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Abstract

In recent years, the binary feature descriptor has achieved great success in face
recognition (FR) field, such as local binary pattern (LBP). It is well known that
the high-dimensional feature representations can contain more discriminative
information, therefore, it is natural for us to construct the high-dimensional
binary feature for FR task. However, the high-dimensional representations
would lead to high computational cost and overfitting.  Therefore, an
effective sparsity regularizer is necessary. In this paper, we introduce the
sparsity constraint into the objective function of general binary codes learning
framework, so that the problem of high computational cost and overfitting can
be somehow solved. There are three main requirements in our objective function:
First, we require that the high-dimensional binary codes have the minimized
quantization loss compared with centered original data. Second, we require
the projection matrices are sparse, so that the projection process would not
take lots of computational resource even faced with high-dimensional original
data. Third, for a mapping (hashing) function, the bit-independence and bit-
balance are two excellent properties for generating discriminative binary codes.

We also empirically show that the high-dimensional binary codes can obtain
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more discriminative ability by pooling process with an unsupervised clustering
method. Therefore, a discriminative and low-cost Sparse Projection Matrix
Binary Descriptors (SPMBD) is learned by the data-driven way. Extensive
experimental results on four public datasets show that our SPMBD descriptor
outperforms other existing face recognition algorithms and demonstrate the
effectiveness and robustness of the proposed methods.

Keywords: Local Descriptor, Feature Learning, Binary Coding, Sparse

Projection Matrix, Face Recognition.

1. Introduction

Face recognition (FR) has achieved great success in over three decades, but
it attracts researchers’ attention due to there are still many problems unsolved
in real applications, such as the extreme intraclass variations in unconstrained
scenario and large number of subject classes in crowded video surveillance
scenario [1, 2, 3, 4]. Therefore, in this paper, we mainly focus on the FR
problem in constrained and unconstrained scenarios.

There are two main reasons why current FR system can not work well in real
life. On the one hand, the face images (especially, captured in unconstrained
environment) consist of a various of variabilities, such as pose, expression,
illumination, blur and so on. These intra-class variations dramatically reduce
the recognition accuracy of FR system. On the other hand, with the
development of Internet and image capture device, the recent FR system is
conducted on large-scale datasets. But the large-scale samples inevitably lead to
high computational cost and can not directly be applied on many real scenarios,
such as mobile phones and wearable devices.

According to the existing works, feature representation is a key breakthrough
point to achieve excellent performance for FR task. Over decades, a various of
feature representations based FR methods are proposed, such as SIFT [5] and
LBP [6]. However, their success mainly comes from designing features manually

and elaborately, these methods can obtain excellent performance only when
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strong task-specific prior knowledge is provided (Problem 1). What is more,
many high-dimensional features are proposed in recent years, such as high-
dim LBP [3] and MDML-DCPs [4]. They have empirically found that a high-
dimensional feature representation is necessary to achieve good performance.
However, when the original feature’s dimensionality d is large, the projection
matrix could contain millions parameters, it can easily tend to overfitting
(Problem 2). The computational cost in terms of both time and memory is also
a non-negligible problem for high-dimensional data (Problem 3). Therefore,
how to learn a data-oriented and non-overfitting feature representation is a key

concern for FR task.

1.1. Motivation

The work [2, 7, 8] has proved that the combination of binary descriptors
and histogram representations are insensitive to local variabilities and the work
in [3, 4] has proved that high-dimensional representations can achieve better
performance in FR task, respectively. However, there are few methods which
integrate these two excellent properties into a general framework. Therefore,
we would like to learn discriminative high-dimensional binary descriptors and
histogram-based representations from data itself.

According to the above analysis, there are three necessary optimization
terms need to be introduced into our objective function to overcome the above
problems. They are quantization loss term, sparsity regularizer term and
bit-balance and bit-independence term. The quantization loss term makes
the quantization error between real-valued PDVs and high-dimensional binary
codes is minimized, so that the identity information of face image is preserved as
much as possible. The sparsity regularizer term makes the projection matrices
of binary coding process are properly sparse, it is expected to restrict non-zero
elements’ number in the projection matrix and somehow solve the Problem
2 and Problem 3 together. The bit-balance term leads to each bit have the
same probability to be 0 and 1, the bit-independence term leads to the learned

different bits are independent of each other, so that the learned binary codes
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can contain more information than those bit-dependent codes when bit length
is fixed. Moreover, the whole optimization process is conducted based on data-
driven way, so that the Problem 1 can be solved.

Figure 1 shows the work-flow of the proposed SPMBD method. Firstly,
the patch-wise pixel difference vectors (PDVs) are extracted, which is able
to implicitly describe the basic visual patterns of face images. Secondly, we
optimize the objective function of our method by iterative scheme. Lastly,
inspired by the work [9], the binary codes learned from the above step are
clustered as a dictionary and are pooled into a set of statistical features to make

the final feature representations have more discriminative power.

1.2. Contributions

The contributions of our proposed can be listed as follows:

1. We propose a sparse projections matrix binary descriptors for high-
dimensional feature representations in FR task. Since there is the
quantization loss term in our objective function, our SPMBD feature keeps
the identity information as much as possible.

2. The sparsity property effectively reduces the number of non-zero elements
in the training process, so that the possibility of overfitting is substantially
decreased in trained model. The sparsity makes our trained model lie on
the balance point where the model is neither underfitting nor overfitting.
The sparsity term also dramatically reduces the computational cost.

3. Our proposed method are extensively evaluated on four public datasets:
FERET, CAS-PEAL-R1, PaSC and LFW, and our method obtains
better performance than other recent works in both constrained and

unconstrained FR scenarios.

In the following section, we review some recent related works in the Section 2.
Then, in the Section 3, we detail our proposed SPMBD learning method.
Specially, we analyze the existing problems of recent binary codes based FR

method and formulate the objective function of our SPMBD in subsection 3.2.
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Figure 1: The illustration of our proposed SPMBD method. In Step 1, we extract PDVs
from each local region for training and testing images. In Step 2, we learn a sparse feature
mapping from the training images, so that the extracted PDVs are projected as discriminative
and high-dimensional binary codes. In Step 3, the optimized binary codes in Step 2 are
clustered by unsupervised clustering method, the region-wise dictionaries are obtained. In
Step 4, having learned sparse projection matrix R in Step 2, we encode the PDVs into
binary codes. In Step 5, the learned binary codes are pooled as histogram-based features by

using the learned dictionary D in Step 3.

The overall optimization process is detailly described in Subsection 3.3. In the
section 4, we discuss the relationship between our porposed method and previous
methods. At last, we provide the performance comparison of our SPMBD
methods and other existing methods on public face databases in Section 5 and

summarize our work in the Section 6.
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2. Related Work

Since our proposed method is a learning-based sparsity-encouraging binary
coding method for face representation, in this section, we put our attention
on these three most relevant topics: face feature learning, face sparse

representation and binary coding learning.

2.1. Face Feature Learning

In recent years, the learning-based methods with low-level features have
achieved great success for face recognition [9, 10, 11]. Since different neighboring
patches have different contributions to face representation, Lei et al. [9]
propose the optimal soft sampling to assign the different weights for each
neighboring patch in a supervised way. Zhang et al. [10] employ the Weber local
descriptors to extract multi-scale features from local patches centered at the
facial landmarks and randomly selects a subset of the learned local features. The
work in [11] extracts different feature representations for different modalities by
exploiting different complexity deep model, and the outputs of different network
are concatenated and compressed by stacked auto-encoders. It achieves excellent
performance by using publicly available training set. Because of learning-based
methods self-learn discriminative information from the data and do not need to
provide the prior knowledge, they obtain better performance than those hand-

crafted methods.

2.2. Face Sparse Representation

Wright et al. [12] first introduce sparse representation codes (SRC) into
FR task, but the small sample size problem is a severe problem in this work.
This problem is solved in the work [13] by constructing an auxiliary intra-class
dictionary which contains all possible variation between the training samples
and testing sample. The work [14] first constructs the intraclass and interclass
scatter matrix by weighted elastic net and the weighted sparse preserving
embedding technology is employed to find a subspace which makes the ratio

of the interclass scatter to the intraclass scatter is maximized. In work [15],
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the sparse neighborhood graph is first constructed, then the low-dimensional
embedding is learned based on the intrinsic geometry metric. The work [16]
considers the axis-symmetrical nature of faces and produce approximately axis-

symmetrical virtual dictionary for face sparse representation.

2.8. Binary Code Learning

Lots of binary codes learning algorithms are also proposed in recent decades.
Li et al. [17] introduce a number of labeled facial attributes into binary codes
encoding process for face image retrieval and facial attributes prediction, just
like killing two birds with one stone. The BitHash method [18] proposes an
unbiased estimate of pairwise Jaccard similarity and employs one bit per hash
value to represent data sample. Gao et al. [19] propose the Batch-Orthogonal
Locality Sensitive Hashing (BOLSH) for face recognition in movie videos, which
can be understood as the special case of locality-sensitive hashing. The BOLSH
learns these orthogonal projections from the part original data and group their
binary representations as a batch.

What is more, some recent works for high-dimensional binary codes are
proposed. Yu et al. [20] learn binary codes by mapping the data with
circulant matrix. Since circulant structure can be effectively computed by Fast
Fourier Transformation, the projection process for high-dimensional data can
be accelerated. Bilinear Projections [21] is also designed for high-dimensional
binary code, it exploits natural two-dimensional structure of existing descriptors

and decomposes a large projection matrix into two small matrices.

3. Sparse Projections Matrix Binary Descriptors Learning

In this section, we first show the extraction process of PDV, then we describe
the formulation and optimization process of SPMBD descriptor. At last, we
detail how to encode the binary codes into histogram-based features.

It is well-known that the identity-bearing information for each face region

is different. In order to exploit these position-specific information, we intend
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to learn region-wise SPMBD descriptor. The (training/testing) face images
are divided into a number of local regions. These local SPMBD features are
learned from each region of face images and these region-wise features are
concatenated as the output feature. Moreover, we use the Whitening PCA
(WPCA) to normalize the variance of our learned features and further make
our representation efficiently. At last, the corresponding features obtained from

WPCA are fed into 1-NN classifier to measure the similarity of face images.

8.1. The Ezxtraction of PDVs

This section corresponds the Step 1 in Fig 1. Given training set A =
[ai, a9, --,a,], where a; denotes the ith training face image. We extract
PDVs from a input face image at patch level and concatenate them as Pixel
Difference Matrix (PDM) X = [x;,Xa, -+, Xy], where x; € R? denotes the ith
pixel difference vector and N is the number of PDVs. In order to clearly explain
how we extract pixel difference matrix from the center patch and its neighboring
patch, we show the extraction process of PDV in Fig. 2. It can be observed that
the dimensionality d of a PDV is [(2L 4+ 1) x (2L 4+ 1) — 1] and L denotes the
sampling radius. In order to exploit the multiple scales pixel-wise information,
we can extract a set of PDVs with multiple radii and concatenate them into
a long PDV. Moreover, we need to subtract the mean from input data before
performing our proposed method, so that the learned binary codes can better

represent variations of the data, i.e.,

N
ZXZ' = 0, (1)
i=1

and we will detail the reason why we remove the mean from input data in the

next subsection.

3.2. Formulation
According the motivations of our method (i.e., Section 1.1), there are three
requirements for the objective function of our method. First, the learned

binary codes should similar to the original data as closely as possible. Second,
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Figure 2: The example of extracting a patch-wise PDM and PDV from a face image. In order
to make the figure concise, we set the sampling radius R to be 1, so the neighboring pixels
in (2R+ 1) X (2R + 1) space are concerned. Then we compare the pixels of each neighboring
patches with that of central patch, and concatenate all difference vectors as the row vector of
PDM. The PDV can be denoted as the column vector of the PDM. This figure is best viewed

in color version.

the projection matrices should be properly sparse, so that the overfitting and
computational cost during the projection process can be reduced. Third,
each bit should have 50% to be 0 or 1 (i.e., bit-balance property), and
different hashing (i.e., projection) functions should be independence (i.e., bit-
independence property), so that the learned bits can carry more effective
information with fixed bit length.

According to the above requirements, the objective function can be denoted

as follow:
min |[RX — B
B ' @)
st. |R|;<m, ,RTR=1

where sparse projection matrix R € RX*? to map each PDV x; € R4*!

into K-bits binary codes b; = [bi71,bi72,~-~,bi7K]T € {—1,1}KXl by the
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equation B = sign(RX) € R¥*V || denotes non-zero elements’ number
of the projection matrix. There are three terms in the objective function of
our SPMBD: quantization loss term, the sparsity term and bit-independence
term. The main part of Eq. 2 corresponds to the minimization problem of
quantization error (i.e., the first term). |R|, < m and RT”R = I corresponds to
the sparsity term (i.e., the second term) and the bit-independence term (i.e., the
third term), respectively. One may wondering that why there is no bit-balance
term in the objective function. Because we have found that the learned bianry
codes always satisfy the bit-balance property for the centered input data, and
it is demonstrated in Figure 3. So this term is not necessary for our objective
function as long as we pre-process the input data by removing its mean.
Compared with some SR-like methods, we control the sparsity of projection
process by {y-regularization instead of ¢;-regularization. Since {y-regularization
can directly determine the non-zero elements’ number, so that the complexity
of time or memory is also under our control. While it is not easy for ¢;-
regularization, therefore, we choose {y-regularization to constrain the projection

matrix.

(a) original PDVs (b) projected data

Figure 3: The first two-dimensional distribution examples of the original data and projected
data, which come from the FERET training dataset. (a) The centered original PDV data
and (b) the mapping data projected by the sparse projection matrix. This 2-D example

demonstrates the projected data have the bit-balance property naturally.

10
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3.3. Optimization

The objective function Eq. (2) is the m-sparsity problem [22], which is not
convex due to the orthogonal and {yp-regularization. Thanks to the development
of the variable-splitting and penalty techniques [23, 24], we can adopt them in
optimization process. The auxiliary variable Rs is introduced, and the sparse
constraint is put on R; and the orthogonality constraint on Ry. In order to
minimize the variable-splitting error, we also penalize the difference between
R;1X and RyX. Therefore, we can rewrite the objective function (i.e., Eq. (2))

as following:
min [RoX — B[} + o [RoX — Ra X[ 5
st. RIR =1, |[Ry4|, <m
and « is the penalty parameter to balance the contribution of two terms. The
first term denotes the surrogate quantization error and the second term denotes
the variable-splitting penalty error. It is well-known that the solution of Eq. 3

converges to that of Eq. 2 when a@ — +00. The original problem is convex to

one of variable when other two are fixed.

3.8.1. Step 1: Updating Ry with fized Ro and B

This sub-problem can be rewritten as:

. 2
min [C; — R X[ n

st. |Ri|y <m

where C; = Ry X is fixed. Similar to the optimization idea of the work [24], we
firstly ignore the sparsity constraint and expand the Eq. 4 as following:

J=1tr(C;C{ —2CT R X+ R XX"RY). (5)

The above objective function can be optimized by gradient descent (GD)
scheme. The sparsity constraint is then satisfied by directly thresholding the
GD based solution by keeping m largest elements’ magnitude and set that of

the rest to be 0 as following;:
R = ¢, (R} — v (R, — R}) XX"), (6)

11
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where t is the number of iteration and v = —1/||X||§7 denotes the learning rate

of GD scheme. The thresholding function ¢,, can be denoted as following:

T, T > Ty
dm (x) = (7)

0, otherwise

where x,, is the mth largest element in the matrix X. And in our implement,

we find that the solution of Eq. 6 is almost converged in 5 iterations.

3.8.2. Step 2: Updating Ry with fized Ry and B
when R; and B are fixed, the objective function can be denoted as following:

. 2

min ||[R>X — Collf

; (8)
s.t. Rng =1

where C; = (B + aR1X) /(1 + «) is fixed. This sub-problem can be considered
as the classical orthogonal procrustes problem. The work [24] has proved
that the procrustes problem is solvable when K > d. Readers can refer [24]
for detailed derivation. When K > d, we first compute the Singular Value
Decomposition (SVD) of the matrix XC3 as XC; = UEVT, then set Ry as
VUT. In order to solve the case of K < d, we project X to K-dimensional space
by X = WX and W is a largest eigenvalues based PCA projection matrix of
size K x d. Then X is substituted as X in the sub-problem Eq. 8 and Ry can be
solved by the same case as K > d. At last, the orthogonal-constraint projection

matrix Ry can be given by RoW.

3.8.8. Step 3: Updating B with fired Ry and Ro

This sub-problem can be rewritten as
min ||B —C3||?;, (9)
Ro

where C3 = RyX. The Eq. 9 is equivalent to mng(Cg)ijBij, where 4, j
i,

denotes the matrix elements’ indexes. In order to maximize this equation, we

need to set B;; = 1 when (Cg)ij > 0 and B;; = —1 otherwise. Therefore, B;; =

sign ((Cg)ij) = sign <(R2X)ij) with element form, or simply B = sign (RoX)

12
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with matrix form. The pseudo code of our proposed SPMBD method is listed
in Algorithm 1.

Algorithm 1 Sparse Projections Matrix Binary Descriptor learning algorithm.

Input: The training set A = [aj,as,---,a,], the length of K, the penalty
parameter «, the iteration number T" and the sampling radius L.
Output: Sparse projection matrix R and binary codes B.
1. Step 1 (Extraction of PDVs): Extracting the PDVs from A with
sampling radius L and obtaining PDM X = [x1,X2, -+, XN];
2: Step 2 (Pre-Processing):
3:  Subtract the mean X from input data X.
4: Step 3 (Optimization):
5. 3.1. Initialization:
6: Initialize R} = randn (K, d).
7: Initialize B® = sign (R(IJX).
8  3.2. Iterative Optimization:

90 fort=1,---,T do

10: 3.2.1 Update R; by solving Eq. 6.
11: 3.2.2 Update Rs by solving Eq. 8.
12: 3.2.3 Update B by solving Eq. 9.

13:  end for

14: Return: Sparse projection matrix RT and corresponding binary codes B7.

8.4. Clustering and Pooling

This section corresponds to the Steps 3 and 5 in Fig. 1. Having learned the
feature mapping matrix R; by the above sparsity iterative scheme, so the PDVs
are mapped into the high-dimensional feature vectors. In order to learn more
data-adaptive binary codes, we first cluster learned features (see the step 3 in
Fig. 1) by applying an unsupervised clustering method. We investigate different
clustering methods, such as K-Means, Gaussian Mixture Model, mean-shift and

spectral clustering, but there is no significant difference on performance in our

13
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implementation. We think the learned binary codes already have elementary
clustering structure after sparse projection, therefore, different methods have
negligible effects on clustering. We choose the K-means in this paper for its
simplicity and efficiency.

In the testing phase, in order to describe the statistical property of sparse
projection binary code, each binary code is pooled as the bins of histogram by
using the learned dictionary (see step 5 in Fig. 1). At last, we consider the

histogram features as the output features.

4. Relation To Previous Methods

The SPMBD is a binary face descriptor which is designed to solve the
overfitting and high computational cost problems of the high-dimensional
representation. In our objective funciton, the quantization loss and bit-
independence terms are used to learn the less-error and discriminative binary
feature, and the sparsity term is introduced to reduce the overfitting of the
existing descriptors.

There is a recent works, i.e., CBFD [2], which learns face representations
by optimizing three terms in the objective function: quantization loss term,
bit-balance term and variance-maximum term. Same to the motivation of our
method, the quantization loss term of CBFD is to ensure the learned binary code
lose identity information compared with original data as little as possible. The
bit-balance term makes the binary codes centered, so that the output features
can better describe the variances of the original data. The variance-maximum
term makes the variance of the learned binary codes maximized, so that the
output feature are more compact.

There are three main differences between ours and [2]: First, in order to
handle the high-dimensional data, we introduce the £y sparsity constraint into
the objective function, while the CBFD can not handle the case of K > d.
Second, we found that the output binary codes always satisfy the bit-balance

property for the centered input data (refers to section 3.2), so this term is not

14
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necessary as long as we pre-process the input data by removing its mean. In
contrast, the CBFD preserves the bit-balance term in their objective function,
what may lead to complicated optimization process. Third, the CBFD has
variance-maximum term which make the CBFD features compact. However, the
£y constraint and discrete property of binary codes make our objective function is
an NP-hard problem. It is challenging for us to solve the objective function with
the variance-maximum term. Therefore, we separately append this property by
using Whitened PCA in the next step, so that our final output features are also

compact.

5. Experiments

We evaluate our SPMBD descriptor on constrained and unconstrained face
recognition datasets. For the constrained FR scenario, we use FERET [25] and
CAS-PEAL-R1 [26] to verify the discriminative ability of the SPMBD method.
For the unconstrained FR scenario, we use the challenging PaSC [27] dataset to
show the robustness of the SPMBD method. We also use the LFW [28] dataset
to demonstrate the generalization of SPMBD method. At last, the performance
analysis between our SPMBD method and state-of-the-art methods is described

on the last subsection.

5.1. Testing on FERET

The FERET is a widely used public face dataset, which consists of over
13,000 face images of over 1,500 subjects. We follow the standard protocol of
FERET dataset. In our experiment, all images are aligned by provided eye
coordinates and cropped into 128 x 128 pixels, as shown in Fig. 4.

The training process is conducted on the training set, and the testing process
is conducted on the other five subsets, i.e., gallery, fb (expression variation), fe
(illumination variation) and dupl, dup2 (aging variations). In our experiments,
the size of each region’s dictionary is set to be 1,000, and a face image is divided

into 8 x 8 local regions. Therefore, a feature vector with 64,000 (8 x 8 x 1000)

15
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dimensionality is learned by using SPMBD method for a face image. We apply
the WPCA to compress features’ dimensionality into 1,000. At last, the reduced

features are fed into the Nearest Neighbor (NN) classifier with cosine metric.

Figure 4: The aligned and cropped face examples 128 x 128 from the FERET dataset.

5.1.1. Parameter Analysis
First, we evaluate the influence of different parameters of SPMBD method
on FERET dataset, and further determine the parameter values which will be

used in the next sections.

Binary Codes Length. We explore the influence of binary code’s length K.
To make the learned binary codes have the property of scale robustness, we
set sampling radius r to be 3 and 5 to extract multi-scales original features.
The penalty parameter a and the percentage of non-zero elements' p in sparse
projections matrix R; are empirically set to 10 and 0.9, and we will further
discuss the impact of these parameters in next parts. We test the binary codes
length K from 2% to 2'2. Fig. 5 shows the average recognition rate of different
codes length on the FERET dataset.

According to experimental results, we can observe that high-dimensional

binary codes usually have better performance. It has been proved that the

1The number of non-zero elements m can be denoted as m = ceil (numel (Rz) x (1 — p))

in our implementation.

16
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fundamental assumption of this paper is correct. Especially, our SPMBD
method obtained state-of-the-art performances when the length of binary codes
K is set to between 256 and 1024, and the best performance is obtained when
K is set to be 1024. Therefore, the binary codes length K of SPMBD is set to

be 1024 in all following experiments.

98.50
98.00
97.50
97.00

96.50

Accuracy Rate (%)

96.00

95.50
16 32 64 128 256 512 1024 2048 4096

Bit Length

Figure 5: The average accuracy rate of SPMBD on four FERET probe sets when binary codes

length is set to the different values.

The Percentage of Sparsity. Next, we study the impact of sparsity term
in our SPMBD method in this part. The length of binary codes K is set to
be 1024. And the penalty parameter « is empirically set to 10. Fig. 6 shows
the accuracy and encoding time of our SPMBD versus different percentages
of sparsity. We can observe that with the decrement of sparsity percentage,
the encoding time of our SPMBD method increases linearly, and our SPMBD
method can achieve best performance when percentage of sparsity p is set to
be 0.9. It demonstrates that a dense projection matrix may lead to overfitting
of the training model, and the excessive sparse projection matrix may lead to
underfitting of the training model. Therefore, we set the percentage of sparsity

p to be 0.9 as a trade off in subsequent experiments.

Impact of the penalty parameter a. Next, we study the impact of penalty
parameter o of SPMBD in this part. The other parameters of SPMBD are the

17
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Figure 6: The average accuracy rate and encoding time of SPMBD on four FERET probe

sets when the percentage of sparsity is set to be different values.

same as those used in the above experiment, and the percentage of sparsity p is
set to 0.9.

The results are shown in Fig. 7. We can see that the values of the penalty
parameter « have non-negligible effects on FERET datasets, and o = 10
successfully balances the weight of surrogate quantization error and splitting

penalty error.

Impact of the number of iterations. At last, we examine the impact of
convergence for our SPMBD method. The parameters of SPMBD are the same
as those used in the above experiments and the penalty parameter « is set to
10. The value of objective function is shown in Fig. 8. We vary the number of

iterations from 1 to 60 and find that our SPMBD converges in about 5 iterations.

5.1.2. Binary Codes Learning Strategy

To demonstrate the effectiveness of sparse projection scheme, we compare
our scheme with some existing binary code learning methods, such as, Locality-
Sensitive Hashing (LSH) [29], Two Layer Anchor Graphs Hashing (AGH-2)
[30], optimized version Circulant Binary Embedding (CBE-opt) and randomized
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Figure 8: The value of objective function versus different iteration numbers on the FERET

dataset.

version Circulant Binary Embedding (CBE-rand) [20]. Both LSH and AGH are
existing dense based binary coding algorithms. CBE is designed to accelerate

projection process for high-dimensional code?. We use the source codes provided

2Bilinear Projections is also designed for high-dimensional binary code, but this method

require the input data are structured and the input PDVs don’t meet this requirement.
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by the authors to implement other four methods. We also remove the sparsity
constraint from our objective function, denoted as SPMBD (p = 0), to further
demonstrate the necessity of sparsity constraint. We just replace the objective
function of the SPMBD with that of other binary learning algorithms, and keep
other steps the same as Algorithm 1. It ensures the comparison experiment
is totally fair. The parameters of our method are the same as those used in
the above experiments. Table 1 lists the comparison results with WPCA on
FERET dataset.

It can be observed that our sparse projections scheme outperforms other
binary codes methods. On the one hand, some binary codes strategies (i.e.,
LSH and AGH-2) lack the description ability compared with our method. On
the other hand, some binary codes strategies (i.e., CBE-rand and CBE-opt)
overfit the original data due to their dense structure of projection matrix. Our
SPMBD method introduces a sparsity regularizer which can effectively reduce
the possible overfitting. Therefore, our method achieves better performance

than others.

Table 1: The Rank-1 Recognition Rates (%) of our proposed SPMBD and other binary codes
learning methods with WPCA on FERET Dataset.

Methods fb fe dupl  dup2 | avg.
LSH [29] 99.7 100.0 943 93.6 | 96.9
AGH-2 [30] 99.7 995 892 89.3 | 94.6
CBE-opt [20] 99.1 995 8.5 872 | 93.6
CBE-rand [20] 99.6  99.0 90.3 89.7 | 94.7
SPMBD (p=0) | 99.3 100.0 936 923 | 96.3
SPMBD 99.7 100.0 95.7 97.0 | 98.1

5.1.3. Recognition Results
We test the SPMBD method’s performance on FERET probe sets with the

standard evaluation protocol. Since our SPMBD is local learning based FR
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method, therefore, we just compare our proposed descriptors with popular local
face descriptors, such as LQP [31], DFD [9], CBFD [2] and IQBC [32]. Table 2
lists the accuracy of SPMBD and other approaches.

The proposed SPMBD method obtains the best performance on fe, dupl
and dup2. Especially, our SPMBD achieves 95.7% and 97.0% accuracies on
dupl and dup2 sets. Our method improves recent DFD averagely 4.3% on
dup1 and dup2 sets and improves recent CBFD averagely 3.0% these two sets.
As far as we know, it is a huge performance improvement for recent
FR methods on these two sets, and it is even comparable with the
DL-based methods. On the fb set, only four images are misclassified by our
method, but two of which are misclassified due to the mislabeling of dataset
itself. The results demonstrate the superiority of our SPMBD method over

previous methods.

5.2. Testing on CAS-PEAL-R1

The CAS-PEAL-R1 dataset consists of over 9,000 face images of 1,040
subjects with different variabilities. Similar to the above section, this database
is also applied to show the description ability of our SPMBD to handle FR
problems under controlled scenario. We follow the provided standard protocols
and use five subsets, i.e., accessory, training, expression, gallery, and lighting.
All face images are aligned by provided eye coordinates and cropped into
150 x 130 pixels, as shown in Fig. 9. What is more, we reduce the feature’s
dimensionality into 1,039 by WPCA and use the same parameters and classifier
as those used in the FERET dataset for our SPMBD model. Table 3 tabulates
accuracy on this database.

Clearly, compared with other existing face descriptors, our proposed SPMBD
method obtains the best recognition rate on all testing sets. Especially,
our SPMBD achieves 77.0% accuracy on lighting set. It is also a huge

performance improvement for existing FR methods on this set.
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Table 2: The Rank-1 Recognition Rate (%) Comparison
between state-of-the-art face methods with the standard FERET

Evaluation Protocol.

Methods fo fc dupl  dup2 | year
LBP [6]" 97.0 79.0 66.0 64.0 | 2006
HGGP [33]" 97.6 98.9 77T 76.1 | 2007
DT-LBP [34]" 99.0  100.0 84.0 80.0 | 2009
LDP [35]" 940 830 620 53.0 | 2010
GV-LBP-TOP [36]" 98.4 99.0 86.0 85.0 | 2011
DLBP [37]" 99.0 99.0 86.0 85.0 | 2011
I-LQP [31]" 99.2 69.6 65.8 48.3 | 2012
PEOM [38]" 97.0 95.0 77.6 76.2 | 2012
DFD [9]" 99.2 98.5 85.0 82.9 | 2014
CBFD [2]* 982 100.0 86.1  85.5 | 2015
IQBC [32] 98.2  100.0 85.5 85.9 | 2016
SPMBD 97.5  100.0 84.5 83.8 -

LBP+WPCA [6]" 98.5 84.0 79.4 70.0 | 2006
-LQP+WPCA [31]" | 99.8 94.3 85.5 78.6 | 2012
POEM4+WPCA [38]" | 99.6 99.5 88.8 85.0 | 2012
DFD+WPCA [9]* 99.4 100.0 91.8 92.3 2014
CBFD+WPCA [2]" 99.8 100.0 93.5 93.2 | 2015
SLBFLE+WPCA [7]"]| 99.9 100.0 95.2 92.7 | 2015
IQBC+WPCA [32] 99.7 100.0 94.9 95.3 2016
SPMBD+WPCA 99.7 100.0 95.7 97.0 -

* The results of other methods are directly cited from the original

papers.

5.8. Testing on PaSC

Different from the above two sections, we investigate the accuracy of SPMBD
method for uncontrolled FR scenarios in this section. The PaSC dataset is
a new released challenging uncontrolled face dataset. This dataset releases
9,376 still images of 293 subjects and contains a large number of uncontrolled
variabilities, such as poor lighting, large pose, occlusion, motion blur and poor

focus. According to the standard evaluation protocol, both target set and query
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Table 3: The accuracy (%) of our SPMBD and the state-of-the-art face
recognition methods on CAS-PEAL-RI1.

Methods Expression  Accessory — Lighting | year
LGBP [39]" 95.0 87.0 51.0 | 2005
HGGP [33]" 96.0 92.0 62.0 | 2007
DT-LBP [34] 98.0 92.0 41.0 | 2011
DLBP [37]" 99.0 92.0 41.0 | 2011
DFD [9]" 99.3 94.4 59.0 | 2014
CBFD [2]" 99.4 94.8 59.5 | 2015
IQBC [32] 99.5 95.1 70.4 | 2016
SPMBD 99.2 93.4 68.4 -

DFD+WPCA [9] 99.6 96.9 63.9 | 2014
CBFD+WPCA [2]" 99.7 97.2 67.4 | 2015
IFL+WPCA [8]" 99.3 96.5 64.3 | 2015
JFL+WPCA [8]" 99.7 97.2 67.4 | 2015
IQBC+WPCA [32] 99.7 97.2 75.7 | 2016
SPMBD-+WPCA 99.7 97.3 77.0 -

* The results of other methods are directly cited from the original

papers.
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Figure 9: The aligned and cropped examples with size 150 x 130 from the CAS-PEAL-R1
dataset.

set contain 4,688 images. There are two evaluation scenarios in the standard
protocol: all image and near-frontal evaluation protocol. All face images in the
two subsets are aligned by provided eye coordinates® and cropped into 128 x 128

pixels, as shown in Fig. 10.

(a) frontal (b) non-frontal

Figure 10: The aligned and cropped face examples from the PaSC dataset. (a) frontal (or
near-frontal) face images and (b) non-frontal face images. These examples shown some of the
specially complicated intra-class variabilities in point-and-shoot scenario, such as large pose,

poor focus and motion blur.

We compare our SPMBD method with the existing learning based FR
method, such as CBFD, DFD, IQBC, LPQ, BSIF [40]. What is more, the

3The eye coordinates of each face image can be found at http://www.cs.colostate.edu/ vi-

sion/pasc/index.php
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Figure 11: The corresponding ROC curves of different methods on the PaSC dataset for (a).

frontal and (b). all images scenarios respectively.

subspace learning methods (i.e., LRPCA, CohortLDA), and conventional LBP
are evaluated as baseline methods. The parameters of our SPMBD method are
the same as those used on the FERET and CAS-PEAL-R1 experiments. We use
the target set to train our SPMBD model and reduce the 64,000-dimensional
SPMBD feature to 500-dimensional by WPCA. Table 4 and Fig. 11 show the
verification rate (VR) at FAR=0.01 and ROC curves of different descriptors for
the above two testing sets, respectively.

We can observe that the proposed SPMBD method significantly outperforms
the other methods for these two protocols. Specially, it improves state-of-
the-art face descriptor CBFD by about 7.5% and 11.5% VR on all-images
and frontal-images query set, respectively. This result again demonstrates
that our SPMBD model can effectively learn discriminative and data-adaptive
feature representations even faced with point-and-shoot scenario. It shows that
our method can solve the face tag recommendation problem based on social
networks. The quantization loss term and the bit-independence term make
our SPMDB descriptor more discriminative, and the sparsity term avoid the

overfitting problem and improve the robustness of our SPMDB feature. It is
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the reason why SPMBD obtains the better results compared to other methods.
This experiment also indicates our SPMBD method is capable of solving FR
problem in real scenarios as long as our model can be trained with large enough

training samples.

Table 4: Verification Rate (%) at FAR=0.01 on
PaSC dataset for all images and frontal images

scenarios

method all  frontal | year

LBP [6] 176 29.6 | 2006
LRPCA [41]" 10.0  19.0 | 2011
CohortLDA [42]"| 8.0  22.0 | 2012

LPQ [43] © 132 231 | 2012
BSIF [40]" 14.3 249 | 2014
DFD [9] 21.5  36.1 | 2014
CBFD |[2] 194 36.0 | 2015
IQBC [32] 21.2 388 | 2016
SPMBD 26.9 47.5 -

“The results of other methods are

directly cited from the original papers.

5.4. Cross-dataset Evaluation

In this section, we intend to investigate the generalization ability of our
method with cross-dataset evaluation, i.e., we learn the SPMBD model from
other datasets and test them on LFW dataset.

The LFW dataset is released for investigating the performance of uncon-
trolled FR scenario. This dataset contains over 13,000 face images and all
of subjects are celebrity. Though these are some complicated variabilities,
such as illumination, expression, pose, occlusion and aging, they are filmed by

professional cameraman. Therefore, there are not poor focus and motion blur
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problems in this dataset. According to the standard evaluation protocol, there
are 300 positive face pairs and 300 negative face pairs in each fold and 10 folds are
used on the view 2 dataset. Though LFW dataset has six evaluation settings,
we choose the unsupervised setting in this paper. Because this setting does
not rely upon classifier training or metric learning, it may be the best choice
to evaluate the discriminative ability of various descriptors. To demonstrate
the generalization of SPMBD methods, we train the SPMBD model on the
constrained datasets (i.e., FERET and PEAL) and the unconstrained dataset
(i.e., PaSC), then test SPMBD model on the LFW dataset.

In this experiment, we employ the LFW-a dataset [44] and crop them into
150 x 130, as shown in Fig. 12. Due to that the images of LEFW-a have been
aligned, we do not perform the operation of aligning in this database. We keep
the parameters of SPMBD method used in the above sections and employ the
WPCA to compress the dimensionality of learned SPMBD features into 1,000.
Table 5 tabulates the Area Under Curve (AUC) percent of different algorithms
under the unsupervised setting, where SPMBD-FERET indicates the result
obtained by using the SPMBD model which learned from FERET dataset. The
rest legends can be understood by the same manner. We can observe that the
SPMBD method obtains competitive results with some existing methods, such
as CBFD, MRF-MLBP and IQBC, and achieves improvement than LHS, LQP,
DFD and LMA. Since the intra-class variations in PaSC dataset are richer than
the FERET and PEAL datasets, it is nature that the PaSC-learned SPMBD
model slightly outperforms other SPMBD models.

Our experimental configuration do not strictly comply with the standard
evaluation protocol of unsupervised setting, because of the outside data are used
for training model. But this experimental configuration makes it more
convincing that our SPMBD method has excellent effectiveness and
generalization ability. Since the SPMBD model is trained by different
datasets which are collected under different scenarios, our SPMBD
still obtains the comparable performance with the recently existing

methods based on LFW database learning. Although FERET and
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PEAL datasets are controlled datasets and their appearances (i.e.,
variabilities) are clearly different from those of LFW database, the
SPMBD model trained from these databases still perform very well
on the LFW dataset. This result demonstrates that our SPMBD method has

enough generalization ability to solve the FR task under different scenarios.

Figure 12: The aligned and cropped face examples with size 150 x 130 from the LFW-a dataset.

5.5. Experimental Discussion

In this subsection, we discuss the experimental results about the above four

datasets.

1. The learning-based methods, such as our SPMBD and DFD, generally
outperform the hand-crafted methods, such as SIFT and LBP. It is hard
to take account of all possible variations in the real FR scenarios during
the designing process of hand-crafted methods, but those learning-based
methods can learn data-oriented features during the training process.
That is why our method performs better than hand-crafted methods.

2. The learning-based binary feature methods, including our SPMBD, IQBC
and CBFD, outperform learning-based real-value feature methods (i.e.,
LQP, DFD and so on). This is because binary methods are more
insensitive to local variabilities than real-valued methods, therefore, the
impact of some kinds of intra-class variabilities can be reduced.

3. Our SPMBD method outperforms those state-of-the-art dense-based bi-
nary feature methods, including CBFD and IQBC. First, the quantization
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Table 5: The AUC (%) Comparisons with
the Other Methods on LFW dataset under
the Unsupervised Setting

Methods AUC | year
STFT [45]" 54.07 | 2002
LBP [6]" 75.47 | 2006
LARK [46]" 78.30 | 2011
LHS [47] 81.07 | 2012
LQP [31]" 87.00 | 2012
MRF-MLBP [48]" | 89.94 | 2013
DFD [9] 83.70 | 2014
CBFD [2] 88.89 | 2015
JFL [8]" 91.03 | 2015
LMA [49]" 83.04 | 2016
IQBC [32] 87.15 | 2016
SPMBD-FERET | 89.53 | -

SHBC-PEAL 87.94 | -

SHBC-PaSC 89.83 | -

* The results of other methods are
directly cited from the original

papers.

loss term in our objective function seeks to minimize the quantization error
between the learned binary codes and original data. Second, the sparsity
term reduces the possible overfitting during the encoding process, so that
the learned feature also performs well on the testing set. Third, the bit-
independence term ensures our feature to carry more identity information
than other methods with fixed bit length.

. The SPMBD method with WPCA obtains the best accuracy than existing
methods on almost all testing datasets. Especially, our SPMBD achieves
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95.7% and 97.0% accuracies on aging variation subsets of FERET dataset,
77.0% accuracy on lighting subset of CAS-PEAL-R1 dataset, and 26.9%
and 47.5% VR at FAR=0.01 on all and near-frontal configurations of the
PaSC dataset.

6. Conclusions And Future Work

In this paper, a sparse projections matrix binary descriptor is proposed,
and it can be applied in various FR scenarios. There are three terms in our
SPMBD objective function: the quantization loss term, the sparsity term and
the bit-independence term. The experimental results demonstrate that our
proposed SPMBD can obtain more discriminative information from raw data
by introducing the quantization loss term and the bit-independence term, and
can improve the robustness by employing the sparsity term.

According to the properties of our SPMBD method, we propose two

interesting extensions of our SPMBD work:

1. Because of SPMBD method has enough generalized ability under different
scenarios, we intend to further adjust the proposed SPMBD method and
apply it to solve the current problems of surveillance based FR task.

2. The proposed SPMBD is an universal learning-based feature represen-
tation methods. Due to that its essence is still the description and
representation for facial image, therefore, we can apply SPMBD into other

face-related tasks, such as facial expression recognition.
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