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Abstract

The clustering ensemble technique aims to combine multiple clusterings
into a probably better and more robust clustering and has been receiving
an increasing attention in recent years. There are mainly two aspects of
limitations in the existing clustering ensemble approaches. Firstly, many ap-
proaches lack the ability to weight the base clusterings without access to the
original data and can be affected significantly by the low-quality, or even ill
clusterings. Secondly, they generally focus on the instance level or cluster
level in the ensemble system and fail to integrate multi-granularity cues into a
unified model. To address these two limitations, this paper proposes to solve
the clustering ensemble problem via crowd agreement estimation and multi-
granularity link analysis. We present the normalized crowd agreement index
(NCAI) to evaluate the quality of base clusterings in an unsupervised manner
and thus weight the base clusterings in accordance with their clustering valid-
ity. To explore the relationship between clusters, the source aware connected
triple (SACT) similarity is introduced with regard to their common neighbors
and the source reliability. Based on NCAI and multi-granularity information
collected among base clusterings, clusters, and data instances, we further
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propose two novel consensus functions, termed weighted evidence accumula-
tion clustering (WEAC) and graph partitioning with multi-granularity link
analysis (GP-MGLA) respectively. The experiments are conducted on eight
real-world datasets. The experimental results demonstrate the effectiveness
and robustness of the proposed methods.

Keywords: Clustering ensemble, Clustering aggregation, Weighted
evidence accumulation clustering, Graph partitioning with
multi-granularity link analysis

1. Introduction

Data clustering is a fundamental and very challenging problem in data
mining and machine learning. The purpose is to partition unlabeled data into
homogeneous groups, each referred to as a cluster. Data clustering requires a
distance metric for evaluating the similarity between data instances, which,
without prior knowledge of cluster shapes, is hard to specify. In the past
few decades, a large number of clustering algorithms have been developed
[1, 2, 3, 4, 5, 6, 7, 8, 9]. However, there is no single clustering method which
is able to identify all sorts of cluster shapes and structures in data.

For the same dataset, different methods, or even the same method with
different initializations or parameter settings, may lead to very different clus-
tering results. It is extremely difficult to decide which method would be the
proper one for a given clustering task, not to say how to properly specify the
initialization and parameter setting for the chosen method. Each method
has its own merits as well as weaknesses. Different clusterings generated by
different methods or with varying parameters can provide multiple views of
the data. How to combine the information of different clustering results for
obtaining a better and more robust clustering remains a very challenging
problem [10, 11].

In recent years, many clustering ensemble approaches have been devel-
oped, which aim to combine multiple clusterings into a probably better and
more robust clustering by utilizing various techniques [12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24]. However, in most of the existing methods, there are
mainly two aspects of limitations. Firstly, many of the clustering ensemble
approaches lack the ability to weight the base clusterings without access to
the original data features, which makes them vulnerable to low-quality clus-
terings and probable to be affected significantly by low-quality clusterings
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(or even ill clusterings). Secondly, they mainly focus on the instance level
or the cluster level in the ensemble system and fail to fuse multi-granularity
information into a unified model. In order to address these two limitations,
in this paper, we propose a clustering ensemble framework based on crowd
agreement estimation and multi-granularity link analysis. By exploring the
relationship among the base clusterings, we present a novel clustering va-
lidity measure termed normalized crowd agreement index (NCAI), which is
able to evaluate the quality of base clusterings in an unsupervised manner
and provides information for treating each base clustering accordingly. The
source aware connected triple (SACT) similarity is introduced for analyzing
the similarity between clusters with regard to their common neighbors and
source reliability. Besides the relations between base clusterings and between
clusters, we further investigate the linkage between data instances and clus-
ters and incorporate the information from the three levels of granularity in
a unified framework. In our previous work [25], we introduced the consensus
function termed graph partitioning with multi-granularity link analysis (GP-
MGLA). This paper is a major extension of our previous work on clustering
ensemble. In this paper, more comprehensive literature and motivation are
provided. Besides that, we propose another novel consensus function termed
weak evidence accumlation clustering (WEAC), which is developed from the
conventional evidence accumulation clustering (EAC) [14] and capable of
dealing with ill clusterings by incorporating the clustering validity cue into
the ensemble process. Extensive experiments are further conducted on real-
world datasets for evaluating the proposed methods against several baseline
clustering ensemble methods.

The remainder of this paper is organized as follows. In Section 2, we re-
view the related work of the clustering ensemble technique. In Section 3, we
describe the formulation of the clustering ensemble problem. In Section 4,
we present the crowd agreement estimation mechanism. The source aware
connected triple (SACT) similarity is introduced in Section 5. In Section 6,
we propose two novel consensus functions termed weighted evidence accumu-
lation clustering (WEAC) and graph partitioning with multi-granularity link
analysis (GP-MGLA) respectively. The experimental results are reported in
Section 7. We conclude this paper in Section 8.
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Dataset

Base Clustering P1 Base Clustering P2 Base Clustering PM...

Consensus Clustering

Figure 1: The clustering ensemble process.

2. Related Work

Clustering ensemble is also known as clustering combination or clustering
aggregation, which aims to combine multiple clusterings, each referred to as
a base clustering (or an ensemble member), to obtain a so-called consensus
clustering. As illustrated in Fig. 1, the clustering ensemble process involves
two steps: the first step is to generate multiple clusterings for a given dataset;
and the second step is to construct the consensus clustering from the ensemble
of base clusterings using different consensus functions.

Given a dataset, the ensemble of base clusterings can be generated by
running different clustering algorithms [21, 23, 25], running the same algo-
rithm with different initializations and parameters [14, 18, 20, 22], clustering
via sub-sampling the data repeatedly [12, 13], or clustering via projecting the
data onto different subspaces [12, 13, 15, 19]. Compared to generating base
clusterings, how to combine multiple base clusterings, i.e., how to design the
consensus function, is much more important and challenging in the clustering
ensemble problem.

In the past few years, many consensus functions have been developed
to fuse information from multiple clusterings [12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24]. These approaches can be classified into mainly three
categories, namely, (i) the median partition based methods [26, 15, 24], (ii)
the pair-wise co-occurrence based methods [14, 17, 20], and (iii) the graph
partitioning based methods [12, 13, 19].

In the median partition based approaches [26, 15, 24], the clustering en-
semble problem is formulated into an optimization problem, aiming to find
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the partition/clustering that maximizes the similarity between the the par-
tition and the base clusterings, over the space of all partitions. The median
partition problem is NP-complete [15]. Instead of finding the optimal so-
lution over the huge space of all possible partitions, Cristofor and Simovici
[26] used the genetic algorithm to obtain an approximative solution where
the clusterings are represented by chromosomes. Topchy et al. [15] cast the
median partition problem into a maximum likelihood problem, as a solution
to which the consensus clustering is found using the EM algorithm. Franek
and Jiang [24] reduced the median partition problem to the Euclidean median
problem by clustering embedding in vector spaces and found the median vec-
tor by the Weiszfeld algorithm [27]. Then an inverse transformation would
be performed to convert the median vector into a clustering, which was taken
as the consensus clustering.

The pair-wise co-occurrence based approaches [14, 17, 20] construct the
similarity between data instances by considering how many times they occur
in the same cluster in the ensemble of base clusterings. Fred and Jain [14]
introduced the evidence accumulation clustering (EAC) method, which used
the co-association matrix to measure the similarity between instances. Then
the hierarchical agglomerative clustering algorithms [10], e.g., single-link (SL)
and average-link (AL), can be performed on the co-association matrix and
thus the consensus clustering is obtained. Li et al. [17] analyzed the co-
association matrix and proposed a novel hierarchical clustering algorithm by
utilizing the concept of normalized edges to measure the similarity between
clusters. Wang et al. [20] generalized the EAC method and proposed the
probability accumulation method, which took into consideration the sizes of
clusters in the ensemble.

Another category of clustering ensemble is based on graph partitioning
[12, 13, 19]. Strehl and Ghosh [12] modeled the ensemble of clusterings in
a hypergraph structure where the clusters are treated as hyperedges. For
partitioning the graph and obtaining the consensus clustering, they further
proposed three graph partitioning algorithms, namely, the cluster-based simi-
larity partitioning algorithm (CSPA), the hypergraph-partitioning algorithm
(HGPA), and the meta-clustering algorithm (MCLA). Fern and Brodley [13]
formulated the clustering ensemble into a bipartite graph where both the
data instances and clusters are represented as graph nodes. An edge be-
tween two nodes exists if and only if one of the nodes is a data instance
and the other node is the cluster containing it. The consensus clustering is
obtained by partitioning the graph into a certain number of disjoint sets of
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graph nodes.
Many of the existing clustering ensemble approaches implicitly assume

that all the base clusterings contribute equally to the ensemble system and
can be affected significantly by low-quality clusterings or even ill clusterings.
In recent years, some efforts have been made to weight the base clusterings
with regard to the clustering validity. Vega-Pons et al. [28] exploited sev-
eral property validity indexes (PVIs), namely, Variance (VI), Connectivity
(CI), Silhouette Width (SI) and Dunn index (DI), to assign a weight to each
partition in the ensemble and proposed a new clustering ensemble method
based on kernel functions. Vega-Pons et al. [29] also extended the conven-
tional EAC method by weighting the partitions based on the PVIs. These
PVIs need access to the original feature vectors, which are not supposed to
be given for the consensus process in the formulation of this work as well as
many other clustering ensemble frameworks [13, 14, 17, 18, 20, 21, 22, 23, 24].
Li and Ding [30] proposed the weighted consensus clustering (WCC) method,
where the weights of the base clusterings are determined via an optimization
process based on the nonnegative matrix factorization. The optimization
process is computationally expensive when dealing with large datasets. Fern
and Lin [31] proposed a clustering ensemble selection framework which se-
lects a subset of partitions from a large library of partitions. The ensemble
selection process in [31] can be viewed as weighting the partitions in the en-
semble with either 1 or 0, where 1’s indicate the preserved partitions and 0’s
indicate the deleted ones. However, the ensemble selection scheme lacks the
flexibility of weighting the selected members in accordance to their quality.

3. The Clustering Ensemble Problem

The purpose of a clustering algorithm is to discover the structure of clus-
ters in a given dataset. The clustering result can be either a hard partition
or a fuzzy partition for the dataset. The clustering ensemble technique aims
to combine multiple partitions for achieving a better partition. In this paper,
we focus on combining hard patitions of data.

Given a dataset X = {x1, x2, . . . , xn}, where xi is the i-th data instance
and n is the number of instances in X . A partition (or clustering) of X is
generated by running a clustering algorithm with some specific parameters.
Each cluster in a partition consists a certain number of data instances. Dif-
ferent clusters in the same partition do not intersect with each other. And
the union of all clusters in a partition covers the entire dataset.
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Formally, let
P i = {Ci

1, C
i
2, . . . , C

i
ni
} (1)

be a partition of X , where Ci
j denotes the j-th cluster and ni is number of

clusters in P i. Then we have ∀Ci
j ∈ Pi, Ci

j 6= ∅, ∀j 6= k, Ci
j ∩ Ci

k = ∅, and
∪ni
j=1C

i
j = P i.

In a clustering ensemble system, each partition is referred to as a base
clustering. With the partitions generated by different algorithms or the same
algorithm with different parameters and initializations, we can obtain the
ensemble of M base clusterings, which is denoted as

P = {P 1, P 2, . . . , PM}, (2)

where P i represents the i-th base clustering in P . For convenience, the set
of all clusters in the ensemble is denoted as C = {C1, C2, . . . , Cnc}, where
Ci is the i-th cluster in C. As is defined, it holds that C = ∪Mi=1P

i and
nc =

∑M
i=1 ni.

The multiple partitions of X provide multiple looks at the dataset. The
problem is to use the information provided by the the ensemble of multiple
partitions to obtain a final partition solution P ∗, which is generally referred
to as the consensus clustering.

4. Crowd Agreement Estimation

In the clustering ensemble system, the base clusterings can be generated
using a wide variety of clustering algorithms. Due to the diversity of cluster-
ing algorithms and datasets, it is not guaranteed that every base clustering
is well constructed. The low-quality clusterings, or even ill clusterings, may
affect the consensus process significantly. There is a need to distinguish the
poor clusterings from the good ones and treat the base clusterings with re-
gard to their quality. The critical problem here is how to evaluate the quality
of the base clusterings without knowing the ground-truth.

Some algorithms have been developed to estimate the clustering quality
using different criteria [32, 33, 34]. Wu and Chow [32] proposed a clustering
validity index based on inter-cluster and intra-cluster density. Faceli et al.
[33] used the overall deviation and the connectivity to assess the quality of
a clustering. The overall deviation of a clustering measures the overall dis-
tances between data instances and their corresponding cluster centers. The
connectivity measures how often neighboring instances are assigned to the
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same cluster. Li and Latecki [34] utilized the average silhouette coefficient to
evaluate the quality of a cluster. The silhouette coefficient of a data instance
measures how similar that instance is to the instances in its own cluster com-
pared to the instances in the other clusters, whereas the quality of a cluster
is estimated by the average of the silhouette coefficients of the instances
inside it. These evaluation methods are only applicable to numerical data
and need access to the original data features, which are not supposed to be
given in the problem formulation of many clustering ensemble approaches
[13, 14, 17, 18, 20, 21, 22, 23, 24]. Rather than utilizing the information of
data distribution, in this paper, we view the clustering ensemble as a crowd
of individuals and estimate the quality of each individual via consulting the
other individuals in the clustering ensemble.

In social and economic science, “the wisdom of the crowd” is the process
of taking into consideration the collective opinion of a crowd of individuals
rather than a single expert [35]. The ground-truth labeling of a dataset can
be viewed as an expert. As the ground-truth is not supposed to be known
in unsupervised frameworks, we estimate the quality of a base clustering
by collecting information from the crowd of base clusterings. Each base
clustering is compared with the other ones and the average opinion of the
crowd of individuals is obtained for quality estimation.

Definition 1. Let P be an ensemble of base clusterings and P i be the i-th
base clustering in P. The crowd agreement index (CAI) for P i is defined as

CAI (P i) =
1

M − 1

∑
P j∈P,i 6=j

Sim(P i, P j), (3)

where Sim(P i, P j) denotes the similarity between the two base clusterings P i

and P j.

We denote the base clustering that gains the maximum agreement from
the crowd as the reference member. Then the reliability of the base clus-
terings is estimated by comparing their crowd agreement with that of the
reference member and the normalized version of crowd agreement index can
be computed.

Definition 2. The normalized crowd agreement index of P i is defined as

NCAI (P i) =
CAI (P i)

maxP j∈P CAI (P j)
. (4)
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The basic idea here is to estimate the quality of a base clustering by
collecting opinion from a crowd of diverse individuals. According to Defini-
tion 2, for i = 1, 2, . . . ,M , it holds that NCAI (P i) ∈ [0, 1]. In this paper we
use the normalized mutual information (NMI) [12] as the similarity measure
Sim(P i, P j). The greater the NCAI value of a base clustering is, the better
its quality is supposed to be.

5. Source Aware Connected Triple

In this section, we investigate the relationship among the clusters in the
ensemble and introduce the source aware connected triple (SACT) which is
able to measure the similarity of two clusters with regard to their common
neighbors and the source reliability.

Definition 3. Two clusters Ci and Cj are neighbors if and only if they share
some common data instances, i.e., Ci ∩ Cj 6= ∅.

Each cluster is a set of data instances. The Jaccard coefficient [36] is often
used to measure the similarity between two clusters (or two sets), which is
computed as follows:

J(Ci, Cj) =
|Ci ∩ Cj|
|Ci ∪ Cj|

, (5)

where Ci and Cj are two clusters and |S| denotes the cardinality of the set S.
The Jaccard coefficient takes into consideration the sharing instances of two
clusters to measure their similarity. Therefore the Jaccard coefficient of two
clusters in the same base clustering is always zero. If two clusters intersect,
then they are directly related. If two clusters do not intersect but they share
a certain number of common neighbors, then they are also related. Iam-On
et al. [22] utilized the information of common neighbors of two clusters to
justify their similarity, where, however, the reliability of these neighbors was
not considered.

Each base clustering can be viewed as a source of clusters. The overall
quality of the clusters in a base clustering is correlated to the quality of the
base clustering containing them. In this paper, we estimate the reliability of
a cluster by considering the quality of the corresponding base clustering and
propose the source aware connected triple (SACT) to measure the similarity
of two clusters with regard to their common neighbors and the reliability of
these neighbors.
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Definition 4. The SACT coefficient between two clusters Ci and Cj w.r.t.
a cluster Ck is defined as

SACT k
ij = INCAI (P (Ck)) ·min(J(Ci, Ck), J(Cj, Ck)), (6)

where P (Ck) denotes the base clustering that contains Ck and

INCAI (P
l) = (NCAI (P l))β (7)

is the influence of the NCAI of the base clustering P l.

According to Definitions 2 and 4, for l = 1, 2, . . . ,M , it holds that
INCAI (P

l) ∈ [0, 1]. The parameter β > 0 in Eq. (7) is a parameter to
adjust the influence of the NCAI. A greater value of β leads to a big-
ger influence of the NCAI, which means the difference of NCAI values be-
tween high-confidence partitions and low-confidence partitions is enlarged.
When β = 0, the influence of NCAI disappears for all base clusterings, i.e.,
∀P l ∈ P , INCAI (P

l) = 0.

Definition 5. The SACT coefficient between two clusters Ci and Cj w.r.t.
all the clusters in the ensemble C is defined as

SACT ij =
∑
Ck∈C

SACT k
ij. (8)

By definition, if Ck is not a common neighbor between Ci and Cj, then
SACT k

ij = 0. Thus the SACT coefficient between two clusters w.r.t. all the
common neighbors is identical to that w.r.t. all the clusters in the ensemble
and can be computed by Eq. (8).

Definition 6. The SACT similarity between two clusters Ci and Cj is defined
as

SIM SACT (Ci, Cj) =

{
1, if i = j,

SACT ij

max∀Cx,Cy∈C SACTxy
, otherwise.

(9)

The SACT similarity is computed on the basis of the the SACT coefficient.
The pair of clusters with the maximum SACT coefficient is adopted as the
reference pair of clusters, whose SACT similarity is defined to be 1. The
SACT similarity of the other pairs of clusters is computed by comparing
their SACT coefficient to that of the reference pair (see Eq. (9)). The SACT
similarity between a cluster and itself is set to 1.

10



6. Consensus Functions

In this section, we introduce two novel consensus fuctions which utilize
multi-granularity information of the ensemble and are able to deal with ill
base clusterings. In the following, we will describe the weighted evidence
accumulation clustering (WEAC) method in Section 6.1 and the graph par-
titioning with multi-granularity link analysis (GP-MGLA) method in Sec-
tion 6.2.

6.1. Weighted Evidence Accumulation Clustering (WEAC)

In a base clustering, each data instance is assigned to a specific cluster,
whereas two instances are either in the same cluster or in two different clus-
ters. Without access to the original features, the affinity between two data
instances can be assessed by their co-occurrence information in the ensemble
of base clusterings.

Definition 7. Let P l be a base clustering in the clustering ensemble P. Let
P l(i) be the cluster label of the instance i in P l. The n× n similarity matrix
Sl for P l is computed as follows:

Slij =

{
1, if P l(i) = P l(j),

0, otherwise,
(10)

for i = 1, . . . , n, j = 1, . . . , n.

For each base clustering, say, P l, a similarity matrix Sl is constructed.
If instances i and j occur in the same cluster in P l, then Slij = 1; otherwise
Slij = 0. The similarity matrix contains the pair-wise co-occurrence infor-
mation of the corresponding base clustering. In the conventional evidence
accumulation clustering (EAC) method [14], the association matrix A is ob-
tained by averaging the similarity matrices of all the base clustering, that is

A =
1

M

M∑
l=1

Sl. (11)

The basic idea of the proposed WEAC method is to construct the asso-
ciation matrix with considering the reliability of the base clusterings. We
assess the quality of each base clustering with the NCAI measure (as de-
scribed in Section 4) and assign a weight to each base clustering with regard
to its estimated quality.
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Definition 8. The weighted co-association matrix Ã is a n×n matrix which
is computed as follows:

Ã =
M∑
l=1

wlS
l, (12)

where

wl =
INCAI (P

l)∑M
i=1 INCAI (P i)

(13)

is the weight of the base clustering P l.

According to Definitions 7 and 8, for i = 1, . . . , n and j = 1, . . . , n,
it holds that Ãij ∈ [0, 1]. Thus the labeling information of multiple base
clusterings is mapped into a new similarity measure by utilizing pair-wise
co-occurrence cues and reliability assessment of each member. With the
weighted co-association matrix constructed, we further perform the agglom-
erative clustering methods [10] to achieve the final consensus clustering.

For clarity, the WEAC method is summarized in Algorithm 1.

Algorithm 1 (Weighted Evidence Accumulation Clustering)
Input: P, k.

1: Initialization:
Evaluate the quality of each base clustering in P with NCAI according to
Eq. (4) and (7).

2: for l = 1, 2, . . . ,M do
3: Construct the similarity matrix Sl for P l according to Eq. (10).
4: end for
5: Build the weighted co-association matrix Ã according to Eq. (12).
6: Use the agglomerative methods to obtain the consensus clustering with k clus-

ters.

Output: the consensus clustering P ∗.

6.2. Graph Partitioning with Multi-Granularity Link Analysis (GP-MGLA)

There are three levels of granularity in the clustering ensemble, namely,
the data instances, the clusters, and the base clusterings. The existing meth-
ods mainly focus on the level of data instances and that of clusters and lack
the ability to treat the three levels of granularity as a whole system. In
this section, we proposed a graph based clustering ensemble method termed
graph partitioning with multi-granularity link analysis (GP-MGLA). In the

12



proposed GP-MGLA method, we formulate the three levels of granularity in
the clustering ensemble into a bipartite graph model, which will be described
in the following.

Compared to the previous clustering ensemble methods based on graph
partitioning [12, 13], the GP-MGLA method is distinguished mainly in two
aspects. Firstly, the GP-MGLA method utilizes the crowd agreement esti-
mation mechanism (see Section 4) for exploiting the relationship among base
clusterings and evaluating the quality of the base clusterings in an unsuper-
vised manner. Secondly, the links between clusters are integrated into the
graph model via the SACT similarity measure.

In our bipartite graph model, both data instances and clusters are treated
as graph nodes. There are two types of links in the graph, that is, the links
between instances and the cluster containing them and the links between
clusters that have common neighbors. To implement the bipartite structure,
each cluster is used twice, i.e., for each cluster, there are two different nodes
representing it in the bipartite graph.

Formally, we construct the bipartite graph as follows:

G = (U, V, L), (14)

where U = X ∪ C is the set of nodes including all instances and clusters,
V = C is the set of nodes including all clusters, and L is the set of graph
links. The graph G is an undirected graph. There are no links between the
nodes in U or between the nodes in V . All links are constructed between the
nodes in U and those in V .

Let ui ∈ U and vj ∈ V be two nodes in the graph G. If ui is a data
instance and vj is the cluster containing ui, then a link exists between ui
and vj and the link between them is weighted with regard to the quality of
the base clustering that vj belongs to. If both ui and vj are clusters, then
the link between them is constructed via the SACT measure (see Section 5).
Formally, the weight of the link between the nodes ui and vj is defined as
follows:

wij =


α · INCAI (P (vj)), if ui ∈ X , vj ∈ C, ui ∈ vj,
SIM SACT (ui, vj), if ui ∈ C, vj ∈ C,
0, otherwise.

(15)

In the graph G, the instances and the clusters are used as nodes and
the relationship among them is incorporated into the graph links. Also the
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information among the base clusterings is exploited to provide a reliability
measure for the graph links via the crowd agreement estimation. With re-
gard to the bipartite structure of the graph G, the Tcut algorithm [37] can
be utilized for partitioning the graph into a specific number of disjoint sets of
nodes. The data instances in each of these disjoint sets are treated as a clus-
ter and thus the final consensus clustering is obtained. Theoretically, there
is a possibility that some of these disjoint sets consist of only clusters and no
instances, which would lead to a less number of clusters than specified. How-
ever, we have never come across this situation in our experiments, probably
due to that the joint force of the links between the instances and clusters
containing them is strong enough to hold at least part of them together. For
clarity, we summarize the GP-MGLA method in Algorithm 2.

Algorithm 2 (Graph Partitioning with Multi-Granularity Link
Analysis)
Input: P, k.

1: Initialization:
Evaluate the quality of each base clustering in P with NCAI according to
Eq. (4) and (7).
Compute the SACT similarity between clusters according to Eq. (8).

2: Build the bipartite graph G = (U, V, L) with U = X ∪ C, V = C, and L
constructed as Eq. (15).

3: Partition the graph G with the Tcut algorithm into k disjoint sets of nodes.
4: Treat the data instances in each set as a cluster and thus obtain the consensus

clustering.

Output: the consensus clustering P ∗.

7. Experiments

In this section, we conduct experiments on eight real-world datasets and
compare the proposed approaches against several baseline clustering ensem-
ble approaches. The datasets and evaluation criterion are described in Sec-
tion 7.1. The setting of parameters is discussed in Sections 7.2. The con-
struction of base clusterings is introduced in Section 7.3. Then we evaluate
the performance of the proposed methods compared to the baseline meth-
ods in Section 7.4. The analysis of computational complexity is presented in
Sections 7.5.
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Table 1: Description of the benchmark datasets

Dataset #Instance #Attribute #Class

Breast Cancer 683 9 2
Image Segmentation 2,310 19 7

Iris 150 4 3
Seeds 210 7 3
Yeast 1,484 8 10
Wine 178 13 3

Pen Digits 10,992 16 10
Letters 20,000 16 26

The experiments in this paper are conducted in Matlab 7.14.0.739 (R2012a)
64-bit on a workstation (Windows Server 2008 R2 64-bit, 8 Intel 2.40GHz
processors, 96GB of RAM).

7.1. Datasets and Evaluation Criterion

In our experiments, eight real-world datasets from the UCI machine learn-
ing repository [38] are used, namely, Breast Cancer, Image Segmentation, Iris,
Seeds, Yeast, Wine, Pen Digits, and Letters. The details of the benchmark
datasets are given in Table 1.

To evaluate the quality of the consensus clustering, we utilize the nor-
malized mutual information (NMI) [12] which provides an indication of the
shared information between two clusterings. Let P ∗ be the test clustering
and PG the ground-truth clustering. The NMI score of P ∗ w.r.t. PG is
computed as follows:

NMI(P ∗, PG) =

∑n∗

i=1

∑nG

j=1 nij log
nijn

n∗i n
G
j√∑n∗

i=1 n
∗
i log

n∗i
n

∑nG

j=1 n
G
j log

nG
j

n

, (16)

where n∗ is the number of clusters in P ∗, nG is the number of clusters in
PG, n∗i is the number of instances in the i-th cluster of P ∗, nGj is the number
of instances in the j-th cluster of PG, and nij is the number of common
instances shared by cluster i in P ∗ and cluster j in PG.
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Table 2: The performance of WEAC with varying parameters in terms of NMI

Dataset
β

0 1 2 4 8
Breast Cancer 0.647 0.673 0.674 0.687 0.685

Iris 0.734 0.743 0.778 0.748 0.750
Image Segmentation 0.639 0.641 0.648 0.647 0.657

Seeds 0.591 0.623 0.634 0.624 0.626
Yeast 0.230 0.234 0.232 0.241 0.239
Wine 0.753 0.772 0.781 0.781 0.757

Pen Digits 0.742 0.753 0.770 0.777 0.796
Letters 0.434 0.443 0.444 0.451 0.454

Table 3: The performance of GP-MGLA with varying parameters in terms of NMI

α 0.5 0.01 0.1 1
β 0 2 4 8 2

Breast Cancer 0.677 0.719 0.725 0.729 0.702 0.712 0.713
Iris 0.739 0.742 0.742 0.751 0.743 0.748 0.742

Image Segmentation 0.635 0.650 0.648 0.649 0.639 0.642 0.651
Seeds 0.593 0.620 0.621 0.609 0.611 0.614 0.623
Yeast 0.239 0.251 0.252 0.250 0.243 0.246 0.249
Wine 0.781 0.798 0.792 0.783 0.788 0.786 0.794

Pen Digits 0.779 0.796 0.803 0.800 0.788 0.792 0.798
Letters 0.448 0.456 0.456 0.461 0.449 0.454 0.456

7.2. Choices of Parameters

There is one parameter β in the WEAC method and two parameters α
and β in the GP-MGLA method. The parameter α is a scale factor for the
link weights between instances and clusters. The parameter β adjusts the
influence of NCAI for both WEAC and GP-MGLA, where a bigger β signals
a greater influence of NCAI. We evaluate the performance of the proposed
WEAC and GP-MGLA methods with varying parameters on the benchmark
datasets. As can be seen in Table 2 and 3, the proposed methods are very
stable w.r.t. the varying parameters. Empirically, it is suggested that α be
set in the interval of (0.1, 1) and β be set in the interval of (1, 4) for the
proposed two methods. In the following, the parameters are set that α = 0.5
and β = 2 for all the experiments on all the benchmark datasets.
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7.3. Generation of Base Clustering Ensemble

The proposed approaches make no specific assumption about the gener-
ation of the ensemble of base clusterings. To evaluate the effectiveness and
robustness of the proposed methods over various combinations of base clus-
terings, we construct a pool of a large number of different base clusterings.
Then we run the proposed methods and the baseline methods with the base
clusterings randomly chosen from the pool repeatedly.

Four clustering algorithms are used to construct the base clustering pool,
namely, k-means, rival penalized competitive learning (RPCL) [1], hierarchi-
cal mode association clustering (HMAC) [2], and incremental support vec-
tor clustering with outlier detection (OD-ISVC) [39]. To obtain a pool of
various base clusterings, we apply the aforementioned clustering algorithms
repeatedly with random parameters and initializations on each dataset. The
number of clusters for the k-means and RPCL methods are randomly cho-
sen in the interval of [2, 2

√
n], where n is the number of instances in the

dataset. The HMAC method is a hierarchical clustering method. We choose
the hierarchy of clustering randomly for the HMAC method, where each hi-
erarchy corresponds to a clustering with a certain number of clusters. For
the OD-ISVC method, the base clusterings are generated with randomly cho-
sen kernel width parameter q and trade-off parameter C. In this paper, we
apply each of the clustering algorithms for 100 times and thus a pool of 400
different base clusterings is constructed for each dataset.

7.4. Performance Comparison and Analysis

With the base clustering pool constructed (see Section 7.3), the proposed
approaches and the baseline approaches are applied to the ensemble of base
clusterings which are randomly chosen from the pool. In our experiments,
each of the clustering ensemble approaches has no knowledge about how the
chosen base clusterings are generated, i.e., by which algorithm and with what
parameters they are generated. For each run, an ensemble of M base clus-
terings is randomly constructed and different clustering ensemble approaches
are applied to the ensemble. The ensemble size M = 5 is used in our work.
We test the proposed approaches against the baseline approaches by evaluat-
ing their performance over a large number of runs, which aims to rule out the
factor of “getting lucky sometimes” and provide a fair comparison for their
effectiveness and robustness over different combinations of base clusterings.
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Figure 2: Average performance in terms of NMI over 100 runs by WEAC and GP-MGLA
compared to the base clusterings.

7.4.1. Comparison with Base Clusterings

In this paper we propose two novel consensus functions, namely, the GP-
MGLA method and the WEAC method. GP-MGLA is a graph partitioning
based method, whereas WEAC is a pair-wise similarity based method. With
the weighted co-association matrix computed by WEAC, we further perform
three agglomerative methods, namely, average-link (AL), complete-link (CL),
and single-link (SL) to obtain the final consensus clustering, which leads
to three sub-methods denoted as WEAC-AL, WEAC-CL, and WEAC-SL
respectively.

For each run, an ensemble is generated by randomly drawing M base clus-
terings from the pool. We apply the proposed clustering ensemble methods
on different ensembles for each dataset repeatedly. The average performance
over 100 runs of our methods compared to the base clusterings is shown in
Fig. 2, in which Max(base) denotes the average NMI score of the best base
clustering over all ensembles, Min(base) denotes the average NMI score of
the worst base clustering over all ensembles, and Avg(base) denotes the aver-
age NMI score of all base clusterings over all ensembles. As shown in Fig. 2,
the proposed methods are able to produce better and more robust consensus
clusterings than the base clusterings. Specially, GP-MGLA and WEAC-AL
significantly outperform the base clusterings on the Breast Cancer, Seeds,
Wine, and Pen Digits datasets.

We further compare the consensus clusterings by our methods against
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Table 4: Winning percentage of the consensus clustering against base clusterings w.r.t.
the best number of clusters over 100 runs.

Dataset Breast Cancer Image Segmentation Iris Seeds
GP-MGLA 99.6% 97.2% 98.4% 99.2%

WEAC 99.0% 99.2% 98.4% 99.2%

Dataset Yeast Wine Pen Digits Letters
GP-MGLA 100% 98.0% 100% 99.0%

WEAC 100% 96.8% 100% 70.6%

Table 5: Winning percentage of the consensus clustering against base clusterings w.r.t.
the same number of clusters over 100 runs.

Dataset Breast Cancer Image Segmentation Iris Seeds
GP-MGLA 59.7% 72.5% 70.7% 65.8%

WEAC 67.4% 76.0% 70.0% 71.1%

Dataset Yeast Wine Pen Digits Letters
GP-MGLA 64.5% 68.1% 95.7% 73.0%

WEAC 68.1% 73.8% 97.3% 66.6%

each of the base clusterings and calculate the winning percentage. For each
run, an ensemble of M base clusterings are selected. Then there will be
totally 100 ·M comparisons between the consensus clusterings and the base
clusterings over 100 runs. We call it a win if the consensus clustering has a
higher NMI score than a base clustering and call it a loss if the consensus
clustering has a lower NMI score than a base clustering. Ties count as 1/2 win
and 1/2 loss. The winning percentage is defined as the number of wins divided
by the total number of comparisons. As shown in Table 4, the GP-MGLA
method and the WEAC method (associated with AL) outperform most of the
base clustering w.r.t. the best number of clusters on the benchmark datasets.
We also compare the consensus clusterings against the base clusterings w.r.t.
the same number of clusters, which means for each comparison the number
of clusters of the consensus clustering are set to the same number as the base
clustering. As shown in Table 5, GP-MGLA and WEAC outperform about
two thirds of the base clusterings w.r.t. the same number of clusters on the
benchmark datasets.
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7.4.2. Comparison with Other Clustering Ensemble Methods

We compare the proposed WEAC and GP-MGLA methods against six
different clustering ensemble methods, namely, the hybrid bipartite graph
formulation (HBGF) [13], the weighted consensus clustering (WCC) [30],
the evidence accumulation clustering (EAC) [14], the ensemble clustering
by matrix completion (ECMC) [23], the SimRank similarity based method
(SRS) [18], and the weighted connected-triple method (WCT) [22]. Since the
ECMC method and the WCC method is very time-consuming (see Fig. 4),
it is almost infeasible to run ECMC and WCC for 100 times on the large
datasets as the Pen Digits and Letters datasets, which contain 10, 992 and
20, 000 instances respectively. Therefore, the ECMC and WCC methods are
performed on the benchmark datasets except the Pen Digits and Letters
datasets. And the other baseline methods are performed on all the bench-
mark datasets.

The EAC, ECMC, SRS, and WCT methods are four pair-wise similarity
based methods, each leading to three sub-methods by utilizing three different
agglomerative clustering methods, namely, AL, CL, and SL. Then we have
14 baseline methods, that is, HBGF, WCC, EAC-AL, EAC-CL, EAC-SL,
ECMC-AL, ECMC-CL, ECMC-SL, SRS-AL, SRS-CL, SRS-SL, WCT-AL,
WCT-CL, and WCT-SL. The average performance over 100 runs of the pro-
posed methods and the 14 baseline methods for each dataset is summarized
in Table 6 and 7. For each test method, the number of clusters k for the con-
sensus clustering is set to two values respectively, that is, best-k and true-k.
The best-k is the number of clusters that leads to the optimal performance
for a method on the dataset. The true-k is the number of true classes in
the dataset. As shown in Table 6 and 7, the performance of the WEAC-AL
method is better and more stable than the other pair-wise similarity based
methods. The WEAC-AL method achieves the best NMI scores for the Seeds
dataset and nearly best NMI scores for the Iris, Image Segmentation, Yeast,
and Wine datasets. Among the test methods, the GP-MGLA method pro-
duces overall the best and most stable clustering results on the benchmark
datasets.

7.4.3. Dealing with Ill Clusterings

In order to evaluate the robustness of our methods to ill clusterings, we
add a certain ratio of heavily imbalanced clusterings into the base clustering
pool. For example, adding 20% of ill clusterings into the pool means replacing
20% of base clusterings in the pool with heavily imbalanced clusterings. To
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Table 6: Average performance in terms of NMI over 100 runs by different clustering
ensemble methods (The two highest scores in each column are highlighted in bold.)

Method
Breast Cancer Iris Image Segmentation

Best-k True-k Best-k True-k Best-k True-k

GP-MGLA 0.715 0.618 0.733 0.695 0.633 0.549

WEAC+AL 0.672 0.596 0.731 0.673 0.638 0.533
WEAC+CL 0.405 0.073 0.639 0.653 0.580 0.317
WEAC+SL 0.437 0.030 0.701 0.493 0.584 0.420

HBGF 0.695 0.648 0.707 0.640 0.631 0.491

WCC 0.621 0.459 0.694 0.539 0.621 0.527

EAC+AL 0.652 0.512 0.725 0.667 0.637 0.503
EAC+CL 0.421 0.058 0.637 0.497 0.582 0.323
EAC+SL 0.377 0.010 0.680 0.632 0.535 0.413

ECMC+AL 0.436 0.399 0.272 0.140 0.100 0.081
ECMC+CL 0.390 0.358 0.306 0.181 0.126 0.102
ECMC+SL 0.381 0.259 0.403 0.272 0.060 0.026

SRS+AL 0.650 0.519 0.726 0.676 0.642 0.513
SRS+CL 0.632 0.489 0.708 0.648 0.624 0.530
SRS+SL 0.544 0.029 0.706 0.661 0.619 0.411

WCT+AL 0.668 0.075 0.724 0.673 0.632 0.494
WCT+CL 0.621 0.110 0.698 0.644 0.615 0.492
WCT+SL 0.546 0.124 0.705 0.650 0.580 0.416

Method
Seeds Yeast Wine

Best-k True-k Best-k True-k Best-k True-k

GP-MGLA 0.595 0.514 0.254 0.167 0.797 0.717

WEAC+AL 0.604 0.517 0.256 0.147 0.767 0.664
WEAC+CL 0.449 0.197 0.212 0.093 0.540 0.177
WEAC+SL 0.517 0.317 0.210 0.046 0.614 0.235

HBGF 0.587 0.493 0.256 0.181 0.781 0.647

WCC 0.567 0.439 0.245 0.208 0.701 0.581

EAC+AL 0.582 0.399 0.256 0.109 0.733 0.444
EAC+CL 0.467 0.206 0.218 0.065 0.547 0.168
EAC+SL 0.502 0.244 0.173 0.034 0.580 0.104

ECMC+AL 0.233 0.126 0.073 0.021 0.270 0.154
ECMC+CL 0.238 0.146 0.074 0.022 0.266 0.159
ECMC+SL 0.216 0.064 0.073 0.017 0.253 0.078

SRS+AL 0.584 0.438 0.256 0.122 0.733 0.254
SRS+CL 0.547 0.356 0.229 0.116 0.658 0.407
SRS+SL 0.560 0.344 0.204 0.034 0.668 0.001

WCT+AL 0.573 0.403 0.268 0.120 0.730 0.478
WCT+CL 0.555 0.326 0.230 0.095 0.672 0.396
WCT+SL 0.528 0.289 0.221 0.035 0.639 0.184
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Table 7: Average performance in terms of NMI over 100 runs by different clustering
ensemble methods (The two highest scores in each column are highlighted in bold.)

Method
Pen Digits Letters

Best-k True-k Best-k True-k

GP-MGLA 0.791 0.725 0.452 0.378

WEAC+AL 0.760 0.667 0.440 0.345
WEAC+CL 0.557 0.243 0.423 0.160
WEAC+SL 0.597 0.167 0.370 0.092

HBGF 0.781 0.663 0.445 0.364

EAC+AL 0.745 0.588 0.425 0.290
EAC+CL 0.584 0.244 0.322 0.139
EAC+SL 0.445 0.085 0.102 0.061
SRS+AL 0.750 0.611 0.424 0.300
SRS+CL 0.684 0.485 0.391 0.280
SRS+SL 0.706 0.127 0.070 0.032

WCT+AL 0.765 0.584 0.442 0.333
WCT+CL 0.661 0.392 0.414 0.278
WCT+SL 0.718 0.136 0.121 0.065

produce the heavily imbalanced clusterings, we firstly partition the dataset
into k clusters via k-means where k is randomly chosen in the interval of
[
√
n, 2
√
n]. Then we merge a proportion ρ of clusters into one, i.e., ρ · k

randomly chosen clusters will be merged into one cluster in the clustering.
In our experiments, the values of ρ are randomly selected in the interval of
(0.7, 0.99), which lead to heavily imbalanced clusterings. Different ratio of
ill base clusterings are added to the pool and then we conduct experiments
on the ensemble of randomly chosen base clusterings from the pool.

For each ratio of ill base clusterings, we run each of the clustering en-
semble methods for 100 times and the performance is summarized in Fig. 3.
The average-link is used for each of the pair-wise similarity based methods,
namely, WEAC, EAC, ECMC, SRS, and WCT. As can be seen in Fig. 3,
the proposed WEAC method yields much better performance than the EAC
method on the benchmark datasets. On the whole, the proposed GP-MGLA
method yields much better and more robust performance than the other clus-
tering ensemble methods with different ratio of ill base clusterings added.

7.5. Computational Complexity

The computation of the NMI measure between two partitions takes O(n2)
time, where n is the number of instances in the dataset. The computation
of the NCAI measure takes O(M2n2) time, where M is the number of base
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Figure 3: The performance by the proposed methods and the baseline methods over
different ratio of ill base clusterings.

clusterings in the ensemble. The computation of the SACT similarity is
O(M2n2 + lnc

2 + nnc), where nc is the number of clusters in the ensemble
and l is the average number of neighbors connecting to a cluster. As the con-
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ventional EAC method [14] is O(Mn2), the time complexity of the proposed
WEAC method (associated with average-link) is O(M2n2). The Tcut algo-
rithm for bipartite graph partitioning is O(kdn+knc

2), where k is the number
of clusters in the final consensus clustering and d is the average number of
links connecting to a node in the graph. Then we have the time complexity
of the proposed GP-MGLA method as O(M2n2 + (l + k)nc

2 + nnc + kdn).
The proposed methods and the baseline methods are applied to the Let-

ters dataset to test the execution time w.r.t. varying data sizes. The time
performance of these test methods with varying data sizes is illustrated in
Fig. 4. To process the entire Letters dataset with 20, 000 instances, the time
costs (in seconds) of WEAC and GP-MGLA are 82.94 and 5.64 respectively,
whereas the time costs (in seconds) of HBGF, EAC, and WCT are 2.51, 81.91,
and 138.43 respecitively. In the proposed methods, it takes 2.01 seconds to
compute the NCAI for the data size of 20, 000. Each of the five pair-wise
similarity based methods, namely, WEAC, EAC, ECMC, SRS, and WCT, is
associated with average-link. As shown in Fig. 4, the ECMC method and the
WCC method are the two slowest methods. And the SRS method is the third
slowest. The GP-MGLA is slower than WEAC, EAC, and WCT when the
data size is below 4, 000. However, the GP-MGLA shows an advantage in ex-
ecution time as the data size grows beyond 5, 000. The proposed GP-MGLA
method and the HBGF method are the two fastest methods when the data
size is greater than 5, 000, mainly due to their efficient graph partitioning
algorithms.

8. Conclusions

In this paper, we address the clustering ensemble problem using crowd
agreement estimation and multi-granularity link analysis. With the cluster-
ing ensemble viewed as a crowd, we assess reliability of the individuals inside
it by exploiting the so-called wisdom of the crowd. The normalized crowd
agreement index is proposed for evaluating the quality of base clusterings
in an unsupervised manner. The source aware connected triple similarity is
introduced for constructing the link between two clusters with their common
neighbors and source reliability taken into consideration. To achieve the fi-
nal consensus clustering, two novel consensus functions are further presented,
termed weighted evidence accumulation clustering (WEAC) and graph par-
titioning with multi-granularity link analysis (GP-MGLA) respectively. The
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Figure 4: Execution time of different clustering ensemble approaches as the data size varies
(a) from 0 to 5,000 and (b) from 0 to 20,000.

experiments conducted on eight real-world datasets show the effectiveness
and robustness of the proposed clustering ensemble methods.
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