Saliency Detection via Bi-directional Propagation

Yingyue Xu, Xiaopeng Hong, Xin Liu and Guoying Zhao

Center for Machine Vision and Signal Analysis
P.O.Box 4500, 90014, University of Oulu, Finland

Abstract

Recent saliency models rely on propagation to compute the saliency map. Previous propagation methods are single directional,
where foreground propagation and background propagation are separate (e.g., only foreground propagation, or background propa-
gation after foreground propagation). Different from the previous approaches, we propose a bi-directional propagation model (BIP)
for saliency detection. The BIP model propagates from the labeled foreground superpixels and the labeled background superpix-
els to the unlabeled ones in the same iteration. A difficulty-based rule is adopted to manipulate the prorogation sequence, which
considers both the distinctness of the superpixel to its neighboring ones and its connectivity to the labeled sets. The BIP model
outperforms fourteen state-of-the-art saliency models on four challenging datasets, and largely enhances the propagation efficiency

compared to single directional propagation models.
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1. Introduction

Recently, saliency detection [1, 2, 3,4, 5,6, 7,8, 9, 10, 11,
12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], aiming at
identifying salient regions on a scene with biologically plausi-
ble cues, has aroused broad attention for its applications, such
as image and video segmentation [26], video compression [27],
image cropping [28], human behaviour analysis [29], efc. Gen-
erally, existing saliency models can be categorized into two
types, including top-down models and bottom-up models.

Top-down saliency models, on one hand, depend on high-
level features with various semantics (face detector [5], text rep-
resentation [9], etc.), on the other, are task-driven which require
supervised learning, for instance, support vector machine [5],
AdaBoost [6], CRF [7], multiple kernel learning [8, 9], and
deep convolutional neural networks [10, 11, 12], efc.

Different from top-down models, bottom-up saliency mod-
els compute saliency maps with low-level cues and are usu-
ally learning free. Thus, a variety of saliency models have
been proposed with different strategies such as coarse-to-fine
saliency estimation [13, 14, 30], local or global feature ex-
traction [15, 16, 17, 18, 19, 31, 20, 21, 22, 32], making
different assumptions, for example, boundary prior assump-
tion [22, 33, 34], etc.

Propagation, as a bottom-up saliency modeling methodology,
has been widely employed in recent years. The input image is
firstly over-segmented into superpixels and is constructed as an
undirected graph, which comprises of a set of vertices of the su-
perpixels together with a set of edges representing the similarity
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Figure 1: There are two directions in which the propagation methods spread the
selected seeds to the whole image, including foreground propagation ® from
the most salient seeds and background propagation ® from the most unsalient
seeds. Most previous propagation methods are single directional with 1. only
foreground propagation or 2. background propagation followed by foreground
propagation. Different from previous methods, we propose a model that 3.
propagates with both foreground seeds and background seeds in each iteration,
which is bi-directional.

between adjacent vertices. Then, the initial saliency values (la-
beled superpixels), that are obtained by selecting propagation
seeds from a coarse saliency map [35, 36, 37, 38], are spatially
diffused to the whole graph within several iterations. Tradi-
tional schemes involve all the superpixels of the image into each
iteration, however, Gong et al. [13] argued that not all the su-
perpixels are suitable to participate in the propagation in every
iteration, especially when some of them are apparently differ-
ent from the labeled ones. Thus, a TLLT saliency model [13]
was proposed that measures the difficulty of each unlabeled su-
perpixel based on the knowledge of the labeled set and only
propagates those “simple” ones that are easy to judge as salient
or unsalient in each iteration. Such a “propagation from sim-
ple to difficult” strategy optimizes the propagation quality by
manipulating the propagation sequence.

There are two types of propagation: foreground propa-
gation and background propagation. Foreground propaga-
tion(Figure 1.1) selects the most salient values from a coarse
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Figure 2: Framework of the proposed BIP model. Given an input image, both foreground seeds and background seeds are chosen as two initial labeled sets. In each
iteration, the unlabeled superpixels are evaluated according to their difficulties to the labeled foreground set and the labeled background set respectively, only those
with the lowest difficulties to each labeled set are selected and are accordingly spread to refine the foreground set or the background set. After all the unlabeled
superpixels are labeled, the results from foreground propagation and background propagation are combined as the final saliency map.

saliency map as foreground seeds to propagate a saliency map.
It is a direct approach to identify the salient regions on the input
image, but the propagation performance is heavily influenced
by the quality of seeds selection. In contrast, background prop-
agation(Figure 1.2) selects background seeds based on bound-
ary or background assumptions to propagate an unsaliency map.
Generally, background seeds are much easier in selection than
foreground ones and can better identify the unsalient regions
of the image, but background propagation lacks the ability to
judge the distinctness inside the salient regions.

Most previous propagation methods only select foreground
seeds for propagation [35, 36, 37], but recent saliency mod-
els [13, 38] firstly compute a coarse saliency map by back-
ground propagation to obtain foreground seeds and calculate
the final saliency map through foreground propagation. Obvi-
ously, the propagation is always single directional.

In this work, we propose a bi-directional propagation (BIP)
model that efficiently performs foreground propagation and
background propagation in one iteration(Figure 1.3). The BIP
model manipulates the prorogation sequence with a difficulty-
based rule. More specifically, we only choose the relatively
simple superpixels instead of all for either foreground propaga-
tion or background propagation in each iteration, by measuring
the difficulty of the unlabeled superpixels to the labeled fore-
ground set and the labeled background set respectively. The
framework of the proposed BIP model is illustrated in Figure 2.

The contributions of this paper are two folds:

1. We propose a bi-directional propagation model (BIP) for
salient object detection. Different from previous single direc-
tional methods that perform foreground propagation and back-
ground propagation separately, the BIP model performs both
foreground propagation and background propagation in every
individual iteration with a difficulty-based rule.

2. We compare the proposed BIP model to fourteen state-of-
the-art saliency models over four challenging datasets. Evalua-
tion results show that the BIP model results in the best perfor-
mance in both F-measure and MAE. Moreover, experimental
results confirm that the BIP model largely reduces both the it-

eration numbers and the computational time compared to the
previous single directional propagation methods.

2. Bi-directional Saliency Propagation

Superpixel algorithms group pixels in an image with similar
appearance features into perceptually consistent units, and thus
can efficiently reduce the computational complexity of subse-
quent image processing tasks. In this work, we over-segment
the input image into N superpixels.

In this section, we will introduce the details of our proposed
bi-directional propagation saliency model. Firstly, we depict
the seeds selection for propagation including foreground seeds
and background seeds. Secondly, we detail the bi-directional
propagation with the difficulty-based rule.

2.1. Foreground Seeds and Background Seeds

In recent saliency detection tasks, it is widely accepted that
the boundaries of an image are most likely to be the background
regions. Wei et al. [39, 40] pointed out that the most back-
ground regions, other than salient ones, are easily connected
to the image boundaries. Also, a number of saliency mod-
els [22, 41] generated a coarse saliency map with the com-
pactness of image boundaries. Besides, several supervised
saliency models [42, 14] also extracted the appearance features
of boundaries for model training.

We firstly compute a coarse foreground map S ¢ based on the
boundary prior. We assume that the more discrepant a super-
pixel is from the boundary ones, the more salient the superpixel
is. Thus, we select the superpixels along the image boundaries
as background seeds, and grouped them into K clusters by K-
means algorithm. The number of superpixels belonging to the
k-th cluster is denoted as Ny, k = 1,--- , K. If the n-th super-
pixel is still quite different from its most similar cluster, it is
more likely to be salient. In this way, we compute the coarse
foreground map S r as follow:
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Figure 3: Foreground seeds selection. The input image is firstly over-segmented into superpixels. A coarse foreground map and a coarse background map are
computed based on the boundary prior, and are integrated to obtain a coarse saliency map. The coarse saliency map is then thresholded with y to obtain the

foreground seeds.
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where ||¢,, ¢l computes the Euclidean distance between the
n-th superpixel and the m-th superpixel on CIELab features.

Still using the boundary prior, we compute a coarse back-
ground map S p with a basic propagation method. The over-
segmented image can be regarded as an undirected graph G =
(V, E), which comprises a set V of the superpixels together with
a set E of edges representing the similarity between adjacent
superpixels. The constructed graph G can be described as an
adjacent matrix W = [wy;,]yxy- In this work, the similarity
between two superpixels is computed as follow,

Wam = €xp(=ltn, finl*/(26%)), 2)

where ||u,, || computes the Euclidean distance between su-
perpixel u, and p, on CIELab-XY features, where u, =
[w,{;x,,; valT, x, and y, are the coordinates of the n-th super-
pixel in X-Y space.

Again, we extract the superpixels along the image boundaries
as background seeds and the propagation function is as follow:

st =1.p".w.s', 3)

where [ is the identity matrix and D is the diagonal degree ma-
trix with Dy, = >, Wum, and the initial S 0is computed based
on the boundary prior as follow:

§%n) = {1’

0, otherwise

the n-th superpixel is a boundary one

“

After T times of iterations, the final propagated S7! is com-
puted as the coarse background map Sp. Then we obtain a
coarse saliency map S coarse as follow:
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where « is set as 0.001 to avoid the division-by-zero problem.

Finally, we threshold S coarse With 7y to obtain the foreground
seeds and the superpixels on the four boundaries of the image
are background seeds.

2.2. Bi-directional Propagation

We propose a bi-directional propagation approach that
spreads the labeled foreground superpixels and the labeled
background superpixels to the unlabeled ones with a difficulty-
based rule. At time ¢ (the z-th iteration), the unlabeled set
of superpixels are denoted as U’ and the labeled set as L.
L' = L. ULy, where L] refers to the set of superpixels labeled
by foreground propagation, while £}, is propagated by back-
ground seeds. Every superpixel on the image has two measures,
one is its saliency value f! for foreground propagation and the
other is its unsaliency value b', for background propagation. At
time ¢t = 0, L(} (or L%) is composed of foreground seeds (or
background seeds) obtained in Section 2.1 with saliency (or un-
saliency) values f,? =1 (or b2 =1).

At time 7, according to how difficult to assign a superpixel to
L. and L], respectively, we have three subsets £, % and #,.
P’ (or P%) contains the superpixels with the lowest difficulties
to LY. (or £}) and will be propagated by L}, (or L},) at time 7.
For those superpixels belonging to ', they are regarded as am-
biguous ones which will not be involved in the 7-th iteration of
the propagation. The unlabeled superpixels in U’ are iteratively
labeled under such a scheme until ¢’ is completely labeled.

We choose a set of ). (or $%) from those superpixels C’.
(or Cg) that are directly connected to the labeled set L;. (or

1) on the undirected graph G. If the n-th superpixel is under
consideration, its difficulty to the labeled set L}, (or L%) is df
(or d). . and P'; are two sets of superpixels with the lowest
difficulties selected from C’. and C’; respectively.

To measure the difficulty that an unlabeled superpixel is re-
lated to a labeled set, we consider two aspects: distinctness to
its neighborhood and connectivity to the labeled set. Distinct-
ness computes the appearance difference between the unlabeled



superpixel and its neighbors. If the superpixel is apparently
similar to its surrounding ones, the superpixel is more likely to
have similar saliency intensity as its neighbors and thus is re-
garded as a simple one. Connectivity measures the strength that
the unlabeled superpixel is connected to the labeled set. If the
superpixel is strongly connected to the labeled set, it is simple
to propagate. Thus, df and d? are computed as follows:

1 1
dF:— ns Pm T nsMm)s
" = NG >l ¢||+|LHZQ<# fhn)

meN (¢,) me Ll
— = N
d;? = ”Som (;Dm” + T g(ﬂn,ﬂm)
NG, 24 2

where N(g,) contains all the neighboring superpixels of ¢,,
IN(¢,)| is the number of ¢,’s neighbors, |l¢,, ¢nl| computes
the Euclidean distance between superpixel ¢, and ¢, |.L}| and
| L] are the numbers of superpixels in L}, and L7, respectively.
G(uy, iy) computes the geodesic distance between w, and p,, as
follows:

G(tns om) = min
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s.t. vi,Vir1 € V, v and vy, are connected in the undirected
graph G, ||vg, vi+1|| computes the Euclidean distance between vy
and vy, and a is an adaptive threshold preventing the “small-
weight-accumulation” problem [39, 13]. Thus, the G(u,, )
measures the shortest path (geodesic) between u,, and y,, in G.
After computing the difficulty of all the candidate superpixels
in C7. and CY; to their corresponding labeled sets L. and Lf, we
pick up two sets of superpixels, ). for foreground propagation
and P, for background propagation. The difficulty scores dl of
the superpixels in C', are sorted in ascending order, and the first
g superpixels are selected to P'.. ¢, at time ¢ is computed by

qr = [IC| x 6% (3)
where 6% is computed as follow:
(i=1)
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6} is learned from the labeled set L}_ I'at time ¢ — 1, which de-
termines the percentage of superpixels we will select from C?..
d' is high if the saliency values of the superpixels in L} are
close to 1 (foreground) or O (background). When the saliency
values are close to 0.5, it becomes ambiguous to judge whether
the values are salient or not. Thus, 6’F is set small to avoid
choosing ambiguous superpixels from C7.

In a similar way, a set of superpixels #, for background prop-
agation can be selected by ranking the difficulty scores d? of C’,
in ascending order and choose the first g, superpixels.

qp = [ICl X %1,
(1)
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There is a special case when the n-th superpixel belongs to a
set P, where p!, € P' = P.NP, # @. In such case, we classify
the n-th superpixel by comparing its difficulty scores d* and d?.
If df > d?, P = P\ pl; otherwise, Py, = P4\ pl,.

As the superpixels for foreground propagation #7. and back-
ground propagation %, are both determined, we need to spread
the saliency values in £} to . and the unsaliency values in £},
to #, respectively by

1+1 t -1 1

[ =AR DT WL (1n
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where A’ is a diagonal matrix with A}, = 1 if the n-th su-
perpixel belongs to L}, U %, otherwise A, = 0. Similarly,
A’ is diagonal with A}, = 1 if the n-th superpixel belongs to
L, U P, otherwise A, = 0. After the t-th iteration, the la-
beled set is L™ = LU P U P, and the unlabeled set is
U =U"\ (P UPY).

When all the unlabeled superpixels are labeled after T, times
iterations, we have a set of superpixels involved in foreground
propagation ¥ and a set of superpixels involved in background
propagation B. If the n-th superpixel is involved in foreground
propagation, its saliency value is now fnTz; otherwise, its un-
saliency value is b2 Then, we transfer the unsaliency values
b* into saliency values based on ¥ by bl* = min(F)x(1-b22).
Finally, we map the saliency values in # and the transferred
saliency values in B to the original image to obtain the final
saliency map.

3. Experiments

We investigate the bi-directional propagation model (BIP)
by evaluating it over four challenging datasets: DUT-
OMRON [38], ECSSD [43], PASCAL-S [44], and ASD [45].
The ASD dataset is one of the most widely used datasets
with 1000 images from the MSRA-5000 Saliency Object
Database[46], with distinct salient objects on the scenes.
PASCAL-S is a dataset of 850 images from PASCAL VOC
2010 [47] with multiple salient objects on the scenes. The EC-
SSD dataset contains 1000 images with complex salient objects
on the scenes, and the objects on the images are semantically
meaningful. The DUT-OMRON dataset contains a large num-
ber of 5168 more difficult and challenging images.

We compare the proposed BIP model with fourteen state-
of-the-art saliency models including BSCA [22], COV [20],
DRFI [42], GBVS [16], GC [48], GP [49], HS [43], LR [50],
MB [51], MR [38], PCAS [21], RB [39], TLLT [13], and
UFO [42]. The implementations of the chosen approaches are
directly from the corresponding authors.
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Figure 4: (a) The mean absolute difference between the current propagated result S and the previous propagated result ™= (green line) and the computational time
(red line). The x-axis enumerates the iteration numbers ¢. The major y-axis shows the mean absolute difference, while the second y-axis is the computational time
(seconds). The figures are average values evaluated on ECSSD dataset. §=0.25. (b) The F-measure (green line) and the corresponding computational time (red line)
with different settings of N, with 71=20, #=0.2, y=0.02 and K=4. The x-axis enumerates the value of N for over-segmentation. The major y-axis represents the
F-measure, while the second y-axis is the computational time (seconds). The figures are average values evaluated on ECSSD dataset.

3.1. Parameters

In this section, we discuss the tuning of the parameters of the
proposed BIP model, including N, K, T, 8 and y.

The given image is over-segmented into N superpixels for the
bi-directional propagation. Then, foreground seeds and back-
ground seeds are selected.

The foreground seeds are obtained from the coarse saliency
map S coarse- Firstly, the BIP model computes a coarse fore-
ground map S . The superpixels along the image boundaries
are grouped into K clusters to perform a similarity measurement
as shown in Eq. 1 to obtain S . Secondly, a coarse background
map S p is computed with a propagation method of T iterations
that involves a similarity function as Eq. 2, where the parameter
6 is involved. Thirdly, the coarse saliency map S coarse 1S COmM-
puted based on S  and S  as Eq. 5. Lastly, we threshold S coarse
with 7 to obtain the foreground seeds.

The background seeds are superpixels along the image
boundaries. Finally, bi-directional propagation are performed
the compute the final saliency map.

To explore the optimal settings of the parameters, we firstly
tune 7T as it only determines that with how many iterations the
propagation results can be stable. Then, we regard 6 and 7y as
pairwise parameters to explore an optimal combination based
on the performances. Lastly, we tune the parameters K and N
to approach a best performance for the BIP model.

3.1.1. T

In Section 2.1, we extract the superpixels along the image
boundaries as background seeds and propagate 7 times for the
coarse background map Sz. We choose the parameter 7 by
considering two factors. Firstly, 7'} should be adequate to prop-
agate a relatively stable coarse background map. Secondly, as
the propagation time will increase in accordance with T, we
need to control 7'; for computational efficiency.

We evaluate the propagation status by calculating the mean
absolute difference between the current propagated result S’
and the previous propagated result S~ as well as the recorded

computational time for propagating S’, as shown in Figure 4-
(a). After 15 iterations, the mean absolute difference falls be-
low 0.05 and the propagation results become relatively stable.
The propagation time increases dramatically after 40 iterations.
Further, Figure 5 shows the propagated results with different
settings of T';. The propagated results become relatively stable
based on the intensity maps after 15 iterations.

In practice, we set T as 20 to balance the propagation quality
and the computational efficiency.

3.1.2. 8andy

While computing the coarse background map Sz in Sec-
tion 2.1, the parameter 6 is involved in measuring the similar-
ity between two superpixels. Then we obtain a coarse saliency
map S coarse Using the coarse background map S  and the coarse
foreground map S r as in Eq. 5. Finally, we threshold S coarse
with  to obtain the foreground seeds.

Since different settings of 6 produce the S 5 of varying qual-
ities, the resulted S coarse can be different. Accordingly, the set-
ting of the threshold y should be adjusted based on S coarse Of
different qualities. To obtain the optimal final result, we regard
6 and vy as pairwise parameters and evaluate the final saliency
map with different combinations of 8 and y as is shown in Ta-
ble 1. From experimental results, it can be perceived that 6=0.2
and y=0.02 is the optimal combination that produces the best
result.

3.1.3. Kand N

When computing the coarse foreground map S r, we over-
segment the image into N superpixels and group the superpix-
els along the image boundary into K clusters by K-means algo-
rithm.

We firstly tune the value of K by setting it as 2, 3, 4, 5 and
evaluate their corresponding performances as in Table 2. It can
be perceived that when K is set as 2, 3 and 4, the evaluation
results are with similarly good performances. In this work, we
set K as 4 which receives the best performance.
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Figure 5: Examples of computed coarse background maps with different numbers of iterations with 6=0.25.

SN0 [ 0005 | 001 | 002 | 005 | 01 | 015 | 02 | 025 | 03
0.05 | 0401 | 0.4200 | 0.450 | 0.514 | 0.568 | 0.588 | 0.589 | 0.578 | 0.558
0.1 | 0.511 | 0535 | 0.561 | 0.602 | 0.624 | 0.625 | 0.619 | 0.600 | 0.578
0.15 | 0.611 | 0.638 | 0.660 | 0.677 | 0.671 | 0.653 | 0.632 | 0.607 | 0.583
02 | 0670 | 0.689 | 0.692 | 0.676 | 0.637 | 0.606 | 0.581 | 0.556 | 0.533
025 | 0.680 | 0.683 | 0.662 | 0.609 | 0.559 | 0.523 | 0.495 | 0.474 | 0.455
03 | 0.664 | 0.647 | 0.612 | 0.545 | 0.485 | 0.456 | 0.430 | 0.412 | 0.393
0.35 | 0.640 | 0612 | 0.567 | 0.496 | 0.443 | 0.415 | 0.396 | 0.380 | 0.366
04 | 0.616 | 0583 | 0.536 | 0.469 | 0.421 | 0.394 | 0371 | 0.355 | 0.348

Table 1: The F-measure of the final saliency maps on ECSSD dataset with different combinations of 6 and y. T1=25, N=400 and K=3. The five best results are

underlined and the best result is in bold.

Lastly, we evaluate the performances of BIP model with dif-
ferent settings of N. Figure 4-(b) shows that the performances
are relatively high when N is set in the range of [400, 550].
Thus, we recommend to set the over-segmented number N
larger than 400. Taking the running time into consideration,
we set N as 400 for rational computation.

3.2. Experimental Performance

We over-segment the images into N = 400 superpixels with
the simple linear iterative clustering (SLIC) algorithm [52]. In
practice, K is set as 4, Ty is 20, 6 is 0.2 and vy is 0.02. We
employ two types of evaluation metrics to evaluate the perfor-
mance of saliency maps: F-measure and mean absolute error
(MAE). When a given saliency map is slidingly thresholded
from O to 255, a precision-recall (PR) curve can be computed
based on the ground truth. F-measure is computed to count for
the saliency maps with both high precision and recall:

(l +,82) - precision - recall
F= — ; 12)
B? - precision + recall

where 82 = 0.3 [45] to emphasize the precision.
MAE measures the overall pixel-wise difference between the
saliency map sal and the ground truth gt:

H
MAE = L Z |sal(h) - gt(h), (13)
H h=1

where H is the number of pixels on the map.

Figure 7 further plots four bar charts about the performance
enhancement in F-measure and MAE by comparing the BIP
model to every selected saliency model. Obviously, the BIP
model outperforms every selected saliency model in both F-
measure and MAE over all the four datasets. Figure 8 illustrates
some examples of the fourteen state-of-the-art saliency models
and the proposed BIP model. In the last two columns of Fig-
ure 8, we present two examples when parts or all of the salient
objects are similar to the background in appearance. In such
extreme cases, the BIP model may lose detection to the salient
parts that are alike the background. However, it still keeps the
shapes of the salient parts and eliminates the unsalient parts of
the image more effectively than the other saliency models.

We compare the F-measure and MAE scores of the proposed
BIP model to that of the fourteen state-of-the-art saliency mod-
els. Table 3 4 lists the average F-measure and MAE scores of
the proposed BIP model as well as the fourteen saliency models
over four datasets including ECSSD, ASD, DUT-OMRON and
PASCAL-S datasets. It can be perceived that the proposed BIP
model results in the best performance compared to all the se-
lected saliency models over the four datasets in both F-measure
and MAE score. More specifically, the proposed BIP model
increases the highest F-measure of the fourteen saliency mod-
els by 7.5%, 4.2%, 4.2% and 2.4% on ECSSD, ASD, DUT-
OMRON and PASCAL-S datasets respectively, and reduces the
lowest MAE scores of the fourteen saliency models by 3.3%,
1.4%, 1.4% and 0.6% on ECSSD, ASD, DUT-OMRON and
PASCAL-S datasets respectively.

In addition, we plot four bar charts of the average preci-
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Table 2: The F-measure of the final saliency maps with different settins of K. The evaluation results are on ECSSD dataset with 71=20, §=0.2, y=0.02 and N=400.

Model | ECSSD | ASD | OMRON | PASCAL
GP | 0619 | 0.819 | 0471 0.580
MB | 0616 | 0785 | 0501 0.579

BSCA | 0.603 | 0.796 | 0.479 0.550

DRFI | 0.589 | 0.773 | 0.507 0.510
MR | 0571 | 0.803 | 0.480 0.516
HS | 0567 |0.770 | 0473 0.533
RB | 0562 | 0809 | 0501 0.528

UFO | 0481 |0.710 | 0397 0.431
GC | 0484 | 0729 | 0403 0.460

PCAS | 0425 | 0590 | 0382 0.400
LR | 0419 | 0566 | 0.349 0.385

GBVS | 0399 | 0432 | 0321 0.391

COV | 0355 | 0346 | 0256 0.315

TLLT | 0583 | 0.828 | 0.507 0.483

BIP | 0.694 | 0.870 | 0.549 0.604

Table 3: F-measure scores of fourteen state-of-the-art saliency models and the proposed BIP model on ASD, ECSSD, DUT-OMRON and PASCAL-S datasets. The

best results for each measurement over different datasets are in bold, while the second best ones are underlined.

Model | ECSSD | ASD | OMRON | PASCAL
GP | 0.191 | 0.083 | 0.209 0.223
MB | 0.174 | 0091 | 0.157 0.196

BSCA | 0.183 | 0.086 | 0.191 0214

DRFI | 0.170 | 0.091 | 0.150 0.201
MR | 0.186 | 0.076 | 0.187 0.224
HS | 0228 | 0111 | 0227 0.251
RB | 0.171 | 0066 | 0.144 0.197

UFO | 0203 |0.111 | 0.170 0.226
GC | 0235 | 0111 | 0.170 0.264

PCAS | 0247 | 0.156 | 0.207 0.240
LR | 0274 | 0.189 | 0.260 0.274

GBVS | 0263 | 0215 | 0.240 0.261

COV | 0220 |0.189 | 0.175 0.236

TLLT | 0.172 | 0.064 | 0.144 0.209
BIP | 0.137 | 0.050 | 0.130 0.190

Table 4: MAE scores of fourteen state-of-the-art saliency models and the proposed BIP model on ASD, ECSSD, DUT-OMRON and PASCAL-S datasets. The best
results for each measurement over different datasets are in bold, while the second best ones are underlined.

sion, recall and F-measure of each saliency model over ECSSD,
ASD, DUT-OMRON and PASCAL-S datasets respectively, as
shown in Figure 6. From the four bar charts, it is obvious that
our BIP model maintains both high precision and recall com-
pared to the other saliency models, and thus results in best per-
formance in F-measure.

3.3. Propagation Efficiency

We use the foreground seeds and background seeds obtained
by BIP model and perform difficulty-based propagation in bi-

directional way and single directional way respectively on EC-
SSD dataset. For single directional propagation, the average
iteration number of the foreground propagation is 6 while the
average iteration number of the background propagation is 7.
However, bi-directional propagation only needs averagely T,=4
iterations, which is much fewer than single directional method
either for foreground propagation or background propagation.
Moreover, the average computational time of bi-directional
propagation is 0.023s per image, while that of the single di-
rectional propagation is 0.030s (foreground propagation) and
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Figure 8: Examples of the results of the fourteen state-of-the-art saliency models and the proposed BIP model. The original images, results of fourteen saliency
models and BIP model, and ground truth (GT) are sequentially presented.

0.039s (background propagation) for each image. Thus, bi- fore, the BIP model achieves high propagation efficiency.
directional propagation outperforms single directional propaga-
tion in both iteration numbers and computational time. There-



4. Conclusion

We propose a bi-directional propagation model that per-
forms both foreground propagation and background propaga-
tion in every individual iteration with a difficulty-based rule.
The difficulty-based rule evaluates the difficulties of each unla-
beled superpixel to the labeled foreground set and the labeled
background set respectively by its distinctness to the neighbor-
hood and its connectivity to the two unlabeled sets accordingly.
The proposed model outperforms fourteen the state-of-the-art
saliency models on four challenging datasets, and largely en-
hances the propagation efficiency compared to single direc-
tional propagation models.
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