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Highlights1

• We propose a novel method, Multilinear Side-Information based Dis-2

criminant Analysis (MSIDA), for dimensionality reduction and classifi-3

cation of tensor data, when the data full class label is missing. MSIDA4

projects the input face tensor into a new multilinear subspace in which5

the margin between samples belonging to different classes is enlarged6

while the margin within samples belonging to same classes is reduced.7

Additionally, MSIDA reduces the dimension of each tensor mode.8

• On the face description level, we propose a new representation based9

on high order tensors. This representation combines different local de-10

scriptors, extracted at different scales, providing better discrimination.11

The proposed tensor representation is regarded as a new way for fusing12

local descriptors.13

• We empirically evaluate the proposed approach for face based identity14

and kinship verification on four challenging face benchmarks (LFW,15

Cornell KinFace, UB KinFace and TSkinface). Comparison against the16

state-of the-art methods demonstrates the efficiency of our approach.17
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Abstract25

This paper presents a new approach for face and kinship verification under26

unconstrained environments. The proposed approach is based on high order27

tensor representation of face images. The face tensor is built based on local28

descriptors extracted at multiscales. Besides, we formulate a novel Multi-29

linear Side-Information based Discriminant Analysis (MSIDA) to handle the30

weakly supervised multilinear subspace projection and classification. Using31

only the weak label information, MSIDA projects the input face tensor in a32

new subspace in which the discrimination is improved and the dimension of33

each tensor mode is reduced simultaneously. Experimental evaluation on four34

challenging face databases (LFW, Cornell KinFace, UB KinFace and TSKin-35

face) demonstrates that the proposed approach significantly outperforms the36

current state of the art.37

Keywords: Tensor analysis, multilinear subspace projection, multilinear38

side-information based discriminant analysis, face verification, kinship39

verification.40

1. Introduction41

In the last years, automatic face recognition under controlled environ-42

ments has attained satisfying performances even in large scale biometric sys-43

tems. However, the performance of these systems is still weak in challenging44

and unconstrained settings, referred to as ”in the wild”, characterized by,45

for e.g., low image quality, blurred image, strong environment illuminations46

and head poses changes, partial occlusions, etc. In this work, we focus on47
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the problem of matching pairs of face images [1, 2, 3] in unconstrained en-48

vironments [4]. Particularly, the targeted applications consists of checking49

i) whether a pair of facial images are of the same person or not (identity50

verification) and ii) whether a pair of facial images are of two persons of the51

same family or not (kinship verification) [5, 6, 7]. In such applications, the52

available data for training is weakly labeled. The only provided information53

is whether the pair of face images is a match (positive pair) or a non-match54

(negative pair), while no access to the identity of the persons is provided.55

Among the widely applied approaches for face recognition are the sub-56

space transformation techniques. The objective of these algorithms is to57

transform the feature space into a lower, and often more discriminative, sub-58

space leading to better classification accuracies [8, 9]. The pioneer approaches59

of this category are the two popular linear dimensionality reduction methods,60

Principal Component Analysis (PCA) [10] and linear discriminant analysis61

(LDA) [11]. Such algorithms usually vectorize the face images yielding a62

high-dimensional feature vector [12]. The image vectorization also causes63

losing the valuable face structural information embedded in the pixels’ posi-64

tions. To solve this issue, high order representations of data [13, 14, 15] in65

multilinear subspaces are applied to the face recognition problem achieving66

better performances. The multilinear approaches also allow for a multifactor67

representation of face image samples, where each factor corresponds to an68

entry of the multiarray. An illustrative example of face representation by69

tensors of different orders is depicted in Fig. 1. In which, Fig. 1 (a) the face70

image features are represented as a vector, Fig. 1 (b) represents the face71

image features as a 2nd-order tensor, and Fig. 1 (c) is a 3rd-order tensor of a72

face images.73

In this work, we tackle the problem of face pair matching based on tensor74

representation in the context of weakly labeled training data. The main75

contributions of this paper are: i) We propose a novel method, Multilinear76

Side-Information based Discriminant Analysis (MSIDA), for dimensionality77

reduction and classification of tensor data, when the data full class label78

is missing. MSIDA projects the input face tensor into a new multilinear79

subspace in which the margin between samples belonging to different classes80

is enlarged while the margin within samples belonging to same classes is81

reduced. Additionally, MSIDA reduces the dimension of each tensor mode.82

ii) On the face description level, we propose a new representation based on83

high order tensors. This representation combines different local descriptors,84

extracted at different scales, providing better discrimination. The proposed85
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Figure 1: Illustration of face representation and dimensionality reduction with different
tensor orders.

tensor representation is regarded as a new way for fusing local descriptors.86

iii) We empirically evaluate the proposed approach for face based identity87

and kinship verification on four challenging face benchmarks (LFW, Cornell88

KinFace, UB KinFace and TSkinface). Comparison against the state-of the-89

art methods demonstrates the efficiency of our approach.90

The rest of our paper is organized as follows. In Section 2, we discuss91

the related works. In Section 3, we describe the proposed Multilinear Side-92

Information based Discriminant Analysis. In Section 4, the proposed face93

matching approach is presented. Section 5 details the experimental evalua-94

tion, results and analysis. The conclusion and the future work are given in95

Section 6.96

2. Related work97

To manipulate tensors, the linear dimensionality reduction approaches,98

such as PCA and LDA, have been extended to multilinear subspace algo-99

rithms that operate directly on the multidimensional representation instead100

of their vectorized forms [12, 16, 13, 14]. These approaches define a multi-101

linear transformation that maps the original tensor into a lower dimensional102

tensor while simultaneously enhancing the disparity among the samples and103

conserving their intrinsic structural information [14]. For instance, the mul-104

tilinear principal component analysis (MPCA) [13] is a multilinear extension105

of the PCA. On the other side, LDA has been extended to a number of mul-106

tilinear variants. In Multilinear Discriminant Analysis (MDA) [15] multiple107

interrelated subspaces collaborate to discriminate between different classes.108
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Different algorithms have been proposed in the literature to reduce the109

dimensionality of the tensor data. Liu et al. [10] proposed tensor rank-one110

decomposition and graph preserving criterion dimensionality reduction algo-111

rithm for multi-dimensional facial expressions recognition. A marginal neigh-112

boring graph is defined to describe the pairwise inter-class boundaries, and a113

differential formed objective function is adopted to ensure convergence. By114

seeking the rank-one tensors, the algorithm enhances the pairwise inter-class115

margins and meanwhile preserves the intra-class local manifold structure. A116

sparse version of the multilinear discriminant analysis is derived by Lai et117

al. [12]. They introduced the L1 and L2 norms into the objective function to118

obtain multiple interrelated sparse discriminant subspaces for feature extrac-119

tion. The k-mode optimization technique and the L1 norm sparse regression120

are combined to iteratively learn the optimal sparse discriminant subspace121

along different modes of the tensors. Lu et al. [14] proposed uncorrelated122

multilinear discriminant analysis (UMLDA) for the recognition of tensor ob-123

jects. Because they contain minimum redundancy and they are independent,124

the uncorrelated features are useful for recognition tasks. The method ex-125

tracts the uncorrelated discriminative features directly from tensorial data126

by solving a tensor-to-vector projection. The solution consists of sequential127

iterative processes by alternating the projections. Furthermore, an adaptive128

regularization procedure is incorporated to enhance the performance in the129

small sample size scenario.130

In order to operate, the supervised dimensionality reduction approaches131

require the full class label information of each data sample. However, this132

condition cannot always be satisfied, especially under unconstrained condi-133

tions where data is acquired from Internet. In such cases, we usually only134

have access to limited information, such as whether a pair of images is of135

the same class. An alternative solution to this problem is given by Kan et136

al. [17]. The authors proposed a discriminative dimensionality reduction137

method named Side-Information based Linear Discriminant Analysis (SILD).138

SILD directly calculates the within-class and between-class scatter matrices139

using the side-information (image pair labels). Ouamane et al. [18] proposed140

Exponential Discriminant Analysis (SIEDA) by combining Side-Information141

Linear Discriminant and Exponential Discriminant Analysis (EDA).142

In this work, we propose a multilinear extension of SILD for tensor data143

subspace analysis. We call the new algorithm Multilinear Side-Information144

based Discriminant Analysis (MSIDA) and use it for solving the problem of145

matching pairs of face images, characterized by weakly labeled data. In our146
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framework, the set of facial images are represented as a 3rd-order tensor built147

using histograms of two local face descriptors, Multiscale Local Phase Quan-148

tization (MSLPQ) [19] and Multiscale Binarized Statistical Image Features149

(MSBSIF) [20].150

3. Multilinear Side-Information based Discriminant Analysis151

This section introduces the proposed Multilinear Side-Information based152

Discriminant Analysis (MSIDA). Firstly, we present the notations and some153

basics of tensor algebra. Then, we briefly recall the original Side-Information154

based Linear Discriminant Analysis (SILD). Finally, the proposed extension155

MSIDA is presented with detailed mathematical formulation.156

3.1. Notations and basics of tensor algebra157

This part recalls the concepts relevant to the multilinear algebra. For the158

clarity of mathematical formulations, the following notations of variables are159

considered throughout the paper. Lowercase and uppercase letters, e.g., i, j,160

I, J, denote scalars; bold lowercase letters, e.g. x, y, u, v, denote vectors;161

italic uppercase letters, e.g. U, S, G, H, denote matrices; and bold italic162

uppercase letters, e.g. X , Y , denote the tensors.163

A tensor is a multidimensional array [12, 15] with each entry of the array164

is referred to mode and the number of entries is the tensor order. Thus,165

an Nth-order tensor is denoted as X ∈ RI1×I2×···×IN , where IK, 1 ≤ K ≤ N,166

indicates the dimension of the Kth mode of the tensor. The elements of the167

tensor X are denoted as xi1i2···iN , where 1 ≤ iK ≤ IK.168

The following definitions introduce some mathematical tools used to ma-169

nipulate the high order tensors.170

Definition 1. the inner product 〈X ,Y 〉 of two tensors X ,Y ∈ RI1×I2×···×IN171

which have the same order and dimensions is defined by:172

〈X ,Y 〉 =

I1,...,IN∑

i1=1,...,iN=1

Xi1,...,iNYi1,...,iN (1)

Hence, the norm of a tensor X ∈ RI1×I2×···×IN is defined as ‖X ‖F =173 √
〈X ,X 〉, and the Euclidean distance between two tensors X ,Y ∈ RI1×I2×···×IN174

is defined as D(X ,Y ) = ‖X -Y ‖F.175
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Definition 2. the k-mode flattening of a tensor X ∈ RI1×I2×···×IN into176

an unfolding matrix X(k) ∈ RIk×
∏

i 6=k Ii is defined by:177

X(k) ⇐k X (2)

where178

X
(k)
ikj = X i1,...,iN , j = 1 +

N∑

I=1,I6=k

(i1 − 1)
N∏

o=I+1,o6=k

Io (3)

Definition 3. the k-mode product of a tensor X ∈ RI1×I2×···×IN and a179

matrix G ∈ RI′k×Ik(k=1,2,. . . ,N) is an I1 × I2 × . . . Ik−1 × Ík × Ik+1 × . . .× IN180

tensor denoted by:181

Y = X ×
k

G (4)

Fig. 2 illustrates an example of 1-mode vector product of third-order182

tensor X ∈ R12×7×4 with matrix GT ∈ R4×12, where the result is a tensor183

X × 1GT ∈ R4×7×4
184

Figure 2: Visual illustration of 1-mode vector product of third-order tensor X ∈ R12×7×4

with matrix GT ∈ R4×12

3.2. SILD185

In many situations, determining the exact full class labels of the data sam-186

ples is a hard task. Instead, collecting a kind of weak labels of the samples187

is easier to achieve. An example of this case include face verification un-188

der unconstrained conditions, where the only known information is whether189

pairs of face images belong the same persons or not. Such weak labels (pair190

7
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match/non match) are referred to as side information. In this case, the tra-191

ditional LDA cannot work, since it relies on the class label, here the identity192

of the person, of each sample to compute the scatter matrices. To tackle193

this issue, Side-Information based Linear Discriminant Analysis (SILD) [17],194

which efficiently exploits the weak label information, has been proposed. In195

SILD, the positive pairs (match) are used to calculate the within scatter ma-196

trix Sw and the negative pairs (non match) are used to calculate the between197

scatter matrix Sb.198

Let P = {(ui,uj) : l(ui) = l(uj)} be the set of match images pairs and199

Q = {(ua,ub) : l(ua) 6= l(ub)} be the set of non match images pairs, with200

l denotes the side information. The SILD within-class and between-class201

scatter matrices are estimated as follows:202

Ssild
w =

∑

(ui,uj)∈P

(ui − uj)(ui − uj)
T (5)

Ssild
b =

∑

(ua,ub)∈Q

(ua − ub)(ua − ub)T (6)

Thus, the scatter matrices computation do not require knowing the full203

class label of every sample. Instead, the side information is exploited to204

calculate the two matrices. Similarly to LDA, the projection matrix in SILD205

is obtained by solving the following optimization problem:206

Hsild
opt = argmax

H

∣∣HTSsild
b H

∣∣
|HTSsild

w H| (7)

3.3. MSIDA207

This part details the proposed extension of SILD to operate on multi-208

linear data. Let X ∈ RI1×I2×···×IN be a tensor representation of a training209

samples. The set of training samples is organized into match tensor pairs210

Sp = {(X o,X p) : l(X o) = l(X p)} and the set of non match tensor pairs211

Dp = {(X r,X s) : l(X r) 6= (X s)}, where l here denotes the side information.212

In order to enhance the discrimination among the tensors of different213

classes, a Discriminant Tensor Criterion (DTC) is imposed. In [15], the214

DTC ensures that the scatter of the intra-class samples is minimized and215

the scatter of the inter-class samples is maximized. Differently, in our case216

since we do not have the class labels, we minimize the scatter of the similar217

pairs and maximize the scatter of the dissimilar pairs, as done in SILD. The218
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DTC is achieved by multiple interrelated projections of the tensor through219

its different modes.Thus, the DTC in our case is given by:220

U∗k |Nk=1= argmax
Uk|Nk=1

∑nDp

Dp=1 ‖ X r ×1 U1 · · · ×N UN −X s ×1 U1 · · · ×N UN ‖2

∑nSp

Sp=1 ‖ X o ×1 U1 · · · ×N UN −X p ×1 U1 · · · ×N UN ‖2

(8)
nSp and nDp are number of positive pairs and negative pairs, respectively.221

Equation (8) is an optimization problem with a high order nonlinear222

constraint. Consequently, finding its closed-form solution is a challenging223

task. An alternative solution is to use the iterative optimization approach as224

in [15] to estimate the interrelated projection matrices.225

First, we consider one mode of the tensor, the optimization is formulated226

as:227

U∗k = argmax
Uk

∑nDp

Dp=1 ‖ X r ×k Uk −X s ×k Uk ‖2

∑nSp

Sp=1 ‖ X o ×k Uk −X p ×k Uk ‖2
(9)

As proven in [15], the optimization problem in equation (9) is a special228

case of discriminant analysis. To solve this problem, the tensors are unfolded229

into matrices in the k mode by equation (3). Then, the corresponding vectors230

of the unfolded matrix are attributed the same label as the original tensor231

and the positive vector pairs are used to compute the within-class scatter232

matrix and the negative vector pairs are used to compute the between-class233

scatter matrix. Thus optimization problem in Equation (9) could be rewrite234

as follows:235

U∗k = argmaxUK

Tr(UT
k (Smsida)k

bUk)

Tr(UT
k (Smsida)k

wUk)
(10)

where (Smsida)k
b is the between-class scatter matrix for mode k calculated236

using the vectors of the negative pairs by:237

(Smsida)k
b =

∏
i 6=kIi∑

j=1

(Smsida)k,j
b , (S

msida)k,j
b =

∑

(X r,X s)∈Dp

(xk,j
r − xk,j

s )(xk,j
r − xk,j

s )T

(11)

9
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similarly, in (10) (Smsida)k
w is the within-class scatter matrix for mode k cal-238

culated using the corresponding vectors of unfolded matrix of the positive239

sample pairs:240

(Smsida)k
w =

∏
i 6=kIi∑

j=1

(Smsida)k,j
w , (S

msida)k,j
w =

∑

(X o,X p)∈Sp

(xk,j
o − xk,j

p )(xk,j
o − xk,j

p )T

(12)
xk,j denotes the j-th vector of the k mode unfolded matrix Xk,j of tensor241

samples X .242

Now that the solution for one mode is known, the optimization of the en-243

tire tensor can be solved iteratively. The projection matrices U1, U2, · · · , UN244

are first initialized to identity. At each iteration U1, · · · , UK−1, UK+1, · · · , UN245

are supposed known and Uk is estimated. Setting Y ∗ = X ∗ ×1 U1 · · · ×k−1246

Uk−1 ×k+1 Uk+1 · · · ×N UN, Equation (9) becomes:247

U∗k = argmax
Uk

∑nDp

Dp=1 ‖ Y r ×k Uk −Y s ×k Uk ‖2

∑nSp

Sp=1 ‖ Y o ×k Uk −Y o ×k Uk ‖2
(13)

Equation (13) is similar to (10), which can be solved by eigen decomposition.248

The iterative process of MSIDA breaks up on the realization of one of the249

following conditions: either i) the number of iterations reaches a predefined250

maximum; or ii) the norm of difference of the estimated projection between251

two successive iterations is below a threshold,
∥∥U itr

k − U itr−1
k

∥∥ ≺ Ik × Ik × ε252

where Ik is the K mode dimension and U itr
k is the eigenvectors matrix in mode253

k calculated by:254

(Smsida)k
bU

itr
k = Λk(Smsida)k

wU
itr
k (14)

where Λk is a diagonal matrix whose diagonal elements are the eigenvalues255

λk
i .256

The final lower dimensions Í1 × Í2 · · · × ÍN are set based on the percentage257

of energy (Energyk) of eigenvalues to keep for each mode k:258

Energyk =

∑Ík
i=1 λ

k
i∑Ik

i=1 λ
k
i

× 100 (15)

with λk
1 > λk

2 · · · > λk
Ik
.259

10
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The entire procedure for the proposed Multilinear Side-Information based260

Discriminant Analysis (MSIDA) is provided in Algorithm 1.261

4. MSIDA based face pair matching262

In this section, we explain the detail of employing the proposed MSIDA263

for two different face matching applications: identity and kinship verification264

from pairs of face images. As depicted in Fig. 3, the block diagram of the265

proposed approach consists of three essential components: feature extraction,266

tensor subspace transformation and comparison.267

Each face image is represented using two local descriptors, MSLPQ and268

MSBSIF, extracted at different scales yielding several feature vectors per face.269

The feature vectors of all training faces are arranged as a third order tensor270

(i1, i2, i3), where i1 corresponds to a single feature vector, i2 corresponds the271

different local descriptors extracted at different scales, and i3 corresponds to272

the face samples in the training database. This tensor is first projected using273

MPCA [13] to a lower subspace j1 × j2 × i3, where j1 × j2 << i2 × i2. The274

reason for applying MPCA prior to MSIDA is to avoid the small sample size275

problem in different tensor modes. This problem occurs when the dimension276

of features is larger than the number of samples, leading to the singularity of277

MSIDA scatter matrices. Reducing the dimension of each tensor mode first278

is therefore performed.279

After applying MPCA, the training data tensor is split into two sub-280

tensors corresponding to the match pairs and non-match pairs, respectively.281

The split is done according the third mode i3. The first tensor is used to282

compute the within-class scatter matrix (Smsida)w and the second tensor is283

used to compute the between-class scatter matrix (Smsida)b of the MSIDA.284

The data tensor is projected using MSIDA to a new lower and discriminative285

subspace k1 × k2, where k1 × k2 << j1 × j2.286

At the test phase, each of the face images of the pair to check the match287

is represented as a second order tensor formed by stacking the local descrip-288

tors of the image. Subsequently, both tensors are projected by MPCA then289

MSIDA. Finally, the cosine similarity between the pair is computed and used290

to check whether the pair is match (belonging to the same person/family) or291

not.292

In the following, we explain the detailed steps of the proposed system.293

11
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Algorithm 1 Multilinear Side-Information based Discriminant Analysis
Input:

• Tensor X̃∈ <I1×I2···×N×M of M training samples

• The weak labels (labelsW) for extracting the match tensor pairs
Sp = {(X o,X p) : l(X o) = l(X p)} and non match tensor pairs

Dp = {(X r,X s) : l(X r) 6= (X s)} from X̃

• The maximal number of iterations: Itrmax

• The energy (Energy1,Energy2, · · ·EnergyN) used for selecting the final lower
dimensions: Í1 × Í2 · · · × ÍN.

Output:

• The different modes’ projection matrices Uk = U itr
k ∈ RIk×Ík , k = 1, · · · ,N

Algorithm:

1. Initialization: U0
1 = II1 , U

0
2 = II2 , · · · , U0

N = IIN

2. For itr : 1 to Itrmax

(a) For k=1 to N

• Y i = X i ×1 U
itr−1
1 · · · ×k−1 U

itr−1
k−1 ×k+1 U

itr−1
k+1 · · · ×N U

itr−1
N

• Y k
i ⇐ kY i

• (Smsida)k
b =

∑∏
i 6=kIi

j=1 (Smsida)k,j
b , (Smsida)k,j

b =
∑

(Y r,Y s)∈Dp
(yk,j

r −
yk,j

s )(yk,j
r − yk,j

s )T

• (Smsida)k
w =

∑∏
i 6=kIi

j=1 (Smsida)k,j
w , (Smsida)k,j

w =
∑

(Y o,Y p)∈Sp
(yk,j

o −
yk,j

p )(yk,j
o − yk,j

p )T

• Compute (Smsida)k
bU

itr
k = Λk(Smsida)k

wU
itr
k

(b) If itr >2 and
∥∥U itr

k − U itr−1
k

∥∥ < Ik × Ik × ε, k = 1, · · · ,N, break;

3. Compute the final lower dimensions Ík by: Energyk =
∑Ík

i=1 λ
k
i∑Ik

i=1 λ
k
i

× 100,where(λk
1 > λk

2 · · · > λk
Ik

).

4. Sort the Ík eigenvectors Uk ∈ RIk×Ík according to λk
i in decreasing order,

K = 1, · · · ,N.

12
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Figure 3: Block diagram of the proposed face pair matching system.

4.1. Features extraction294

For feature extraction, we employ two local descriptors: local phase quan-295

tization (LPQ) [21] and binarized statistical image feature (BSIF) [22]. LPQ296

quantifies the phase of low frequencies while BSIF encodes the responses to297

pre-learned filters. We selected these two descriptors because they achieved298

the best performances in former works [23, 24, 25]. In order to keep the299

spatial face structure, the face image is subdivided into P non-overlapping300

face regions. The histograms of descriptors of the P regions are concate-301

nated forming the face feature vector. To further enrich the face description,302

the two local descriptors are extracted at different scales. Fig. 4 depicts the303

13
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results of applying the two descriptors, at different scales, on a face image.304

Figure 4: Face description using LPQ (top) and BSIF (bottom) at different scales.

For each face image, all the feature vectors of the two descriptors ex-305

tracted at different scales are stacked in a matrix forming a second order306

tensor representation of the face. The faces in the database are arranged in a307

third order tensor and projected into a discriminative subspace tensor using308

MSIDA as explained in Section 3. Finally, the projected tensor is vectorized309

yielding the final face feature vector.310

4.2. Matching311

To compute the similarity between a face pair, we use the cosine similarity312

[26]. The use of cosine similarity measure is motivated by its link with313

Bayes decision rule ensuring the minimum classification error [27]. The cosine314

similarity between two vectors zt1 and zt2 is defined as follows:315

cos(zt1, zt2) =
zT

t1.zt2

‖zt1‖.‖zt2‖
(16)

where ‖.‖ is the Euclidean norm. A high value of the produced score means316

a high probability that the face pair belongs to the same person/family.317

5. Experiments318

In this section, we evaluate the proposed approach for two face matching319

problems, i.e. face based identity and kinship verification in the wild. We320

first introduce the four face datasets employed for experiments. Then, the321

parameter settings of the experiments are given and results are reported and322

discussed. Finally, we compare our best results with the state of art.323
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5.1. Datasets324

Four different face datasets are considered for evaluating our approach.325

Following is a brief description of the data.326

• Labeled Faces in the Wild (LFW) dataset [28] is a large face327

dataset collected from the web. LFW is particularly designed to study328

face recognition problem in unconstrained environments, covering real329

world variations in terms of pose, lighting, expressions, resolution, blur,330

occlusion, etc. This challenging dataset comprises 13,233 images from331

5,749 different persons. The database is split into two views: view 1332

used for model selection and view 2 used for performance evaluation.333

LFW defines three evaluation protocols: the image unrestricted set-334

ting, the image restricted setting and the unsupervised setting. In our335

experiments, we evaluate the proposed approach on the view 2 using336

aligned face images under image-restricted protocol, where no outside337

additional training data can be involved. The dataset is divided into338

10 disjoint subsets for cross validation, where 9 subsets are used for339

training and the remaining subset for testing. Each subset contains340

300 pairs of matched face pair and 300 pairs of mismatched face pairs.341

The performance is reported as the mean accuracy over the folds as342

well as the ROC curve over the 10-fold cross validation. Examples face343

images from this dataset are shown in Fig. 5.344

Figure 5: Sample images from the LFW dataset. Left: positive pairs and right: negative
pairs.

• Cornell KinFace dataset [5] comprises 150 pairs of face images of345

persons with a kin relation. The dataset was collected from the Inter-346

net considering four family relations. The family relations distribution347

in the dataset is 40% father son (F-S), 22% father-daughter (F-D),348

13%, mother-son (M-S), and 25% mother-daughter (M-D). Each pair349

is composed of one parent face image and one child face image. In our350
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experiments, we evaluate the proposed approach on the same protocol351

as the one defined by Yan et al. [29], where only 143 pairs are used and352

classification is achieved with five-fold cross-validation for kin verifica-353

tion. The negative pairs are randomly generated by associating each354

parent image with an image of another child. Example face images355

from this dataset are shown in Fig. 6.356

Figure 6: Sample images from the Cornell KinFace dataset. Left: positive pairs and right:
negative pairs.

• UB KinFace dataset [30] comprises 600 images of 400 people, col-357

lected from the web. These images are separated into 200 families.358

Each family is composed of three images, which correspond to the child,359

young parent and old parent, respectively. This forms two subsets of360

pairs: set 1 of 200 child and 200 young parent and set 2 of 200 child361

and 200 old parent. In our experiments, we evaluate the proposed ap-362

proach on the same protocol as defined by Yan et al. [29], using five-fold363

cross validation setting. Examples of face images from this dataset are364

shown in Fig. 7.365

Figure 7: Sample images from the UB KinFace dataset. Left: positive pairs and right:
negative pairs.

• TSKinFace dataset [31] is a newly published dataset, and it is among366

the largest available kinship databases. In total, the dataset counts367
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4060 face images. It includes two sets of three subject family rela-368

tions: Father-Mother-Son (FM-S) and Father-Mother-Dauther (FM-369

D). There are 513 FM-S and 502 FM-D distinct groups of tri-subject.370

For our case, we restructured the dataset by splitting the set of Father-371

Mother-Son into two pairs Father-Son and Mother-Son ship and the372

set of Father-Mother-Daughter into two pairs Father-Daughter and373

Mother-Daughter. Following the same kinship verification protocol as374

defined by Qin et al. [31], we used five-fold cross-validation setting.375

Each fold comprise nearly the same number of face pairs. Examples of376

face images from this dataset are shown in Fig. 8.377

Figure 8: Sample images from the TSKinFace dataset. Left: positive pairs and right:
negative pairs.

5.2. Parameter settings378

The parameters yielding the reported results of our experiments are pro-379

vided in the following. The face images are cropped and resized to 130× 90380

pixels, 126× 115 pixels, 96× 80 pixels and 64× 64 pixels for LFW dataset,381

Cornell, UB KinFace and TSKinface datasets, respectively. After extract-382

ing MSLPQ and MSBSIF from each face image, the resulting feature image383

is subdivided into 20 non-overlapping blocks. For extracting both descrip-384

tors at different scales, we vary the window size (m) of LPQ and the filter385

size (l) of BSIF. Same values are considered for both parameters m and386

l= {3, 5, 7, 9, 11, 13, 15, 17}. To keep the feature vector of reasonable size387

while maximizing the image description, the number of combined scales at388

the same time is varied from 2 to 4 for both descriptors. These parameters389

are adopted since their empirical results are proven the best.390

The training data is utilized for estimating the subspace projection ma-391

trices. The MSIDA subspace is set to 96% energy of eigenvalues (as equation392

(15) indicates, the eigenvalues that save up to 96% of information are kept).393
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The number of iterations, for both MPCA and MSIDA algorithms, is empir-394

ically tuned and the better value is Itrmax = 2.395

5.3. Results and discussion396

This subsection presents the evaluation results and discussion. In addi-397

tion to the third order tensor representation, all the experiments are also398

conducted for the original linear approach, SILD, which serves as a baseline399

for assessing our proposed method MSIDA. Furthermore, we examine the400

performances of both local descriptors, MSLPQ and MSBSIF, individually401

as well as their fusion. In the linear case, feature level fusion is done by402

concatenating vectors of different scales for each face descriptor. For pro-403

posed multilinear case, fusion is performed based on tensor, where vectors of404

different scales of two descriptors, LPQ and BSIF, are stacked in the second405

mode of the tensor.406

To mitigate for the small sample size problem, feature dimensions are first407

reduced as follows. In linear (second order tensor) representation case, we408

apply Principal Component Analysis (PCA) prior to Side-Information based409

Linear Discriminant (SILD). In multilinear (third order tensor) representa-410

tion case, we apply multilinear principal component analysis (MPCA) prior411

to Multilinear Side-Information based Discriminant Analysis (MSIDA).412

Results, in terms of verification accuracy, are provided in Table 1 for face413

verification on LFW database and in Tables 2, 3 and 4 for kinship verification414

on Cornell KinFace, UB KinFace and TSKinFace datasets, respectively.415

From the descriptor point of view and at individual descriptor level, we416

can notice that, in most of the cases, MSBSIF achieves better results than417

MSLPQ. we also can observe that the best results are obtained for MSB-418

SIF with big-sized filters combination (13+15+17), whereas combination of419

medium-sized windows (5+9+13) of MSLPQ descriptors gives the best re-420

sults. Furthermore, the fusion of features from the three previous filters of421

both descriptors permanently manifest better results across the four tables.422

Therefore, we select these two multiscale setting (13+15+17 for MSBSIF423

and 5+9+13 for MSLPQ) when fusing the two descriptors. This last fusion,424

achieves better results than the individual descriptors in all cases, demon-425

strating the complementary of MSBSIF and MSLPQ for face description.426

Considering the influence of the subspace approaches, for each particular427

case of Tables 1, 2, 3 and 4, (regardless of the features, scales, databases, and428

face matching problem) the proposed multilinear approach MSIDA performs429
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better than its linear SILD counterpart. This clearly demonstrates the effec-430

tiveness of the proposed MSIDA. Deeper insights to the results reveal that431

MSIDA is able to extract better discriminative feature subspace that SILD.432

For instance, while in the linear case MSBSIF always performs better than433

MSLPQ, with perceivable margin, the difference in performance between the434

two descriptors is reduced in the multilinear case; and even there appear few435

cases where MSLPQ outperforms.436

The results point out the fact that the weakly supervised multilinear437

method MSIDA takes full advantage of the higher order tensor structure. The438

curse of dimensionality dilemma is intuitively avoided. Indeed, while in the439

case of SILD method the feature vectors are simply concatenated ignoring the440

natural data structure, these features are stacked in a tensor mode allowing441

the extraction of maximum information. Furthermore, MSIDA abstracts442

better the discriminant information present in each mode compared with443

SILD method, which extracts discriminant information by a single projection.444

Table 1: Verification accuracy of MSIDA and SILD using different MSLPQ and MSBSIF
scales and their fusion on the LFW dataset under restricted protocol.

Feature
Mean Accuracy (%) ± Standard Error
PCA+SILD MPCA+MSIDA

MSLPQ (m=3+5) 89.60 ± 1.21 93.07 ± 1.06
MSLPQ (m=5+9+13) 90.43 ± 1.25 94.33 ± 0.94
MSLPQ (m=13+15+17) 90.33 ± 1.21 94.02 ± 1.03
MSLPQ (m=5+7+9+11) 90.03 ± 1.28 93.57 ± 1.04
MSBSIF (l=3+5) 90.27 ± 1.39 92.27 ± 1.34
MSBSIF(l=5+9+13) 89.00 ± 1.29 94.05 ± 0.95
MSBSIF (l=13+15+17) 90.47 ± 1.21 94.37 ± 0.85
MSBSIF (l=5+7+9+11) 89.60 ± 1.11 93.03 ± 1.14
MSLPQ (m=5+9+13) +

91.30 ± 1.26 94.40 ± 0.89
MSBSIF (l=13+15+17)

5.4. Effect of the quantity of training pairs445

We investigate the effect of the amount of training pairs for LFW, Cornell446

KinFace, UB KinFace and TSKinFace datasets. Different amounts of ran-447

domly selected training image pairs are used in this experiment. Specifically,448

600, 1200, 1800, 2400, 3000, 3600, 4200, 4800 and 5400 pairs are used for449
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Table 2: Verification accuracy of MSIDA and SILD using different MSLPQ and MSBSIF
scales and their fusion on the Cornell KinFace dataset.

Feature
Mean Accuracy (%)

PCA+SILD MPCA+MSIDA
MSLPQ (m=3+5) 78.97 83.67
MSLPQ (m=5+9+13) 81.77 86.11
MSLPQ (m=13+15+17) 76.90 85.78
MSLPQ (m=5+7+9+11) 78.64 85.80
MSBSIF (l=3+5) 83.21 84.67
MSBSIF(l=5+9+13) 82.52 85.00
MSBSIF (l=13+15+17) 83.23 86.45
MSBSIF (l=5+7+9+11) 82.92 84.67
MSLPQ (m=5+9+13) +

84.56 86.59
MSBSIF (l=13+15+17)

LFW database. For Cornell and UB KinFace databases, we use 30, 60, 90,450

120, 150, 180 and 210 pairs. For TSKinFace, we use 80, 160, 240, 320, 400,451

480, 560, 640, 720 and 800 pairs. Fig. 9 shows the mean accuracy of the pro-452

posed method MSIDA and its counterpart SILD with respect to the number453

of training pairs. We can clearly observe that the performances of the both454

methods MSIDA and SILD become better as the amount of training pairs455

increase. Moreover, our method MSIDA outperforms SILD on all datasets456

for different amounts of training data. The experimental results indicate that457

the quantity of training pairs has a significant influence on the final accuracy.458

This is exhibited by the accuracy improvements between any two successive459

configurations of the experiment.460

5.5. Weakly supervised MSIDA against full supervised LDA and MDA461

In this experiment, we compare the basic SILD and the proposed method462

MSIDA under the restricted setting with LDA and MDA under the unre-463

stricted setting on the LFW dataset. The verification accuracy of the dif-464

ferent methods MSIDA, SILD, MDA, and LDA under restricted and unre-465

stricted settings on the LFW dataset are shown in Table 5, their ROC curves466

are illustrated in Fig 10 . We can observe that MSIDA and SILD provide467

comparable performances to their full supervised counterparts, MDA and468

LDA. Also, the margin of the improvement of MDA in the presence of iden-469

tity labels is smaller compared to the side-information setting with MSIDA470
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Figure 9: Mean accuracy of SILD and MSIDA with different number of pairs on (a) LFW
(b) Cornell KinFace (c) UB KinFace (d) TSKinFace databases, respectively.
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Table 3: Verification accuracy of MSIDA and SILD using different MSLPQ and MSBSIF
scales and their fusion on the UB KinFace dataset.

Feature
Mean Accuracy (%)

PCA+SILD MPCA+MSIDA
MSLPQ (m=3+5) 78.35 82.82
MSLPQ (m=5+9+13) 78.89 82.97
MSLPQ (m=13+15+17) 76.03 82.56
MSLPQ (m=5+7+9+11) 78.77 82.21
MSBSIF (l=3+5) 79.08 82.84
MSBSIF(l=5+9+13) 78.99 82.98
MSBSIF (l=13+15+17) 79.30 83.14
MSBSIF (l=5+7+9+11) 79.13 82.81
MSLPQ (m=5+9+13) +

80.76 83.34
MSBSIF (l=13+15+17)

(only a small difference of less than 0.67%). Therefore, we can confirm that471

MSIDA with weakly information achieves comparable performances when472

using the full class label in the supervised case with MDA. In addition, with473

weakly labeled information, our method MSIDA is better than LDA with474

full labeled information. This advantage presents the proposed MSIDA as475

an effective model to deal with the weakly information problem.476

5.6. Time complexity477

The experiments were done using MATLAB version 2015a on a PC with478

an Intel Xeon(R) 3.19 GHz CPU and 12 GB of RAM. The estimation of479

the projection matrices is implemented in the offline training phase. The480

complexity in terms of computation time (CT) for one face pair matching481

(during the online phase) using SILD and the proposed MSIDA is provided482

in Table 6. Since the same features (MSLPQ+MSBSIF) are used to describe483

the face image for both SILD and MSIDA, the same CT is required for both484

methods in this step. For the dimensionality reduction and comparison,485

it can be seen that our method MSIDA achieves a good gain in the CT486

compared with the baseline method in all datasets. The CT is reduced thanks487

to the use of tensor representation of face data. In addition to accuracy,488

this experiment demonstrates the effectiveness of our approach in terms of489

computation complexity. Indeed, the MSIDA does not exceed a total CT of490
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Table 4: Verification accuracy of MSIDA and SILD using different MSLPQ and MSBSIF
scales and their fusion on the TSKinFace dataset.

Feature
Mean Accuracy (%)

PCA+SILD MPCA+MSIDA
MSLPQ (m=3+5) 78.20 82.61
MSLPQ (m=5+9+13) 79.94 84.22
MSLPQ (m=13+15+17) 79.51 83.98
MSLPQ (m=5+7+9+11) 79.90 83.78
MSBSIF (l=3+5) 76.67 79.60
MSBSIF (l=5+9+13) 78.20 80.80
MSBSIF (l=13+15+17) 79.99 83.24
MSBSIF (l=5+7+9+11) 79.53 80.80
MSLPQ (m=5+9+13) +

81.58 85.18
MSBSIF (l=13+15+17)

Table 5: Verification accuracy (%) of the different methods under restricted and unre-
stricted settings on the LFW dataset.

weakly supervised (without full class label) full Supervised (with full class label)
Setting Restricted Unrestricted
Method MSIDA SILD MDA LDA
Mean Accuracy (%) ± Standard Error (%) 94.40 0.89 91.30 ± 1.26 95.07± 0.71 91.93 ± 0.82

0.1259 s, which makes it a competent candidate for use in real world face491

verification applications.492

Table 6: Time complexity in seconds of MSIDA and SILD on the four datasets.

Dataset Feature extraction
Dimensionality reduction and comparison Total run time

SILD MSIDA SILD MSIDA
LFW 0.1085 0.0217 0.0174 0.1302 0.1259
Cornell KinFace 0.1249 0.0045 0.0032 0.1294 0.1281
UB KinFace 0.0978 0.0050 0.0036 0.1028 0.1014
TSKinface 0.0785 0.0041 0.0029 0.0826 0.0814

5.7. Comparison with state of the art493

5.7.1. Face verification in the Wild494

Our comparison criteria is the accuracy obtained by the recent works495

not only on the side of similar mechanisms.The comparison of our approach496
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Figure 10: ROC curves of the different methods under restricted and unrestricted settings
on the LFW dataset.

on the side of metric learning and feature type is provided on the tables497

1, 2, 3, 4 and 5. In this subsection, table 7 compares our results with the498

state-of-the-art including the latest works on the LFW database under re-499

stricted setting protocol. Additionally, Fig. 11 depicts the corresponding500

ROC curves . The best verification accuracy of our work is 94.40%. This501

result is ranked secon of different methods, among the state of the art. The502

recent work MRF-Fusion-CSKDA [38] yields the currently best verification503

accuracy on the LFW dataset. MRF-Fusion-CSKDA is based on the fusion504

of three multiscale descriptors MSLBP, MSLPQ and MSBSIF using kernel505

methods. In contrast, we employed only two descriptors, MSLPQ and MS-506

BSIF using the proposed multilinear approaches MSIDA achieving second507

rank in the litterature. Hence, our system is less complex, computationally508

efficient and scales better than the top ranking method.509
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Table 7: Comparison of verification accuracy of MSIDA with state of the art on the LFW
dataset under restricted protocol.

Method Mean Accuracy (%) ± Standard Error (%)
Eigenfaces, original [32] 60.02 ± 0.79
Nowak2, funneled [33] 73.93 ± 0.49
Hybrid descriptor-based, funneled [34] 78.47 ± 0.51
Pixels/MKL, funneled [35] 68.22 ± 0.41
Fisher vector faces [36] 87.47 ± 1.49
Eigen-PEP [37] 88.97 ± 1.32
class-specific kernel discriminant analysis-MRF-MSLPQ [38] 92.42 ± 1.03
class-specific kernel discriminant analysis-MRF-MSBSIF [38] 93.63 ± 1.27
class-specific kernel discriminant analysis MRF-Fusion [38] 95.89 ± 1.94
Hierarchical-PEP [39] 91.10 ± 1.47
Side-Information based Linear Discriminant Analysis -MSBSIF [24] 90.37 ± 1.19
Robust Statistical Frontalization [40] 88.81 ± 0.78
Discriminative Deep Multi-Metric Learning [41] 93.28 ± 0.39
MSIDA-MLPQ 94.33 ± 0.94
MSIDA-MBSIF 94.37 ± 0.85
MSIDA-fusion (MLPQ+MBSIF) 94.40 ± 0.89

5.7.2. Kinship Verification in the wild510

Table 8, Table 9 and Table 10 compare the proposed approach with511

the state-of-the-art on the Cornell KinFace, UB KinFace and TSKinFace512

datasets, respectively. We note that the best verification accuracies is ob-513

tained by our approach ain which we have 86.87% on Cornell KinFace, 83.34%514

on UB KinFace and 85.18% on TSKinFace. As can be seen from the three515

comparison tables, our approach outperforms the other state-of-the-art meth-516

ods on the three kinship datasets. Moreover, we can clearly see that MSIDA517

improves the kinship performance with a significant margin (For instance,518

more than 13% on Cornell KinFace and more than 11% improvement on UB519

KinFace).Since our feature learning approach is similar to the several ap-520

proaches, the power of our approach is given thanks to the multilinear sceme521

based on the proposed MSIDA using high order tensor representation that522

exploit more discriminative information.523

6. Conclusion524

In this paper, we presented an effective approach for matching images of525

face pairs in the wild. The proposed approach is based on high order tensor526

representation of face images. The face tensor is built using histograms of two527
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Figure 11: ROC curve of MSIDA and state-of-the-art on the LFW dataset under image
restricted protocol.

local descriptors, MBSIF and MLPQ, extracted at multiscales. To project528

the face tensor into a low dimensional and discriminative subspace, taking529

advantage of the available weakly labeled data, we have extended the linear530

SILD to MSIDA, which operates on multilinear data. MSIDA finds multi-531

linear projections of the tensor, where the separation between data classes is532

enhanced exploiting the available side information. The experimental eval-533

uation of our approach for identity and kinship verification demonstrates534

that the proposed method is more effective, both in terms of accuracy and535

computation time, than its original linear form. Additionally, our approach536

outperforms the state of the art on three kinship databases (Cornell Kin-537

Face, UB KinFace, and TSKinFace) databases and ranks second on LFW538

database. As a future direction, we plan to investigate other multilinear di-539

mensionality reduction methods and examine higher tensor orders (> 3) for540

face representation.541
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Table 8: Comparison of verification accuracy of MSIDA with state of the art on the Cornell
KinFace dataset.

Method Mean Accuracy (%)
Pictorial structure model-HOG [5] 70.67
Discriminative multimetric learning-fusion (LBP, SIFT, SPLE) [29] 73.50
Multiview Neighborhood Repulsed Metric Learning-fusion (LBP, SIFT, TPLBP and LE) [6] 71.60
Prototype discriminative feature learning-fusion (LBP, SIFT) [42] 71.90
Multiple Kernel Similarity Metric-LPQ [43] 81.70
MSIDA-MLPQ 86.11
MSIDA-MBSIF 86.45
MSIDA-fusion (MLPQ+MBSIF) 86.87

Table 9: Comparison of verification accuracy of MSIDA with state of the art on the UB
KinFace dataset.

Method Mean Accuracy (%)
Transfer subspace learning-Gabor [44] 56.50
Self-similarity representation of Weber faces-DOG [45] 53.90
Discriminative multimetric learning-fusion (LBP, SIFT, SPLE) 72.25
Multiview Neighborhood Repulsed Metric Learning-fusion (LBP, SIFT, TPLBP and LE) [6] 67.05
Prototype discriminative feature learning-fusion (LBP, SIFT) [42] 67.30
Random Subset Feature Selection-fusion (LPQ, LBP, SPLE) [46] 76.65
MSIDA-MLPQ 82.97
MSIDA-MBSIF 83.14
MSIDA-fusion (MLPQ+MBSIF) 83.34

Table 10: Comparison of verification accuracy of MSIDA with state of the art on the
TSKinFace dataset.

Method Mean Accuracy (%)
Relative Symmetric Bilinear Model-SIFT [31] 81.85
Binarized Statistical Image Feature [47] 74.46
Discriminative Deep Multi-Metric Learning-LPQ [41] 79.92
Multiple Kernel Similarity Metric-LPQ [43] 81.89
MSIDA-MLPQ 83.98
MSIDA-MBSIF 83.24
MSIDA-fusion (MLPQ+MBSIF) 85.18
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