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Abstract 12 

This paper reports on a novel approach to using a 3-axis accelerometer to capture body segment 13 
angle for upper limb functional electrical stimulation (FES) control. The approach calculates the angle 14 
between the accelerometer x-axis and the gravity vector, while avoiding poor sensitivity at certain 15 
angles and minimising errors when true acceleration is relatively large in comparison to gravity. This 16 
approach was incorporated into a state-machine controller which is used for the real-time control of 17 
FES during upper limb functional task performance. An experimental approach was used to validate 18 
the new method. Two participants with different upper limb impairments resulting from a stroke 19 
carried out four different FES-assisted tasks. Comparisons were made between angle calculated 20 
from arm-mounted accelerometer data using our algorithm and angle calculated from limb-mounted 21 
reflective marker data. After removal of coordinate misalignment error, mean error across tasks and 22 
subjects ranged between 1.4 and 2.9 degrees. The approach shows promise for use in the control of 23 
upper limb FES and other human movement applications where true acceleration is relatively small 24 
in comparison with gravity.  25 

Keywords: Accelerometer, Body segment angle, Functional electrical stimulation control, Upper limb 26 
rehabilitation, Functional tasks 27 

 28 

Introduction 29 

A recent systematic review concluded that the use of functional electrical stimulation (FES) to 30 
promote recovery of upper limb activity after stroke was significantly more effective than activity 31 
training alone[1].  Although the finding was positive, at least 4 of the included studies were based on 32 
systems which either did not encourage voluntary effort to achieve a functional task, and/or did not 33 
offer flexibility over the sequence of stimulation delivered [2-5]. Both voluntary engagement with, 34 
and variation in, task practice are considered to be important elements of rehabilitation 35 
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programmes for motor re-learning [6, 7], suggesting limitations with the technologies used in these 36 
studies. 37 

In recognition of this, researchers have developed a number of systems which provide the patient 38 
with FES support for a range of tasks and encourage voluntary engagement of the user.  These 39 
include devices based on iterative learning control [8], proportionally controlled systems using EMG 40 
as an input signal [9] and, of most relevance to this paper, user-defined state machine controlled 41 
systems [10, 11]. User-defined state machine control offers a potentially simple approach to 42 
implementing task- and patient-specific FES support. However, in order to provide the user with the 43 
opportunity to directly engage with the task by actively initiating or controlling stimulation, a 44 
method is required to detect user intent. A range of sensors for this purpose have been investigated, 45 
including EEG [12] and EMG[13]. Each of these sensing approaches has its limitations and for all bar 46 
the most severely impaired, limb-mounted movement sensors offer an attractive alternative. 47 
Although 6 degree of freedom inertial measurement units (IMUs), which typically include 48 
accelerometers, rate gyroscopes and magnetometers, are available, they remain relatively bulky. 49 
This precludes their use on, for example, individual fingers. Further, although the price of IMUs has 50 
reduced over the past few years, compared with these devices, accelerometers remain cheaper, 51 
simpler to use in terms of data processing, and lower power. A small number of researchers have 52 
therefore investigated their application to upper limb FES [14-17]. However, as will be discussed 53 
below the methods used to derive estimations of orientation from accelerometer data are limited in 54 
these and many other papers.  55 

Current methods for processing accelerometer signals to estimate orientation can be categorised 56 
according to the number of independent measures (accelerometer axes) used. The first group of 57 
methods are based on using just one accelerometer signal, either a single axis device or one axis of a 58 
multi-axis device. In the first embodiment of these, a series of calibration measurements over a 59 
range of angles is required and an interpolation algorithm can then be used to derive the angle of 60 
the sensitive axis from the vertical [18-20]. As the calibration curve is significantly non-linear, the 61 
accuracy is highly dependent on a thorough calibration. More commonly, a trigonometric approach 62 
is used, based on arccos or arcsin functions (e.g. [21-24]). Both of these approaches require 63 
calibration to accurately identify the value of the denominator. Regardless of which of these three 64 
techniques is adopted for processing the accelerometer signal, they all suffer from the same 65 
drawbacks. When the magnitude of acceleration on the sensitive axis approaches either 9.81 or -66 
9.81, the sensitivity approaches zero because sin𝛽𝛽 or cos𝛽𝛽 approach 1, which means the signal to 67 
noise ratio is very poor [21, 23, 25, 26]. A small number of papers ignore the issue of poor sensitivity 68 
at zero or 90 degrees by suggesting a workable range for measurements [21, 23, 24]. For example, 69 
Miroslav Husak [23] refers to the measurement range with zero sensitivity as being a “Dead zone” 70 
and reports that, using the arcsin function, error increases from less than 2° over 4° when the 71 
sensitive axis nears ±90°. 72 

The second group of methods uses a dual axis accelerometer (or two axes of a 3-axis device). The 73 
signals from both of the sensitive axes can be used to calculate the angle from the vertical 74 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑔𝑔𝑧𝑧 𝑔𝑔𝑥𝑥⁄ �. This method suffers from decreasing sensitivity and, hence, increasing angle 75 

errors as 𝜃𝜃 approaches 0° [27-29] and extreme sensitivity near ±90° [27, 28]. For example, Šipoš et 76 
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al [29] reports that, using the arctan function, error increases from 1.37° to over 4.5° when the 77 

sensitive axis nears 0°. 78 

When applying either approach to the analysis of accelerometers signals there remains the problem 79 
that orientation can only be accurately estimated if the true acceleration is small compared with 80 
gravity (as accelerometers measure the sum of true acceleration and gravity). While the use of 81 
distributed multiple accelerometers provide a solution to this problem [30, 31], this is less than ideal 82 
for application to upper limb FES because of the difficulty of donning the additional, rigidly 83 
connected, accelerometers.  84 

In upper limb FES applications, the way the accelerometer signals are used for control purposes can 85 
be categorised as either direct use of the raw accelerometer signals [14, 16, 17] or using an angle-86 
based approach [15], both of which suffer from one or more of the problems listed above. 87 

In this paper we report on a novel approach to using accelerometry for upper limb FES control which 88 
addresses the issues discussed above. The paper begins by introducing a new approach to estimating 89 
angle relative to gravity from a 3D accelerometer, based on vector mechanics, which includes 90 
methods for avoiding poor sensitivity at certain angles and minimising errors when true acceleration 91 
is relatively large in comparison to gravity. The paper then reports on its application in our finite-92 
state-machine (FSM) controlled FES system and evaluates its performance. 93 

 94 

Methods 95 

Angle estimation algorithm 96 

The new method calculates the absolute angle from the vertical of one axis of a 3-axis accelerometer 97 
(for the purpose of the paper, the x-axis).  Referring to Figure 1, the method calculates the angle 𝛽𝛽 98 
between 𝑥𝑥� and 𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛,  where 𝑥𝑥� is the unit vector representing the accelerometer x-axis, and   𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛is 99 

the gravity vector in the accelerometer frame.  100 
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  101 

Figure 1: Angle between unit vector along x-axis and gravity vector  102 

 103 

We use the definitions of the dot product and cross product between the gravity vector and unit 104 
vector along the x-axis to derive the following equations: 105 

𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) =
𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑥𝑥�

�𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛� �𝑥𝑥��
=

𝑔𝑔𝑥𝑥

��𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝑔𝑔𝑧𝑧2�
 

(1) 

sin(𝛽𝛽) =
�𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑥𝑥��

�𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛� �𝑥𝑥��
=

�(𝑔𝑔𝑧𝑧 )2 + � 𝑔𝑔𝑦𝑦�
2

��𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝑔𝑔𝑧𝑧2�
 

 

(2) 

As mentioned in the introduction, when sin(𝛽𝛽) or cos(𝛽𝛽) approach 1, their sensitivity to changes in 106 

𝛽𝛽 approaches zero (the derivative tends to zero). Therefore, to maximise accuracy, we use sin(𝛽𝛽) for 107 

calculating angles in the ranges 𝛽𝛽 = 0° − 45° and 𝛽𝛽 = 135° − 180° and cos𝛽𝛽 for calculating angles 108 

in the range 𝛽𝛽 = 45° − 135°. Furthermore, because arcsin does not have a unique solution in the 109 

range 0⁰ to 180⁰, we use the sign of cos(𝛽𝛽) to determine whether the angle given by arcsin lies 110 

between 0° − 45° or between 135° − 180°. Therefore, combining the principles described above, 111 

the following logical rules can be used to calculate 𝛽𝛽 from sin(𝛽𝛽) and cos(𝛽𝛽). 112 
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If 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) ≥ 0.707107   

    𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Else if  𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) ≤  −0.707107  

    𝛽𝛽 = 𝜋𝜋 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Else  

    𝛽𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

End 

(3) 

 113 

The proposed approach overcomes the problem of poor sensitivity to changes in angle when sin(𝛽𝛽) 114 

or cos(𝛽𝛽) approach 1 and does not suffer from the singularities seen in approaches which use 2-axis 115 

accelerometer signals and arctan. 116 

 117 

In addition to the approach outlined above we have included an algorithm to reduce the likelihood 118 

of misinterpreting the accelerometer data when the true acceleration becomes significant compared 119 

with g (9.81 m/s2). In cases where the magnitude of the measured accelerometer vector significantly 120 

exceeds g (i.e. true acceleration is significant compared to g) the data point is ignored. This is 121 

achieved by applying a g-tolerance band (9.81 ± g-tolerance) and only using good data points that 122 

lie within that band. The FSM controller triggers a state transition when n good data points (i.e. 123 

within the g-tolerance band) have exceeded the specified body-segment angle threshold (using n 124 

good points acts as a noise filter). As the g-tolerance band narrows, it would be expected that a 125 

larger number of bad data points would be ignored by the controller and hence this may lead to a 126 

delay in moving between states. Conversely, if the g-tolerance band is too wide, errors in angle 127 

estimation would be expected to increase. In this study, we explore the effects of different values 128 

for the g-tolerance band on angle estimation and the trade-off between accuracy and number of 129 

bad data points ignored. 130 

 131 

Experimental protocol 132 

Following ethical approval (REC ref: 10/H1005/26) two quite different participants, both with upper 133 
limb impairments following stroke, were invited to the lab to participate in the study. The 134 
participants are described in table 1. 135 

Table 1: Participants 136 

No Gender Age Hemiplegic 
side 

Dominant 
side 

Years since 
onset 

Fugl-Meyer Upper 
Extremity score 
(maximum 66) 
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1 M 81 Left Right 3 years 29 

2 F 42 Right Right 13 years 37 

 137 

Figure 2 shows the experimental setup for the “Drink from a cup” task. Two inertial sensing units or 138 
IMUs (MT9 Xsens bv, NL), each with a cluster of four reflective markers on their upper corners, were 139 
attached to the upper arm and forearm of the subject’s affected limb using self-adherent bandage. 140 
The IMUs’ x-axes were approximately aligned with the long axes of the body segments. A Vicon 141 
motion analysis system (Vicon Motion Systems Ltd, Los Angeles, USA) employing ten cameras was 142 
used to capture the positions of the reflective markers on each IMU at a sampling frequency of 100 143 
Hz. Only acceleration data was captured from the IMUs, at a sampling frequency of 20 Hz, using a 144 
separate laptop. This laptop also ran the Finite State Machine controller that produced the 145 
necessary stimulation profiles via a RehaStim 8-channel stimulator (Hasomed GmbH, Magdeburg, 146 
Germany), and also ran the graphical user interface (GUI) used to set up the FSM controller. A pulse 147 
signal from one of the Xsens system’s analog output channels was fed to an analogue input channel 148 
in the Vicon system to provide synchronization between the Xsens and Vicon systems. This 149 
experimental setup was also used to study another three tasks (see below for details of each task). 150 

 151 

Figure 2: Experimental setup 152 

 153 

Each subject was asked to carry out a series of functional tasks assisted by electrical stimulation to 154 
relevant muscles during relevant parts of the movement. The functional tasks were selected by the 155 
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therapist at the start of each session as being very difficult or impossible for the user to perform 156 
unaided. The four tasks were “Brush coins into the other hand”, “Drink from a cup”, “Place an object 157 
onto a shelf” and “Pour water from a bottle to a cup”. For all tasks, the subject sat at a table with 158 
their affected hand comfortably placed on the table or on the thigh (for “Place an object into a 159 
shelf”) at the starting position.  For each repeat of a task, the object(s) to be manipulated was/were 160 
placed in a pre-defined starting location. 161 

The therapist used the GUI mentioned earlier to define each task as a sequence of FSM states 162 
(corresponding to movement phases), each of which was associated with a stimulation profile1 for 163 
each of the muscles to be stimulated (see figure 3). Threshold values for each muscle were 164 
established earlier in the setup process, leaving the therapist to define pulse width target and ramp 165 
time for each stimulated muscle in each phase. Pressing a button on the keyboard to leave the 166 
neutral phase, the therapist then used the GUI to manually adjust the pulse width target and ramp 167 
time for each of the stimulated muscles in phase 1, until the relevant limb motion was achieved. This 168 
process was repeated for each movement phase (FSM state). During each attempt, data were 169 
recorded from both the Vicon and Xsens systems. Once the therapist was satisfied with the resultant 170 
movement, he/she invited the participant to repeat the task until data on between 7 and 10 171 
satisfactory repeats had been captured. 172 

Descriptions of the finite state machines for each of the four functional tasks are as follows: 173 

 174 

Figure 3: Finite state diagrams for the following tasks (a) “Brush coins into the other hand”; (b) “Drink from a cup”; (c) 175 
Place an object onto a shelf; (d) Pour water from a bottle to a cup. The controller moves between states when the 176 
transition condition Btn is met (Btn = Button press). In each state (represented by a box), the specified muscles are 177 
stimulated where: AD&Tr = Anterior deltoid and Triceps; Bi = Biceps; Pr = Pronator; WE = Wrist extensors. 178 

 179 

                                                           
1 A stimulation profile consists of a threshold pulse width, a target pulse width and a ramp time. 
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 “Brush coins into the other hand” (figure 3a) 180 

The subject was required to reach for coins positioned on the table and brush them back into his/her 181 
other hand. The position of the coins was such that (s)he could only achieve the task with FES 182 
assistance. 183 

 “Drink from a cup” (figure 3b) 184 

The subject was required to reach for a cup, grasp it, lift the cup to the mouth, replace the cup and 185 
release it. The cup was positioned such that the subject could only achieve the task with FES 186 
assistance.  187 

 “Place an object onto a shelf” (figure 3c) 188 

The subject was required to lift his/her forearm towards an object, grasp it, reach forward to put it 189 
on to a shelf and release it. The shelf was located such that (s)he could only achieve the task with 190 
FES assistance.  191 
 192 
 “Pour water from a bottle to a cup” (figure 3d) 193 

The subject was required to reach for a bottle, grasp it and pour the water into a cup, replace the 194 
bottle and release it. The position of the cup was such that the subject could only achieve the task 195 
with FES assistance. 196 
 197 
Data processing 198 
 199 
The absolute angles from vertical of the two IMU x-axes, based on the accelerometer signals and the 200 
new algorithm described earlier, were recorded directly by the real-time FSM controller. The 201 
coordinates of the reflective markers attached to the IMUs were exported using Visual 3D software 202 
(C-Motion, Inc., Rockville, MD, USA). The Vicon marker data were down-sampled to provide data at 203 
20Hz (frequency of the FSM controller) and synchronized with the IMU data. The calculation of the 204 
angles from vertical of the x-axes of the two IMUs, based on the Vicon data, is described in [32] and 205 
was implemented using Matlab (Mathworks inc. Natick, USA). 206 
 207 
Data were checked post-collection and task repeats were discarded in cases where the marker 208 
visibility was incomplete, or synchronisation between the Xsens and Vicon systems failed. 209 
 210 
To account for small misalignment errors between the marker-derived sensor coordinate frame and 211 
the accelerometer coordinate frame, the first 10 frames of static data were used to artificially 212 
remove the offset.  Comparisons between accelerometer and marker-derived angles were drawn 213 
using RMS error and Peason Correlation coefficients, before and after removing the offset. 214 
 215 
Finally, to investigate the effect of different g-tolerance bands on the angle estimation, we applied 216 
three different tolerance bands to the data (9.81 ± 0.5 𝑚𝑚/𝑠𝑠2, 9.81 ± 0.3 𝑚𝑚/𝑠𝑠2 and 9.81 ±217 
0.2 𝑚𝑚/𝑠𝑠2 ). Comparisons are presented between maximum error and number of data points lying 218 
outside of the tolerance band. 219 
 220 

Results 221 
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Figure 4 shows example data for forearm and upper arm angles from the vertical, obtained from 222 
both reflective marker and accelerometer approaches, for the task “Brushing coins into the other 223 
hand” (Left: subject 1; Right: subject 2) 224 

 225 

Figure 4: Example data from task “Brush coins into the other hand”  226 

 227 

Table 2 compares the angles derived from marker data with accelerometer-derived angles for each 228 
subject and each task.  229 

Table 2:  Comparison between marker and accelerometer-derived angles (7-10 trials per subject). Pearson’s correlation 230 
(r) and RMS error (ɛ) are shown before and after removal of alignment error. (UA = upper arm; FA = forearm) 231 

Subject 1: 232 

 Task 1 Task 2 Task 3 Task 4 

 FA UA FA UA FA UA FA UA 
r 0.947 0.986 0.992 0.993 0.943 0.988 0.985 0.994 

ɛ (deg.) 3.12 2.27 2.48 1.62 1.61 1.67 1.63 2.06 
ɛ after removal 

of alignment 
error (deg.) 

2.91 2.46 1.73 1.60 1.56 1.50 1.72 2.75 

 233 

Subject 2: 234 
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 Task 1 Task 2 Task 3 Task 4 

 FA UA FA UA FA UA FA UA 
r 0.986 0.995 0.995 0.996 0.985 0.998 0.982 0.990 

ɛ (deg.) 2.82 3.47 1.94 3.24 2.12 3.18 1.91 1.93 
ɛ after removal 

of alignment 
error (deg.) 

2.33 2.04 2.02 1.42 1.95 2.25 1.66 2.03 

 235 

Figure 5 shows how maximum errors are reduced, but not eliminated by removing data points which 236 
lie outside of the g-tolerance band.  237 

 238 

Figure 5: Errors in forearm “absolute angle from vertical” calculated from an example trial of the “Drink from a cup” task 239 
(subject 1) before and after removal of data points using a g-tolerance ±0.5 m/s2. 240 

 241 

Table 3 illustrates the effect of different g-tolerance bands on the accuracy of angle estimation and 242 

number of data points lying outside of the tolerance band.  243 

 244 

Table 3:  Effect of g-tolerance (on maximum error (δ) (.deg) and percentage of invalid data (p) (%) 245 

Subject 1: 246 

 Tolerance 
band 

Task 1 Task 2 Task 3 Task 4 
FA UA FA UA FA UA FA UA 

δ 
Infinite 12.0±3.3 7.9±1.8 12.5±4.0 8.3±1.8 8.7±4.1 8.4±4.1 7.6±3.6 5.6±1.2 

± 0.5 m/s2 11.1±2.5 7.3±1.4 10.1±2.1 8.1±1.7 7.2±2.0 7.9±4.0 7.4±3.7 5.5±1.3 
± 0.3 m/s2 10.6±2.6 6.8±1.6 9.7±2.4 7.8±1.5 7.2±2.0 7.7±3.9 6.8±3.8 5.2±1 
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± 0.2 m/s2 10.6±2.6 6.5±1.4 8.1±2.3 6.8±1.2 6.1±2.4 7.3±4.1 6.6±3.8 4.9±0.9 

p 

Infinite 0 0 0 0 0 0 0 0 
± 0.5 m/s2 6.5±2.9 7.1±3.6 7.5±2.2 1.1±0.9 12.7±3.5 2.1±1.4 8.0±3.3 5.1±2.3 
± 0.3 m/s2 17.4±4.5 22.1±8.7 16.0±3.6 6.5±2.1 33.1±6.8 8.6±2.6 18.1±3.7 17.6±4.2 
± 0.2 m/s2 28.1±6.2 34.7±12.6 30.1±5.4 15.9±3.1 51.6±9.7 19.8±3.8 32.3±4.6 30.1±5.4 

 247 

Subject 2: 248 

 Tolerance 
band 

Task 1 Task 2 Task 3 Task 4 
FA UA FA UA FA UA FA UA 

δ 

Infinite 11.3±3.2 9.5±1.4 6.5±2.6 7.2±0.9 10.27±4.4 9.43±2.3 8.16±1.3 5.5±0.6 
± 0.5 m/s2 8.9±3.7 8.9±1.8 6.1±2.8 7.0±0.8 6.83±1.1 8.29±3.1 7.39±1.8 5.5±0.6 
± 0.3 m/s2 8.1±2.4 8.1±1.8 4.9±1.0 6.3±0.8 6.20±1.0 7.34±2.7 7.39±1.8 5.1±0.7 
± 0.2 m/s2 8.1±2.4 7.3±1.3 4.6±0.6 6.1±1 5.50±1.0 6.53±2.0 6.86±1.7 4.8±0.8 

p 

 Infinite 0 0 0 0 0 0 0 0 
± 0.5 m/s2 9.5±3.0 15.2±2.8 3.8±1.3 2.2±1.2 8.6±1.5 15.9±2.9 7.9±2.4 3.9±3.1 
± 0.3 m/s2 14.8±4.3 35.4±5.4 12.9±2.2 30.2±5.4 20.1±3.6 33.3±3.7 19.3±4.1 27.6±5.8 
± 0.2 m/s2 20.3±4.8 50.8±7.1 23.6±2.6 61.0±4.8 30.7±5.1 44.7±5.0 31.9±6.0 49.4±6.1 

 249 

Discussion and conclusions 250 

This paper has introduced a new method of calculating angle from vertical from a 3-axis 251 
accelerometer. The approach avoids the key limitation of methods based on single or dual axis 252 
accelerometer signals, namely when the magnitude of the accelerometer signal on the sensitive axis 253 
approaches either 9.81 or -9.81, the sensitivity approaches zero and hence the signal to noise ratio 254 
becomes very poor. Figure 4 and table 2 illustrate the performance of the method using upper limb 255 
mounted IMUs during the performance of a range of typical FES assisted upper limb tasks.   256 

Ignoring readings where the true acceleration is significant in comparison to gravity can remove 257 
some unwanted spikes and thereby improve the robustness of angle triggering (Table 3). However, 258 
referring to Figures 5, it is clear that not all peaks in error value are removed. This is because only 259 
those peaks that alter the magnitude of the measured vector are interpreted as bad readings. 260 
Clearly, depending on the direction of the true acceleration (or the equivalent noise from some 261 
other source) the magnitude of the measured accelerometer vector may not fall outside the g-262 
tolerance band. As can be seen in table 3, the tighter the g-tolerance band the greater the number 263 
of bad data points which fall outside and hence the higher the potential delays in transitioning 264 
between FSM states using angle triggering. In the worst case, when the g-tolerance is set at ± 0.2 265 
m/s2, 61% of data points fall outside the tolerance band. Based on our findings a g-tolerance of ± 0.5 266 
m/s2 appears to be an acceptable value and this was used in subsequent usability trials [33]. 267 

The approach shows promise for the application described in the paper. However, the method 268 
would not be applicable to limb segments which experience significant accelerations during normal 269 
daily activity (e.g. the shank during gait).  270 

 271 
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