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ABSTRACT. We study local quasiminimizers of the Dirichlet energy under generalized growth
conditions. Special cases include standard, variable exponent and double phase growths. We
show that the gradient of a local quasiminimizer has local higher integrability.

1. INTRODUCTION

In this paper we study local quasiminimizers of the minimazation problem

min
u∈W 1,1

ˆ
Ω

ϕ(x, |∇u|) dx.

Here ϕ satisfies generalized Orlicz type conditions, see Section 2. Our result covers, for
example, p(·)-type growth ϕ(x, t) = tp(x) and its perturbations ϕ(x, t) = tp(x) log(e + t)
[6, 7, 18, 27, 30], and double phase growth ϕ(x, t) = tp + a(x)tq [1, 3, 8, 10, 11]. Other
properties in the general case have been studied e.g. in [14, 21, 25, 28, 29]. More examples
can be found from Section 2.

Our main result is the following.

Theorem 1.1 (Local higher integrability of the gradient). Let ϕ ∈ Φw(Rn) satisfy assump-
tions (A0), (A1), (aInc) and (aDec)∞. Let Ω ⊂ Rn be a bounded domain and suppose
u ∈ W 1,ϕ

loc (Ω) is a local quasiminimzer of the ϕ-energy. Then there exists ε > 0 such that

ϕ(·, |∇u|) ∈ L1+ε
loc (Ω).

The idea of the proof is to combine a Sobolev–Poincaré inequality (Proposition 3.6), a
Caccioppoli inequality (Lemma 4.2) and Gehring’s lemma [17]. The hardest part is to prove
a suitable modular type Sobolev–Poincaré inequality. Here we need to use equivalent more
regular weak Φ-functions.

In the variable exponent case, ϕ(x, t) = tp(x), higher integrability was proved by X.-
L. Fan and D. Zhao in [16]. They assumed that 1 < inf p 6 sup p < ∞ and p is log-
Hölder continuous. These are special cases of our assumptions. In the double phase case,
ϕ(x, t) = tp + a(x)tq where 1 < p < q, Colombo and Mingione [9] proved the higher
integrability of the gradient under assumption q

p
< 1 + α

n
, where α is the Hölder exponent

of the function a. Again, this is a special case of our assumption (A1). Our result also
contains as special cases the perturbed variable exponent and the degenerate double phase
cases (cf. (2.3)) where higher integrability was not previously know, as well as many other
cases. Further information of our assumptions and related special cases are collected as a
table in the next section.
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2. PROPERTIES OF GENERALIZED Φ-FUNCTIONS

By Ω ⊂ Rn we denote a bounded domain, i.e. an open and connected set. The notation
f . g means that there exists a constant C > 0 such that f 6 Cg. The notation f ≈ g
means that f . g . f . By c we denote a generic constant whose value may change between
appearances. A function f is almost increasing if there exists a constant L > 1 such that
f(s) 6 Lf(t) for all s 6 t (more precisely, L-almost increasing). Almost decreasing is
defined analogously.

Definition 2.1. We say that ϕ : Ω × [0,∞) → [0,∞] is a weak Φ-function, and write
ϕ ∈ Φw(Ω), if

• For every t ∈ [0,∞) the function x 7→ ϕ(x, t) is measurable and for every x ∈ Ω the
function t 7→ ϕ(x, t) is increasing.
• ϕ(x, 0) = lim

t→0+
ϕ(x, t) = 0 and lim

t→∞
ϕ(x, t) =∞ for every x ∈ Ω.

• The function t 7→ ϕ(x,t)
t

is L-almost increasing for t > 0 for some L > 1 and every
x ∈ Ω.
• The function t 7→ ϕ(x, t) is left-continuous for t > 0 and x ∈ Ω.

We denote ϕ ∈ Φc(Ω) and say that ϕ is a convex Φ-function if, additionally, t 7→ ϕ(x, t) is
convex.

Two functions ϕ and ψ are equivalent, ϕ ' ψ, if there exists L > 1 such that ψ(x, t
L

) 6
ϕ(x, t) 6 ψ(x, Lt) for every x ∈ Ω and every t > 0. Equivalent Φ-functions give rise to
the same space with comparable norms. By ϕ−1 we denote the left-continuous inverse of a
weak Φ-function ϕ,

ϕ−1(x, τ) := inf{t > 0 : ϕ(x, t) > τ}.
We say that ϕ is doubling if there exists a constant L > 1 such that ϕ(x, 2t) 6 Lϕ(x, t)

for every x ∈ Ω and every t > 0. If ϕ is doubling with constant L, then by iteration

(2.2) ϕ(x, t) 6 L2
( t
s

)Q
ϕ(x, s)

for every x ∈ Ω and every 0 < s < t, where Q = log2(L). For the proof see for example
[5, Lemma 3.3 , p. 66]. If ϕ is doubling, then (2.2) shows that ' implies ≈. On the other
hand, ≈ always implies ' since the function t 7→ ϕ(x,t)

t
is almost increasing; hence ' and

≈ are equivalent in the doubling case. Note that doubling also yields that ϕ(x, t + s) 6
Lϕ(x, t) + Lϕ(x, s).

Let us write ϕ+
B(t) := supx∈B ϕ(x, t) and ϕ−B(t) := infx∈B ϕ(x, t); and abbreviate ϕ± :=

ϕ±Ω . Assume that there exists a constant σ > 0 such that the following two conditions hold.
(A0) There exists β ∈ (0, 1) such that ϕ+(βσ) 6 1 6 ϕ−(σ).
(A1) There exists β ∈ (0, 1) such that

ϕ+
B(βt) 6 ϕ−B(t)

for every t ∈
[
σ, (ϕ−B)−1( 1

|B|)
]

and every ball B with
(
ϕ−B
)−1 ( 1

|B|

)
> σ.

We also introduce the following assumptions, which are of different nature. They are
related to the ∆2 and ∇2 conditions from Orlicz space theory.

(aInc)p There exists L > 1 such that t 7→ ϕ(x,t)
tp

is L-almost increasing in (0,∞).
(aDec)∞q There exists L > 1 such that t 7→ ϕ(x,t)+1

tq
is L-almost decreasing in (0,∞).

We write (aInc) if there exists p > 1 such that (aInc)p holds, similarly for (aDec)∞. Further,
we write (aDec)q if (aDec)∞q has no “+1” term. This is equivalent to doubling [25, Lemma
2.6]. These conditions are invariant under equivalence of Φ-functions.
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The condition (aDec)∞q is new to this paper, but it corresponds to doubling at infinity,
∆2(∞), which is the base form of doubling in Rao–Ren [31]. (What is here called doubling,
they call globally doubling.) It can equivalently be written as the requirement that t 7→ ϕ(x,t)

tq

is L-almost decreasing for values t > 0 such that ϕ(x, t) > 1. The constant 1 has been
chosen for convenience and the choice does not play a significant role.

The reason for considering doubling at infinity rather than the full range is that some
researchers [12, 13] have recently considered the following variant of the double phase func-
tional,

(2.3) F (x, t) ≈ (t− 1)p+ + a(x)(t− 1)q+,

with (s)+ := max{s, 0}, which is singular even for positive values of the gradient. Clearly,
this is not doubling, but it does satisfy the condition (aDec)∞q .

In results to come, positive constants, such as c, might depend on the weak Φ-function ϕ.
This means that they may depend on all or some of the following parameters: β, σ, p and q.
In such cases we denote for example c = c(n, ϕ) if c depends on the dimension n and some
of the parameters of ϕ.

The next table interprets the assumptions in the context of variable exponent and double
phase growth.

ϕ(x, t) (A0) (A1) (aInc) (aDec) (aDec)∞

tp(x)a(x) a ≈ 1 p ∈ C log p− > 1 p+ <∞ p+ <∞
tp + a(x)tq a ∈ L∞ a ∈ C

n
p

(q−p) p > 1 q <∞ q <∞
(t− 1)p+ + a(x)(t− 1)q+ a ∈ L∞ a ∈ C

n
p

(q−p) p > 1 false q <∞

Remark 2.4. In the double phase case, the assumption a ∈ C
n
p

(q−p) or (A1) is related to
the boundedness of the maximal operator and several other properties that can be obtained
through it. These kind of properties are also used in this paper. However, Baroni–Colombo–
Mingione [2, 3, 4] have shown that a weaker assumption suffices if one has additional infor-
mation about the minimizer u. Namely, if u is locally bounded then a ∈ Cq−p suffices for
higher integrability, whereas if u ∈ Cγ , then a ∈ C(1−γ)(q−p) suffices. With the method of
this paper, it is not possible to use possible additional information about u to recover these
results, so this remains for future research.

Generalized Orlicz and Orlicz–Sobolev spaces have been studied with our assumptions
in [22, 23, 24, 25]. We recall some definitions. We denote by L0(Ω) the set of measur-
able functions in Ω and the integral average of a function f over a set A is denoted byffl
A
f(x) dx =: fA. Also, if B is a ball with radius r, then tB is a concentric ball with radius

tr.

Definition 2.5. Let ϕ ∈ Φw(Ω) and define the modular %ϕ for f ∈ L0(Ω) by

%ϕ(f) :=

ˆ
Ω

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

Lϕ(Ω) := {f ∈ L0(Ω) : lim
λ→0+

%ϕ(λf) = 0}

equipped with the (Luxemburg) norm

‖f‖Lϕ(Ω) := inf

{
λ > 0 : %ϕ

(
f

λ

)
6 1

}
.

If the set is clear from the context we abbreviate ‖f‖Lϕ(Ω) by ‖f‖ϕ.
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A function u ∈ Lϕ(Ω) belongs to the Orlicz–Sobolev space W 1,ϕ(Ω) if its weak partial
derivatives ∂1u, . . . , ∂nu exist and belong to Lϕ(Ω).

3. AUXILIARY RESULTS

We start with three lemmas regarding Jensen type inequalities for Φw(Ω)-functions. The
first one concerns a Φ-prefunction ϕ, which is a weak Φ-function without the left-continuity.
Note also that first we also consider ϕ independent of x.

Lemma 3.1. Let ϕ be a prefunction that satisfies (aInc)p, p > 1. Then there exists β0 > 0
such that the following Jensen-type inequality holds for every f ∈ L1

loc(Ω) and every ball
B ⊂ Ω:

ϕ

(
β0

 
B

f dx

) 1
p

6
 
B

ϕ(f)
1
p dx.

Proof. Since ϕ1/p satisfies (aInc)1, there exists ψ ∈ Φc(Ω) such that ψ ' ϕ1/p, by [24,
Lemma 2.2]. By Jensen’s inequality for ψ,

ϕ

(
1
L2

 
B

f dx

) 1
p

6 ψ

(  
B

1
L
f dx

)
6
 
B

ψ( 1
L
f) dx 6

 
B

ϕ(f)
1
p dx. �

The proof of the next lemma is slightly modified version of Lemma 4.4 of [26]. The
original was only stated for convex ϕ. For completeness, we present a proof of the slight
generalization. Since we are interested in bounded domain Ω, the assumption (A2) from the
original proof can be omitted.

Lemma 3.2. Let ϕ ∈ Φw(B) satisfy assumptions (A0), (A1) and (aInc)p, p > 1. There exists
β1 = β1(ϕ) > 0 such that

ϕ

(
x, β1

 
B

|f | dy
) 1

p

6
 
B

ϕ(y, f)
1
p dy + 1,

for every ball B and f ∈ Lϕ(B) with %ϕ(fχ{|f |>σ}) < 1, where σ is the constant in (A0) and
(A1).

Proof. We may assume without loss of generality that f > 0. Fix a ball B and x ∈ B.
Denote f1 := fχ{f>σ}, f2 := f − f1, and Ai :=

ffl
B
fi dy. Since ϕ1/p is increasing,

ϕ

(
x, β1

 
B

f dy

) 1
p

6 ϕ
(
x, 2β1 max{A1, A2}

) 1
p 6 ϕ

(
x, 2β1A1

) 1
p + ϕ

(
x, 2β1A2

) 1
p .

Sinceϕ satisfies (A0), a short calculation gives thatϕ−B satisfies the conditions of Lemma 3.1
with p = 1. Thus Lemma 3.1 and %ϕ(fχ{|f |>σ}) < 1 yield that

(3.3) ϕ−B
(
β0A1

)
6
 
B

ϕ−B(f1) dy 6
 
B

ϕ(y, f1) dy < 1
|B| .

Suppose first that β0A1 > σ. This assumption and (3.3) yield that β0A1 is in the allowed
range of (A1). Thus

ϕ
(
x, ββ0A1

) 1
p 6 ϕ−B

(
β0A1

) 1
p 6

 
B

ϕ−B(f1)
1
p dy 6

 
B

ϕ(y, f1)
1
p dy.

Next consider β0A1 6 σ. Using (aInc)p and (A0), we conclude that

(3.4) ϕ
(
x, β2β0A1

) 1
p 6 ϕ

(
x, βσ

) 1
p
Lββ0

σ
A1 6 c

 
B

f1

σ
dy.
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By (A0), 1 6 ϕ(y, σ). If f1 > σ, it follows from (aInc)p and (A0) that

f1

σ
6 L

ϕ(y, f1)
1
p

ϕ(y, σ)
1
p

6 Lϕ(y, f1)
1
p .

The inequality is trivial when f1(x) = 0, and by definition f1 does not take values in (0, σ).
Thus the inequality holds in all cases. From (3.4) we then deduce

ϕ(x, β2β0A1)
1
p 6 c

 
B

ϕ(y, f1)
1
p dy.

In view of this and the conclusion of previous paragraph, we find that

ϕ
(
x, 1

Lc
β2β0A1

) 1
p 6 1

c
ϕ
(
x, β2β0A1

) 1
p 6

 
B

ϕ(y, f1)
1
p dy 6

 
B

ϕ(y, f)
1
p dy,

where we also used (aInc)p for the first inequality.

For f2, we note that A2 6 σ, since f2 6 σ. Thus it follows from (A0) that

ϕ
(
x, βA2

)
6 ϕ(x, βσ) 6 1.

Adding the estimates for f1 and f2, we obtain the claim with constant β1 = min
{
β
2
, β

2β0
2Lc

}
.
�

Lemma 3.5. Let ϕ ∈ Φw(B) satisfy assumptions (A0), (A1) and (aInc)p, p > 1. Then there
exists β2 = β2(n, ϕ) > 0 such that

ϕ

(
x, β2

ˆ
B

|f(y)|
diamB |x− y|n−1

dy

) 1
s

6
ˆ
B

ϕ(y, |f(y)|) 1
s

diamB |x− y|n−1
dy + 1

for almost every x in the ball B, 1 6 s 6 p and every f ∈ Lϕ(B) with %ϕ(fχ{|f |>σ}) < 1.

Proof. We may assume without loss of generality that f > 0. Fix r > 0 and let B be a ball
with radius r. Define annuli Ak := {y ∈ B : 2−kr 6 |x − y| 6 21−kr} for k > 1. We split
B into annuli Ak and obtainˆ

B

f(y)

2r |x− y|n−1
dy 6 c1

∞∑
k=1

2−k
 
B(x,21−kr)

χAk
f(y) dy.

By [26, Lemma 3.2] there exists a Φ-function ψ such that ϕ ' ψ and ψ1/p is convex. Fix
s ∈ [1, p]. Since

∑∞
k=1 2−k = 1, it follows by convexity of ψ1/s that

ϕ

(
x,

1

L2

j∑
k=1

2−k
 
B(x,21−kr)

χAk
f(y) dy

) 1
s

6 ψ

(
x,

1

L

j∑
k=1

2−k
 
B(x,21−kr)

χAk
f(y) dy

) 1
s

6
j∑

k=1

2−kψ

(
x,

1

L

 
B(x,21−kr)

χAk
f(y) dy

) 1
s

6
∞∑
k=1

2−kϕ

(
x,

 
B(x,21−kr)

χAk
f(y) dy

) 1
s

and by left continuity of ϕ

ϕ

(
x,

1

L2

∞∑
k=1

2−k
 
B(x,21−kr)

χAk
f(y) dy

) 1
s

6
∞∑
k=1

2−kϕ

(
x,

 
B(x,21−kr)

χAk
f(y) dy

) 1
s

.
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Let β1 > 0 be from Lemma 3.2. We obtain

(I) := ϕ

(
x,

β1

L2c1

ˆ
B

f(y)

r |x− y|n−1
dy

) 1
s

6
∞∑
k=1

2−kϕ

(
x, β1

 
B(x,21−kr)

χAk
f(y) dy

) 1
s

,

so Lemma 3.2 yields

(I) 6
∞∑
k=1

2−k
(  

B(x,21−kr)

χAk
ϕ(y, f(y))

1
s dy + 1

)

6
1

2

∞∑
k=1

21−k

|B(x, 21−kr)|

ˆ
B(x,21−kr)

χAk
ϕ(x, f(y))

1
s dy + 1

6
∞∑
k=1

1

2r(21−kr)n−1

ˆ
B(x,21−kr)

χAk
ϕ(y, f(y))

1
s dy + 1 6

ˆ
B

ϕ(y, f(y))
1
s

2r |x− y|n−1
dy + 1.

This is the claim for β2 = β1
L2c1

. �

The next proposition is a Sobolev–Poincaré inequality for weak Φ-functions and yields an
exponent strictly less than 1. This is the main requirement for Gehring’s lemma later on. The
proof introduces a probability measure that allows Jensen’s inequality to be used in the usual
setting. This technique was used in [15]. The rest of the proof consists of handling leftover
terms and technicalities.

Proposition 3.6. Let ϕ ∈ Φw(B) satisfy assumptions (A0), (A1) and (aInc)p, p > 1, and let
s ∈ [1, p] with s < n

n−1
. Then there exists a constant β3 = β3(n, s, ϕ) such that

 
B

ϕ

(
x, β3

|u− uB|
diamB

)
dx 6

(  
B

ϕ(x, |∇u|)
1
s dx

)s
+ 1

for every v ∈ W 1,1(B) with ‖∇u‖ϕ < 1.

Proof. For brevity, we denote κ := diamB. Suppose first that ϕ(x, |∇u|) = 0 for almost
every x ∈ B. Then by (A0) we see that |∇u(x)| 6 σ that is |∇u| ∈ L∞(B) and thus u is
Lipschitz continuous. Hence

|u(x)− uB| = |u(x)− u(y)| 6 σκ

for some y ∈ B and
 
B

ϕ

(
x, β
|u− uB|

κ

)
dx 6

 
B

ϕ(x, βσ) dx 6 1.

Thus the proposition is true if the integral on the right-hand side is 0.
Assume then that the integral on the right-hand side of inequality in the claim is positive.

We have for almost every x ∈ B, by [19, Chapter 7],

|u(x)− uB| 6 C1(n)

ˆ
B

|∇u(y)|
|x− y|n−1

dy.
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The previous inequality and Lemma 3.5 with constant β′ = 2β2
C1

yield

ϕ

(
x, β′
|u(x)− uB|

κ

)
6 ϕ

(
x, β2

ˆ
B

|∇u(y)|
κ|x− y|n−1

dy

)
6

( ˆ
B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy + 1

)s
6 2s−1

( ˆ
B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy

)s
+ 2s−1.

(3.7)

Set J :=
´
B
ϕ(x, |∇u|)1/s dx > 0 and define a measure by dµ(y) := 1

J
ϕ(y, |∇u|)1/s dy.

Then ˆ
B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy =

ˆ
B

J

κ|x− y|n−1
dµ(y).

Since µ is a probability measure, we can use Jensen’s inequality for the convex function
t 7→ ts:(ˆ

B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy

)s

6
ˆ
B

Js

κs|x− y|s(n−1)
dµ(y) = Js−1

ˆ
B

ϕ(y, |∇u|)1/s

κs|x− y|s(n−1)
dy.

We integrate the previous inequality over x ∈ B, and use Fubini’s theorem to change the
order of integration

 
B

(ˆ
B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy

)s

dx = Js−1

 
B

ϕ(y, |∇u(y)|)
1
s

ˆ
B

dx

κs|x− y|s(n−1)
dy.

Finally, we use the assumption s < n
n−1

to estimateˆ
B

dx

κs|x− y|s(n−1)
6 cκ−s(n−1)+n−s = cκn−sn

for y ∈ B and conclude, taking into account the definition of J , that
 
B

(ˆ
B

ϕ(y, |∇u(y)|) 1
s

κ|x− y|n−1
dy

)s

dx 6 c

(
J

κn

)s
= c

(  
B

ϕ(y, |∇u(y)|)
1
s dy

)s
.

Combining this with (3.7), which is integrated over B, we complete the proof as the constant
c can be absorbed into β′ by (aInc)1. �

4. HIGHER INTEGRABILITY

Next we turn to properties of the minimizing function u, namely the Caccioppoli inequal-
ity for a quasiminimzer.

Definition 4.1. Let ϕ ∈ Φw(Ω) and K > 1. A function u ∈ W 1,ϕ(Ω) is a local K-
quasiminimizer of the ϕ-energy in Ω ifˆ

{v 6=0}
ϕ(x, |∇u|) dx 6 K

ˆ
{v 6=0}

ϕ(x, |∇(u+ v)|) dx

for all v ∈ W 1,ϕ(Ω) with spt v := {v 6= 0} ⊂ Ω.

In the next result we need the doubling near infinity.
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Lemma 4.2 (Caccioppoli inequality for quasiminimizer ). Let ϕ ∈ Φw(Ω) satisfy (aDec)∞q ,
u be a local K-quasiminimizer in Ω and 2B ⊂⊂ Ω. Then we have

(4.3)
ˆ
B

ϕ(x, |∇u|) dx .
ˆ

2B

ϕ

(
x,
|u− u2B|
diamB

)
dx+ 1,

in the ball B, where the implicit constant depends only on n, K and (aDec)∞q .

Proof. Denote κ := diamB. Let t, s ∈ [1, 2], s < t. Also, let η ∈ C∞0 (tB) be such that
0 6 η 6 1, η = 1 in sB, and |∇η| 6 4

(t−s)κ . Denote w = −η(u − u2B) and v := u + w.
Since u is a local K-quasiminimizerˆ

tB

ϕ(x, |∇u|) dx 6 K

ˆ
tB

ϕ(x, |∇v|) dx.

We have
|∇v| 6 (1− η)|∇u|+ |∇η||u− u2B|.

Denote a := 2qL > 1. By (aDec)∞q and |∇η| 6 4
(t−s)κ , we get that

ϕ(x, |∇v|) 6 ϕ
(
x, 2 max{(1− η)|∇u|, 4|u−u2B |

(t−s)κ }
)

6
(
ϕ(x, 2(1− η)|∇u|) + 1

)
+
(
ϕ
(
x, 8|u−u2B |

(t−s)κ

)
+ 1
)

6 aϕ(x, (1− η)|∇u|) + a+ a3ϕ
(
x, |u−u2B |

(t−s)κ

)
+ a3

6 aϕ(x, (1− η)|∇u|) + a3ϕ
(
x, |u−u2B |

(t−s)κ

)
+ c.

Combining the above inequalities, we find thatˆ
tB

ϕ(x, |∇u|) dx 6 aK

ˆ
tB

ϕ(x, (1− η)|∇u|) dx+ a3K

ˆ
tB

ϕ
(
x, |u−u2B |

(t−s)κ

)
dx+Kc|2B|.

By decreasing the set on the left hand side, we obtainˆ
sB

ϕ(x, |∇u|) dx

6 aK

ˆ
tB

ϕ(x, (1− η)|∇u|) dx+ a3K

ˆ
tB

ϕ
(
x, |u−u2B |

(t−s)κ

)
dx+Kc|2B|.

(4.4)

On the right-hand side, we have ϕ(x, (1− η)|∇u|) = ϕ(x, 0) = 0 in sB, and soˆ
tB

ϕ(x, (1− η)|∇u|) dx =

ˆ
tB\sB

ϕ(x, (1− η)|∇u|) dx 6
ˆ
tB\sB

ϕ(x, |∇u|) dx.

Now we can use the hole-filling trick by adding aK
´
sB
ϕ(x, |∇u|) dx to both sides of (4.4),

ending with aK + 1 of the integral on the left-hand side, and aK on the right. After we
divide with aK + 1, we haveˆ

sB

ϕ(x, |∇u|) dx 6 aK

aK + 1

ˆ
tB

ϕ(x, |∇u|) dx+
a3K

aK + 1

ˆ
2B

ϕ(x, |u−u2B |
(t−s)κ ) dx+ C.

Since 1 6 aK
aK+1

+ a3K
aK+1

, this implies thatˆ
sB

ϕ(x, |∇u|) + 1 dx 6
aK

aK + 1

ˆ
tB

ϕ(x, |∇u|) + 1 dx

+
a3K

aK + 1

ˆ
2B

ϕ(x, |u−u2B |
(t−s)κ ) + 1 dx+ C.
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Now, as the function (ϕ(x, t) + 1) is doubling for all t > 0, we can use a variant of the
standard iteration lemma, Lemma 4.2 of [25], and getˆ

B

ϕ(x, |∇u|) + 1 dx .
ˆ

2B

ϕ

(
x,
|u− u2B|

κ

)
+ 1 dx+ C.

The result follows after we subtract |B| from both sides. �

Lemma 4.5 (Gehring’s lemma, [20]). Let f ∈ L1(BR) be non-negative. Assume that g ∈
Lq(2BR) for some q > 1 and that there exists s ∈ (0, 1) such that

 
B

f dx .

(  
2B

f s dx

) 1
s

+

 
2B

g dx

for every ball B ⊂⊂ BR. Then there exists t > 1 such that(  
BR

f t dx

) 1
t

.
 

2BR

f dx+

 
2BR

gt dx.

Now we are ready to prove our main result, which follows from the last three results.

Proof of Theorem 1.1. Let p > 1 be such that ϕ satisfies (aInc)p. Fix s ∈ (1, p] with s <
n
n−1

. Choose a ball BR such that 2BR ⊂⊂ Ω and ‖∇u‖Lϕ(2B) < 1. Now the Caccioppoli
inequality (Lemma 4.2) yields for a local quasiminimizer u and B ⊂⊂ BR that 

B

ϕ(x, |∇u|) dx .
 

2B

ϕ

(
x,
|u− u2B|
diamB

)
dx+ C.

First adding 1 to the right-hand side, then using (aDec)∞q and finally the Sobolev–Poincaré
inequality (Proposition 3.6) we get that 
B

ϕ(x, |∇u|) dx .
 

2B

ϕ

(
x, β3

|u− u2B|
diamB

)
+ 1 dx+ C .

(  
2B

ϕ(x, |∇u|)
1
s dx

)s
+ C.

With g = CχΩ, Gehring’s lemma (Lemma 4.5) yields( 
BR

ϕ(x, |∇u|)t dx
) 1

t

.
 

2BR

ϕ(x, |∇u|) dx+

 
2BR

Ct dx <∞.

Writing ε = t− 1, we see that ϕ(·, |∇u|) has higher integrability in the ball B.
Cover Ω′ ⊂⊂ Ω with balls Bi that satisfy the assumptions of the first part of the proof.

Because Ω′ is compact, we can choose a finite subcover {Bi}Ni=1. Now( 
Ω′
ϕ(x, |∇u|)1+ε dx

) 1
1+ε

.
N∑
i=1

 
2Bi

ϕ(x, |∇u|) dx+

 
2Bi

Cr dx <∞

and therefore ϕ(·, |∇u|) ∈ L1+ε
loc (Ω). �
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