ICC.
9See Supplementary Figures S5 and S6 for ICC maps of MZ and DZ pairs computed using the voxelwise method.
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Residual Diagnostics—The model (Eq. 1) assumes that the errors are spatially
unstructured, or at least contain no covarying information between pairs. In practice,
however, it is possible that some spatially defined covarying information is not fully
captured by the given basis volumes. This is particularly likely when the model is
underspecified as shown in the simulation study. In the data from the real study, we
empirically tested how much covarying information was left in the errors. Residual maps for
individual twins were constructed. Then the intraclass correlation of the residual values
between twins across pairs was computed at each voxel. If there is no covarying information
left in the errors, we should expect negligible correlation across all voxels on average.

The mean residual correlation (± standard deviation) across all thirteen MZ pairs was 0.2377
(± 0.3013) in the left visual cortex, 0.1151 (± 0.3033) in the right visual cortex, and 0.1510
(± 0.2628) in the left motor cortex. The mean residual correlation across all eleven DZ pairs
was -0.0421 (± 0.2960) in the left visual cortex, -0.0734 (± 0.2780) in the right visual cortex,
and 0.0523 (± 0.3028) in the left motor cortex. Slightly positive residual correlation on
average in MZ pairs indicates that some covarying information may not have been captured
by the given basis volumes. This is empirically plausible since the basis set from nineteen
singleton participants might not contain enough spatial structure to capture all possible
similarity between siblings. Ideally, the basis volumes should be created from a larger
sample. Not being able to capture a small amount of covariance structure in MZ pairs results
in underestimation of the covariance for MZ pairs. Any significant effects of genetics are
therefore still significant; but the analysis becomes somewhat conservative in assessing
heritability.

Results
We first examined the activation and variability measures within the bilateral visual cortex
separately in the twins and in the independent group of subjects. The group-level activation
map constructed from a univariate one-sample t-test across twins was moderately correlated
with the group-level activation map constructed from an independent group of nineteen
subjects in all ROI's (r = 0.519 in the left visual cortex, r = 0.561 in the right visual cortex,
and r = 0.507 in the left motor cortex) (Fig. 2). The variability map constructed from a
univariate standard deviation measures across twins was also highly correlated with the
variability map constructed from an independent group of nineteen subjects in all ROI's (r =
0.793 in the left visual cortex, r = 0.784 in the right visual cortex, and r = 0.763 in the left
motor cortex) (Fig. 2). High similarity between the activation and variability maps from
these two groups of subjects suggests that the activation maps from the singleton subjects
can be used as a representative sample of the population of interest.

Intraclass Correlation Differences—We then examined genetic influences on neural
activity in the left and right visual cortex as well as the left motor cortex using the proposed
spatial decomposition method, the voxelwise method, and the mean-ROI method. In the
spatial decomposition method, ICC's for MZ and DZ pairs were estimated first by estimating
volume coefficients in the model (Eq. 1) and then by transforming the variance and
covariance of these coefficients in the basis space onto the voxel space (Eq. 2 to 4). Table 1
summarizes results from these three methods. Figure 3 shows the ICC difference map
computed using the spatial decomposition method and the voxelwise method displaying
suprathreshold clusters that exceed clusterwise correction for multiple comparisons. The
spatial decomposition approach identified two suprathreshold clusters in the left visual
cortex one suprathreshold cluster in the right visual cortex, and one suprathreshold cluster in
the left motor cortex (red clusters in Fig. 3). All three clusters were statistically significant in
terms of cluster size (see Table 1).
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The conventional voxelwise method identified four suprathreshold clusters in the left visual
cortex and one suprathreshold cluster in the left motor, all of which were statistically
significant in terms of cluster size (blue clusters in Fig. 3). However, it failed to find any
clusters in the right visual cortex that reached statistical significance in cluster size at the
alpha level of 0.05 (Table 1).10 The range of the voxelwise ICC difference measures was
also more variable than the results from the spatial decomposition method in both
hemispheres (Fig. 4). The correlation across voxels between the results from the spatial
decomposition method and the voxelwise method was 0.7068 in the left visual cortex,
0.5714 in the right visual cortex, and 0.6613 in the left motor cortex (Fig. 4).

The mean-ROI method found a significant difference between MZ ICC and DZ ICC in the
left visual cortex (p = 0.0016) and the left motor cortex (p = 0.0149) overall (Table 1). In the
right visual cortex, the difference just failed to reach significance (p = 0.0513).

Heritability—Using the maximum-likelihood model fitting method implemented in Mx,
heritability of the neural activity was estimated using three different methods. Table 2
summarizes results from the spatial decomposition method, the voxelwise method, and the
mean-ROI method. Figure 5 shows the heritability map computed using the spatial
decomposition method displaying suprathreshold clusters that exceed clusterwise correction
for multiple comparisons. As in the case of the ICC difference measure, two suprathreshold
clusters were identified in the left visual cortex, one of which was statistically significant in
terms of cluster size. Additionally, one suprathreshold cluster in the left motor cortex was
statistically significant in terms of cluster size.

Heritability was also estimated using the voxelwise method. None of the suprathreshold
clusters in any of the three ROIs reached statistical significance (see Table 2; no blue
clusters in Fig. 5).11 The correlation across voxels between the results from the spatial
decomposition method and the voxelwise method was 0.7437 in the left visual cortex,
0.5691 in the right visual cortex, and 0.6222 in the left motor cortex (Fig. 6).

The mean-ROI method showed that the average neural activity in the left visual cortex was
significantly heritable (h2 = 0.7218, p = 0.048), but no other ROI's were shown to be
heritable at the alpha level 0.05.

Discussion
In this work, we developed a statistical method to estimate correlation between related
subjects at each location of a spatial process. The feasibility and the relative advantage of
this spatial decomposition method over conventional methods were demonstrated using a
simulation study. Correlation estimates from the spatial decomposition method had lower
variance and bias compared to estimates from the voxelwise or the mean-ROI approach.
This discrepancy between the RMSE from the spatial decomposition method and that from
the two other conventional methods tended to be greater as the overall noise increased.
These results collectively suggest that the spatial decomposition method has better control
over noise than the conventional methods.

10Examination of cluster size significance was also performed using varying magnitude threshold. In general, clusters identified from
the spatial decomposition method showed greater statistical significance than clusters identified from the voxelwise method. See
Supplementary Figure S7 for further details.
11As in the ICC difference measures, examination of the cluster size significance was also performed using varying magnitude
threshold. Clusters identified from the spatial decomposition method showed greater statistical significance than clusters identified
from the voxelwise method. See Supplementary Figure S8 for further details.
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Using a real fMRI dataset from a twin study, we then applied the spatial decomposition
method to assess the genetic influence and heritability of brain activation in the primary
visual and motor cortex during a simple visuomotor task. The results from the spatial
decomposition method showed greater statistical significance, compared to the results from
the voxelwise and the mean-ROI methods, both in the measure of ICC difference and in the
measure of heritability. The left visual cortex showed greater genetic influence both in terms
of magnitude and statistical significance than the right visual cortex.

In general, ICC difference and heritability estimates from the spatial decomposition method
were less variable than the voxelwise method, as expected. Along with the results from the
simulation study, the proposed method showed greater power in realistic settings compared
to the voxelwise and mean-ROI approaches. The spatial decomposition method controls the
noise by using spatial basis volumes. In a way, the voxelwise method can be considered to
be a special case of the spatial decomposition method. If the number of basis volumes is
equal to the number of voxels in the ROI (e.g. imagine a basis set of an identity matrix), the
spatial decomposition method becomes identical to the voxelwise approach. On the other
hand, if a single constant map is used as a basis volume then the spatial decomposition
method is conceptually similar, although not identical, to the mean-ROI method.

In the proposed spatial decomposition method, we used an independent set of data to
construct the basis volumes for the given neural activation pattern. Since the basis volumes
were limited to nineteen (the number of independent group of subjects), our model could
have been underspecified especially when we tried to capture over 700 voxels in each mask.
Underspecification of the model results in bias towards zero, that results in a conservative
assessment of genetic influence (see Simulation Study). It is also possible that the spatial
variation in twin data is highly distinct from the activation patterns that can be spanned by
the basis volumes. This case can be referred to as having a misspecified model as opposed to
an underspecified model. In a misspecified model, spatial covariation between twins will not
be captured by the basis volumes, reducing the covariance estimate (Eq. 3). The variance,
however, will not be as influenced since those that cannot be captured by the basis volumes
will be captured as error variance σ2 (see Eq. 2). Thus, as in the case of an underspecified
model, a potential misspecification is also likely to result in a conservative bias in
correlation estimation. Note, however, that the spatial decomposition method was better at
detecting heritability than the other conventional methods in the three ROIs in the real data
study12.

Nonetheless, an adequate construction of the basis volumes can improve the model even
further. One potential method is to use either functional localizer data or images from
orthogonal contrasts (Berman et al., 2010; Friston et al., 2006; Saxe et al., 2006) as
independent datasets to construct the basis volumes. This way, there is no need to collect
data from independent subjects and it will result in a much larger basis set given that modern
fMRI twin studies have a few tens, if not hundreds, of subjects.

Additionally, other ways to construct a set of basis volumes may be considered. For
instance, independent component analysis, based on complete independence or lack of
association in the higher-order moments, is another possible approach for constructing a

12The exact same analyses were also performed in the whole brain. After heritability estimation using an AE model and setting the
magnitude threshold as the 99 percentile of the entire h2 range, 81 suprathreshold clusters were identified from the voxelwise method
and 8 suprathreshold clusters were identified from the spatial decomposition method. After 200 repetitions using the permutation
scheme, the cluster size significance of the largest cluster identified from the voxelwise method was p=0.485 and the cluster size
significance of the largest cluster identified from the voxelwise method was p=0.100. These results demonstrate that the spatial
decomposition method, even though it may be extremely underspecified to capture the spatial dependencies of the whole brain, is
more powerful than the voxelwise method.
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meaningful basis set. Since heritability is defined in terms of second-order moments
(variance and covariance), it is important to construct spatial variation that best captures the
variance of the spatial pattern. We, therefore, used a singular value decomposition approach
in this work. Nevertheless, it would be an interesting future work to explore how basis
volumes derived from other approaches could be applied to the proposed spatial
decomposition method.

There has been some recent advance in the heritability estimation in diffusion tensor
imaging data (Brun et al., 2009; Jahanshad et al., 2010) and genetic covariance estimation in
structural imaging data (Schmitt et al., 2007). While these studies incorporate multivariate
statistical analyses in heritability estimation, our study is quite different in a number of
ways. The goal of our work is to borrow information from neighboring voxels to improve
the precision of voxelwise heritability estimates. This is particularly a critical issue in
functional neuroimaging studies, as the noise level is substantially higher than in the
structural studies. In addition, recent research in functional neuroimaging has started to
emphasize the spatial and network-like nature of brain activity. Many studies have
demonstrated that information is encoded over a large number of brain regions in a
distributed and overlapping fashion (Haynes & Rees, 2006; Norman et al., 2007). In
addition, many studies have shown that multiple brain regions are intrinsically organized
into networks (Achard et al., 2006; Greicius et al., 2003) so that analyzing the functional
role of a particular brain region may be impossible without considering other regions. It is
therefore important to understand and consider the spatial dependencies in patterns of brain
activation when estimating the heritability of such patterns.

In summary, we developed a statistical method to estimate correlation and heritability at
each position in a spatial dataset. We then applied this method to assess the influence of
genetics on the pattern of neural activities evoked by a visuomotor task. The proposed
spatial decomposition method was shown to be more efficient than the conventional
voxelwise and mean-ROI methods in our experiments. The results also showed that neural
activity evoked by a simple visuomotor task is under significant genetic influence
particularly in the left visual cortex and the left motor cortex.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Appendix

Fisher's ICC
Given N paired data values (xn1, xn2) where n=1…N, the following defines Fisher's ICC
(Fisher, 1954):
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Bias correction for the plug-in estimates
The estimators we use follow standard approaches from fixed effects modeling (Allison,
2005; Robinson, 1991; Searle et al., 1992). The bias correction procedure was adopted
because the sample variance of the estimated fixed effects is biased due to uncertainty in the
fixed effects estimates. The adjustment we use removes this bias. The variance and
covariance (vâr(βP••) and côv(βP•1,βP•2) of the random effects can be estimated starting from
the empirical variance and covariance of the fitted fixed effects (var(β ̂p••) and cov(β ̂p•1,
^βp•2)). The empirical estimates are subject to a bias correction:

where Q is an idempotent centering matrix. Matrix Q can be constructed so that the above
equation can yield var(^βp•1), var(^βp•2), or pooled variance var̂β•• to be used for intraclass
correlation.

Taking the expected value,

Thus, the term  can be subtracted from the plug-in estimates to
correct for bias.

Likewise,

where n-by-2n matrices Q1 and Q2 represent a centering matrix. Matrices Q1 and Q2 can be
constructed so that the above equation can either yield interclass covariance or intraclass
covariance.

Taking the expected value,

Thus, the bias  can be subtracted from the plug-in estimates to
correct for bias.
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Research Highlights

• A statistical method is developed to estimate correlation of spatial data.

• Provides ways to account for spatial dependencies in neural activation.

• Advantages over existing methods for estimating heritability of spatial traits.

• Heritable neural patterns for simple visuomotor processing are identified.
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Figure 1.
Results of the simulation study using the proposed spatial decomposition method (columns
1-5), the voxelwise method (column 6), and the mean-ROI method (column 7) with 20 pairs.
Patterns of neural activation for twin pairs were simulated with 32 basis volumes while
varying the degree of correlation between pairs (r) and the error variability (σ). The
estimated correlation was compared with the true correlation, and root mean squared error
(RMSE), root integrated squared bias (RISB), and integrated variance (IVAR) were
computed over the parameter space. In the case of the spatial decomposition method, the
correlation was estimated using a subset of basis volumes (4, 8, or 16, as represented in the
first three columns), all 32 basis volumes (represented in the fourth column), and 64 basis
volumes (represented in the fifth column). See Supplementary Figures for cases of N=10 and
N=40.
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Figure 2.
Density plots for the activation map and variability map computed from two groups of
subjects. Group-level one-sample t-maps and standard deviation (sd) maps were constructed
from twins in the left and right visual cortex and the left motor cortex. These maps were
then compared against the t-maps and sd-maps from the independent group of subjects. The
plots indicate the number of voxels that exhibited a specific statistical value in both groups
of subjects.
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Figure 3.
Map of ICC difference estimated from the spatial decomposition (red) and the voxelwise
(blue) methods. Only statistically significant clusters (p < 0.05 using clusterwise correction
for multiple comparisons incorporating permutation with a magnitude threshold of 95
percentile) are overlaid on a canonical brain in MNI space with axial slices from z = -10 to z
= 50 in increments of 5 mm. The left hemisphere appears on the left for all brain images.
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Figure 4.
Histograms of ICC difference in the left and right visual cortex estimated from the spatial
decomposition method and the voxelwise method, as well as the joint histogram of ICC
difference estimates between the two methods across the whole brain.
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Figure 5.
Map of heritability (h2) estimated from the spatial decomposition method. Only statistically
significant clusters (p < 0.05 using clusterwise correction for multiple comparisons
incorporating permutation with a magnitude threshold of 95 percentile) are overlaid on a
canonical brain in MNI space with axial slices from z = -10 to z = 50 in increments of 5 mm.
None of the clusters identified from the voxelwise method was statistically significant.
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Figure 6.
Histograms of heritability (h2) in the left and right visual cortex estimated from the spatial
decomposition method and the voxelwise method, as well as the joint histogram of h2

estimates between the two methods across the whole brain.
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