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Abstract

Facial expression recognition (FER) is a crucial task for human emotion analysis and

has attracted wide interest in the field of computer vision and affective computing.

General convolutional-based FER methods rely on the powerful pattern abstraction of

deep models, but they lack an ability to use semantic information behind significant fa-

cial areas in physiological anatomy and cognitive neurology. In this work, we propose

a novel approach for expression feature learning called Semantic Graph-based Dual-

Stream Network (SG-DSN), which designs a graph representation to model key ap-

pearance and geometric facial changes as well as their semantic relationships. A dual-

stream network (DSN) with stacked graph convolutional attention blocks (GCABs)

is introduced to automatically learn discriminative features from the organized graph

representation and finally predict expressions. Experiments on three lab-controlled

datasets and two in-the-wild datasets demonstrate that the proposed SG-DSN achieves

competitive performance compared with several latest methods.

Keywords: Facial expression recognition, Affective computing, Graph representation,

Graph convolutional attention block, Semantic relationship

1. Introduction

Facial expression recognition (FER) has become an attractive research area in re-

cent years, as it plays a significant role in many applications such as face animation
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[1] and medical diagnosis [2]. One key challenge of implementing effective FER is to

capture discriminative expression information from static images or video sequences.5

Previous studies mainly depend on hand-craft feature design or automatic feature learn-

ing followed by classifier construction [3, 4]. However, these methods generally handle

local and holistic expression cues in the view of classic image processing, without con-

sidering latent semantic information. In this work, we aim to develop a principled and

effective method that combines facial appearance and geometric information with their10

semantic relationships and leverage it for FER.

In the last few years, the convolutional neural network (CNN) has achieved great

improvement in FER rate and eliminated the tedious design of hand-craft feature [5, 6].

Recently, researchers attempt to optimize the feature learning process that can utilize

the spatial or temporal expression information to enhance FER performance [7, 8].15

Nevertheless, most of these methods simply regard facial expressions as dynamic vari-

ations of several key parts. The capability is limited since they do not explicitly con-

sider spatial or co-occurring relationships among these facial areas, which are crucial

for understanding facial expression according to physiological anatomy and cognitive

neurology studies [9, 10, 11].20

To move beyond above drawbacks, we need a novel approach that can automati-

cally learn patterns containing in key facial parts as well as their semantic relationships.

For local texture features, it is the strength of classic image processing technology to

capture discriminative expression information from different dimensions. For seman-

tic relationships, one feasible way is to exploit the graph structure based on facial25

landmarks to represent faces, which is more consistent with facial muscle anatomical

definition [12, 13]. Yet, the non-grid structure of graphs makes it difficult to use stan-

dard deep models like CNNs. Currently, graph neural networks (GNNs) have received

increasing attention and successfully been generalized to lots of computer vision tasks,

such as image-text matching [14] and human action recognition [15]. Thus, how to30

exploit a graph to encode both spatial and semantic information as well as how to im-

plement GNNs to learn discriminative features from the graph representation are two

major problems in graph-based FER.

In this paper, we design a graph representation of facial expression followed by an
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extended GNN, called Semantic Graph-based Dual-Stream Network (SG-DSN). The35

proposed graph representation is generated based on facial landmarks, where each node

indicates a local patch around one landmark. The semantic connections among every

node pair are initialized as edges of the facial graph. Then, the dual-stream network

(DSN) integrates both appearance and geometric variations as well as their semantic

relationships embedded in the organized facial graph to learn effective features and40

classify facial expressions.

The main contributions of this work summarize in four aspects:

• A graph representation for modeling facial expressions is generated, which con-

sists of reasonable landmarks and semantic connections based on prior knowl-

edge in physiological anatomy and cognitive neurology.45

• A variety of local feature extraction methods and indexing initialization strate-

gies are designed and evaluated for effective description of node attributes and

edge attributes respectively.

• A dual-stream network is built by stacking graph convolution layers with at-

tention blocks to learn discriminative features, which can integrate both local50

variations and their semantic relationships for expression prediction.

• On five public datasets, the proposed SG-DSN achieves remarkable performance

against previous FER methods.

2. Related work

2.1. Semantic Expression Representation55

An effective facial representation can not only focus on the critical facial areas but

also eliminate the useless information caused by background noises or facial organ

deformations. Generalizing facial semantic information to describe expressions is an

emerging topic in FER research. Previous studies usually cropped images based on

basic facial components (e.g. eyes, nose and mouth) and then captured local texture60

and spatial relationships from facial patches. Zhang et al. [16] decomposed facial
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landmarks into different parts to extract dynamic semantic geometric information from

facial morphological variations, which complemented the static appearance features.

Ye et al. [17] proposed a region-based deep model to fuse semantic information among

different levels of receptive fields within valuable and unified patches. Recently, sev-65

eral graph-based methods have been designed for more effective facial representation,

which systemically modelled semantic information in a static sense or a function of

time. Liu et al. [18] built an action units graph that encoded both appearance and geo-

metric expression information and co-occurring action unit relations to achieve effec-

tive representation for FER. Li et al. [19] presented a semantic relationship embedded70

representation learning framework through structured knowledge-graph to generate en-

hanced facial representation. Zhong et al. [20] utilized a graph structure to represent

facial expression for removing useless information and depicting geometric changes

within different facial expressions. Zhang et al. [21] introduced a context-aware af-

fective graph to extract context elements for discrete emotion inferring and achieved75

higher performance than previous methods. However, most of the studies regarded the

graph as an independent geometric branch outside the facial appearance that results

in limited performance. And some methods also demand temporal information when

building facial graphs, which cannot be implemented on the latest large-scale FER

dataset. In this paper, a graph representation is constructed to jointly model key facial80

variations and their semantic relationships based on static images.

2.2. Graph Neural Network

GNNs are widely used in many artificial intelligence tasks, due to the ability of

feature learning for graph structure data. In the field of computer vision, GNNs can be

sorted into two categories with difference processing thoughts: the input-based and the85

network-based. The first type attempts to transform graph structure data into forms that

can be trained by standard deep models. Such et al. [22] presented a Graph-CNN learn-

ing framework for image classification that could process graph data while maintaining

the advantage of standard CNNs. Walecki et al. [23] provided an auto-encoder to fuse

local expression confidence values and then predicted facial expressions. In [24], a90

structured deep network was put forward to model graph inputs and generate complex
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feature representations simultaneously for expression intensity estimation. By contrast,

network-based approaches aim to build specific neural networks that are more suitable

for graph structure data than input-based ones. Zhou et al. [25] proposed a spatial-

temporal graph convolutional networks to learn both spatial and temporal patterns from95

graph data, and had proved its applicability to FER. Li et al. [19] introduced a gated

graph neural network (GGNN) in a multi-scale CNN framework for propagating node

information to improve expression representation. Zhang et al. [21] proposed a graph-

based reasoning network to learn the affective relationship during the back-propagation

process and outperformed the baseline methods. Zhong et al. [20] exploited bidirec-100

tional recurrent neural network (BRNN) to iterate each node on a facial graph for the

extraction of appearance and geometric patterns. Different from above methods that

independently considering the relational dependencies among facial areas, we propose

a dual-stream GNN to learn spatial features and semantic relationships simultaneously.

In addition, an attention module like [26] is employed to explicitly enhance the se-105

mantic relational reasoning of facial variations, which improves the effectiveness and

interpretation than previous methods.

3. Proposed method

Recent physiological and psychological studies have revealed that different expres-

sions can be recognized by perceptual factors in key facial areas and specific semantic110

information in facial context [9, 10]. Inspired by this prior knowledge, a novel graph-

based FER method is proposed in this section. Specifically, we firstly demonstrate

the processes of the local feature extraction and the semantic relationship initializa-

tion. The two outputs are defined as node and edge attributes separately to construct

our graph representation. Next, we design a dual-stream network (DSN) by stacking115

graph convolutional attention blocks (GCABs) to learn features from facial graph for

effective FER.

The pipeline of our SG-DSN is illustrated in Fig. 1. An input image is first pre-

processed with face detection and rotation correction. Next, local texture features are

extracted based on detected and computed landmarks, while edge indexes are initial-120
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Figure 1: The pipeline of our SG-DSN method.

ized at the same step. After the facial graph is generated, it is then transformed as the

input of the DSN for final facial expression prediction.

3.1. Facial Graph Representation

Based on the theory of cognitive neuroscience about face perception, human be-

ings use a dual-system model to process and recognize facial information: analytic125

processing and holistic processing [27]. Specifically, analytic processing obtains corre-

sponding multi-dimensional cluster features by analyzing local areas of the face, while

holistic processing aims to generate a holistic representation to perceive the overall

structure among critical facial parts [27, 28]. Therefore, in order to formally exploit

above intrinsic properties of facial expressions, a reasonable way is to introduce the130

graph structure for expression modeling [18, 20, 21]. When one face is described by a

graph, not only the scattered facial changes can be integrated, but also the expression

semantic relationship can be embedded to form a local-to-holistic facial representa-

tion. Therefore, a graph representation is designed by the local feature extraction and

the semantic relationship initialization in this section.135

3.1.1. Local feature extraction

The aim of local feature extraction is to focus on texture changes in specific facial

areas among different expressions. Generally, facial landmarks follow facial muscle

anatomy that can be further used to locate target facial patches. In this work, 68 facial

landmarks are firstly detected and then 30 (including 17 of the external outline, five of140

the nose contour and eight of the mouth) of them are discarded due to their non-saliency
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of expression. This landmark selection is based on facial topology and FACS definition,

which is widely used in previous studies [13, 20, 25]. In addition, to cover the texture

of forehead area where key action units (AU) may activate (e.g., AU6: brow lowerer;

AU9: nose wrinkler), two additional landmarks are calculated based on existing ones145

by:

lp′ = 0.5× l22 + 0.5× l23, (1)

and

lp′′ = 2× lp′ − l28, (2)

where li denotes the landmark coordinate. As shown in Fig. 2, we get a total of 40

reasonable facial landmarks. The contribution of the landmark selection and addition

is evaluated in Appendix A.150

Facial Landmarks Additional Landmarks

p'

p'' 

p'

p'' 

Figure 2: Detection and calculation of facial landmarks.

Next, the local texture information around each facial landmark p ∈ P is extracted.

We assume that the result of analytic processing can be achieved by using different

feature detectors. Considering the patch size of landmark neighbors is usually small,

we propose two methods to conduct local feature extraction.

One way is to use fused classic features. Here, Gabor filters and HOG descriptors155

are applied for effectiveness and convenient computation. Fig. 3 presents the overall

framework of the process. Specifically, we set
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θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, λ = 4, 4
√

2, 8, 8
√

2, 16 to generate

40 sets of Gabor vectors, where θ and λ are two important parameters that indicate

wavelength and direction of the filter respectively. These vectors are then fused aver-160

agely in eight directions to output the local Gabor feature fgp attached to landmark p.

For HOG descriptors, nine feature maps are generated based on the gradient amplitude

and orientation at each pixel. Next, the obtained feature maps are applied to encode

local feature vector fhp about the area of landmark p through corresponding feature

channels. Effects of different Gabor kernel sizes and different cell and block numbers165

of HOG are evaluated in Sec. 4.2.1.

Landmark 
Detection

Input Face Local Feature

Face 
Alignment

Figure 3: The framework of local feature extraction via Gabor and HOG.

Both Gabor and HOG feature vectors are then concatenated to generate the com-

plete local texture feature. Thus, the local texture feature to the neighborhood of land-

mark p can be formulated by:

fp = Concat(fgp , f
h
p ), (3)

where Concat(·) is the concatenation function. Since the two types of detectors have170

the same order of magnitude (640 and 324 for Gabor and HOG respectively in this

work), powerful performance can be achieved by directly feature concatenation. But

when choosing another kinds of local texture detectors, feature balancing may be an

important option.

Furthermore, we also attempt to design a lite-CNN to learn local texture features175

following the intuition behind well known models like VGG-Face[29], because the

CNN-based descriptor has proven its effectiveness in previous work [6], even if it is

more time-consuming. As shown in Fig. 4, our lite-CNN has a five-layer network

architecture with the image patch size of 16 × 16 as input, where two convolutional
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layers and two max-pooling layers are alternatively stacked, followed by a fully con-180

nected layer. More concretely, the convolutional operation uses 3× 3 size kernels and

is implemented in stride of 1 without padding, while the kernel size of max-pooling

layers is 2 × 2. And the output feature maps are fully connected to generate the final

local texture feature vector fp. Note that the input size is the same as that used in the

above fused feature to balance the need for performance and fair comparison. And185

before feeding all the local patches, the lite-CNN will first be pre-trained like other

CNN-based FER methods[19]. The performance evaluation between these two local

feature extraction methods is conducted in Sec. 4.2.2.

Patch 1

Patch 2

Patch N

f1

f2

fN

Convolutional layerConvolutional layer Max-pooling layerMax-pooling layer Fully connected layerFully connected layer

Figure 4: The framework of local feature extraction via lite-CNN.

3.1.2. Semantic relationship initialization

The next key part is to simulate the procedure of the holistic processing. Since190

every facial expression consists of a combination of local facial variations, how to

model this kind of relationships is the other critical job. Fig. 5 shows an example

of how to build the semantic relationship of happiness. The blue lines in left sub-
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figure indicate possible semantic dependencies. Specifically, edge connections are first

initialized based on prior knowledge, including FACS and facial topology[12, 13, 25],195

to establish semantic dependencies among facial changes. Furthermore, edge indexes

are calculated to introduce attributes of these pre-defined links. In this subsection, we

design two edge indexing strategies: Euclidean distance and Hop distance.

Euclidean distance: For any two nodes (landmarks) p, q in the node set P , their

edge indexes can be calculated by:200

sp,q =
‖ lp − lq ‖2

Deye
, (4)

where lp, lq are the coordinates of landmarks p, q, and Deye is the inner-eyes distance

which is used for normalization of scale diversity.

Hop distance: Let A indicates the adjacency matrix of the initialized graph, it

is easy to compute the nearest hop matrix A′, in which A′pq denotes the shortest hop

distance between any two nodes p, q. Considering a semantic facial action may occur205

in a joint region composed of several adjacent nodes, a node may also interact with the

neighbors of its connected node. So the hop distance can be formulated as their edge

indexes by:

sp,q =

A
′
pq, if A′pq ≤ B,B ∈ {1, 2}

0, otherwise
, (5)

where B is defined as the receptive threshold for all the connected node pairs, that is

B denotes the max acceptable hop distance on the graph. In practice, we set B = 2 for210

a trade-off between efficiency and relevance.

However, either Euclidean distance or Hop distance is only initial edge attributes

and needs dependency reasoning to learn semantic features. Besides, the location of

landmarks is equally important for graph node representations. Thus, landmark coordi-

nates are taken together to form the global geometric cues of the facial graph. Similarly,215

effects of these two strategies and their settings are compared in Sec. 4.2.3.
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Figure 5: An example of semantic relationships in happiness.

3.1.3. Graph generation

After the two steps above, we can present the definition of our graph representation.

Definition 1 explains details of the facial graph in this work.

Definition 1. Let G = (V,E) denotes a facial graph: ∀vi ∈ V is a region near220

one facial landmark; ∀ej ∈ E is a 2-element subset of V that represents any edge

existing in graph. P v = {li | 1 ≤ i ≤ |V |} denotes the landmark coordinates.

F v = {fi | 1 ≤ i ≤ |V |} is the node attribute set, and fi represents the extracted

local texture feature of the corresponding facial patch vi, and |V | is the number of

landmarks in V . F e = {sj | 1 ≤ j ≤ |E|} is the edge attribute set, sj indicates the225

semantic distance of edge ej , and |E| is the number of edges in E.

Note that the obtained local texture features and initial edge indexes are taken as the

node attribute set F v and the edge attribute set F e for graph generation respectively.

There are two advantages of the proposed facial graph:

1. The facial graph describes expressions from a formalized local-to-holistic view230

and keeps the latent semantic information by using graph structure;

2. The facial graph integrates both appearance and geometric information of ex-

pressions that can provide sufficient cues.

In next subsection, we introduce a graph-based neural network to learn effective

features from the generated facial graph for enhanced FER.235
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3.2. Dual-stream Graph Network for FER

Different from classic CNNs that have inputs with grid structures, GNNs can man-

age graph structure data and maintain the effectiveness of convolution procedure. In

this subsection, a GNN based on graph convolution and attention module is designed

to process the above generated facial graph for expression feature learning.240

3.2.1. Graph convolutional attention block

Given a graphGwith nodes and their representations, the idea of graph convolution

is designed in the Fourier domain by the multiplication of a signal x ∈ RN with a filter

gθ = diag(θ) parameterized by θ ∈ RN as follows:

gθ · x = UgθU
>x, (6)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −245

D−
1
2AD−

1
2 = UΛU> (D indicates the degree matrix and A is the adjacency matrix),

with a diagonal matrix of its eigenvalues Λ. Specifically, the graph convolutional layer

(GCL) generalizes the definition to a signal X ∈ RN×C with C input channels (C

is the vector dimension of each vertex attribute in our work) and K filters for feature

maps as follows:250

Z = D̄−
1
2 ĀD̄−

1
2XΘ, (7)

where Ā = A+IN and D̄ii = ΣjĀij , Θ is a matrix of filter parameters andZ ∈ RN×K

is the convolved signal matrix. The GCL can be trained on a specific structure by

learning filters based on the eigendecomposition of the graph Laplacian that is suitable

for our proposed facial graph.

In addition, to further extract the semantic relationship among the facial graph, we255

design the graph convolutional attention block (GCAB) following the attention struc-

ture given in [30]. In particular, one channel attention module and one node attention

module are added after the outputs of max-pooling and average-pooling of each GCL

as shown in Fig. 6.

Differently, we replace the common convolution operation with graph convolution260

in the second part, called node attention, to match the requirement of the GNN. There-

fore, for one middle feature map H , the channel attention coefficients and the node
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Mch

MnoH H´ H´´ 

Figure 6: The process of attention mechanism in GCAB.

attention coefficients are calculated as:

Mch(H) = �(MLP (AvgPool(H)) +MLP (MaxPool(H))), (8)

Mno(H
′) = �(GCL(AvgPool(H ′);MaxPool(H ′))), (9)

where � denotes sigmoid function, the MLP is a multi-layer perceptron with ReLU265

activation function that shares weights for both pooling results, the H ′ = Mch(H) ⊗

H,H ′′ = Mno(H
′) ⊗H ′, and ⊗ indicates element-wise multiplication. Specifically,

the pooling in channel attention step is to focus on the importance of different channels

instead of node representations, while the pooling in the node attention is conducted

across the channel to suppress information of redundant channels.270

Note that graph attention networks (GATs) [31] also can achieve attention on graph

learning. But only the edge connections are used in GATs, the consideration of the edge

attributes is missing whose are very important semantic information for FER. That is

why we design the GCAB instead of applying GATs directly. Based on the GCAB, a

DSN can be built for feature learning from the generated facial graph.275

3.2.2. Graph transformation

Before processing our facial graph by GCABs, we need firstly transform the graph

data into the input format that satisfies network training. Concretely, the variant adja-

cency matrix Ma ∈ RN×N , the node texture matrix Mc ∈ RN×C of graph and the
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landmark location matrix Ml ∈ RN×2 are constructed for feature learning as follows:280

Ma =



0 s1,2 · · · · · · s1,N

s2,1 0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0 sN−1,N

sN,1 · · · · · · sN,N−1 0


, (10)

and

Mc =


f11 f12 · · · f1C

f21 f22 · · · f2C
...

...
. . .

...

fN1 fN2 · · · fNC

 ,Ml =


l1,x l1,y

l2,x l2,y
...

...

lN,x lN,y

 , (11)

where spq (spq = sqp) is the semantic index computed depending on different strate-

gies. And fp[1,...,C] are local texture features calculated by Eq. (3) or extracted by

lite-CNN module, while li,x and li,y are the landmark coordinates respectively.

3.2.3. Network architecture and learning285

In order to capture the appearance and geometric expression patterns as well as their

semantic relationships simultaneously, it is important to keep the graph structure during

the learning process. Thus, we stack up several GCABs into a multi-layer dual-stream

network (DSN) for multi-level expression feature learning on the facial graph. Since

the local appearance and landmark positions belong to different feature spaces and have290

different dimensions, two streams are needed and the number of GCABs they need may

also be different. Fig. 7 gives the architecture of DSN. Effects of different GCAB layer

numbers are tested in Sec. 4.2.4 to determine the optimal network architecture.

The Ma, Mc and Ml are then fed into the DSN and the required item Z for graph

convolution operation is calculated previously according to Eq. (7) before data loading.295

All the trainable parameters are updated by stochastic gradient descent (SGD) with

back propagation (BP). After several layers of the GCAB, the outputs of each node

in DSN are combined with the fully connected layer and set as the input to a softmax

layer for expression prediction. The cross entropy cost is evaluated as the loss function

for model training and the dropout trick is applied to alleviate overfitting problem.300
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Figure 7: The architecture of DSN.

4. Experiments

In this section, we evaluate the performance of SG-DSN on three lab-controlled

FER datasets: Extended Cohn-Kanade (CK+) [32], Oulu-CASIA [33] and MMI [34],

and two in-the-wild datasets: Static Facial Expressions in the Wild (SFEW) [35] and

real-world expression database (RAF-DB) [36]. In particular, multiple groups of com-305

parison experiments on CK+ and Oulu-CASIA datasets are set up for ablation studies.

Then, the recognition power of SG-DSN model is verified against several latest meth-

ods on five datasets.

4.1. Implementation Details

In this work, all parameters are trained using NVIDIA GeForce GTC 1080Ti GPU310

based on the open-source Tensorflow platform. Each GCAB has 64 channels for out-

put. The decayed learning rate is set as 0.005, and the dropout ratio is 0.5. All the

parameters are fixed throughout the whole experiments. Images from all the datasets

are resized to 224 × 224. The landmark detection is performed by SAN[37] and the

official provided metadata of landmarks are used for hard samples. For those still un-315

detectable images, we just discard them and treat them as samples of wrong prediction
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when evaluating the FER performance. In addition, the experimental environment and

data preprocessing methods are the same or similar as previous approaches for fair

comparison.

4.1.1. Datasets320

CK+ is one of the most widely used FER datasets, which contains 593 image se-

quences of 123 subjects. In this paper, seven emotions (anger, contempt, disgust, fear,

happiness, sadness and surprise) are taken into consideration. For each sequence, the

last three frames are selected and grouped into 10 subject-independent subsets for 10-

fold cross validation.325

Oulu-CASIA includes six emotions (without contempt) collected from 80 subjects

aged among 23 to 58. Each sequence starts at onset frame and ends at apex frame

of corresponding expression. Similar to CK+ dataset, the last three frames of every

sequence are grouped for the 10-fold cross validation.

MMI has 205 sequences of 30 subjects labeled with six emotions. In this work, we330

conduct a subject-independent 10-fold cross validation for experimental comparability.

It is noteworthy that three apex frames in each sequence are selected for experiment.

SFEW consists of 1394 images from video clips of movies in real world, which

labeled as six basic expressions and neutral expression. Since it has divided training,

validation and test groups, we select these official sets for cross validation.335

RAF-DB is a large scale in-the-wild dataset and has 15,339 images with the same

expressions as SFEW dataset. In this work, 12,271 and 3068 images are used as train-

ing set and test set respectively.

4.1.2. Metrics

We evaluate the proposed SG-DSN with accuracy metric to compare the perfor-340

mance of each FER approach quantitatively. The accuracy Acci of the convergence

model in ith fold can be obtained by:

Acci =
CPLi
GTLi

, (12)

where GTLi and CPLi are the total number of ground truth labels and the number of

correct prediction ith fold separately. Then the average FER accuracy is calculated as
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follows:345

Acc =
1

η

η∑
i=1

Acci, (13)

where η is the number of folds, which is varied according to different datasets in this

work.

4.2. Ablation Studies

The effectiveness of our proposed components in SG-DSN is examined in this sub-

section by FER performance experiments on CK+ and Oulu-CASIA datasets.350

4.2.1. Parameters of local texture descriptors

First, we evaluate the performance on different parameter sets of Gabor and HOG

features. For Gabor filters, three groups of experiments are conducted with kernel size

of 3 × 3, 5 × 5 and 7 × 7. And these generated Gabor vectors are then averaged for

later feature fusion. As shown in Table 1, the kernel size of 3 × 3 performs best. One355

possible explanation is that a smaller kernel size might result in a better description

of the texture. Thus, we use 3 × 3 size kernel in the final implementation. For HOG

descriptors, we choose the cell size of 4 × 4 and 8 × 8 with corresponding block size

of 2 × 2 and 1 × 1 separately. Table 2 shows the effects on two different groups of

cell sizes and block sizes of HOG feature for FER. The comparison reveals that the360

highest performance occurs at 4× 4 cell size and 2× 2 block size, which are followed

in later experiments. And the possible reason for the case of HOG is that more blocks

and small cells can achieve fine-grained and small-scale gradient sampling, especially

for the local patches segmented in our work.

4.2.2. Local feature extraction methods365

In Sec. 3.1.1, we present two methods for local feature extraction. As shown in Ta-

ble 3, we verify the effectiveness of single classic features, fused features and lite-CNN

features respectively. The results demonstrate that the SG-DSN with fused features can

achieve better performance than only using another two single local features. In addi-

tion, the fused feature and the lite-CNN feature get almost equally high accuracy on370

CK+, while the former performs better on Oulu-CASIA. One possible explanation is
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Table 1: Comparison of different Gabor kernel size.

Kernel size
Accuracy(%)

CK+ Oulu-CASIA

3× 3 96.15 86.40

5× 5 92.86 85.23

7× 7 88.11 82.68

1 Bold value denotes best.

Table 2: Comparison of different HOG parameters.

Parameter sets Accuracy(%)

Cell size Block size CK+ Oulu-CASIA

4× 4 2× 2 95.19 87.25

8× 8 1× 1 89.10 83.63

1 Bold value denotes best.

that the insufficient training samples limit the effectiveness of the lite-CNN. A similar

situation also applied to the case on MMI (see Table 6). But the deep features show

better results on in-the-wild and large-scale dataset (see Table 7). On the other hand, it

reveals that our DSN is compatible with different local features. Therefore, both of the375

two methods are followed in subsequent experiments.

4.2.3. Effects of edge attributes and attention

To verify the effectiveness of the two proposed strategies for the semantic re-

lationship initialization in our facial graph, we blind the edge attributes by setting

sj = 1, (1 ≤ j ≤ |E|). Besides, the node attributes are generated using the fused380

feature as above and the attention module is not used in this stage. The results in Ta-

ble 4 illustrate that both the two semantic indexes can raise 7% and 5% accuracy on

CK+ and Oulu-CASIA respectively. Furthermore, the accuracy of the Hop distance

is slightly higher than that of the Euclidean distance, which shows that the former

can better represent the semantic relationship of facial changes in expressions. On the385
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Table 3: Performance with and without feature fusion.

Method
Accuracy(%)

CK+ Oulu-CASIA

Single Gabor feature 96.15 86.40

Single HOG feature 95.19 87.25

Fused feature 98.86 90.88

Lite-CNN feature 99.23 89.24

1 Bold value denotes best.

other hand, we further explore the role of our attention module. As shown in Table

4, both the two models using different semantic strategies benefits from introducing

attention mechanism into DSN. These observations confirm the prior knowledge that

the significant facial changes in key areas are co-occurring and have prior importance

for specific expression. Therefore, we exploit these two components to make fully use390

of the semantic relationship encoded in the proposed facial graph.

Table 4: Performance with and without edge indexes and attention.

Method (Lite-CNN)
Accuracy(%)

CK+ Oulu-CASIA

Without edge indexes 90.81 81.59

With Euclidean distance 97.52 86.32

With Hop distance 98.07 86.53

Euclidean distance + Attention 98.36 88.79

Hop distance + Attention 99.23 89.24

4.2.4. Architectures of GCAB layers

In this part, we compare the performance of DSN with different architectures. Four

GCAB groups are trained with the same setting respectively, using our facial graph as

input. As summarized in Table 5, the best result appears at the third architecture, which395
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has 3-layer GCAB for stream-A and 2-layer GCAB for stream-B. It is observed that the

performance does not always increase with the number of GCAB layers. We believe

the reason is that the dimension of our graph structure is not large, so that too deep

layers will make the node features tend to converge to the same vector and gradually

become indistinguishable. This phenomenon is also in line with the studies in [38, 39].400

Besides, we also experiment with the case of using only one stream with a concate-

nated matrix of the appearance and geometric attributes. Since graph convolution is

a message passing and aggregation method, we implement SVM and VGG-Face as

baseline models by sending averaged local textures and semantic features. From Table

5, three of the architectures outperform baseline model and the dual-stream framework405

performs better than the single DSN. One possible reason is that these two types of

features have different dimensions and belong to different feature spaces. The simple

feature-level fusion might suppress the contribution of geometric, so that we applied

two branches of feature learning and decision-level fusion, which is also used in previ-

ous methods[16]. Thus, we choose the third architecture as the backbone of SG-DSN410

for later performance comparison with the latest methods.

Table 5: Different architectures of GCABs and DSN on CK+ dataset.

Number of GCAB layers Accuracy(%)

Stream-A Stream-B CK+ Oulu-CASIA

2-layer 2-layer 94.36 84.12

2-layer 3-layer 90.10 81.48

3-layer 2-layer 99.23 89.24

4-layer 2-layer 95.82 87.15

DSN (3-layer) 95.63 74.46

DSN (2-layer) 91.24 69.28

Baseline (SVM) 87.19 63.15

Baseline (VGG-Face) 92.71 82.17

1 Bold value denotes best.
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4.3. Visualization of learned semantics

For the purpose of exploring the semantics of features, the visualization of features

learned by SG-DSN is conducted. In particular, we link the normalized graph features

to their related input nodes to present the semantic weights. As illustrated in Fig. 8,415

the larger the size and the darker the color the node is, the greater contribution the node

feature provides. For example, the nodes near lip corner and upper lip play important

roles in happiness and surprise respectively. In addition, the two additional landmarks

also provide significant contributions in contempt, disgust and surprise. And these

observations are also consistent with the theory in physiological anatomy and cognitive420

neurology, which proves our SG-DSN can explicitly extract the semantic information

of facial expressions and has a certain interpretability.

Angry Contempt Disgust Fear Happy Sadness Surprise

Figure 8: The visualization of the learned semantic features of SG-DSN.

4.4. Comparison with State-of-the-art Methods

4.4.1. Performance evaluation on lab-controlled datasets

To evaluate the performance of SG-DSN with above settings, we firstly conduct425

experiments on three lab-controlled datasets: CK+, Oulu-CASIA and MMI against

several previous FER methods, including DAUGN [18], DDL [40], DeRL [41], DLP-

CNN [36], DTAGN [42], FER-IK [43], IFSL [44], MSCNN-PHRNN [16] and RCFN

[17] respectively.

CK+: From Table 6, we find that most approaches achieve the accuracy higher430

than 97%. Although DLP-CNN utilizes joint supervision by softmax loss and locality

preserving loss, it lacks the use of spatial semantic relationships which causes lower
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a result. In addition, DATGN and MSCNN-PHRNN combine the appearance and ge-

ometric information, and acquire good accuracy with the help of extra temporal in-

formation. By contrast, our SG-DSN gets the best in this experiment with the help435

of graph-based representation and attention mechanism. Also, it performs better than

DAUGN and DDL, of using the above two separately. The confusion matrix in Fig. 9

(a) illustrates that our SG-DSN performs well at all the seven emotions classification,

which can be attributed to the excellent representation strategy.

Table 6: Performances on three lab-controlled datasets.

Methods Data
Accuracy(%)

CK+ Oulu-CASIA MMI

DAUGN [18] static image 97.67 84.28 80.11

DDL [40] static image 99.16 88.26 83.67

DeRL [41] image pair 97.30 88.00 73.23

DLP-CNN [36] static image 95.78 / 78.46

DTAGN [42] sequence 97.25 81.46 70.24

FER-IK [43] static image 97.59 / 84.90

IFSL [44] static image 98.70 / 92.60

MSCNN-PHRNN [16] sequence 98.50 86.25 81.18

RCFN [17] static image 97.94 86.94 /

SG-DSN (fused feature) static image 98.86 90.88 85.75

SG-DSN (lite-CNN) static image 99.23 89.24 82.64

1 Bold values denote the best, italic values denote the second best.
2 Fused feature and lite-CNN are two versions using different local feature extraction methods.
3 The IFSL takes the advantage of non-deep feature in small-scale datasets so that obtains leading

performance.

Oulu-CASIA: As shown in Table 6, under the normal illumination condition of440

this dataset, all the compared methods get the FER accuracy over 80%. Specifically,

DDL alleviates the generic knowledge of AUs by integrating a Bayesian Network into a

deep learning framework, and gains a remarkable performance improvement. Similar
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(a) CK+ (b) Oulu-CASIA (c) MMI

Figure 9: The confusion matrices on lab-controlled datasets.

to the experiment on CK+ dataset, MSCNN-PHRNN also performs good on Oulu-

CASIA dataset that further confirms the effectiveness of feature fusion technology.445

The top-2 results come from the proposed SG-DSN model. The fused feature beat

lite-CNN because it is more capable of small-scale and low-resolution samples. The

confusion matrix in Fig. 9 (b) demonstrates that SG-DSN acquires satisfied results for

four emotions except sadness and disgust. One possible explanation is that samples of

these two categories in Oulu-CASIA are too similar to learn discriminative features.450

MMI: Different from CK+ and Oulu-CASIA datasets, MMI has less image sam-

ples and more non-aligned poses. As shown in Table 6, most approaches suffer an

accuracy drop with different degrees in this experiment. DTAGN and DeRL achieve

FER accuracy just over 70%. The reason is the effectiveness of features extracted

from these two methods highly rely on their deep architectures and sufficient training455

data, which is what MMI dataset does not satisfy. In other words, that is why IFSL

gets the best result by using non-deep method. This can also explain the performance

degradation of lite-CNN. Still, our SG-DSN (fused feature) integrates local-to-holistic

expression information based on semantic relationships, and acquires the second best

FER accuracy. From the confusion matrix presented in Fig. 9 (c), we summarize that460

SG-DSN performs well at disgust, happiness and surprise. The poor results appear

in anger, fear and sadness, which can be imputed to the insufficient and unbalanced

training data of corresponding expressions.
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(a) SFEW (b) RAF-DB

Figure 10: The confusion matrices on in-the-wild datasets.

4.4.2. Performance evaluation on in-the-wild datasets

To further verify the effectiveness of our SG-DSN in real scenarios, we conduct the465

experiment on SFEW and RAF-DB datasets and add three state-of-the-art comparison

methods RAN [4], IPFR [45] and LDL-ALSG [46].

SFEW: As shown in Table 7, due to the challenging factors, RCFN fails to break

through the accuracy over 50%. This is because its region segmentation is heavily

weakened in real environments. LDL-ALSG performs good by utilizing label space470

graph that links multiple labels with different intensity to one emotion. RAN adap-

tively captures the importance of facial regions to handle the pose variant, and achieves

an accuracy of 54.19%. Our SG-DSN defeats other methods, even if the face align-

ment and landmark coordinates are not precise enough. This shows that the semantic

relationship can also enhance recognition performance in real scenes. The confusion475

matrix in Fig. 10 (a) illustrates that SG-DSN can recognize anger, happiness and sur-

prise well, but barely distinguish disgust and fear. The main reason is that the facial

deformation and background interference in SFEW dataset impair the power of our

facial graph.

RAF-DB: According to Table 7, DAUGN also performs good by using graph-based480

representation. Although RAF-DB dataset provides sufficient samples, the non-deep

framework of the IFSL makes it difficult to benefit from such advantage, so that causes

a big gap of accuracy. The proposed SG-DSN using lite-CNN obtains the best result,
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we think this is due to our effective facial graph and the powerful DSN. Because of

the limitation of hand-crafted features in such large-scale in-the-wild dataset, our fused485

features suffer an accuracy decrease, but it still achieves a favorable performance just

slightly lower than RAN. The confusion matrix in Fig. 10 (b) indicates that SG-DSN

performs good at all the emotion categories except disgust and fear, which can be

attributed to the large training data in RAF-DB.

Table 7: Comparison on SFEW dataset.

Methods Framework
Accuracy(%)

SFEW RAF-DB

DAUGN [18] G. + CNN 55.36 86.03

DLP-CNN [36] CNN 51.05 84.13

IPFR [45] deep 57.10 /

LDL-ALSG [46] G. + CNN 56.50 85.53

RAN [4] CNN + Att. 54.19 86.90

RCFN [17] CNN 43.28 /

IFSL [44] non-deep 46.50 76.90

SG-DSN (fused feature) GNN + Att. 56.35 86.87

SG-DSN (lite-CNN) GNN + Att. 57.42 87.13

1 Bold values denote the best, italic values denote the second best.
2 G. denotes using graph-based representation of facial expression and Att. indicates attention module.
3 Fused feature and lite-CNN are two versions using different local feature extraction methods.

4.5. Discussion490

Although the five datasets have different conditions, the proposed SG-DSN out-

performs most of the compared state-of-the-art approaches. In CK+ dataset, the high

quality of images makes it possible to conduct precise facial landmark detection that

ensures the validity of the graph representation, and achieve remarkable FER results.

In Oulu-CASIA dataset, for the sake of graph convolution process, our SG-DSN over-495

comes the low quality problem and extracts powerful expression features. And in MMI
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dataset, we notice that the FER accuracy is influenced by the not-well-aligned faces

which decrease the useful semantic information of the generated graph. Alternatively,

our SG-DSN still gets competitive performance due to the effective local features and

the combination of appearance and geometric information. When facing the in-the-500

wild SFEW and RAF-DB datasets, the proposed SG-DSN keeps an impressive accu-

racy in the case of the large facial deformation and the complex background. Never-

theless, this also reveals that our graph representation is closely related to the accuracy

of landmark detection, which still limits the performance of SG-DSN in real-world en-

vironments. For the two local feature extraction modules, we experimentally find that505

the fused classic feature is better at handling small-scale posed facial data, while the

lite-CNN is more flexible for large-scale real data.

5. Conclusion and Future Work

In this paper, we presented a novel model for FER, the Semantic Graph-based

Dual-stream Network (SG-DSN). This method generated a facial graph to represent510

significant facial changes and their semantic relationships. In addition, SG-DSN ex-

ploited network with graph convolutional attention blocks (GCABs) to jointly learn

powerful features from both appearance and geometric expression information. The

proposed edge indexing initialization strategies made full use of the semantic relation-

ship based on prior knowledge, and improved the performance in expression recogni-515

tion. On both lab-controlled and in-the-wild challenging datasets, SG-DSN achieved

competitive FER results. In the future, a facial graph representation without relying

on landmarks can be explored to account for more complex scenarios and the dynamic

evolution of facial expressions can be considered.
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Appendix A. Ablation Study: Effects on different number of landmarks

Since the landmark selection and addition are employed in this work, we further

conduct an experiment to evaluate its contribution. To fair comparison, we use the Eu-525

clidean distance here because the hop distance of each graph node is indistinguishable.

As shown in Table A.8, the FER performance on both posed and in-the-wild datasets

obtains a significant increase after using the landmark selection. One possible expla-

nation is that the fully connected graph based on all the detected landmarks contains

unnecessary nodes and edges, which distracts the importance of crucial graph nodes530

especially when dealing with uncontrolled faces. And the experimental results also

reveal that the additional nodes and accompanying edges provide important spatial and

semantic information.

Table A.8: Performance with or without landmark selection.

Method (lite-CNN)
Accuracy(%)

CK+ SFEW

Without selection 95.48 45.70

Without addition 97.56 50.55

With both 98.36 53.14

1 Bold value denotes best.
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tion from near-infrared videos, Image and Vision Computing 29 (9) (2011) 607–635

619.

[34] M. Valstar, M. Pantic, Induced disgust, happiness and surprise: an addition to the

mmi facial expression database, in: Proceedings of the 3rd International Work-

shop on EMOTION (satellite of LREC): Corpora for Research on Emotion and

Affect, Paris, France, 2010, p. 65.640

[35] A. Dhall, R. Goecke, J. Joshi, K. Sikka, T. Gedeon, Emotion recognition in the

wild challenge 2014: Baseline, data and protocol, in: Proceedings of the 16th

International Conference on Multimodal Interaction (ICMI), 2014, pp. 461–466.

[36] S. Li, W. Deng, Reliable crowdsourcing and deep locality-preserving learning for

unconstrained facial expression recognition, IEEE Transactions on Image Pro-645

cessing 28 (1) (2019) 356–370.

[37] X. Dong, Y. Yan, W. Ouyang, Y. Yang, Style aggregated network for facial land-

mark detection, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 379–388.

31

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ


[38] G. Li, M. Muller, A. Thabet, B. Ghanem, Deepgcns: Can gcns go as deep as650

cnns?, in: Proceedings of the IEEE International Conference on Computer Vision

(ICCV), 2019, pp. 9267–9276.

[39] K. Zhou, Y. Dong, W. S. Lee, B. Hooi, H. Xu, J. Feng, Effective training strategies

for deep graph neural networks, arXiv preprint arXiv:2006.07107.

URL https://arxiv.org/abs/2006.07107655

[40] D. Ruan, Y. Yan, S. Chen, J.-H. Xue, H. Wang, Deep disturbance-disentangled

learning for facial expression recognition, in: Proceedings of the 28th ACM In-

ternational Conference on Multimedia, 2020, pp. 2833–2841.

[41] H. Yang, U. Ciftci, L. Yin, Facial expression recognition by de-expression residue

learning, in: Proceedings of the IEEE Conference on Computer Vision and Pat-660

tern Recognition (CVPR), 2018, pp. 2168–2177.

[42] H. Jung, S. Lee, J. Yim, S. Park, J. Kim, Joint fine-tuning in deep neural networks

for facial expression recognition, in: Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV), 2015, pp. 2983–2991.

[43] Z. Cui, T. Song, Y. Wang, Q. Ji, Knowledge augmented deep neural networks665

for joint facial expression and action unit recognition, in: Advances in Neural

Information Processing Systems (NIPS), Vol. 33, 2020, pp. 14338–14349.

[44] Y. Yan, Z. Zhang, S. Chen, H. Wang, Low-resolution facial expression recogni-

tion: A filter learning perspective, Signal Processing 169 (2020) 107370.

[45] C. Wang, S. Wang, G. Liang, Identity-and pose-robust facial expression recog-670

nition through adversarial feature learning, in: Proceedings of the 27th ACM

International Conference on Multimedia (MM), 2019, pp. 238–246.

[46] S. Chen, J. Wang, Y. Chen, Z. Shi, X. Geng, Y. Rui, Label distribution learning on

auxiliary label space graphs for facial expression recognition, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),675

2020, pp. 13984–13993.

32

https://arxiv.org/abs/2006.07107
https://arxiv.org/abs/2006.07107
https://arxiv.org/abs/2006.07107
https://arxiv.org/abs/2006.07107

	Introduction
	Related work
	Semantic Expression Representation
	Graph Neural Network

	Proposed method
	Facial Graph Representation
	Local feature extraction
	Semantic relationship initialization
	Graph generation

	Dual-stream Graph Network for FER
	Graph convolutional attention block
	Graph transformation
	Network architecture and learning


	Experiments
	Implementation Details
	Datasets
	Metrics

	Ablation Studies
	Parameters of local texture descriptors
	Local feature extraction methods
	Effects of edge attributes and attention
	Architectures of GCAB layers

	Visualization of learned semantics
	Comparison with State-of-the-art Methods
	Performance evaluation on lab-controlled datasets
	Performance evaluation on in-the-wild datasets

	Discussion

	Conclusion and Future Work
	Ablation Study: Effects on different number of landmarks

