
Characterizing Architecture Related Posts and Their Usefulness in Stack
Overflow

Musengamana Jean de Dieua, Peng Lianga,∗, Mojtaba Shahinb, Arif Ali Khanc

aSchool of Computer Science, Wuhan University, 430072 Wuhan, China
bSchool of Computing Technologies, RMIT University, 3000 Melbourne, Australia

cM3S Empirical Software Engineering Research Unit, University of Oulu, 90014 Oulu, Finland

Abstract

Context: Stack Overflow (SO) has won the intention from software engineers (e.g., architects) to learn,
practice, and utilize development knowledge, such as Architectural Knowledge (AK). But little is known
about AK communicated in SO, which is a type of high-level but important knowledge in development.

Objective: This study aims to investigate the AK in SO posts in terms of their categories and charac-
teristics as well as their usefulness from the point of view of SO users.

Method: We conducted an exploratory study by qualitatively analyzing a statistically representative
sample of 968 Architecture Related Posts (ARPs) from SO.

Results: The main findings are: (1) architecture related questions can be classified into 9 core cate-
gories, in which “architecture configuration” is the most common category, followed by the “architecture
decision” category, and (2) architecture related questions that provide clear descriptions together with
architectural diagrams increase their likelihood of getting more than one answer, while poorly structured
architecture questions tend to only get one answer.

Conclusions: Our findings suggest that future research can focus on enabling automated approaches
and tools that could facilitate the search and (re)use of AK in SO. SO users can refer to our proposed
guidelines to compose architecture related questions with the likelihood of getting more responses in SO.

Keywords: Architectural Knowledge, Architectural Level Element, Architecture Solution, Stack
Overflow, Usefulness

1. Introduction

Technical Questions and Answers (Q&A) sites, such as Stack Overflow (SO), have revolutionized how
users seek knowledge on the Internet [1]. SO has shown to be the most prominent community Q&A site
for knowledge sharing and learning in software development, and SO leverages the knowledge and skills of
its users, such as developers, to share their thoughts and experience by asking various types of technical
questions related to development and providing answers to these questions. Also, SO users can learn
novel techniques and tools from SO [2]. SO is predominately being used to solve coding problems [3], and
these problems are often not relevant or less interesting to architects because they focus on lower-level
implementation details [3]. However, ever since this site started growing and being popular, architects
have begun to share their competencies, experience, and design problems by asking architecture related
questions or providing architecture solutions, such as architecture tactics. In our recent industrial survey
on how developers search for architectural information [4], practitioners acknowledged Q&A sites (e.g.,
SO) as the most useful source of architectural information (e.g., benefits and drawbacks of architecture
solutions). Hence, similar to searching and (re)using existing coding related answers provided in SO to
solve programming related problems, software engineers (e.g., architects and developers) also search and
(re)use existing architecture solutions in SO for addressing their design concerns. Thus, SO not only

∗Corresponding author at: School of Computer Science, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27
68776027.

Email addresses: mjados@outlook.com (Musengamana Jean de Dieu), liangp@whu.edu.cn (Peng Liang),
mojtaba.shahin@rmit.edu.au (Mojtaba Shahin), arif.khan@oulu.fi (Arif Ali Khan)

Preprint submitted to Journal of Systems and Software January 6, 2023

ar
X

iv
:2

30
1.

00
94

3v
2

 [
cs

.S
E

]
 5

 J
an

 2
02

3

accumulates code examples, but also curates a large number of architecture solutions provided to a wide
range of architecture related questions or design problems [5] [6].

Although SO users discuss high-level knowledge in SO, for instance, architecture tactics and quality
attributes knowledge [5], architecture knowledge for technology decisions [6], to date the majority of the
existing studies mainly focus on analyzing programming related knowledge in SO posts from different
perspectives. For example, Diamantopoulos and Symeonidis [7] employed source code information to
improve question-answering in SO, and Zhang et al. [8] investigated the quality of code examples in
SO programming related posts. Little work has focused on analyzing architectural knowledge provided
in Architecture Related Posts (ARPs) in SO. For instance, Bi et al. [5] mined posts from SO and
structured the design relationships between architectural tactics and quality attributes used in practice.
Liu et al. [9] extracted SO posts and mined the design pattern use scenarios and related design pattern
pairs. Soliman et al. [10] developed a search approach (i.e., a domain specific search approach) for
searching architecture knowledge in SO. In another work, Soliman et al. [11] conducted an empirical
study with 50 software engineers, who used Google to make design decisions using Attribute Driven
Design [12], and they determined how effective web search engines are to find relevant architectural
information from various sources (including SO) and to capture AK. Malavolta et al. [13] extracted data
from five open source software repositories (including SO), and mined architectural tactics for energy-
efficiency applied by practitioners in real robotics projects. Tian et al. [14] studied SO users’ conception
of architectural smells using SO posts. The abovementioned studies extracted ARPs from SO and
investigated architecture knowledge (high-level concepts) from different aspects. However, prior work is
only based on architecture related questions and their associated answers. In contrast, our work covers
the entire ARP, including its question, all comments under the question, all answers associated with the
question, and all comments under the answers. In addition, no prior study has specifically investigated
architectural knowledge provided in ARPs (answers) with regard to their usefulness. Moreover, there
has been no comprehensive research on exploring architectural knowledge communicated by SO users
in terms of their types, design contexts, characteristics, and usefulness, which is the focus of this study.
Analyzing and understanding how SO users deal with architecture design concerns in online developer
communities, such as SO, brings three benefits: (1) it provides key insights about the types of design
problems SO users face during their architecture design and the types of architecture solutions discussed
as well as their usefulness, (2) it can help to know the design contexts in which architecture problems are
raised, and (3) it can help to know the characteristics of architecture problems and solutions discussed.
These benefits provide an opportunity to develop new techniques and tools that can help SO users search
and (re)use architectural knowledge shared in online developer communities. Therefore, this study aims
to complement prior works by analyzing the characteristics and categories of ARPs in SO as well as
their usefulness from the point of view of SO users. In this study, we treated usefulness (one quality
criterion of posts, e.g., answers, in Q&A sites [15]) using the definition in [15] (i.e., are the answers useful
to address the questions?).

To achieve the goal of this study (see Section 3.1), we conducted an exploratory study to investigate
various aspects (e.g., categories and characteristics) of ARPs in SO. More specifically, we extracted
32,182 posts from SO. We went on to manually filter out irrelevant posts and got 10,423 candidate
ARPs. Since 10,423 candidate ARPs were a quite large dataset, and it was not easy to manually analyze
this size of dataset with human effort and get accurate and comprehensive results, we used the power
statistics and calculated a representative sample size [16] of these 10,423 ARPs. With a 95% confidence
level and 3% margin of error, the final representative sample size calculated was 968 ARPs. Then, we
randomly selected 968 ARPs from the 10,423 ARPs and analyzed them for answering a set of research
questions (see Table 1). Specifically, we manually analyzed the 968 ARPs using open coding and constant
comparison from Grounded Theory (GT) [17] to answer those research questions. The main results
and findings of this study are that: (1) SO users ask a broad spectrum of architecture related questions
ranging from architecture tool to architecture configuration, architecture implementation to architecture
deployment. (2) The useful architecture solutions are classified into seven categories as a taxonomy
(see Figure 4), such as solution for architecture configuration, solution for architecture implementation,
architecture tactic, and architecture pattern. One observation is that the identified categories of these
posts (questions and answers) cover almost all the architecting activities that span from the initial
stages (i.e., architectural analysis and synthesis [18]) of architectural creation as well as the later stages
(i.e., architectural implementation and maintenance & evolution [19]) in a system lifecycle. Thus our
identified categories of ARPs can support the mentioned architecting activities during the architecture
lifecycle, and SO can be considered as one of the sources of architectural knowledge [6]. We found

2

that architecture related questions that provide clear descriptions together with architectural diagrams
increase their likelihood of getting more than one answer, while poorly structured architecture questions
tend to only get one answer. (3) SO users frequently use two terms related to usefulness (i.e., useful
and helpful) to explicitly communicate about the usefulness of certain architecture solutions provided to
their associated architecture related questions.

This study makes the following three contributions: (1) a classification and characterization of ar-
chitecture related questions that SO users (e.g., developers) asked in SO; (2) a list of identified design
contexts in which architecture related questions were raised; and (3) a classification (i.e., a proposed
taxonomy) and characterization of useful architecture solutions in SO. Our study findings can be ben-
eficial to various stakeholders. For example, researchers can refer to our proposed taxonomy of useful
architecture solutions in SO as a guidance to develop new automated approaches and tools that could
mine and locate architecture solutions (e.g., solution for architecture configuration, see Figure 4) for
addressing similar design concerns (e.g., questions that ask about architecture configuration, see Table
5). This can facilitate SO users to check the questions and solutions that are relevant to their design
concerns. SO can use our results to better adjust its answers and comments organization mechanisms
and enhance the search and (re)use of useful architecture solutions in SO.

The rest of this paper is structured as follows: Section 2 presents the background of the study.
Section 3 describes the research methodology, and Section 4 elaborates the study results. Section 5
analyzes the results and discusses their implications. Section 6 presents the threats to the validity of the
study results, and Section 7 summarizes the related work. Finally, Section 8 concludes this work with
potential areas of future research.

2. Background

In this section, we introduce the background concepts used in this study, including Stack Overflow,
architecture knowledge, architecture problem, design context, and architecture solution.

2.1. Stack Overflow
Stack Overflow is one of the websites that make Stack Exchange1 network, which provides a Q&A

platform for its users to share knowledge across various domains (e.g., programming, design, statistics,
mathematics). SO users exchange knowledge related to software development by asking questions or
providing answers to existing questions. Among other development knowledge, architecture knowledge,
such as drawbacks and benefits of architecture solutions (e.g., patterns and tactics) in certain application
domains, has been shared at SO to support architecting activities [20][21]. Mining architecture knowledge
in Q&A websites, specifically in SO, has been the subject of the architecture research community in recent
years, such as architectural knowledge for technology decisions [6] and architecture tactics and quality
attributes [5], in order to support the architecting process.

2.2. Architecture knowledge
Software Architecture (SA) is a set of structures comprising software elements, the relationships

among them, and the properties of the elements and relationships [22]. Building an architecture of a
software system often requires knowledge, especially architecture knowledge [23], and skills. Architecture
knowledge, such as architecture decisions and their rationale [24], benefits and drawbacks of architecture
solutions [6], is one of the most important types of knowledge in software development [22]. Architectural
knowledge is often described in various formats, such as textual and graphical representation [25] and this
knowledge is recorded in various sources, such as books [22], technical blogs and tutorials [11], developer
mailing lists (e.g., ArgoUML [26]), Q&A sites (e.g., SO [5]). In this study, we investigated architecture
knowledge discussed in SO from various aspects, such as categories and characteristics of ARPs in SO,
SO users’ discussions on the usefulness of architecture solutions provided in SO.

2.3. Architecture problem
Architecture problems (such as “any testable architecture or design pattern for an MFC applica-

tion?”2) arise during development when addressing specific architecture design concerns (e.g., quality

1https://stackexchange.com/sites
2https://tinyurl.com/2z69uzs5

3

https://stackexchange.com/sites
https://tinyurl.com/2z69uzs5

attributes) and their trade-offs [22]. There are various problems related to architecture design that are
asked in SO. In this study, we investigated the categories of architecture problems/questions, specifically,
the categories of architecture related questions asked in SO (see Section 4.1).

2.4. Design context
Design context of a software system comprises the knowledge that an architect needs to have about

the environment (e.g., a hardware platform) in which a system is expected to operate [27]. Design contexts
can be seen as “conditions that influence design decisions but are not specified explicitly as requirements”
[28]. Harper and Zheng suggested that design contexts are forces that influence stakeholders’ concerns
[29]. There are some works that categorize design contexts. Bedjeti et al. identified four context
categories of an architecture viewpoint (i.e., platform context, user context, application context, and
organizational context) [27]. Petersen and Wohlin provided a checklist for documenting design contexts
from six perspectives: product, processes, practices and techniques, people, organization, and market [30].
Groher and Weinreich studied environmental factors that influence architecture decision making [31], and
they identified eight categories: company size, business factors, organizational factors, technical factors,
cultural factors, individual factors, project factors, and decision scope. In our study, we investigated
the design contexts that were discussed in architectural related posts in SO, and we referred to the
classification of design contexts proposed in two existing studies [27][30] (see Section 4.2).

2.5. Architecture solution
Architecture solutions are the fundamental building blocks in modern software design and they

are used to address architecture design concerns [22]. There are various architecture solutions, such as
patterns, tactics, and frameworks for addressing different design concerns. Architecture patterns (e.g.,
Model–View–Controller, Client-Server, Publish-Subscribe patterns) are reusable solutions to commonly
occurring problems in architecture design within given contexts [22]. Contrarily to changing implemen-
tation (e.g., low-level code), once an architecture solution (e.g., an architecture pattern) is adopted and
implemented, it is quite difficult and costly to change it [22]. Architecture patterns determine the overall
structure and behavior of a software system [32] and are typically selected early during development for
achieving multiple system requirements (e.g., quality attributes) [22]. In this study, we studied SO users’
discussions on the usefulness of architecture solutions, for example, patterns, tactics, frameworks (see
Section 4.5), as well as the categories and characteristics (in Section 4.6) of architecture solutions that
were considered useful in SO.

3. Research design

We carried out an exploratory study on various aspects (e.g., categories and characteristics) of ARPs
in SO. In the following subsections, we describe the details of the research design of this study, including
the goal and Research Questions (RQs) in Section 3.1 and the execution of this study in Section 3.2.

3.1. Goal and research questions
The overall goal of this study based on Goal-Question-Metric approach [33] is “to analyze the ARPs

(questions and answers) in SO for the purpose of investigating their categories, characteristics, and
usefulness from the point of view of SO users in the context of software development in practice”.
Following the goal of this research, we derived six research questions (see Table 1) that aim to examine
four aspects that highlight the question and answer threads of SO posts, including (1) categorization of
architecture related questions, (2) the design contexts in which architecture related questions were raised,
(3) characterization of architecture related questions that have more than one answer and characteristics
of architecture related questions that only have one answer, and (4) categorization and characterization
of architecture solutions that are considered useful.

3.2. Study Execution
In this subsection, we describe the process of data collection and analysis of ARPs. Figure 1 shows

an overview of the two processes (i.e., data collection and analysis).

4

Table 1: Research questions and their rationale

Research Question Rationale

RQ1. What architecture related
questions are asked in SO?

Architecture related questions (design problems) are mainly asked to ad-
dress certain design concerns (e.g., quality attributes of a system) during
architecting activities, for example, architectural analysis. SO curates dif-
ferent types of architecture related questions that are raised with various
design issues. The answer to this RQ can help researchers to be aware of
the areas of interest of SO users in architecture design and help practition-
ers to get an insight into the architecture related questions asked in SO so
that they can provide practical contributions.

RQ2. What are the design con-
texts in which architecture related
questions were raised?

Design contexts comprise the knowledge about the environments in which
systems are expected to operate [27]. Design contexts are indispensable
ingredients that can drive the architecture design of a system [27]. A system
of similar functionalities can operate differently in different contexts [30].
Although the importance of considering design contexts during architecture
design has been recognized, there is limited understanding on what design
contexts are considered in architecture design. The answer to this RQ can
help researchers and practitioners be aware of typical design contexts in
which architecture related questions are raised in SO.

RQ3. What are the characteristics
of architecture related questions in
SO that have more than one an-
swer?

One major challenge during architecture design is choosing the right archi-
tecture solutions to address the requirements of the systems [34]. Although
different architecture solutions act as alternative solutions to similar ar-
chitecture problems, they differ in terms of their qualities [34]. Therefore,
providing more than one answer (e.g., alternative solutions) to architecture
problems/questions is important as they provide a wide range of possibili-
ties for making architecture design decisions. With this RQ, we identify and
examine the characteristics of architecture related questions that get more
than one answer. By characteristics of an architecture related question,
we mean certain features, such as architectural diagrams, in the content of
the question or question formulation [35], that distinguish the architecture
related question to another or make the architecture related question get
attraction from SO users and get more than one answer. The answer to this
RQ can help researchers and practitioners know what motivates SO users
to provide more solutions to these questions, and consequently improve or
prevent unanswered architecture related questions in SO.

RQ4. What are the characteristics
of architecture related questions in
SO that only have one answer?

Some architecture related questions fail to continuously get attention from
SO users by answering them. Similar to RQ3, we want to examine the
factors behind this situation. We study the characteristics of architecture
related questions that only get one answer. The answer of this RQ can help
researchers and practitioners know what demotivates SO users to continue
answering these questions and design general guidelines for SO users to
compose architecture related questions with the likelihood of getting more
responses in SO.

RQ5. What are the types of ar-
chitecture solutions provided in SO
that are considered useful by SO
users?

There are many architecture solutions (e.g., tactics and patterns) to ad-
dress architecture related questions provided in SO. However, the quality of
solutions/answers provided in SO has been a major concern for researchers
and practitioners. As elaborated in the related work (see Section 7), this
is evident in the growing number of studies, in which the focus is on an-
alyzing the quality of the content in SO posts from different perspectives,
for example, code and text. The results of this RQ can help researchers
and practitioners be aware of types (a taxonomy) of architecture solutions
considered useful in SO.

RQ6. What are the characteristics
of architecture solutions in SO that
are considered useful by SO users?

Zhang et al. [8] argued that accepted, highly voted, and frequently viewed
SO posts are not always reliable or useful in SO. Identifying the features
of architecture solutions that are considered useful helps to better under-
stand what SO users consider when accepting architecture solutions as
useful ones, thus providing insights for improving the current answering
mechanism of architecture related questions and helping SO users retrieve
their desired architecture solutions.

5

Phase I: Gathering Architecture Related Posts (ARPs)

Stack Overflow

Query with keywords

Returned posts Returned posts

Query with keywords

32,182
 retrieved posts

Filter ARPs from others posts
(e.g., programming and
hardware related posts)

Is it an
ARP?

Stack
Exchange

API

Pilot
filtering

Disagreements
&

Discussions

Formal
filtering

Apply inclusion &
exclusion criteria

10,423 valid
ARPs

Consensus on
inclusion &
exclusion

criteria

Phase II: Determining the representative sample size

968 ARPs (RQ1, RQ2)

Identifying questions with
more than one answer

Identifying ARPs with
useful information

Data extraction
and analysis

650 questions (RQ3)

ARP
categories, characteristics,

and design contexts

Identifying questions with
only one answer

318 questions (RQ4)

324 ARPs (RQ5, RQ6)

Figure 1: An overview of data collection and analysis

3.2.1. Data collection
Our data collection is divided into two phases, namely Phase I: Gathering architecture related posts

and Phase II: Determining the representative sample size, as detailed below:

Phase I: Gathering architecture related posts

a) Search terms: Before we decided the most suitable terms for capturing posts relevant to architec-
ture design, we first performed a pilot search with several terms, namely “architect*” (i.e., “architect”,
“architecture”, “architectural”, and “architecting”) and “design*” (i.e., “design” and “designing”), within
SO. The process was carried out by using a SQL query through the query interface provided by StackEx-
change Data Explorer3, which is a web interface that allows the execution of SQL queries on data from
Q&A sites, including SO. After the pilot search with the mentioned terms, we saw that SO users mostly
use the terms “design*” (i.e., “design” and “designing”) in the programming context in SO, for instance,
“singleton design pattern”4. Moreover, we were aware that Soliman et al. [6] identified distinctive terms
between ARPs and pure programming posts from their studied sample of SO posts. However, in our
study, we did not use those distinctive terms to search ARPs in SO due to the following two reasons:

(1) The purposes of our work and Soliman et al.’s work in [6] are different. The purpose of the work
in [6] is technology related architecture knowledge extraction from SO. Specifically, the authors in [6]
identified and analyzed ARPs that mainly discuss architectural knowledge for technology decisions, such
as the pros and cons of a technology solution in a certain application. In addition, the authors in [6]
claimed that they did not find many pure architectural concepts (such as architectural pattern or tactic)
in their dataset of ARPs. In contrast, our study takes the problems from a wider scope. Specifically,
our study aims to identify and analyze ARPs from SO by looking at various architectural information,
including architecture patterns, tactics. Therefore, using the specific distinctive terms, such as versus,
alternative, pros, cons, xmpp, that were found in [6] may lead to missing other relevant ARPs, which
may affect the completeness of the retrieved ARPs.

(2) Using the distinctive terms found in Soliman et al.’s work [6] may lead to bias in the search
results. The relevancy and completeness of extracted ARPs may affect the correctness of the answers to
our six RQs (see Table 1). Thus, including the specific distinctive terms that were found in [6] in the
search queries may lead to the situation that the search results are biased to those terms.

3https://data.stackexchange.com/stackoverflow/query/new
4https://tinyurl.com/8yks7nhm

6

https://data.stackexchange.com/stackoverflow/query/new
https://tinyurl.com/8yks7nhm

Therefore, we selected the general terms “architect*” (i.e., “architect”, “architecture”, “architec-
tural”, and “architecting”) to be used in our search. It is worth mentioning that we did not use the
search terms to search exclusively through tags only because tags can sometimes be less informative
and ineffective [36]. There are several disadvantages of using tags as the only approach to determine
whether a post is related to a topic. This is due to the reason that a user who created a post could
be unsure about the title of the most appropriate tag for their discussion, which can lead to the use
of incorrect or irrelevant tags [37]. For example, in this architecture related post5 that asked for an
architecture pattern that can be used in the design of a single webform application, a developer used
tags (“jc#”, “asp.net”, and “web”), and these tags cannot immediately tell in which contexts (e.g.,
architecture or programming context) they are really used. Another problem with user-defined tags is
that users may try to add as many tags as possible (SO allows up to 5 tags) to raise the number of views
and probably increase the probability of getting responses quickly [38]. Thus, while tags can be helpful
to capture posts related to architecture design, using tags exclusively may miss important posts on this
topic. Hence, we decided to add the title and body of the questions into the search. For example, by
following the criteria of the query interface provided by Stack Exchange6, for the term “architect”, we
searched in the title, tags, and body of posts by using this query: SELECT p.Id, p.Tags, p.Title,
p.Body as “Questions Body”, p.Score as “Questions Score”, p.Answercount as “Answer
Count” FROM Posts p WHERE (p.Body like ‘%architect%’ or p.Title like ‘%architect%’ or
p.Tags like ‘%architect%’) AND p.Score >0 and p.AnswerCount <>0 ORDER BY p.Score DESC.
In our replication package [39], we provided the complete SQL query used to search ARPs in SO, such
as how the title, tags, and body of a post were combined during the search. The searching process
resulted in 32,182 posts (see Figure 1). Note that we used the mentioned search terms (i.e., “architect”,
“architecture”, “architectural”, and “architecting”), not for the purpose of accumulating all ARPs in
SO, but for gathering sufficient data for a relatively comprehensive analysis to achieve the goal of this
study.

b) Filtering ARPs from other posts (i.e., programming and hardware related posts): We found that
SO users use the term “architecture” not only in the context of software architecture, but also in other
contexts, such as hardware architecture context (e.g., ARM6 CPU architecture7) and programming con-
text (e.g., array architecture8), when describing their concerns in the SO posts. Therefore, we need to
filter the retrieved 32,182 posts and exclude those posts related to programming and hardware architec-
ture. To do so, we performed context analysis and applied our defined inclusion and exclusion criteria
(see Table 2) to accurately filter and separate software ARPs from other types of posts mentioned above.

Before the formal post filtering (manual inspection), to reach an agreement about the inclusion
and exclusion criteria (see Table 2), a pilot filtering was performed whereby the first author took a
random sample of 1,000 posts from the 32,182 posts. He manually checked them with our defined
criteria (see Table 2). The other three authors checked and examined the results so that all the authors
(four authors) of this study could get a consensus on the understanding of the defined inclusion and
exclusion criteria. Thereafter, we got controversy and misunderstanding on 51 posts from the filtered
results. Such controversy and misunderstanding were discussed between the four authors of this study
till a consensus was reached. The first author carried on with the formal post filtering based on the
inclusion and exclusion criteria. The process continued till all the 32,182 posts were manually checked.
This step resulted in 10,423 candidate ARPs (see Figure 1). The results from this round were checked
and verified by the other three authors of this study, and it took us twenty one full days to identify and
separate ARPs from programming and hardware architecture related posts in these 32,182 posts.

Phase II: Determining the representative sample size

The 10,423 candidate ARPs (filtered from the previous phase (i.e., Phase I)) are a quite large
dataset, and it is not realistic to analyze this size of dataset with human effort and get accurate and
comprehensive results. Thus, in order to get statistically significant results, we used the power statistics
and calculated a representative sample size [16] of these 10,423 ARPs. At a confidence level of 95%,
we set a margin of error (i.e., how much we can expect our analysis results to reflect the view of the
overall dataset) to 3% for the whole 10,423 ARPs. The final representative sample size calculated is 968

5https://tinyurl.com/mb9y37z4
6https://data.stackexchange.com/stackoverflow/query/new
7https://tinyurl.com/f8sjvzz2
8https://tinyurl.com/3ps7b3ek

7

https://tinyurl.com/mb9y37z4
https://data.stackexchange.com/stackoverflow/query/new
https://tinyurl.com/f8sjvzz2
https://tinyurl.com/3ps7b3ek

Table 2: Inclusion and exclusion criteria for filtering ARPs from programming and hardware related posts

Inclusion criteria

I1. An ARP should contain a discussion on software architecture, for example, architecture design and
architecture tactics.

I2. An ARP should contain at least one answer attached to its architecture related question as we aim to
study the factors that make these questions have more than one answer or only have one answer and the
usefulness of their answers.

I3. An ARP should contain at least one data item that can be extracted according to the data items
defined in Table 4.

Exclusion criteria

E1. An ARP that has a score (i.e., medium number of down/upvote) that is less than 1 is excluded since
we want to make sure that all studied posts have attracted enough attention from the community [40].

ARPs. Then, we randomly selected 968 ARPs from the 10,423 ARPs and analyzed them for answering
the six RQs (see Table 1). To be more specific, except for RQ1 and RQ2 on which we used 968 (a
representative sample size of ARPs) to answer them, we used subsets of the 968 ARPs that satisfy our
defined criteria (in the following steps) with respect to the purposes of the remaining RQs (i.e., RQ3,
RQ4, RQ5, and RQ6) (see Table 1). We followed the following steps to further divide our calculated
representative sample size of ARPs (968) into subsets of the ARPs that are relevant to answering the
remaining RQs:

Step 1: Identification of questions that have more than one answer (RQ3) and questions that only
have one answer (RQ4). As stated in the rationale of these two RQs (see Table 1), we want to examine
the factors that make such architecture questions get more than one answer or only get one answer.
Thus we considered comments posted on architecture related questions by referring to these two studies
[41][42], in which the authors argued that the quality of an answer is a combination of both the answer
and its associated comments as comments may provide additional information about the answer, for
example, improvement of answers [42] and obsoleted answers [41]. Therefore, in our study, we included
comments posted on architecture related questions and studied what makes these posts get more than
one answer (RQ3) or only get one answer (RQ4). More specifically, the first author manually checked
968 ARPs and their comments, and got 650 architecture related questions (wherein each question has
more than one answer). These questions were used to answer RQ3 (see Figure 1). On the other hand,
the first author followed the same procedure (manual inspection of the 968 ARPs for RQ3) and got 318
architecture related questions (wherein each question has only one answer). These questions were used
to answer RQ4 (see Figure 1).

Step 2: Identification of ARPs with useful knowledge. For answering RQ5 and RQ6, we need to
identify ARPs with useful knowledge from the representative random sample of ARPs (968 ARPs). We
referred to these two studies (i.e., [41, 42]) to identify ARPs with usefulness knowledge. These studies
by Zhang et al. [41, 42] argued that the quality of an answer is a combination of both the answer
and its associated comments as comments may provide additional information to support the answer,
such as improvement of answers [42] and obsoleted answers [41]. Therefore, in this study, we included
the information in comments to gain a deep understanding of how SO users discuss the usefulness of
architecture solutions provided to their architecture related questions in SO. In this study, we did not
consider vote score for answering RQ5 and RQ6 since even highly voted SO posts are not always reliable
or useful as argued by Zhang et al. [8]. We observed that SO users occasionally use terms related to
usefulness, such as “helpful”, in the comments to indicate that certain architecture solutions provided to
their architecture related questions are useful (see Figure 2). Thus, based on this observation along with
the aid of our defined selection criteria in Table 3, we manually checked and filtered the 968 ARPs to
identify solution threads with useful knowledge (each solution thread includes all solutions to a question
(i.e., accepted & not-accepted solutions) and all the comments that are associated with the solutions.
Specifically, to filter out ARPs that do not discuss the usefulness of architecture solutions and reach an
agreement about the criteria defined in Table 3, two authors (i.e., the first and second authors) did a pilot
ARPs filtering. They independently and manually examined a random sample of 20 ARPs from the 968

8

ARPs. Similar procedure (i.e., selecting a random sample of data from a large dataset and subsequent
manual filtering) has also been employed in recent studies, such as [43]. To measure the inter-rater
agreement between the first two authors, we calculated the Cohen’s Kappa coefficient [44] and got an
agreement of 0.898. Note that before a solution was finally included as a relevant one (i.e., a useful
solution), the first and second authors first read the solution that was commented to be useful/helpful in
order to verify if it is really useful to address the question. Disagreements on the ARPs were discussed
between the two authors till a consensus was reached. Then the first author carried on to check and
filter the remaining ARPs. The number of resulting ARPs (with useful knowledge) that were used to
answer the two RQs (RQ5 and RQ6) is 324 ARPs (see Figure 1).

Figure 2: An example answer that was commented to be helpful

Table 3: Inclusion and exclusion criteria for identifying ARPs with useful knowledge

Inclusion criterion

I1. A comment in an answer thread must contain one of the keywords related to usefulness, such as “useful”,
“helpful”, “beneficial”, “handy”, and “effective”, and this comment is used to signify the usefulness of the
answer.

Exclusion criteria

E1. The keyword related to usefulness, for example, “useful”, “helpful”, “beneficial”, is used to talk about
something else (e.g., a question or answer itself is related to a “usefulness” topic rather than being a sign
that the answer is likely useful).

E2. An ARP with controversy discussions on the answer (i.e., if there are two comments in the same
answer thread, and one states the usefulness of the answer while another states its uselessness) is not
included.

3.2.2. Data extraction and analysis
(1) Data extraction: We performed the data extraction process by identifying the relevant informa-

tion to be extracted from 968 ARPs to answer our defined RQs (see Table 1). In Table 4, we present
the data items for which the relevant information was extracted from the candidate ARPs. It also shows
the RQs that are supposed to be answered using the extracted data. The data extraction was subse-
quently followed by data analysis, and these two processes were conducted and recorded with the aid of
MAXQDA (a qualitative data analysis tool)9.

9https://www.maxqda.com/

9

https://www.maxqda.com/

Table 4: Data items to be extracted from the ARPs with their description, analysis approaches, and relevant RQs

Data item Description Data analysis approach RQs

D1 Content of the
question

The main content of the
question in the ARP

Open coding & constant com-
parison

RQ1

D2 Design context The design context elabo-
rated in the content of the
question in the ARP

Predefined classifications in [27]
and [30]

RQ2

D3 Content of the
question and its
comments

The main content of the
question and a summary of
the question’s comments in
the ARP

Open coding & constant com-
parison

RQ3, RQ4

D4 Content of the an-
swer

The main content of the an-
swer in the ARP

Open coding & constant com-
parison

RQ5

D5 Content of the an-
swer and its com-
ments

The main content of the an-
swer and a summary of the
answer’s comments in the
ARP

Open coding & constant com-
parison

RQ6

(2) Data analysis:

Similarly to several existing studies (e.g., [4]), we used open coding & constant comparison to answer
RQ1 and RQ3-RQ6 in our study. Open coding & constant comparison are two widely used techniques
from Grounded Theory [17] during qualitative data analysis. Grounded Theory (GT) is a bottom-up
approach and focuses on theory generation, rather than extending or verifying existing theories [17].
Open coding generates codes for incidents that can be further classified into concepts and categories [17].
Constant comparison is a continuous process for verifying the generated concepts and categories. Both
concepts and categories evolve and saturate until they fit the data [17]. Thus, in this study, we employed
open coding & constant comparison techniques from GT to generate the concepts and categories for
answering RQ1 and RQ3-RQ6. Specifically, we used open coding to encode the extracted data items
for RQ1 and RQ3-RQ6 (see Table 4) to generate codes. Afterwards, we applied constant comparison to
compare the codes identified in one piece of data with the codes that emerge from other data to identify
the codes which have similar semantic meanings. We proceeded to group similar codes into high-level
concepts and categories. On the other hand, we employed predefined classifications of design contexts
in [27] and [30] to answer RQ2. We followed the same procedure (encoding and grouping similar codes
into high-level categories) to answer RQ2.

Before the formal data analysis, the first author conducted a pilot data analysis for each RQ.
Specifically, this analysis process involved the following steps: (1) The first author selected a random set of
100 ARPs from the representative sample size calculated (i.e., 968 ARPs). (2) The first author coded the
extracted data (see Table 4) for each RQ. When such posts were unclear and the first author got confused
while coding the extracted data, physical meetings with the second author were scheduled to solve such
confusion. (3) The first author applied constant comparison and grouped all the codes into higher-level
concepts and turned them into categories and subcategories. The grouping process was iterative, in
which the first author continuously went back and forth between the concepts, categories, subcategories,
and contents of the questions, answers, and comments to revise and refine the concepts, categories, and
subcategories. (4) Thereafter, other three authors (the second, third, and fourth authors) checked and
validated the results from the pilot data analysis (i.e., concepts, categories, and subcategories). The
disagreements were resolved in a meeting using a negotiated agreement approach [45] to improve the
reliability of the pilot data analysis results. The first author carried on with the formal data analysis
and followed similar steps used during the pilot data analysis. In the following paragraphs, we provide
details of the formal data analysis process:

a) For analyzing RQ1, RQ3, and RQ4

As abovementioned, we used open coding and constant comparison [17] to manually analyze the
extracted data (i.e., content of the question for RQ1 and content of the question and its comments for

10

RQ3 and RQ4) as shown in Table 4. With these RQs, we investigated architecture related questions from
two aspects, namely categorization (RQ1) and characterization (RQ3 and RQ4) of these questions (see
Table 1). Specifically, regarding the categorization of the questions, the first author studied the content
of each architecture related question (from the ARPs that are relevant to answer RQ1 (see Figure 1))
by exploring and identifying their main purposes (e.g., design concerns), such as asking for help on
how to refactor the architecture of a system (e.g., refactoring of circular dependencies). Thereafter,
the first author summarized each question’s purpose in a short sentence. Firstly, the first author went
on to encode the summarized sentence. This process was iterative, in which he continuously applied
this technique till all ARPs in the dataset were encoded. Secondly, the first author applied constant
comparison to compare the codes identified in one summarized sentence with the codes that emerged
from other summarized sentences to check the codes which have similar semantic meanings. The first
author proceeded to group similar codes into high-level concepts, categories and subcategories. The
grouping process was iterative, in which the first author continuously went back and forth between the
concepts, categories, subcategories, and contents of the questions to revise and refine both the concepts,
categories and their subcategories. To mitigate the personal bias during the formal data analysis, the
other authors (second, third, and fourth authors) of this study participated in the validation of the
generated codes, concepts, categories, and subcategories. The disagreements were resolved in a meeting
using the negotiated agreement approach [45] to improve the reliability of the analysis results for RQ1 as
during the pilot data analysis. We finally got 9 high-level categories and 21 subcategories as the results
of RQ1, and these results are fully elaborated in Section 4.1.

As mentioned in Section 3.2.1, for answering RQ3 and RQ4, we manually checked the 968 ARPs to
identify ARPs with more than one answer (RQ3) and ARPs with only one answer (RQ4). This led to two
subsets of the 968 ARPs (i.e., 650 ARPs and 318 ARPs) relevant to answering RQ3 and RQ4 (see Figure
1). Specifically, in the formal data analysis, the first author analyzed the questions and their attached
comments (from the ARPs of the two mentioned subsets, 650 ARPs and 318 ARPs, of the 968 ARPs)
by encoding the extracted data for the two RQs (i.e., content of the question and comments as shown in
Table 4). He wanted to study if there might be such factors, for example, question formulation [35] or
certain features in the question (e.g., architecture diagram) that contribute to such architecture related
questions having more than one answer or only having one answer. For example, when investigating RQ3
(questions with more than one answer), one community member posted a comment under an architecture
related question saying that “+1 great question, very well-articulated”10, for this comment, he picked
a phrase (i.e., a summary of that comment) “well-articulated”. Subsequently, he went on to study the
content of the question (e.g., how architectural information is stated in the question) under which this
comment was commented, and then he came up with one code that fits this question. He followed the
same processes (e.g., grouping similar codes into high-level concepts, categories) that the used when
analyzing RQ1 to analyze these two RQs (RQ3 and RQ4). To mitigate the personal bias, the results
from this analysis were checked and validated by other three authors of this study. As in the analysis
of RQ1, we held a meeting and followed the negotiated agreement approach [45] to discuss and resolve
any disagreement, therefore improving the reliability of the analysis results for RQ3 and RQ4. In the
final analysis, we generated four characteristics of architecture related questions that have more than
one answer and five characteristics of architecture related questions that are that only have one answer
as the results of RQ3 and RQ4, respectively. The details about these four characteristics for RQ3 and
five characteristics for RQ4 are provided in Section 4.3 and Section 4.4.

b) For analyzing RQ2

We employed pre-defined classifications in [27] and [30] to answer RQ2. Specifically, the first author
manually analyzed the extracted data for RQ2 (i.e., design contexts, see Table 4) from the questions
in the ARPs relevant to answering RQ2 (see Figure 1). The first author then examined the extracted
data to investigate the design contexts in which architecture related questions were raised. By referring
to the categories of design contexts presented in the abovementioned studies, three main categories and
eight subcategories were generated from the analyzed ARP questions. The personal bias was mitigated
through the validation of the generated categories and subcategories with the other three authors of
this study. As in the analysis of the previous RQs, the disagreements were discussed and resolved in a
meeting using the negotiated agreement approach [45] to improve the reliability of the analysis results
for RQ2. The results of RQ2 are presented in Section 4.2.

10https://tinyurl.com/dfw27h38

11

https://tinyurl.com/dfw27h38

c) For analyzing RQ5 and RQ6

These two RQs aim to investigate the usefulness of architecture solutions in SO. As discussed in
Section 3.2.1, in order to answer these two RQs, we defined a set of criteria (see Table 3) and filtered
ARPs with useful knowledge. For clarity, we examined these two RQs from two aspects:

We investigated how SO users discuss the usefulness of architecture solutions attributed to their
associated architecture related questions. We needed to gain insights into ways (e.g., terms) SO users
may use to communicate the usefulness of architecture solutions in SO. In addition, understanding SO
users’ discussions on the usefulness of these solutions is important to direct Q&A platform owners in
creating the mechanisms that can help their users to efficiently and effectively search and (re)use such
useful architecture solutions. To achieve this, we manually checked comments attached to the solutions
in the 968 ARPs with the aid of our defined criteria (see Table 3). We found that SO users occasionally
use terms related to usefulness, such as “helpful”, in the comments along with other terms (e.g., “very”,
“super”) to explicitly convey how useful they found certain architecture solutions (e.g., see Figure 2). As
stated in Section 3.2.1, the number of resulting ARPs (with useful knowledge) that were used to answer
the two RQs (RQ5 and RQ6) is 324 ARPs (see Figure 1). It is worth noting that we did not count on
the occurrence of the terms, e.g., “useful” (and similar) stated in comments to measure the usefulness of
such architecture solution given to an architecture related question in our study. As explained above, we
referred to information in the comments attacked to the solutions to examine SO users’ discussions on the
usefulness of architecture solutions. We mean the reaction of SO users after seeing and using architecture
solutions given to their associated architecture related questions, for example, see a comment in Figure
2. Moreover, before such ARPs (solutions) were finally included for analysis, we first read the solutions
commented to be helpful and their associated questions to check if they are really useful (i.e., are the
solutions/answers useful to address the questions? [15]). In Section 4.5, we provide more details about
the identified terms related to usefulness (e.g., “helpful”) along with other terms (e.g., “extremely”,
“very”) (from 324 ARPs) that SO users use in comments to explicitly signify how useful they found
architecture solutions provided to their associated questions.

During the data analysis for these two RQs (i.e., the taxonomy of architecture solutions considered
useful (RQ5) and their characteristics (RQ6)), the first author followed the same procedures (e.g., coding
and grouping similar codes into high-level categories) that were used when analyzing RQ1. One thing to
elucidate when analyzing RQ5 to construct a taxonomy is that the first round of grouping yielded seven
main categories. In the second round, the all the authors of this study proceeded to further generate
subcategories and types from these seven main categories, ensuring that these main categories, their
subcategories, and types follow an “is a” relationship. The grouping process was iterative, in which
the authors continuously went back and forth between categories, subcategories, types, and solutions
to refine the taxonomy. The final results of this analysis yielded a taxonomy of 7 main categories, 20
subcategories of which 1 were encoded as “Others” (i.e., refer to codes that did not fit into the already
generated subcategories), and 85 types. Note that the negotiated agreement approach [45] was used to
discuss and resolve any disagreements. The final taxonomy as the result of RQ5 is elaborated in Section
4.5. Four characteristics were distilled as the results of RQ6 and are detailed in Sections 4.6.

Note that while categorizing and characterizing ARPs in SO by reading through those posts, we
observed that a single ARP may contain multiple types of architecture knowledge. For example, in
this ARP11 from our dataset, an SO user asked about alternative architecture patterns for Model View
Controller (MVC) pattern (i.e., alternative architecture solutions). In the question body, the user asked
the reasons that could drive someone to decide to use those alternative architecture patterns over MVC
(i.e., architecture decisions and their rationale), the types of systems that the alternative architecture
patterns are typical used for (i.e., design context), and the pros and cons that come along with using those
alternative architecture patterns (i.e., benefits and drawbacks of architecture solutions). We encoded such
a post with multiple types of architecture knowledge accordingly. Moreover, while analyzing ARPs in our
dataset, we noted down and then discussed the results (e.g., categories of architecture related questions
and taxonomy of useful architecture solutions) during the qualitative data analysis. This has led to
several interesting findings and actionable implications for various stakeholders, which are presented in
Section 4 and Section 5, respectively. The dataset collected and used in this study and the details of
data analysis (e.g., coding in MAXQDA) are available online for replication and validation purposes [39].

11https://tinyurl.com/2d8r6w8m

12

https://tinyurl.com/2d8r6w8m

4. Results

In this section, we present the results to our RQs that we got from data analysis (see Section
3.2.2). The result of each RQ is presented in a dedicated subsection, ending with the key findings of the
corresponding results.

4.1. Categories of architecture related questions (RQ1)
Categories of architecture related questions that SO users ask in SO were determined using the open

coding and constant comparison techniques described in Section 3.2.2. We examined questions in the 968
ARPs to answer this RQ (see Figure 1). Our data analysis yielded 9 main categories and 21 subcategories
of architecture related questions. Table 5 shows the mentioned categories, their subcategories, their
percentages of occurrence (out of 968 ARP questions), and count information. As shown in Table 5,
architecture configuration (27%, 261 out of 968 ARP questions), architecture decision (19%, 181 out
of 968 ARP questions), and architecture concept (15%, 142 out of 968 ARP questions) are the top
three categories of most frequently asked architecture related questions. In the following, we report
those categories and subcategories. Where required, we provide an SO question example to support the
understanding of the categories and their subcategories.

Table 5: Categories of architecture related questions, their subcategories, and their counts & percentages

Category Subcategory Count

Architecture configuration (27%, 261)
Architecture configuration with technologies support 144

Architecture pattern configuration 117

Architecture decision (19%, 181)
Technology decision 104

Behavioral decision 77

Architecture concept (15%, 142)

Architecture overview 62

Basic architectural concept 32

Architecture component functionality 26

Specific architecture pattern 22

Architecture implementation (12%, 119)
Architecture component implementation 79

Architecture pattern implementation 40

Architecture tool (10%, 99)
Architecture modeling tool 34

Model-based code generation tool 30

Usage of architecture tool 21

Code-based model generation tool 14

Architecture evolution (6%, 55)
Architecture extension to meet new requirements 42

Component extension to meet new requirements 13

Architecture refactoring (5%, 45)
Refactoring of circular dependencies 21

Refactoring of large components 13

Refactoring of big ball of mud 11

Architecture deployment (4%, 34)
Application deployment to meet quality attributes 24

Application deployment to meet functional requirements 10

Architecture documentation (3%, 32) 32

(1) Architecture configuration questions in this category ask about how to configure compo-
nents and connectors in software systems. The types of components and connectors could either belong
to certain technologies (e.g., Windows Communication Foundation (WCF) and Windows Presentation
Foundation (WPF)) or other architectural concepts (e.g., architecture patterns). This category is the
most common (27%, 261 out of 968 ARP questions) category of architecture related questions in SO (see

13

Table 5). We further classified this category into two subcategories, in which architecture configuration
with technologies support surpasses half of the questions (144 out of 261 ARP questions of the architecture
configuration category) that SO users ask in this category (see Table 5).

• Architecture configuration with technologies support is concerned about how to configure an ar-
chitecture of an application with specific technologies (e.g., WPF, WCF). For instance, in this
question12, a developer asked about how to configure or build a scalable Web-based application by
using WCF: “Does anyone have any experience with how well web services build with Microsoft’s
WCF will scale to a large number of users? The level I’m thinking of is in the region of 1000+ client
users connecting to a collection of WCF services providing the business logic for our application
(...)”.

• Architecture pattern configuration seeks practical guidance on how to configure a specific architec-
ture pattern (e.g., Model View Controller and hexagonal architecture patterns) when designing an
application to achieve certain requirements (e.g., functional requirements). For example, in this
question13, a developer asked about how to configure an application that conforms to a Hexagonal
architecture pattern by stating that: “I’m looking for some guidance or best practices for how
to configure and structure an application which conforms to Hexagonal architecture that supports
multiple (driver) adapters simultaneously (...)”.

(2) Architecture decision: SO users ask this type of questions mostly when they want to decide
between two or more alternative architecture solutions when deigning their software systems. Among
two subcategories identified in this category, the technology decision subcategory contains the majority
of questions (104 out of 181 ARP questions of the architecture decision category) that SO users ask in
this category (see Table 5).

• Technology decision is mainly concerned about choosing between two or more technology solutions
(e.g., frameworks, databases) to meet certain requirements at the architecture level. Moreover,
various aspects can be considered during this choice, such as technology features, benefits, and
drawbacks [34]. For instance, in this question14, a developer asked about the reasons that could
drive him or her to decide to use Cassandra over HBase for his/her application by stating that:
“HBase is known for being a key-value store and random reads with .get and .put functions based on
the key. Is Cassandra a better choice for suiting a requirement of key-value store? Can it support
random reads based on key? If so, in which conditions should I choose Cassandra over HBase in a
Spark Streaming application?”.

• Behavioral decision is concerned with deciding how certain elements in a system would interact
together to provide some functionality or to satisfy certain quality attributes [46]. For example,
a developer wanted to decide on either to let clients connect directly to the database or let the
connection go through the web service by asking this question15: “Recently I have been developing
a system to run a high secured database (using vb.net and SQL Server 2005). I want to increase
the security of the database so no connection will be made directly to the database but instead
a HttpWebRequest is sent to a web service which then connects to the database and returns the
requested data table in XML format. My concern is just about the performance, I cannot decide
either to let clients connect directly to the database or let the connection go through the web service”.

(3) Architectural concept includes theoretical related questions about software architecture. We
divided this category into four subcategories, among which architecture overview contains the majority
of questions (62 out of 142 ARP questions of the architecture concept category) that SO users ask in this
category.

• Architecture overview questions are concerned with the information about the general working
mechanism or overview of certain existing architecture. For instance, in this question16, a developer
asked about architectural overview of Drupal version 7: “Could someone provide an architectural
overview of the Drupal 7 control flow? Perhaps in the sense of a flowchart about how a page gets
generated (...)”.

12https://tinyurl.com/yuxjp2su
13https://tinyurl.com/4kn6t27e
14https://tinyurl.com/k9xzkman
15https://tinyurl.com/4pjh3ufk
16https://tinyurl.com/2a9hb3ek

14

https://tinyurl.com/yuxjp2su
https://tinyurl.com/4kn6t27e
https://tinyurl.com/k9xzkman
https://tinyurl.com/4pjh3ufk
https://tinyurl.com/2a9hb3ek

• Basic architectural concept refers to questions that seek explanations about basic concepts in soft-
ware architecture. For instance, in this question17, a developer was seeking explanations about
several architecture concepts, such as a architecture pattern: “Is MVC a pattern or architecture or
framework? What is a pattern? What is an architecture? (...)”.

• Architecture component functionality is concerned with the use, purpose, or functionality of certain
components in the architecture. For example, in this question18, a developer was asking about the
use or purpose of the lifecycle aware component in Android based application: “We already have a
Lifecycle in our Activity/Fragment then why will we use Lifecycle aware component & kindly guide
me the main purpose of it. And if we use lifecycle aware then why we use lifecycle that we knew
already”.

• Specific architecture pattern questions ask about particular architecture patterns that are commonly
used in the design of certain applications to address functional or non-functional requirements. For
instance, in this question19, a developer asked about commonly used architecture patterns for three-
dimensional (3D) video game applications: “What are some of the more common design patterns
used when developing 3D games? Are there any high-level architectural design patterns that are
commonly used? (...)”.

(4) Architecture implementation questions ask about how to implement a certain software
system according to its architecture design. The architecture design is refined in detailed design, and
then implemented in code. Architecture implementation category has two subcategories, among which
architecture component implementation occupies the majority of questions (79 out 119 ARP questions
of the architecture implementation category) that SO users ask in this category.

• Architecture component implementation is concerned with how components should be implemented
in the system. For instance, in this question20: “How to implement a single component sharing in
different modules in Angular 7 while using lazy loading?”.

• Architecture pattern implementation questions are about the ways certain architecture patterns are
implemented with regard to the fundamental design principles. For example, in this question21:
“How to implement MVC in Swift? I’ve been building Swift apps where basically all the functionality
is in the ViewController. I know this isn’t the optimal way to do it because design patterns help
you expand the app but I don’t really understand them (...). How do I go about turning this into a
Model-View-Controller design?”.

(5) Architecture tool: There are various architecture tools (e.g., Enterprise Architect, Archi,
Cloudcraft) that can be used to assist in the architecture design of a software system. With our dataset,
we found architecture related questions in which SO users ask about these tools and classified them
in the architecture tool category. We further classified this category into four subcategories, among
which architecture modeling tool contains the majority of questions (34 out of 99 ARP questions of the
architecture tool category) that SO users ask in this category.

• Architecture modeling tool questions ask about tools that can enable the creation or drawing of
architectural diagrams to model or represent an architecture of a software system during the design.
For example, in this question22: “I am a newbie in TOGAF and I need to start a first trial. I
am trying to model my architecture. Which tool do you advise me to use in order to model my
architecture using TOGAF?”.

• Model-based code generation tool refers to questions that ask about architecture tools that can
enable the generation of code from architectural models. For instance, in this question23: “Please
suggest me any open source tool to generate C# code from UML designer (...). My requirement is
to have a code generation tool for C#”.

• Usage of architecture tool questions look for instructions on how to use certain architecture tools

17https://tinyurl.com/5burxuca
18https://tinyurl.com/3x35jzu6
19https://tinyurl.com/2u2df8z5
20https://tinyurl.com/kp73y3wk
21https://tinyurl.com/mpmvwb5c
22https://tinyurl.com/ndf7mrnc
23https://tinyurl.com/jwkvtzwc

15

https://tinyurl.com/5burxuca
https://tinyurl.com/3x35jzu6
https://tinyurl.com/2u2df8z5
https://tinyurl.com/kp73y3wk
https://tinyurl.com/mpmvwb5c
https://tinyurl.com/ndf7mrnc
https://tinyurl.com/jwkvtzwc

(e.g., Archi, Microsoft Visio). For instance, in this question24: “How to add UML/layer diagram
to an existing solution in VS 2015 community? There is no architecture menu there?”.

• Code-based model generation tool is concerned with tools that assist in architectural models gen-
eration or recovery from the codebase. For example, in this question25: “I need to make a UML
class diagram for a project (...) I do not really want to write all the classes/functions manually,
so I was trying to generate the diagram from the source code but can’t seem to find a way or tool
to do it. (...)”.

(6) Architecture evolution: SO users ask this type of architecture related questions when seeking
help on how they can re-architect and expand their existing architecture for the purposes of achieving
certain new requirements (functional or non-functional requirements). Among two subcategories iden-
tified in this category, the architecture extension to meet new requirements subcategory contains the
majority of questions (42 out of 55 ARP questions of the architecture evolution category) that SO users
ask in this category (see Table 5).

• Architecture extension to meet new requirements is concerned with practical guidance for expanding
an existing architecture of a system to address certain new functional or non-functional require-
ments. The changes do not only happen in one component, but they may happen in almost the
whole architecture of the system. For example, in this question26: “I am expanding/converting a
legacy Web Forms application into a totally new MVC application. The expansion is both in terms
of technology as well as business use case (...). The new project has two primary goals: Extensibil-
ity (for currently and future pipeline requirements) and Performance (...). Is there a way in DDD
to achieve both, Extensibility that DDD provides and performance that DBDD provides?”.

• Component extension to meet new requirements includes questions that ask about the extension of
certain architectural components to meet some new functional or non-functional requirements in
existing and running software systems. This is different from the above subcategory, as here the
change or extension happens in local to a specific component or layer, rather than affecting the
whole architecture of the system. For instance, in this question27: “We are currently evaluating
CQRS and Event Sourcing architecture (...). What happens if, after an application has been up
and running for a while, there is a new requirement to add an additional field to a ViewModel on
the ReadModel database? Say, the Customer Zip Code is required on the CustomerList ViewModel,
where it was not previously”.

(7) Architecture refactoring: SO users ask this type of architecture related questions when
they want to restructure architecture of systems aiming at improving non-functional attributes of those
systems without modifying their external behaviors. This category includes three subcategories, where
most of the questions (21 out of 45 ARP questions) are related to the subcategory refactoring of circular
dependencies.

• Refactoring of circular dependencies is concerned with techniques and tools that can help remove
undesirable circular or cyclic dependency issues among modules so that layering violations can
be addressed and dependency structure can be improved in the systems. For instance, in this
question28: “I am working on the MVC project where I am following the layered architecture (...).
Now, my Business Logic Layer(BLL) is depending on the Data Access Layer (DAL) which is
depending on BLL because domain objects are inside BLL. So, both are having reference to each
other (...). How can I overcome the circular dependency?”.

• Refactoring of large components is concerned with approaches that can help refactor large compo-
nents in software systems. For instance, in this question29: “I have a pretty large table component
and I want to separate its body section into new component. Each time I am trying to do this, the
styling of table gets broken (...). I would like to have exactly this same page after this refactoring.
Does anyone know how to pass styling to this new child component, or how to make thing styling
work again ?”.

24https://tinyurl.com/52zffbw3
25https://tinyurl.com/n7rz24mu
26https://tinyurl.com/ymbyzcvz
27https://tinyurl.com/3rh9xmhs
28https://tinyurl.com/475dvbp5
29https://tinyurl.com/475dvbp5

16

https://tinyurl.com/52zffbw3
https://tinyurl.com/n7rz24mu
https://tinyurl.com/ymbyzcvz
https://tinyurl.com/3rh9xmhs
https://tinyurl.com/475dvbp5
https://tinyurl.com/475dvbp5

• Refactoring of big ball of mud: Big ball of mud occurs when a software system lacks a perceivable,
flexible, and appropriate architecture [47]. This subcategory includes questions that ask about
approaches and tools for big ball of mud refactoring. For instance, in this question30: “What step
would you take to refactor a ball of mud CF app into something modern and maintainable”.

(8) Architecture deployment collects architecture related questions that ask about how certain
software systems should be deployed in the hosting environments to meet requirements (e.g., functional
and non-functional requirements). According to our studied dataset, we divided this category into two
subcategories, among which application deployment to meet quality attributes contains the majority of
questions (24 out of 34 ARP questions of the architecture deployment category) that SO users ask in this
category.

• Application deployment to meet quality attributes includes architecture related questions that ask
about methods and tools that assist in the deployment of applications in the hosting environments
to meet quality attributes (e.g., availability and performance). For instance, in this question31, a
developer asked how to deploy a microservice based system with zero downtime: “At the moment
I’m working on an application which will be based on the Microservice architecture. As main
technologies, we planned to use Spring Boot and Docker for each Micro Service development. One
of the goals/requirements is to provide a Zero Downtime Deployment feature for the users (...).
Any suggestions on the Zero Downtime Deployment process? If you have any great ideas for a
different architecture or maybe you’ve used tools which can help us here (...)”.

• Application deployment to meet functional requirements covers architecture related questions that
ask about methods and tools that assist in the deployment of software systems to meet functional
requirements. For example, in this question32, a developer asked about the method s/he can
follow in order to deploy his/her microservices based application in the production environment so
that each service of the application can call each other: “I am trying to deploy my microservices
architecture to production env. Now I have 15 services, 1 Facade Layer, Facade Layer calls services,
gets data, aggregates them, and generates the final result. Also, services call each other(rarely but
yes, they call each other) (...). So I have decided that I will have 5 Boxes (5 high-end servers).
A, B, C, D, E A will be LVS (for Load Balancing) B & C will host the Facade layer. So when
the request came for Facade, it will come from A and load balanced to B & C (...). So B & C box
will contain each one haproxy instance also since when Facade Layer calls services, it will be load
balanced (...). But my question is how should I allow my services to call each other? (...)”.

(9) Architecture documentation: This is the only category of architecture related questions
with no subcategories in our studies dataset. The architecture documentation category includes ques-
tions that ask about methods and tools that assist in the documentation of architecture of software
systems. For instance, in this question33, a developer asked about the best practices and tools for
documenting architecture of different types of systems: “What are the best practices and software tools
for documenting software design and architecture for PC based applications based on Java or .NET?
Embedded Applications based on VxWorks or Embedded Linux or Windows CE? (...)”.

Key Findings of RQ1

Finding 1: SO users ask a broad range (9 categories) of architecture related questions, among
which architecture configuration (27%, 261 out of 968 ARP questions), architecture decision (19%,
181 out of 968 ARP questions), and architecture concept (15%, 142 out of 968 ARP questions)
are the top three categories of most frequently asked architecture related questions.

4.2. Categories of design contexts (RQ2)
This RQ aims to investigate the categories of design contexts in which architecture related questions

were raised. As described in Section 3.2.2, to answer this RQ, we used a predefined classifications of
design contexts from [27] and [30]) when analyzing the extracted data for RQ2 (i.e., design contexts)

30https://tinyurl.com/j6rdefeb
31https://tinyurl.com/4tyd4yt6
32https://tinyurl.com/37dmd6av
33https://tinyurl.com/msnbc7xb

17

https://tinyurl.com/j6rdefeb
https://tinyurl.com/4tyd4yt6
https://tinyurl.com/37dmd6av
https://tinyurl.com/msnbc7xb

from the 968 ARP questions (see Figure 1). We found that most (71%, 687 out of 968) of our analyzed
ARP questions describe their design contexts (i.e., the knowledge about the environments in which the
systems are expected to operate [27]), and then the responders provided potential solutions with rationale
based on the given design issues and design contexts. In addition, we identified three main categories
and eight subcategories of design contexts. We report the mentioned categories, their subcategories,
their percentages of occurrence (out of 687 ARP questions), and count information in Table 6. It is also
evident from Table 6 that application context is the most common (54%, 377 out of 687 ARP questions)
category of design contexts, and organizational context is the least significant category (8%, 56 out of
687 ARP questions).

Table 6: Categories of design contexts, their subcategories, and their counts & percentages

Design Context Subcategory Count

Application context (55%, 377)
Application domain context 313

External service context 64

Platform context (37%, 254)
Software context 139

Hardware context 115

Organizational context (8%, 56)
Development schedule context 36

Stakeholders context 13

Resources context 7

(1) Application context refers to the software system or product that is to be designed. It is
accessed through a device (platform entity) to deliver services to end-users [27]. This category includes
two subcategories, in which the application domain context subcategory is the most (313 out of 377 ARP
questions) common one.

• Application domain context describes the domain/type of the application that is being developed
(such as E-commerce system, banking system, distributed system) [30]. Some SO users like to
reveal in their architecture related questions what kind of application domains they are about
to design in order to get potential and relevant architecture solutions that fit their application
domains. For example, in this question34, a developer mentioned that s/he was designing an E-
commerce system: “I am designing an E-commerce using microservices architecture. Suppose that
I have two contexts: a product catalog, inventory and pricing. It’s seems clear to me that they have
a clear responsibility. But to serve the show case (the product list) I need to make a request for the
product catalog, get a list of ID’s and then use it to query the Inventory micro services to check
inventory status (in stock or stock out). Besides that I need to make a request to Pricing to get the
price of each product (...). I have been reading about microservices architecture and when you are
dealing with many ‘joins’ it’s possible that the these contexts should be a single one (...). We can
use a domain event to notify ‘search’ microsecond that something has changed. So we can resolve
show case with a single request. This look like a CQRS. Is there a correct approach? Which one is
better ? Trade-offs?”.

• External service context refers to specifications of external software services that the application
uses [27]. For example, in this question35, a developer mentioned that s/he was designing a system
that will require to use Azure or Amazon cloud services: “Basically my question is on the application
architecture. Designing for hosting is easy but cloud computing adds new challenges (...). I am
not certain what I should do in designing an application for safety engineers, so a high uptime is
important. So, if my application is written in ASP.NET, using SQL Server, it would seem that my
best bet is to design for Azure, but would Amazon’s solution be a good choice? How would I decide
if I should just have everything on the same system or have the data on Amazon’s cloud and the
ASP.NET on Azure? (...). I decide on the language, does that lock me into a cloud solution?”.

(2) Platform context comprises the hardware technology a user employs to access an application,

34https://tinyurl.com/2p93nesu
35https://tinyurl.com/2p8phmr6

18

https://tinyurl.com/2p93nesu
https://tinyurl.com/2p8phmr6

the software it runs, and the network capabilities of such technology [27]. In our dataset, we identified
two platform contexts (i.e., software and hardware context).

• Software context comprises information about the software elements of the device, such as the Op-
erating System (OS) or other installed applications. This subcategory collects the ARP questions
that describe the software elements of the device (e.g., OS) on which the planned software system
will need to run in production [48]. We found that some SO users provide this kind of information
when asking architecture related questions. For example, in this question36: “I need to build one
mobile application starts with windows phone 7 and then need to convert the application to other
platforms like Android, iOS. The application contains many screens with data capture and all the
data stores it in local storage and finally, it is passed to a central server. I would like to know how
the architecture needs to be designed (...)”.

• Hardware context comprises the platform entity which defines the device through which the user
accesses and uses the application, and can be of different types, such as desktop, laptop computers,
and wearable mobile devices [27]. The hardware context category gathers ARP questions that
mention hardware technologies (e.g., desktop computers) through which the users access and utilize
the planned applications. For example, in this question37, a developer mentioned that s/he was
developing a desktop application: “We want to start develop an intermediate desktop software. We
decided to use the WPF. We don’t want to use the MVVM pattern. Because we are not familiar with
MVVM. Is it true to develop WPF application without MVVM pattern (using 3 layer architecture
but without MVVM) although does it have better performance than win forms yet?”.

(3) Organizational context refers to the development schedule (e.g., time-to-market), the people
(i.e., stakeholders), or the resources that could influence the development of software systems. This
category includes two subcategories, in which the development schedule context subcategory is the most
(36 out of 56 ARP questions) common one.

• Development schedule describes the time put on software development. For example, in this ques-
tion38 a developer mentioned that the development time for a software project was restricted to
only three months: “For personal and university research reasons I am thinking of building a simple
CRM using a service-oriented architecture (...). The architecture that I’m designing defines: - We-
bGUI (a client of the other services) - AnalyticsService (a service that receives data, analyzes, and
collects it) - CustomerCareService (a service that uses RESTful APIs to apply CRUD operations
(...). What sort of authentication is more suitable for a client (user token vs OAuth or similar).
I’ve about 3 months to do it (...)”.

• Stakeholders context describes the people who are involved in the development of a software system,
for example, project managers, owners, architects, developers, users, among others. For instance,
in this question39 an asker mentioned a number of developers that was involved in the development
of 3D Map application by stating that: “I’m trying to develop 3D Map, and I found 3 solutions:
Use game engine (like unity) or Use 3D graphic API (OpenGL, etc) or Web app. Is there another
way to do it? And which one of those three solutions (design decision) is better? (with reason) (..)
Developers: 3 programmers”.

• Resources context denotes the lack (or availability) of resources (e.g., financial or technological
competencies) at disposal to develop an application [49]. For instance, one developer needed to
update an application with a tight budget and stated in this question40 that: “I have to build a
database/image-rich application that’s only going to increase in size (scalability). I am on a budget,
but do have a rather good 3Ghz Xeon server with 400 GB space. Any ideas? a good way for an
individual on a TIGHT budget”.

36https://tinyurl.com/2p8nd2kw
37https://tinyurl.com/yc2eyvhs
38https://tinyurl.com/2bu5yu65
39https://tinyurl.com/yra7d3y7
40https://tinyurl.com/4pjp3ntj

19

https://tinyurl.com/2p8nd2kw
https://tinyurl.com/yc2eyvhs
https://tinyurl.com/2bu5yu65
https://tinyurl.com/yra7d3y7
https://tinyurl.com/4pjp3ntj

Key Findings of RQ2

Finding 2: Most of the SO users (71%, 687 out of 968 ARP questions) considered design contexts
when asking architecture related questions.
Finding 3: Application context is the most common (54%, 377 out of 687) category of design
contexts in ARP questions, whereas organizational context is the least significant design context
category (8%, 56 out of 687) in ARP questions.

4.3. Characteristics of architecture related questions that have more than one answer (RQ3)
Some architecture related questions are continuously getting more attention from SO users by an-

swering them. This motivated us to investigate why such architecture related questions get more than one
answer in SO by characterizing those questions. As mentioned in Section 3.2.2, we used two techniques
(i.e., open coding and constant comparison) from Grounded Theory [17], to examine the characteristics
of ARP questions that have more than one answer from 650 ARPs (a subset of 968 ARPs) (see Figure
1). As discussed in Section 3.2.2, we referred to the contents of the questions and comments attached to
questions to understand what factors (e.g., question formulation [35] or certain features in the question
(e.g., architectural diagram)) that contribute to such architecture related questions getting more than
one answer. The outputs of our data analysis generated four common characteristics of architecture
related questions that have more than one answer. We provide these four common characteristics and
their counts & percentages in Table 7, which shows that well-articulated architectural information is the
most (46%, 297 out of 650 ARP questions) frequent characteristic while upvoted architecture question
comes as the least (8%, 51 out of 650 ARP questions) frequent characteristic of architecture related
questions that have more than one answer. Moreover, we show the numbers of answers of the ARPs that
have more than one answer in Figure 3.

(1) Well-articulated architectural information in the question: The main reason an archi-
tecture related question would continuously be answered is that its architectural information is well-
articulated. This question provides an overview of the planned software system and its basic principles
(e.g., design contexts and architectural constraints) to help other SO users perceive what the question
is really about (the purpose of the question). For example, a comment: “+1 great question, I want to
say that this is a beautifully and very well-articulated question!)” was posted under this question 41 that
illustrates and explains well the encountered architecture concerns (i.e., architecting a system to meet
the scalability and visualization of data).

(2) Clear description together with architectural diagrams in the question: Another
reason an architecture related question would continuously be answered is that it is easy to read and
understand, for example, the question which clearly states necessary information about the components
and connectors together with interfaces and relationships to other components. Also, providing diagrams,
such as architectural component diagrams that depict and clarify the logical architecture view of software
systems, contributes to questions continuously being answered. For example, before one responder started
answering this question 42, this responder stated that: “Your question is clearly described. Thanks for
the little graph you drew to help clarify the overall architecture (...)”.

(3) Alternative architecture solutions to answer the question: Although different architec-
ture solutions act as alternative solutions to similar design problems, they differ in terms of their qualities
[34]. For example, two architecture solutions may both address the interoperability concern but may
differ into addressing performance concern. However, such alternative architecture solutions are of sig-
nificant importance as they provide a wide range of possibilities for choosing and making design decisions
on candidate architecture solutions for certain design issues. In this study, we noticed that questions
that ask about choosing between various architecture solutions, such as technologies (e.g., databases,
frameworks, and programming languages), are continuously getting new answers (alternative solutions).
For example, SO users were interested in choosing a right combination of message formats with message
transmission techniques in order to achieve quality attributes, including high performance, availability,
scalability, among others, for their Ruby and Java applications interaction, and they posted a question43:

41https://tinyurl.com/dfw27h38
42https://tinyurl.com/74fr8mwe
43https://tinyurl.com/44sey2a2

20

https://tinyurl.com/dfw27h38
https://tinyurl.com/74fr8mwe
https://tinyurl.com/44sey2a2

“We have cloud-hosted (RackSpace cloud) Ruby and Java apps that will interact as follows (....). We
are interested in evaluating both message formatting (such as JSON) as well as message transmission
techniques (RPC, REST, SOAP, etc.). Our criteria are high performance, availability, scalability (...).
What combination of message format and transmission method would you recommend? Why?”.

(4) Upvoted architecture question: Usually, in SO, if a question is consistently getting upvote
count, its likelihood of being answered or getting more answers increases [50], and architecture related
question is no exception. In our data analysis, we realized that this factor (upvoted architecture question)
also contributes to architecture related questions having more than one answer. For example, in this
architecture related post44, a responder stated in the title of the answer thread when s/he was answering
the question: “Since this question got upvoted several times I would like to share what I did in the end
(...)”.

Table 7: Characteristics of architecture related questions with more answers and their counts & percentages

Characteristic Count

Well-articulated architectural information 297 (46%)

Clear description together with architectural diagrams in the question 174 (27%)

Alternative architecture solutions to answer the question 118 (18%)

Upvoted architecture question 51 (8%)

0

5

10

15

20

25

30

35

40

1 100 199 298 397 496 595

N
u

m
b

e
r

o
f

an
sw

e
rs

ARP that has more than one answer

Figure 3: Numbers of answers of the ARPs that have more than one answer

Key Findings of RQ3

Finding 4: Well-articulated architectural information is the most (46%, 297 out of 650 ARP
questions) frequent characteristic of architecture related questions that have more than one an-
swer.
Finding 5: The presence of architectural diagrams (e.g., components diagrams) in the architec-
ture questions increases the chance of these questions to get more than one answer.

4.4. Characteristics of architecture related questions that only have one answer (RQ4)
We found out that some architecture related questions gain less attention from SO users to be con-

tinuously answered. Analogous to the two previous RQs (i.e., RQ1 and RQ3), we applied two techniques
(open coding and constant comparison) to study the characteristics of questions that only have one
answer from 318 ARPs (a subset of 968 ARPs) (see Figure 1). As detailed in Section 3.2.2, similar to
RQ3, we referred to the contents of the questions and the comments attached to questions to understand

44https://tinyurl.com/7bc8764a

21

https://tinyurl.com/7bc8764a

what factors demotivate the responders to continue answering certain architecture related questions. We
identified five common characteristics of those questions with their counts & percentages in Table 8,
which shows that lacking information in the question (39%, 125 out of 318 ARP questions) and poorly
structured architecture question (22%, 69 out of 318 ARP questions) are the two major characteristics
of architecture related questions that only have one answer. Below, we elaborate these characteristics in
detail with examples from ARPs.

(1) Lacking information in the question: Architecture related questions that lack certain
significant information (e.g., missing information on components and connectors together with interfaces
and relationships to other components) fail to attract community members to provide their answers.
For example, one developer pointed out that some information is missing in this architecture related
question45: “Your question cannot be answered without doing (many) assumptions. More information is
needed about the module’s dependencies. Are they stateless? Can you draw a flow of the requests?”.

(2) Poorly structured architecture question: We found that architecture related questions that
are poorly structured (e.g., not well articulated) fail to clearly reveal their purposes to the community
members so that they can provide answers. These questions sound unclear, vague, or hard to follow. For
example, in this question46 a developer asked about how to implement the interactors in Android MVP
clean architecture but failed to clearly structure well his/her question, and another developer came and
commented: “So what exactly is your question?”. The asker came back and edited the question to make
it clear so that other community members could understand what the question is really about.

(3) Architecture considered as off-topic: Even though architecture related questions are being
asked in SO, SO is mainly designed for programming information seekers. Therefore, architecture being
not directly for programming related issues but mainly for high-level structure related concerns, this
leads to the situation that architecture related questions get less attention from the community and
consequently only get one answer or remain unanswered in SO. For example, a developer asked about
the overview of ZeroMQ architecture, and another developer commented under this question47 by saying
that: “I’m voting to close this question as off-topic because it’s not really about programming”.

(4) Proprietary technology in the question: We found a few questions, asking about propri-
etary technologies, such as databases and frameworks that are not widely used, get less attention in SO
and consequently get only one answer. For instance, in this architecture related post48, a community
member claimed to be one of the technology founders of RethinkDB in the title of the answer when s/he
was answering a question. Other community members kept asking more questions about that RethinkDB
(a not widely used database) in the comment thread, and those questions have remained unanswered.
For example, “Disclaimer: I’m one of the founders of RethinkDB. Sorry for the longish answer (...).
RethinkDB is designed with a very flexible architecture (...)”.

(5) Duplicate architecture question: Similar to other types of questions (e.g., programming
questions) in SO, some architecture related questions get few answers (i.e., one answer) or remain unan-
swered because they are duplicate architecture questions. Community members do not like to re-answer
questions that were answered before [50]. They would like the askers to review the site (i.e., to check if
their questions have not been posted and answered) before posting such new questions. For example, a
comment: “duplicate of stackoverflow.com/questions/15142386/. . . ”, was posted under this architecture
related question49.

Key Findings of RQ4

Finding 6: Lacking information in the question (39%, 125 out of 318 ARP questions) and poorly
structured architecture question (22%, 69 out of 318 ARP questions) are the top two most frequent
characteristics of architecture related questions that only have one answer.

45https://tinyurl.com/btukhpzx
46https://tinyurl.com/3m6fzjbe
47https://tinyurl.com/rmpfarjc
48https://tinyurl.com/nrz66x3w
49https://tinyurl.com/2p9382hh

22

https://tinyurl.com/btukhpzx
https://tinyurl.com/3m6fzjbe
https://tinyurl.com/rmpfarjc
https://tinyurl.com/nrz66x3w
https://tinyurl.com/2p9382hh

Table 8: Characteristics of architecture related questions with few answers and their counts & percentages

Characteristic Count

Lacking information in the question 125 (39%)

Poorly structured architecture question 69 (22%)

Architecture considered as off-topic 51 (16%)

Proprietary technology in the question 32 (10%)

Duplicate architecture question 29 (9%)

4.5. Taxonomy of architecture solutions that are considered useful (RQ5)
This RQ aims to construct a taxonomy of architecture solutions that are considered useful in SO.

As discussed in Section 3.2.2, when answering this RQ, we first investigated how SO users discuss
the usefulness of architecture solutions attributed to their associated architecture related questions. We
needed to gain an understanding of the ways (e.g., terms) SO users may use to communicate the usefulness
of architecture solutions in SO. Understanding SO users’ discussions on the usefulness of these solutions
is important to direct Q&A platform owners in creating the mechanisms that can help SO users to
efficiently and effectively search and (re)use such useful architecture solutions. We found that SO users
frequently use two terms related to usefulness (i.e., “useful” and “helpful”) along with six other terms
(i.e., “definitely”, “very”, “really”, “super”, “extremely”, and “incredibly”) in the comment threads (see
Figure 2) to explicitly express their feedback about how useful they found certain architecture solutions
provided to their associated architecture related questions. Note that SO users may use other ways to
communicate the usefulness of architecture solutions in SO, and we cannot claim that we have identified
all usefulness terms. Secondly, as detailed in Section 3.2.2, we thoroughly and comprehensively examined
the contents of the solutions from 324 ARPs (a subset of 968 ARPs) with useful knowledge (see Figure 1)
to construct the taxonomy of these solutions. This examination yielded a taxonomy of 7 main categories,
20 subcategories of which 1 were encoded as “Others” (i.e., refer to codes that do not fit into the already
generated subcategories), and 85 types (see Figure 4).

23

Framework for embedded
system implementation

Drupal functionality
explanation

Architecture tactic Architecture pattern Explanation of architecture

Viewpoint for architecture
documentation (2)

Solution for architecture documentation

Explanation of CMS
architecture (16)

Architecture solution for deployment

Tactic for
availability (3) Tactic for security (4)

Data replication
tactic

Solution for architecture configuration Solution for architecture implementation

API for iOS application
implementation

API for architecture implementation
(18)

37 (11%) 30 (9%) 53 (16%)

59 (18%)13 (4%) 127 (39%)

Taxonomy of architecture solutions that are considered useful in SO

5 (2%)

Configuration solution for
platform (47)

Deployment process
with AppHabor for .NET
application

Tactic for performance (21)

Solution for iOS app
configuration

Solution for Linux
application configuration

Solution for Android
app configuration

Solution for Window
application configuration

Solution for tracking system
configuration

Architecture pattern suggestion
to meet quality attribute (17)

Tactic for
maintainability (9)

Deployment process
with Azure App Service
Deployment process with
AWS elastic container
Deployment process with
Bluemix

Solution for hotel management
system configuration
Solution for hospital management
system configuration

Solution for embedded system
configuration

Solution for social network
system configuration
Solution for real-time system
configuration

Solution for image processing
system configuration

Solution for VxWorks
application configuration

Solution for MacOS
application configuration

Solution for cross-platform
configuration

Framework for architecture
implementation (29)

Solution for E-commerce
system configuration

Framework for machine learning
application implementation

Authentication tactic

Solution for distributed system
configuration

Solution for game system
configuration

Solution for banking system
configuration

Scheduling resources
tactic

Use intermediary to
reduce coupling

Library for architecture
implementation (12)

Deployment process
with Kubernetes

Deployment process
with Docker Swarm

Others (5)

Communication link
encryption tactic

Configuration management
tool for deployment

Loading less data tactic for
computation

Pattern for modifiability, reusability,
and portability (Broker, MVC,
Layered, SOA)

Automatic class loading
tactic

Development viewpoint
for architecture
documentation

Explanation of database
architecture (6)

NoSQL database
functionality explanation

Functional
redundancy tactic

Pattern for scalability and
availability (Client-Server,
Broker, Microservice)

Encapsulation through
API introduction

In-memory caching tactic

EC2 functionality
explanation

Explanation of Cloud-
based architecture (28)

Less coupling tactic

WordPress functionality
explanation
TYPO 3 functionality
explanation

Graph database
functionality explanation

Tencent Kubernet
functionality explanation

Web server functionality
explanation

Explanation of Web server
architecture (3)

Application server
functionality explanation

 Library for computer vision
application implementation

API for Web-based application
implementation

API for cryptocurrency
application implementation

API for facial recognition application
implementation

API for video game system
implementation

Library for vector graphics
application implementation

Library for game system
implementation

Library for Android application
implementation

Time stamp tactic

Proxy server functionality
explanation

Framework for Android
application implementation
Framework for iOS
application implementation

Framework for Windows
applications implementation

Framework for cross-platform
application implementation

Framework for MacOS
application implementation

Simulator tool for
architecture deployment

Pattern for Android application
(MVP, MVVM, MVC, Observer)

Pattern for performance
(Layered)

Tool for architecture
documentation (3)

Tool for database
architecture documentation

Tool for Web application
architecture documentation

AppHarbor functionality
explanation

Framework for Web-based
application implementation

Limit access

Azure App service
functionality explanation

Tool for desktop application
architecture documentation

Category

Taxonomy Legend

Subcategory
(Number of posts)Type of solutions

Taxonomy

Number of posts
(Percentage)

Process for architecture
deployment (9)

Tool for architecture
deployment (3)

Configuration solution for
domain (75)

Architecture configuration
model
Configuration model
generation from code

Tool for continuous
deployment

Library for Web-based
application

Library for linear algebra
application

Pattern for time-critical system
 (Preemptive Multitasking)

Pattern for distributed
system (Broker, SOA)

Pattern for Web-based system
(MVC, Client-Server, SOA)

Usage of architecture
pattern (13)

Deployment viewpoint
for architecture
documentation

Figure 4: Taxonomy of architecture solutions that are considered useful

24

(1) Solution for architecture configuration: This is the largest category of architecture solu-
tions in our taxonomy (see Figure 4). The solutions in this category provide approaches and tools that
enable the configuration of components and connectors of the planned software systems. Among three
subcategories identified in this category, the configuration solution for domain subcategory collects more
than half of the solutions (75 out of 127 ARP solutions) discussed in this category (see Figure 4).

• Configuration solution for domain: This subcategory discusses approaches and tools for config-
uring applications of various domains, such as solution for distributed system configuration, solution
for banking system configuration, solution for E-commerce system configuration, and solution for
game system configuration (see Figure 4). Concerning the solution for distributed system configu-
ration type, a user asked about how to design and configure a 2/3 tier distributed application in
Java with certain components, including centrally shared database and multiple fat clients (Swing
based Graphical User Interface clients (GUIs)). S/he needed a simpler approach that could help
him or her to configure those clients so that each client can be informed about data changes com-
mitted to the database by another client. The first solution in this ARP50 is provided based on the
application domain (i.e., distributed application) described in the question. The solution suggests
to configure the application’s components (e.g., database and clients) by following Java EE dis-
tributed container/component-based architecture by stating that: “(...) Java EE is a distributed
container/component based architecture for the enterprise tier (...) You c/would design a messag-
ing domain with both topic/subscription based and straight up Queues. These can be declaratively
configured to be durable, or not, etc. (...)”.

• Configuration solution for platform provides approaches and tools that enable the configu-
ration of components and connectors of applications with regard to the platforms (e.g., Windows
OS) on which these applications will run in production. We identified seven commonly discussed
solution types in this category, such as solution for Android app configuration, solution for Win-
dows applications configuration, solution for iOS app configuration, and solution for cross-platform
configuration (see Figure 4). Regarding the solution for cross-platform configuration type, one SO
user needed to design and configure an application that sends data between two iOS devices (i.e.,
iPad and iPhone) with iPad acting as an iBeacon. The first solution in this ARP51 explains how the
application’s components including the iPad and iPhone could be configured by using an approach
that could support Android as well by stating that: “(...) I was forced into an architecture that
would support Android as well, so I switched to BlueTooth. The iPad acting as an iBeacon also has
BlueTooth code that is looking for ‘peripherals’ with a certain signature. Once the iPhone detects
the iBeacon, the app then starts transmitting a BlueTooth peripheral signal with the appropriate
signature (...)”.

(2) Solution for architecture implementation: The ARP solutions in this category provide
technology solutions, such as frameworks and libraries (see Figure 4), for implementing diverse architec-
ture designs to address the system requirements (e.g., quality attributes). According to our dataset, we
classified these technology solutions into three subcategories, among which framework for architecture
implementation contains the majority of solutions (21 out of 59 ARP solutions) that SO users discuss in
this category (see Figure 4).

• Framework for architecture implementation: These solutions gather different types of frameworks
for implementing architecture design, for example, framework for Web-based application (such
as Laravel, Django, Express.js, and Play frameworks), framework for iOS application (such as
SwiftUI, Flutter, and React Native frameworks), and framework for Windows applications (such
as WinForm, WPF, and UWP frameworks) (see Figure 4). Regarding the framework for Web-based
application type, a user asked about (among other things) a framework that could facilitate the
implementation of REST APIs in a Web-based application which will serve the content to mobile
apps. The third answer in this ARP52 suggests the Play framework as the solution to that question
by stating that: “Use Play! to do it all. Writing REST services in Play is very very easy (...)”.

• API for architecture implementation accumulates different types of APIs as solutions to questions
that ask about APIs for implementing architecture design, for instance, API for video game system

50https://tinyurl.com/jfnuke2w
51https://tinyurl.com/ytw52k6p
52https://tinyurl.com/2p8pm9rs

25

https://tinyurl.com/jfnuke2w
https://tinyurl.com/ytw52k6p
https://tinyurl.com/2p8pm9rs

(such as Pokeapi, Chicken Coop, Dota2, and Minecraft APIs), API for Web-based application
(such as REST, SOAP, RPC, and Geolocation APIs), and API for facial recognition application
(such as Lambda labs and Microsoft Computer Vision APIs) (see Figure 4). Concerning the API
for Web-based application type, one developer needed an API to implement a request-response
Web application in Service Orientated Architecture (SOA) in order to meet certain requirements
(including high performance). The second answer in this ARP53 suggests to use REST API over
SOAP API by noting that: “(...) consider also using REST API, it demands less overhead than
SOAP, and you can use JSON as document format which is also more compact than XML, lowering
network throughput requirements (...) SOAP has more fancy features that are not well supported
in all languages, if you use REST you will be more safe here (...)”.

• Library for architecture implementation: These solutions recommend various libraries for imple-
menting architecture, for example, library for linear algebra application (such as JBLSA, MTJ,
OjAlgo, and EJML), library for computer vision application (such as OpenCV library), library for
vector graphics application (such as DISLIN library), and library for Web-based application (such
as HPPC, Trove, and FastUtil) (see Figure 4). Regarding the library for vector graphic application
type, the first answer in this ARP54 suggests Raphaël library as the solutions to the question that
asks about vector graphics application by saying that: “(...) I chose RaphaëlJS and I have to say
it has been an absolute pleasure to use, and the help is fantastic too (...)”.

(3) Explanation of architecture: The ARP solutions in this category provide theoretical expla-
nations, purposes, or functionalities of architecture instead of providing concrete instructions on how to
do something (e.g., how to configure certain architectural components in the system). Explanation of
architecture category consists of four subcategories, among which explanation of cloud-based architecture
is the most (28 out 53 ARP solutions) discussed subcategory (see Figure 4).

• Explanation of cloud-based architecture provides theoretical explanations, differences, and func-
tionalities of the architecture of cloud computing services, such as Azure App service functionality
explanation, EC2 functionality explanation, and AppHarbor functionality explanation (see Figure
4). For instance, a user asked about the difference between Azure App Service and the AAzure
Service Fabric in terms of functionalities in software development. The fourth answer in this
ARP55 provides a detailed explanation about the difference between those two Azure platforms in
terms of functionalities in software development as the solution to that question by stating that:
“(...) They’re two separate platforms, following different development paradigms. The App Service
will give you functionality that Service Fabric doesn’t provide out of the box. Stuff like auto-scale,
authentication, rate limiting, integration with SaaS applications, etc. (...)”.

• Explanation of CMS architecture describes the functionalities of the architecture of Content Man-
agement Systems (CMS), such as Drupal functionality explanation and TYPO 3 functionality ex-
planation (see Figure 4). For example, the first answer in this ARP56 provides the architecture
overview of Drupal (together with an architectural diagram) as the solution to the question that
asks about the functionality of Drupal (e.g., control flow and how a page gets generated) by saying
that: “(...) Although it’s procedural PHP, it’s purely event/listener driven in its architecture, and
there’s no simple ‘flow’ in the main PHP script for you to look though (...) Drupal’s index.php file
functions as a front-side controller (...)”.

• Explanation of database architecture groups the ARP solutions that explain or describe the ar-
chitecture of datab”ase systems, for instance, NoSQL database functionality explanation (such as
Apache Cassandra) and Graph database functionality explanation (such as Nebula Graph) (see
Figure 4). For example, the first answer in this ARP57 provides an explanation about Cassan-
dra in terms of data replication to deal with data failure scenario as the solution to the question
that asks about the way Cassandra handles such a scenario if one node goes down containing the
record (data) a user is querying by stating that: “Cassandra clusters do replicate data across the
nodes. The specific number of replicas is configurable, but generally production clusters will use a
replication factor of 3. This means that a given row will be stored on three different machines in

53https://tinyurl.com/pakzw2yk
54https://tinyurl.com/259h4f6e
55https://tinyurl.com/2p8hnkmm
56https://tinyurl.com/2a9hb3ek
57https://tinyurl.com/wpvw6j5h

26

https://tinyurl.com/pakzw2yk
https://tinyurl.com/259h4f6e
https://tinyurl.com/2p8hnkmm
https://tinyurl.com/2a9hb3ek
https://tinyurl.com/wpvw6j5h

the cluster (...) In terms of servicing requests, if a node receives a request for data that it does not
have it will forward that request to the nodes that do own the data”.

• Explanation of Web server architecture provides the functionalities or difference between the ar-
chitecture of Web servers, for example, Web server functionality explanation (such as XAMPP,
IIS, and WAMP servers) (see Figure 4). For instance, the first answer in this ARP58 provides
detailed difference between XAMPP, WAMP, and IIS servers as the solution to the question that
asks about the difference between those three types of Web severs by expressing that: “(...) Their
(XAMPP and WampServer) differences are in the format/structure of the package, the configura-
tions, and (...) IIS is a web-server application just like Apache is, except it’s made by Microsoft
and is Windows only (Apache runs on both Windows and Linux) (...)”.

(4) Architecture tactic: This category of ARP solutions provide and explain architecture tactics
that enable the realization of specific quality attribute (e.g., performance and security) of software
systems. Four subcategories of architecture tactics were identified in this category, among which tactic
for performance is the most (21 out of 37 ARP solutions) discussed subcategory (see Figure 4).

• Tactic for performance provides and explains architecture tactics that assist in the realization of
the system performance requirements. We identified four architecture tactics for performance, such
as scheduling resources tactic and in memory caching tactic (see Figure 4). Regarding in memory
caching tactic, a developer wanted to choose a suitable design technique between two data handling
design techniques (i.e., working directly with a database or working with objects and letting the
ORM handle the storage) in order to boost the performance of the inventory system that should
handle thousands of item types and quantities of each item stored in a database. According to the
scenario elaborated in the question, the first answer in this ARP59 suggests to apply in-memory
caching architecture tactic with ORM to have the system performance boosted by saying that
“(...) most of the time it is easier to do an SQL query, but an in-memory cache can really BOOST
performance. Yes, it uses memory. Who cares? Workstations can have 64GB memory these days
(...)”.

• Tactic for maintainability covers architecture tactics that enable the maintainability requirements
of systems. We identified three maintainability tactics, such as less coupling tactic and encapsula-
tion through API introduction tactic (see Figure 4). Concerning the less coupling tactic, a developer
needed to build a scalable, maintainable, and low-latency single sign-on for all web applications.
The first answer in this ARP60 suggests to apply less coupling tactic when designing the applica-
tions in order to make them maintainable by saying that: “I would not integrate the authentication
on the database level (...) This might become hard to maintain. I would prefer a loosely coupled
approach by exposing a simple service on your central server that lets the other app servers run
authentication requests (...)”.

• Tactic for security provides architecture tactics that help the realization of the system security
requirements. This subcategory includes three architecture tactics, authentication tactic, limiting
access tactic, and communication link encryption tactic (see Figure 4). Regarding authentication
tactic, the first answer in this ARP61 provides and explains authentication tactic to a question
that asked for how to set up two level authentication approaches of the ‘user JWT’ in microservice
based application by stating that: “(...) You can achieve the two levels of security you require by
using a single user token and claims based authorisation. If a call is made to the gateway with the
user token, the gateway authenticates the call based on the user token, retrieves the ‘userId’ claim
(...)”.

• Tactic for availability collects architecture tactics that enable the system availability requirements.
We collected three availability tactics, like data replication tactic and functional redundancy tactic
(see Figure 4). Concerning data replication tactic, a developer asked how to achieve the availability
requirement for an application that needs to use two Amazon EC2 instances each with Cassandra
database. The first answer in this ARP62 provides and explains the replication mechanism that

58https://tinyurl.com/ysacs8zd
59https://tinyurl.com/289ffurv
60https://tinyurl.com/22ckrdv4
61https://tinyurl.com/bdhk4uud
62https://tinyurl.com/2p8db7mu

27

https://tinyurl.com/ysacs8zd
https://tinyurl.com/289ffurv
https://tinyurl.com/22ckrdv4
https://tinyurl.com/bdhk4uud
https://tinyurl.com/2p8db7mu

could be applied in his/her application (according to the design scenario described in the question)
by saying that: “(...) In your scenario (since you are in a single DC) you can use SimpleStrategy
for your replication strategy and a Replication Factor (RF) of 2. With this setup, you will have all
data replicated on both nodes. This will make the data available from either node with a covet”.

(5) Architecture pattern: The ARP solutions in this category provide architecture patterns for
addressing multiple system quality attributes, and also provide commonly used architecture patterns in
certain application domains (see Figure 4). Among the two subcategories identified in this category, the
architecture pattern suggestion to meet quality attribute subcategory contains the majority of solutions
(17 out of 30 ARP solutions of the architecture pattern category) that SO users discuss in this category
(see Figure 4).

• Architecture pattern suggestion to meet quality attributes collects architecture patterns for address-
ing system quality attributes, such as patterns for modifiability, reusability, and portability (Broker,
MVC, and SOA) (see Figure 4). For example, a SO user asked about the best C# architecture
patterns enabling the communication between separate plugins of a multi-tenant website wherein
modifiability, reusability, and flexibility are the major concerns. The first answer in this ARP63

recommends SOA pattern as a solution to that question by noting that: “(...) I might suggest
Service Oriented Architecture. Mostly because it can bend to a business in a very quick and agile
manner. This architecture provides many bonuses: Lightweight, Agile, Code Re-usability (...)”.

• Usage of architecture pattern gathers architecture patterns for questions that ask about the com-
monly used architecture patterns in certain application domains (see Figure 4), such as pattern for
time-critical system (Preemptive Multitasking), pattern for Android application (MVP, MVVM,
MVC, Observer), and pattern for distributed system (SOA, Broker). For example, a user asked
about architecture pattern for time-critical applications. The first answer in this ARP64 recom-
mends Preemptive Multitasking pattern to that question by saying that: “(...) This pattern is called
preemptive RTOS, which is capable of handling the events immediately (...)”.

(6) Architecture solution for deployment collects the ARP solutions that discuss the deploy-
ment of architecture of systems in the hosting devices (either on the Cloud or the local server) in order
to address the systems’ requirements. This category consists of two subcategories, among which process
for deployment is the most (9 out of 13 ARP solutions) discussed subcategory (see Figure 4).

• Process for architecture deployment collects the ARP solutions that discuss the processes for de-
ploying the architecture of applications for the purpose of achieving the applications’ requirements
(e.g., functional or nun-functional requirements). We identified several processes for architecture
deployment, for example, deployment process with Azure App service, deployment process with Ku-
bernetes, and deployment process with AppHabor for .NET applications (see Figure 4). Regarding
deployment process with Kubernetes, a responder provided and explained the deployment process
with Kubernetes to an asker who wanted to deploy a microservices architecture (which was built up
with 15 Spring Boot microservices) on five Kubernetes nodes with one cluster master. According
to the scenario described in the question, the first answer in this ARP65 suggested to use three
cluster masters at a minimum instead of one cluster master in order to avoid the data loss and
consequently address the system’s availability requirement by saying that: “(...) one master is not
enough. The loss of that VM, the underlying hardware, or a failure of the services on the master
will lead to an outage for all customers and potentially catastrophic data loss. Run 3 masters at
minimum”.

• Tool for architecture deployment collects the tools for deploying architecture of systems in order
to achieve the requirements of the systems. We collected several tools, such as simulator tool for
architecture deployment and tool for continuous deployment (see Figure 4). Regarding the tool for
continuous deployment, the first answer in this ARP66 recommends Argo CD tool as the solution
to the question that asks about a tool for microservices architecture continuous deployment on
Kubernetes by stating that: “(...) ArgoCD workflow provides that functionality (...)”.

63https://tinyurl.com/42m8ts56
64https://tinyurl.com/25y4b9e6
65https://tinyurl.com/483en2ts
66https://tinyurl.com/yc7j8z5j

28

https://tinyurl.com/42m8ts56
https://tinyurl.com/25y4b9e6
https://tinyurl.com/483en2ts
https://tinyurl.com/yc7j8z5j

(7) Solution for architecture documentation: The ARP solutions in this category provide
the approaches and tools that enable the documentation of architecture (see Figure 4). This category
consists of two subcategories, among which tool for architecture documentation is the most (3 out 5 ARP
solutions) discussed subcategory (see Figure 4).

• Tool for architecture documentation suggests the tools that can facilitate the documentation of
architecture, such as tool for Web application architecture documentation and tool for database
architecture documentation (see Figure 4). Concerning the tool for Web application architecture
documentation, the first answer in this ARP67 suggests NJsonSchema tool as the solution to the
question that asks about a tool for documenting a microservices-based application by saying that:
“(...) there is NJsonSchema tool https://github.com/NJsonSchema/NJsonSchema”.

• Viewpoint for architecture documentation provides the viewpoints for architecture documentation,
such as development viewpoint for architecture documentation, and deployment viewpoint for ar-
chitecture documentation. For example, the first answer in this ARP68 provides two viewpoints
for architecture documentation (i.e., development viewpoint for architecture documentation and
deployment viewpoint for architecture documentation) for documenting an architecture that is im-
plemented with Java.

Key Findings of RQ5

Finding 7: SO users frequently use two terms related to usefulness (i.e., “useful” and “helpful”),
along with six other terms (i.e., “definitely”, “very”, “really”, “super”, “extremely”, and “incred-
ibly”) in the comment threads to explicitly express their feedback about how useful they found
certain architecture solutions provided to their associated architecture related questions.
Finding 8: We derived a taxonomy of useful architecture solutions consisting of 7 categories, 20
subcategories, and 85 types, indicating the diversity of useful architecture solutions provided in
SO.
Finding 9: Solution for architecture configuration (39%, 127 out 324 ARP solutions), solution
for architecture implementation (18%, 59 out 324 ARP solutions), explanation of architecture
(16%, 53 out 324 ARP solutions), and architecture tactic (11%, 37 out 324 ARP solutions) are
the top four most frequently discussed categories of useful architecture solutions.

4.6. Characteristics of useful architecture solutions (RQ6)
As shown in Figure 2, SO users occasionally leave comments under an architecture solution to convey

that such solution is useful. Hence, this motivated us to study the characteristics of the architecture
solutions that are considered to be useful. Analogous to RQ5, we used the 324 ARPs (a subset of 968
ARPs) with useful knowledge (see Figure 1) to analyze the architecture solutions and their attached
comments, and study the characteristics of those solutions. The qualitative data analysis (see Section
3.2.2) identified four common characteristics of architecture solutions that are considered useful by SO
users. Figure 5 depicts these characteristics along with their counts, in which complete and comprehensive
architecture solution appears to be the most (34%, 111 out of 324 ARP solutions) frequent characteristic
of architecture solutions that SO users consider to be useful.

(1) Complete and comprehensive architecture solution: A developer may ask more than
one question (sub-questions) in one single architecture related question in SO. A solution that addresses
all sub-questions asked in the question and provides comprehensive responses (e.g., providing rationale,
such as benefits and drawbacks of the provided architecture solution) to these sub-questions is considered
useful. For example, a developer posted this comment: “+1 for the most complete, comprehensive useful
response I’ve ever seen (...)” under the first answer in this ARP69 that comprehensively addresses all
sub-questions (e.g., difficult to visualize data in the system architecture implemented with Java and
Python) asked in the question.

(2) Concise explanation with architectural diagrams provides a brief explanation about
the key elements of the architecture solution. Some examples of these key elements could be the best

67https://tinyurl.com/4zm82snw
68https://tinyurl.com/2p8ezw7j
69https://tinyurl.com/dfw27h38

29

https://tinyurl.com/4zm82snw
https://tinyurl.com/2p8ezw7j
https://tinyurl.com/dfw27h38

architecture patterns, tactics, and technologies (e.g., databases) to be used in order to address the design
concerns described in the question. In addition, providing architectural diagrams, such as component
diagrams to represent and summarize the practical applicability of the solution also contributes to the
architecture solution being considered useful. For example, one developer asked whether “command
handler” and “command bus” should belong to or be implemented in the application layer or domain
layer in the architecture. At first, in the first answer of this ARP70, a responder provided a concise and
relevant solution. But the asker was not satisfied with this solution and then s/he commented to request
a sequence diagram (which was provided later) to be associated with the solution for it to be useful:
“Thanks, David. It would be really useful if you could share a sequence diagram. Appreciate it”.

(3) Detailed architecture solution: These solutions provide and fully describe all necessary
architectural elements (such as patterns, components) and other various aspects to be considered (e.g.,
solution trade-offs, constraints, and alternatives) when addressing the design concerns stated in the
question. For instance, a developer posted this comment: “Thank you for your detailed answer. This
is certainly very helpful” under the second answer in this ARP71 that lists and details all necessary
architectural elements (e.g., quality attributes) and other aspects (e.g., pros and cons of the solution, and
alternative solutions) that should be considered when addressing the design concerns (e.g., integrating
external modules (external Web applications) into Drupal or vice versa) stated in the question.

(4) Summarization of external but relevant content: Answer seekers do not like to have
external links (URLs) only as solutions posted to their questions since the links may die and the solutions
become not accessible and useless. During our data analysis, we observed that answer seekers prefer to
have the relevant content summary of URLs instead of the URLs only for the architecture solutions.
For example, the first answer in this ARP72 summarizes the content from three URLs to answer the
question which mainly asks about the design approach to follow in order to address system availability
with Cassandra database. A developer commented under the answer: “Thank you very much for your
information. Your Explanation is sufficient and the links you mentioned are very useful”.

111, 34%

87, 27%

80, 25%

44, 14%
Complete and comprehensive architecture solution

Concise explanation with architectural diagrams

Detailed architecture solution

Summarization of external but relevant content

Figure 5: The common identified characteristics of architecture solutions that are considered useful

Key Findings of RQ6

Finding 10: Complete and comprehensive architecture solution is the most (34%, 111 out of
324 ARP solutions) frequent characteristic of architecture solutions that SO users consider to be
useful.
Finding 11: The presence of architectural diagrams (e.g., components diagrams) in the provided
architecture solutions increases the chance of these solutions to be considered useful.

5. Discussion

In this section, we revisit the findings of this study by interpreting the results in Section 5.1 and
discussing their implications for various stakeholders in Section 5.2.

70https://tinyurl.com/yh292pn8
71https://tinyurl.com/pfezm7nn
72https://tinyurl.com/2p87vu99

30

https://tinyurl.com/yh292pn8
https://tinyurl.com/pfezm7nn
https://tinyurl.com/2p87vu99

5.1. Analysis of the results
5.1.1. The delta between our results and the results from prior work

Similar to our study, several studies have analyzed ARPs from SO to mine architectural knowledge
discussed by SO users in order to support architecting activities. In this section, we discuss the relation-
ship and difference between our study results and the results in the prior studies (i.e., the three studies
by Soliman et al. [6][51][10]), which are closely related to our work.

Soliman et al. [6] identified and analyzed ARPs from SO that discuss architecture knowledge with
a focus on technology decisions (one type of architecture decision [46]). They classified these ARPs
based on two dimensions: the purpose of the question and the solution type of the question. They
further classified the purpose dimension into three subtypes: solution synthesis, solution evaluation, and
multi-purposes, and the solution type dimension into three subtypes: technology feature, technology
bundle, and architecture configuration. In total, their analysis generated 6 types of ARPs. Our analysis
generated 9 categories and 21 subcategories of ARP questions (see the results of RQ1 in Table 5), such
as architecture configuration, architecture decision, architecture concept, architectural implementation,
architecture evolution, and architecture refactoring. Some of the types of ARPs (e.g., solution synthesis,
solution evaluation, architecture configuration) found by Soliman et al. in [6] are aligned with some
of our ARP types, and most of the types of ARPs presented in [6] can be subcategories of the main
categories reported in our work. For example, we have a main category encoded architecture decision,
and this category can cover three types of APRs (solution synthesis, solution evaluation, and multi-
purposes) reported in [6]. Moreover, our analysis generated new categories of ARPs (such as architecture
concept, architecture tool, architecture evolution, architecture refactoring, architecture deployment, and
architecture documentation).

Soliman et al. [51] used the same sample of ARPs that were used in their previous work (i.e., [6])
and developed an ontology that covers architectural knowledge concepts in SO. The ontology consists of
three main ontology classes: simple ontology class, composite ontology class, and lexical trigger ontology
class. A simple ontology class is composed of subclasses, for example, technology solution, architecture
pattern, quality attribute, architecture component, and architecture connector. The composite ontology
class consists of several subclasses, such as architecture configuration, technology feature, technology
benefits and drawbacks, technology user-case, user request, and design rule. The lexical trigger ontology
class has subclasses, such as difficulty adjectives, advise verbs, value adjectives, wish verbs, support verbs,
versus prepositions. Some subclasses found by the analysis in [51], such as architecture configuration and
architecture pattern, are aligned with our results of RQ5 (see Figure 4). However, the analysis in [51] is
based on a sample of ARPs that mainly discuss technology information (e.g., requirements and constraints
on technology solutions, technology benefits and drawbacks, and technology features). Our analysis
complements the work in [51] by adding several new categories, such as architecture tactic, explanation of
architecture, solution for architecture documentation, and solution for architecture deployment, leading
to more comprehensive categories and subcategories of ARP solutions provided in SO.

Soliman et al. [10] developed a search approach that relies on the classification approach to provide
suitable types of ARPs for each design step proposed by Kazman and Cervantes [12]. The analysis
conducted by Soliman et al. [10] is also based on the sample of ARPs from their previous work [6],
and some other posts extracted from SO. Specifically, their search approach classifies SO posts into four
types: technology identification, technology evaluation, features and configuration, and programming
posts. The first three types of posts are ARP types that were reported in their previous study (i.e.,
[6]), and in the first paragraph of this section, we have already described the difference and similarities
between these types of ARPs in [6] and the types of ARPs in our study (see results of RQ1 in Table 5).

In addition to the abovementioned difference between our study results and the results reported in
[6][51][10], in our study, we investigated a new set of research questions (RQ2, RQ3, RQ4, RQ5, and
RQ6). We explored other types of architecture knowledge, such as design contexts (RQ2) discussed
in architecture related questions, characteristics of ARPs (questions and solutions) (RQ3, RQ4, and
RQ6), and the usefulness of the ARP solutions (RQ5), which was not the concern of the abovementioned
studies (i.e., [6][51][10]). Moreover, our analysis covered the entire post, including the question and its
associated comments (RQ3, RQ4), the answers to the question and their associated comments (RQ5,
RQ6). The analysis in the abovementioned studies by Soliman et al. only focused on questions and
answers. Thus, our study results add new information to the state of the art, and practitioners and
researchers can benefit from our study results and findings (e.g., the taxonomy of architecture solutions
that are considered useful).

31

5.1.2. Identified categories of ARPs in SO could support architecting activities
The significant results of this study are categories of ARPs (questions (i.e., RQ1) and solutions

(i.e., RQ5)). This study reveals that SO users ask a broad range (nine categories) of architecture
related questions, such as questions about architecture configuration, architecture decision, architecture
concept, architecture implementation, and architecture tool (see Table 5 in Section 4.1). In addition,
we classified the architecture solutions that are considered useful into seven categories, such as solution
for architecture configuration, solution for architecture implementation, explanation of architecture, and
architecture tactic (see Figure 4 in Section 4.5). One observation is that our identified categories of
these ARPs (questions and solutions) cover almost all the architecting activities that span from the
initial stages (e.g., architectural analysis, synthesis, and evaluation [18]) of architecture creation to
the later stages (e.g., architectural implementation, and maintenance and evolution [19]) in a system
lifecycle. Thus the identified categories of architecture related questions and solutions can support the
mentioned architecting activities during the architecture lifecycle. These results also support the findings
by Soliman et al. in [6] that SO should be considered as one of the important sources of architectural
knowledge. Moreover, practitioners reported Q&A sites (e.g., Stack Overflow) as the most useful when
searching architectural information according to our recent industrial survey [4]. Thus, practitioners
could rely well on SO to identify, such as, the benefits and drawbacks of architecture solutions in certain
application domains, for example, the benefits and drawbacks about the framework for iOS applications
in our taxonomy (see Figure 4) for architecture implementation.

5.1.3. Importance of design context in architecture design
The results of RQ2 reveal that in most (71%, 687 out of 968) of the studied ARP questions, SO

users considered the design contexts (i.e., knowledge about the environments in which the systems are
expected to operate [27]) when describing the design concerns in their architecture related questions
(Finding 2 in Section 4.2). One reason could be that SO users prefer to provide a brief description of
their project backgrounds and then expect responders to suggest potential architecture solutions with
their rationale based on the given design concerns and design contexts. Moreover, the results of RQ2
show that most of the SO users do consider design context as one of the indispensable ingredients that
can drive the architecture design of a system [27].

5.1.4. Identified characteristics of ARPs to improve their quality
From Table 7, Table 8, and Figure 5, we found that there are various characteristics of ARPs (ques-

tions and answers) in SO. For example, we observed that architecture related questions that articulate
well architectural information are likely to get more than one answer (see Table 7), while architecture
related questions that lack certain significant information and poorly structured (see Table 8) tend to
only get one answer. The reason is the following: well-articulated architecture questions provide an
overview of the planned system and describe well their design concerns, which helps potential responders
to fully understand the purposes of these questions so that they can provide answers. We also found
that answer seekers highly appreciated architecture solutions that are complete and comprehensive and
considered them to be useful. One reason is that these architecture solutions address design concerns
raised in all sub-questions (in the case that there are sub-questions in one question) by providing com-
prehensive solutions, for example, design contexts, pros and cons of the provided architecture solutions,
which helps the answer seekers understand why such architecture solutions are the way they are. The
identified characteristics of ARPs (questions and answers) in SO show that SO users have varying needs
in the description of ARPs (questions and answers) and the level of details. These findings could assist
in improving the quality of the posted architecture related questions and answers at SO.

5.2. Implications
5.2.1. For Stack Overflow

Increase the awareness of SO towards its users: SO introduces itself as a community Q&A
platform for asking and collecting programming related knowledge during software development. Thus,
the majority of the SO users use the platform as the place for sharing and learning coding related knowl-
edge only. However, ever since this site started growing and being popular, architects have begun to
share their competencies, experience, and architecture problems by asking architecture related questions
or providing architecture solutions, such as architecture patterns [52]. Akin to searching and (re)using
existing code examples provided in SO to solve programming related problems, SO users also search and
(re)use existing architecture solutions, such as architecture tactics [5] in SO for solving their architec-
ture design concerns (e.g., architecture design to meet quality attributes). Hence, SO not only curates

32

programming related knowledge, but also accumulates architecture solutions provided to a wide range of
architecture problems or design problems [6, 5]. However, during our study, we found that architecture
related questions were being seen as off-topics in SO and should not be asked at the site (see Table 8 in
Section 4.4) due to SO users’ perception or awareness of what SO is used for (i.e., a site for programming
related issues). Given this situation, there is a possibility that interesting architecture related questions
asked might remain unanswered or even be deleted by the site moderators. Although some SO users
see architecture related questions as off-topic, we think that architecture related questions will sustain
and continue to thrive in SO. According to our studied dataset (318 architecture related questions) rel-
evant for answering RQ4 (characteristics of architecture related questions that only have one answer),
we observed that architecture related questions that were commented to be off-topic are not many
(16%, 51 out 318 architecture related questions). This finding is promising for the long-term prospect
of architecture related questions in SO. Moreover, we argue that architecture related questions which
communicate architectural knowledge [23] are an important type of questions and have a system-wide
impact on software development. Many architecture related questions arise during development when
addressing specific design concerns (e.g., quality attributes) and their trade-offs. Therefore, architecture
related discussions (e.g., through architecture related questions) should not be seen as off-topic in SO,
and SO should consider increasing its awareness (i.e., to be a site for development related issues instead
of a site for programming related issues only) towards its users and welcome architecture questions to
be discussed on the site.

Adjust the current answers and comments organization mechanisms to improve the
search and (re)use of architecture solutions: SO attracts a large number of users with different
backgrounds, skills, expertise, and viewpoints. Thus during our data analysis, we have observed that an
architecture related question like any other questions (e.g., programming related question) in SO may
receive multiple (or alternative) answers. The study by Wang et al. [53] reported that nearly 6.5 million
questions (37% of all questions at SO) had more than one answer, and the average length of an answer is
789 characters. With the current SO answers organization mechanism, when there are multiple answers
to a question in a single post, at most one answer per question can be accepted/marked by the asker to
indicate that the answer is the most useful one [3]. This asker should be a registered user with at least 15
reputation on SO [54]. The registered users without required reputation (i.e., less than 15 reputation) on
the site are restricted from accepting or voting (upvoting or downvoting) answers to indicate that such
answers are useful [54]. Consequently, leaving a large number of answers in SO that are not accepted or
marked as useful answers yet being useful, just because the users (askers) do not possess the required
minimum reputation to do so. During our data analysis, we observed that not all useful architecture
solutions are explicitly marked (i.e., accepted as useful) in SO to facilitate the search and (re)use of
those solutions (for example, see Figure 2). Also, we found that SO users may use terms related to
usefulness, such as “useful” and “helpful”, in the comment threads to explicitly express their feedback
about how useful they found certain architecture solutions provided to their associated questions in SO
(Finding 7 in Section 4.5). Our finding is in line with the findings by Zhang et al. in [42] and [41] that
comments provide additional information to support the answers, such as improvement of answers [42]
and obsoleted answers [41]. Prior studies criticized the comment organization mechanism at SO (e.g.,
[55]). In order to keep each answer thread compact, SO implements a comment organization mechanism
to only show the top 5 comments [55]. Aiming at showing the most informative comments and hiding
less informative ones, the mechanism first ranks these comments based on their scores. When multiple
comments have the same score, they are then ranked by their creation time [55]. Hidden comments are
not indexed by Google73. Thus, due to this current comment ranking mechanism, informative comments
might be hidden in turn reducing the chances of someone retrieving or voting on them. Regardless of
its success and popularity, navigating SO remains a challenge, and it is insufficient how SO directs its
users to retrieve informative comments [56]. Comments that state the usefulness of answers (including
architecture solutions) are one of the most important informative comments. Thus, we provide SO the
following suggestion:

• Instead of simply ranking comments by their score then their creation time [55], the comments
organization mechanism needs to introduce a higher priority for more informative comments. SO
may consider adjusting its comments organization mechanism by, for instance, developing special
analytical techniques (e.g., machine learning approaches) that could filter and rank comments

73https://tinyurl.com/2p87yyfr

33

https://tinyurl.com/2p87yyfr

stating, for example, improvement of answers [42], usefulness of answers (e.g., useful architecture
solutions).

• SO may also refer to and extend our proposed taxonomy of useful architecture solutions (solutions
commented to be useful) to develop an automated tool that could assist the SO users in identifying
existing architecture solutions with, for example, useful knowledge.

5.2.2. For SO users
Throughout the qualitative analysis of RQ3, RQ4, and RQ5, we identified various characteristics of

ARPs (questions and solutions) in SO. Among these characteristics, we found that questions that provide
clear description together with architectural diagrams increase their likelihood of getting more than one
answer (see Table 7), while poorly structured architecture questions (see Table 8) tend to only get one
answer. Also, we found that architecture solutions that provide concise explanation with architectural
diagram is the second most common characteristic of architecture solutions that are considered useful (see
Figure 5). One observation is that SO users would like to see architectural diagrams, such as components
diagrams, in both questions and solutions as these diagrams can benefit both parts. Concerning questions,
providing architectural diagrams increases their chance of getting more responses (e.g., more than one
answer) (Finding 5 in Section 4.3). On the other hand, architectural diagrams in solutions boost their
chances of being considered useful (Finding 11 in Section 4.6). Therefore, both askers and responders
should better provide diagrams in their ARPs (questions and answers). One reason is that architecture
is at a high abstraction level, and it would be hard to describe an architecture problem and much harder
to explain an architecture solution with text only. Architectural diagrams make architecture to be more
understandable [57], and stakeholders can communicate about architectural problems and solutions more
easily using architectural diagrams. Moreover, various identified characteristics of ARPs in this study
(see Table 7, Table 8, and Figure 5) are indicators that SO users have varying needs in the formation of
both architecture related questions and architecture solutions and the level of details. Therefore, there
is a need to provide guidelines to SO users to follow when posting their architecture related questions
and solutions.

For SO askers: In the following, we provide the guidelines for SO askers to follow when posting
their architectural related questions with more likelihood of being answered by other SO users and get
more than one answer from SO users:

• Include architectural diagrams with clear description in the questions: We recommend askers to
add architectural diagrams (e.g., component diagrams) and specifically clarify the design concerns
in their architecture related questions to help other SO users better understand the purposes of
their questions.

• Write well-articulated architecture questions with descriptive details about the context: We suggest
that askers could describe well architectural information in their questions. This can be done, for
example, by providing an overall understanding of the system, as well as detailed information on
components in their scope together with interfaces and relationships to other components. Also, we
recommend askers to add information about the design contexts, since design contexts are critical
for other SO users to correctly understand your architecture related questions.

For SO responders: As stated throughout this study, we not only analyzed architecture related
questions, but also examined the characteristics of architecture solutions that are considered useful by
SO users. Thus, in the following, we provide guidelines to SO users to follow when posting their solutions
with more likelihood of being considered useful by other SO users:

• Write concise architecture solutions with architectural diagrams: Responders are recommended to
write concise architecture solutions by stating key points only in the solutions and add architectural
diagrams (if necessary) that depict and clarify, for example, the architecture implementation view
in their posted solutions.

• Include URLs in architecture solutions with sufficient and relevant architectural knowledge: Answer
seekers do not like to have external links (URLs) only as solutions posted to their questions [58].
In the case when a responder wants to make the architecture solution short, s/he can provide links
to external websites that contain more explanations or complex examples, and his/her solution
should be self-contained. In other words, this solution should provide certain important and relevant
architectural knowledge which can make it explainable, such as design decisions and their rationale,

34

contexts, assumption, and other factors that together determine why a particular solution is the
way it is.

5.2.3. For researchers
Towards innovative tools to search and (re)use architectural knowledge in SO: The

results of our study (e.g., categories of architecture related questions in Section 4.1 and their useful
solutions in Section 4.5) provide insights into the nature of SO users’ discussions on architecture design
in SO. In addition, the results of this study re-emphasize the conclusion by Soliman et al. [51] that SO
should be considered as one of the important sources of architectural knowledge. However, SO captures
large amounts of information in its posts and this information is mainly represented as unstructured text.
Furthermore, the abstract nature of architectural concepts makes it difficult for keyword-based searches to
find architecture relevant information, and this might not be easy for SO users to capture and (re)use the
architectural knowledge (e.g., benefits, drawbacks, and trade-offs of using specific architecture patterns
in certain application domains) from SO. Therefore, researchers can contribute to improving the search
and (re)use of the architectural knowledge in SO by focusing on innovative techniques and tools that
could efficiently and effectively guide the capturing and usage of this knowledge to support architecting
activities (e.g., architectural analysis and synthesis [18]). For example, researchers can refer to our
proposed taxonomy of useful architecture solutions in SO as a guidance to develop automated approaches
and tools that could mine and locate architecture solutions (e.g., solution for architecture configuration,
the most common category of useful architecture solutions in SO, see Figure 4) for addressing similar
design concerns (e.g., questions that ask about architecture configuration, see Table 5). This could help
SO users to check the questions and solutions that are relevant to their design concerns (e.g., banking
system configuration). Furthermore, we observed that architecture configuration (27%), architecture
decision (19%), and architecture concept (15%) are the top three categories of most frequently asked
architecture related questions (Finding 1 in Section 4.1), and researchers may explore the challenges
(that are being faced by SO users) related to these most frequently asked categories of architecture
related questions.

Investigation of design contexts in Q&A sites to support architecture knowledge man-
agement: From Table 6 in Section 4.2, we found that SO users discuss about design contexts along with
design concerns when asking architecture related questions in SO. Three categories (application, plat-
form, and organization contexts) and eight subcategories (application domain, external service, software,
hardware, development schedule, stakeholders, and resources contexts) of design contexts were identified
from our studied sample of ARPs (see Table 6). Whilst we know that SO users discuss design contexts
along with design concerns when asking architecture related questions, there have been very few studies
on mining design contexts in the Q&A community sites, such as SO, to support architecture knowledge
management [59], which is an interesting area to be explored in future studies.

6. Threats to validity

In this section, we discuss the threats to the validity of the study results by following the guidelines
proposed by Wohlin et al. [60] and how these threats were mitigated in our research.

Internal validity concerns with the selection of search terms used to mine ARPs in SO. We used
search terms, such as “architecture” and “architectural”, to identify the related posts in SO (see Section
3.2), and this is a threat to the internal validity in our study because we might have missed other
terms, such as “design”, that SO users use to express architecture concepts. Hence, the search terms
we used in this study may not be able to identify the complete set of ARPs in SO. To reduce this
threat, we first conducted a pilot search and observed that SO users use the term “design” mostly in the
programming context (e.g., “singleton design pattern”74). In addition, as mentioned in Section 3.2, using
the search terms (e.g., “architecture” and “architectural”) to only search exclusively through tags can
be ineffective, because tags can be sometimes less informative [36] (see the example provided in Section
3.2.1). Thus, we decided to add the titles and bodies of the questions into the search. In this way, we
sought to minimize the risk of missing ARPs that use incorrect or irrelevant tags. Finally, we gathered
10,423 ARPs through the search which is quite a large dataset, and it may not be realistic to thoroughly
analyze this size of dataset with human effort in order to get accurate and comprehensive results from

74https://tinyurl.com/8yks7nhm

35

https://tinyurl.com/8yks7nhm

this dataset. Hence, we computed a statistically representative sample [16] of these 10,423 ARPs and
randomly selected 968 ARPs as the dataset to be analyzed in this study. However, to further mitigate
this threat, we downloaded and utilized the current SO data dump (i.e., Stack Exchange data dump on
October 5, 202275). This data dump is a snapshot of the underlying database used by SO and it stores
all the information for the questions, answers, tags, comments, votes, and user histories in XML files
(e.g., Posts.xml). We used Posts.xml file, which stores the questions and answers of all the SO posts,
as the basic to estimate how many ARPs we missed due to limiting the search to the “architect*” terms
in our study. According to the SO data dump of October 5, 2022, there are 23 million questions (posts)
and 34 million answers. We then used the power statistics and calculated a representative sample size of
these 23 million posts. With a 95% confidence level and 3% margin of error, the representative sample
size calculated is 1069 posts. Afterwards, we randomly selected 1069 posts from the 23 million posts
and manually checked them for calculating how many ARPs we might have missed due to limiting the
search to the “architect*” terms during the search of ARPs. Specifically, the first author labelled the
1069 posts to determine which of the posts are ARPs. The second author checked and validated the
labeling results. The disagreements were resolved in a meeting to improve the reliability of the labeling
results. Based on our manual labelling, we found that out of the 1069 posts, only 21 were ARPs (i.e.,
the true positives), wherein 14.3% (i.e., 3 out of 21 ARPs) do not contain “architect*” terms and 85.7%
(i.e., 18 out of 21 APRs) contain “architect*” terms. Therefore, we admit that we might have missed
certain number of ARPs (i.e., 14.3%) that do not contain “architect*” terms. We added in our replication
package [39] the randomly selected posts (i.e., 1069 posts) and the labeling results (i.e., 18 ARPs which
contain “architect*” terms and 3 ARPs which do not contain “architect*” terms) for replication purpose.

Construct validity refers to the degree to which a study measures what it claims to be measuring
[60]. One threat to the construct validity in this study is concerning the manual analysis of the selected
SO posts. This is because manually analysis could bring personal bias due to multiple interpretations
and/or oversight. To mitigate this threat, we used two qualitative techniques (open coding and constant
comparison) from Grounded Theory [17] to analyze the extracted data and answer the RQs. Moreover,
we tried to minimize this threat by performing a pilot data coding before the formal data coding. As
discussed in Section 3.2.2, during the pilot data coding, the first author selected a random set of 100
ARPs and encoded the extracted data (see Table 4) with respect to the purpose of each RQ (see Table
1). Several physical meetings with the second author were scheduled to solve any confusion faced by
the first author during this pilot data coding. Moreover, the final results (i.e., concepts, categories,
and subcategories) from the pilot data analysis were checked and validated by other three authors (the
second, third, and fourth authors) of this study. The disagreements were resolved in a meeting using the
negotiated agreement approach [45] to improve the reliability of the pilot data analysis results. Another
threat is related to the identification of ARPs (solutions) with useful knowledge by checking the comments
attached to these posts in order to answer RQ5 and RQ6 (see Phase II, in Section 3). To mitigate this
threat, as we explained in Section 3, we did not count on the occurrence of the terms, e.g., “useful” (and
the similar) stated in comments to measure the usefulness of an architecture solution given to certain
architecture related question in our study. We rather referred to the usefulness related information in the
comments attached to the solutions to investigate SO users’ discussions on the usefulness of architecture
solutions. In other words, we judged the usefulness using the reaction of the SO users after seeing and
using the architecture solutions (see a comment in Figure 2). In addition, we (four authors of this study)
first read the solutions (from our studied representative sample) commented to be useful to see whether
there are really useful to address the questions [15] before we decided to include such posts (solutions)
with useful knowledge for analysis. Thus, we believe that we have adequately mitigated this threat.

External validity refers to the extent to which the findings of the study can be generalized in other
settings [60]. In this research, we only used SO as the source to investigate ARPs and their usefulness.
Even though SO is a widely used and popular developer Q&A site, this unique source still poses a threat
to the diversity of the study results. To mitigate this threat, our research could be further enhanced
by including more sources (e.g., GitHub) and look at architecture related questions to understand the
architecture design issues that are being faced by architects and developers. Also, researchers might
consider going to the fields and asking for feedback directly from architects and developers to better
understand the problems they are facing about architecture design and what architecture solutions can
be regarded as useful.

75https://archive.org/details/stackexchange_20221005

36

https://archive.org/details/stackexchange_20221005

Reliability refers to whether the study will provide the same results and findings when it is repli-
cated by other researchers [60]. In this study, this threat is largely related to the process of manual data
collection and analysis. To mitigate this threat, we (the authors of this study) followed a rigorous pro-
cedure that is consisted of data collection and analysis activities (see Section 3.2). Moreover, the results
from the classification and characterization stages were cross-checked by involving the four authors of
the study. To guarantee the reliability of our results and findings, a replication package, containing the
dataset used and the encoded data produced in this work, has been made available [39], allowing other
researchers to evaluate the rigor of the design and replicate the study. With these measures, this threat
has been partially reduced.

7. Related work

The research related to our work comes from studies that investigate software development knowl-
edge in Q&A sites, such as SO. In this section, we summarize relevant work in two categories: (1)
investigation of architectural knowledge in Q&A sites and (2) quality assessment of the knowledge in
Q&A sites.

7.1. Architectural knowledge in Q&A Sites
A few number of existing studies have studied architectural information provided in ARPs in SO

from different perspectives. Bi et al. [5] used a semi-automatic dictionary-based mining approach to ex-
tract Quality Attribute (QA) and Architecture Tactic (AT) related discussions in SO posts. Specifically,
they applied the dictionary-based classifier Support Vector Machine (SVM) to automatically identify
QA-AT related discussions from SO posts. Moreover, the authors went on to manually structure the
design relationships between Architectural Tactics (ATs) and Quality Attributes (QAs) used in prac-
tice and build a knowledge base of how developers use ATs with respect to QA concerns from related
discussions. Such knowledge can help architects better make ATs design decisions. Chinnappan et al.
[61] extracted data from five open sources of software repositories, including Stack Overflow and qualita-
tively mined architectural tactics for energy-efficiency robotics software applied by practitioners in real
robotics projects. To foster the applicability of the identified tactics (even beyond the robotics software
community), they describe them in a generic, implementation independent manner by means of diagrams
inspired by the UML component and sequence diagram notation. The presented energy-aware tactics can
serve as guidance for roboticists, as well as other developers interested in architecting and implementing
energy-aware software. Soliman et al. [11] conducted an empirical study with 50 software engineers,
who used Google to make design decisions using the Attribute Driven Design steps [12]. Based on the
relevance and Architecture Knowledge (AK) concepts specified by software engineers, they determined
how effective web search engines are to find relevant architectural information from various sources (in-
cluding Stack Overflow) and to capture AK. In another work, Soliman et al. [51] developed an ontology
that covers AK concepts in SO. The ontology provides a description of architecture related information
to represent and structure AK in SO.

Soliman et al. [10] also leveraged SO with the goal of improving how architects search for architec-
turally relevant information in online developer communities. They developed a new search approach
(i.e., a domain specific-search approach) for searching architecturally relevant information using SO.
They found that the new search approach outperforms the conventional keyword-based search approach
(searching through the search engines, such as Google). Tian et al. [14] conducted an empirical study of
SO users’ conception of architectural smells by analyzing the discussions from architecture smell related
posts in SO. They found that SO users often describe architectural smells with some general terms, such
as “bad”, “wrong”, “brittle” or violation of architecture patterns. Li et al.[62] extracted data from eight
most popular online developer communities, including Stack Overflow, to investigate how developers
perceive the notion of architecture erosion, its causes and consequences, as well as tools and practices
to identify and control architecture erosion. Among other major findings reported in their study, Li et
al. found that developers either focus on the structural manifestation of architecture erosion or on its
effect on run-time qualities, maintenance and evolution; alongside technical factors, architecture erosion
is caused to a large extent by non-technical factors. Zou et al. [63] used the topic model technique to
study non-functional requirements related to textual content in SO posts in order to understand the
actual requirements of developers. Our study complements the abovementioned work since it focuses
on the investigation of architectural knowledge in SO through the characterization and categorization of
architecture related posts. In addition, we examine the usefulness (i.e., are the answers useful to address
the questions? [15]) of these posts from the point of view of SO users.

37

The work closely related to ours is the study by Soliman et al. [6], which leveraged SO to categorize
ARPs based on technology related information provided in those posts. The main difference between
our study and their work is the fact that we look at the problems from a wider scope. In other words,
our study aims to categorize ARPs in SO by looking at various architectural information, such as ar-
chitecture tactics, provided in those posts, rather than limiting ourselves to one particular information
(i.e., technology information). Therefore, our work complements the work in [6] by digging deeper into
architecture related posts, for example, identifying additional categories of ARPs and exploring design
contexts of architecture related questions. Moreover, we characterize and analyze the usefulness of these
posts for practitioners and researchers.

7.2. Quality assessment of knowledge in Q&A Sites
The Q&A platforms, such as SO, play a significant role in knowledge sharing; however, they still face

significant challenges to ensure the quality of their knowledge. This is evident in the growing number of
studies that focus on analyzing the quality of the content in the programming related posts in SO from
different views, such as code and text.

Dagenais and Robillard [64] conducted an empirical study on the traceability links between an API
and its learning resources in SO. They found that the majority of API names (89%) in code snippets
from online forums are vague and cannot be easily solved due to the deficiency of code snippets. An et
al. [65] studied 399 Android applications and revealed 1,279 cases of copyright violations of code reuse
between GitHub and SO. Fischer et al. [66] assessed the security-related matters of code snippets in SO
and discovered that 29% are insecure. Zhang et al. [41] investigated obsolescence of answers in SO and
found that 31% may have potential API usage violations that could yield unexpected behavior, such
as system crashes and resource leaks. Ragkhitwetsagul et al. [67] investigated Java code snippets in
SO and identified that 153 clones were copied to SO wherein 66% were obsolete. Zagalsky et al. [68]
presented Example-Overflow, a code search and recommendation tool to suggest high-quality code by
using the knowledge in SO. Zhang et al. [8] conducted an exploratory study on the prevalence and severity
of API misuse in SO. Treude and Robillard [69] surveyed GitHub users to comprehensively study the
difficulty of code snippets in SO. They found that less than half of the SO snippets are self-explanatory.
Ragkhitwetsagul et al. [70] conducted an online survey to investigate the answer obsolescence matter in
SO. Their survey results indicated that half of the top answerers are aware of obsolete code examples.
However, users rarely and even never fix obsolete code examples. Treude and Robillard [71] developed a
tool to improve API documentation with the use of “insight sentences” extracted from SO. Wong et al.
[72] proposed an AutoComment tool to automatically generate comments for Java and Android tagged
Q&A posts in Q&A sites. The results indicate that accurate, adequate, concise, and useful generated
comments help users understand the code. Gao et al. [73] investigated questions (with similar crash
traces) to automatically fix recurring crash bugs in Q&A sites. McDonnell et al. [74] investigated APIs
evolution in Android ecosystem using the version history data found in GitHub. Their results revealed
that Android is evolving fast at a rate of 115 API updates per month on average. Dalip et al. [75]
suggested a method to rank answers with regard to the feedback provided to answers. They witnessed
that both user and review features are essential to assess the quality of answers. Xu et al. [76] proposed
an approach called AnswerBot to automatically summarize answer posts relevant to a technical question
in SO. Zhu et al. [15] proposed a multi-dimensional model for assessing the quality of answers in social
Q&A sites, such as Answerbag and Yahoo! Answers, in the context of eLearning. Calefato et al. [77]
conducted an empirical study aimed at assessing 26 best-answer prediction models in SO.

These studies are related to our work since they investigated the quality of code examples provided in
SO posts, while our work investigates the quality (i.e., usefulness) of the architecture solutions provided
in SO posts. Nevertheless, our work differs from the aforementioned work in that they focused on low-
level source code (e.g., API), while our study focuses on high-level concepts (e.g., proposed architecture
patterns as solutions to address design concerns) to investigate their usefulness. We believe that our
study complements the existing work on the quality of SO posts by analyzing architecture related posts.

To the best of our knowledge, there has been no investigation of the architectural information
provided in ARPs with regard to their categories, characteristics, and usefulness (i.e., are the answers
useful to address the questions?) from the point of view of SO users, which is the focus of this study.

38

8. Conclusions and future work

Investigating architecture solutions (e.g., architecture tactics and patterns) as an important type
of architectural knowledge provided in online developer communities, such as SO, is crucial since this
knowledge is one of the most important development knowledge [22]. Architectural knowledge plays a
significant role for architects and developers in making informed architectural design decisions during
development [24]. Architecture solutions are the fundamental building blocks in modern software design
[22]. Contrarily to changing implementation (e.g., low-level source code), once an architecture solution
(e.g., an architecture pattern) is adopted and implemented, it is quite difficult and costly to change it
[22]. By analyzing and understanding how SO users deal with architectural problems or issues in online
developer communities, such as SO, brings three benefits: (1) it provides key insights about the types of
design problems SO users face during their architecture designs and the types of architecture solutions
discussed as well as their usefulness, (2) it can help to know the design contexts in which architecture
problems are raised, and (3) it can help to know the characteristics of architecture problems and solutions
discussed. These benefits provide an opportunity to develop new approaches and tools that can assist So
users search and (re)use architectural knowledge shared in online developer communities. To this end, in
this study, we investigated architecture related questions and their associated architecture solutions in
SO. Specifically, we used qualitative analysis approach to analyze a statistically representative random
sample of 968 ARPs from 10,423 ARPs manually identified. We intended to identify both the categories
and characteristics of architecture related questions and their solutions. We also explored the design
contexts in which those questions were raised. Finally, we studied SO users’ discussions on the usefulness
of the architecture solutions. We summarize our main results and findings as follows:

• SO users ask a broad spectrum of architecture related questions ranging from architecture tool to
architecture configuration, architecture implementation to architecture deployment. In addition, SO
users mostly discuss solution for architecture configuration (39%), followed by solution for architec-
ture implementation (18%), explanation of architecture (16%), and architecture tactic (11%). We
observed that ARPs (questions and answers) cover almost all architecting activities.

• SO users ask the most (27%, 261 out of 968) ARP questions about architecture configuration.

• Most of the SO users (71%, 687 out of 968 ARP questions) considered design contexts when asking
architecture related questions.

• Architecture related questions that provide clear description together with architectural diagrams
increase their likelihood of getting more than one answer, while poorly structured architecture
questions tend to only get one answer.

• Architecture solution for configuration from our proposed taxonomy is the most provided type of
architecture solutions that are considered useful in SO.

• SO users mainly consider architecture solutions that are complete and comprehensive and have
concise explanation with architectural diagrams to be helpful.

Our results and findings can help researchers and practitioners by knowing what types of architec-
tural knowledge, such as categories of architecture related questions and solutions, are provided in SO,
and what are the characteristics of good architecture related questions and useful architecture solutions.
Also, our results can motivate researchers and practitioners to consider SO as a valuable source of archi-
tectural knowledge (e.g., architecture patterns and tactics) and develop novel approaches and tools for
mining useful architecture knowledge from SO to support architecting activities and development.

In the next step: (1) We plan to conduct a comparative study of architecture solutions provided at
SO and other platforms (e.g., developer mailing lists and issue tracking systems), which may help reveal
insights into the current focus of architecture solutions utilization, and their advantages and deficiencies.
(2) We aim for validating and extending the proposed taxonomy of useful architecture solutions provided
at SO (see Figure 4) using an industrial survey from the practitioners’ perspective. (3) We also plan to
design and employ (semi-)automatic approaches to extract and summarize architectural information, and
establish the architecture issue-solution pairs from the retrieved architectural information, for example,
benefits and drawbacks of certain architecture solutions (e.g., patterns and tactics) for task-specific
architecture problems from multiple sources of architectural information (e.g., Q&A sites, GitHub, issue
tracking systems, technical blogs), which can facilitate the decision-making of architects by utilizing
architectural knowledge from peers and communities.

39

Acknowledgements

This work is partially sponsored by the National Natural Science Foundation of China (NSFC) under
Grant No. 62172311. The authors would also like to acknowledge the financial support from the China
Scholarship Council.

References

[1] C. Sadowski, K. T. Stolee, S. Elbaum, How developers search for code: a case study, in: Proceedings
of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), Bergamo, Italy, 2015, pp.
191–201.

[2] A. Zagalsky, D. M. German, M.-A. Storey, C. G. Teshima, G. Poo-Caamaño, How the r community
creates and curates knowledge: an extended study of stack overflow and mailing lists, Empirical
Software Engineering 23 (2) (2018) 953–986.

[3] C. Treude, O. Barzilay, M.-A. Storey, How do programmers ask and answer questions on the web?
(NIER Track), in: Proceedings of the 33rd International Conference on Software Engineering (ICSE),
Honolulu, Hawaii, USA, 2011, pp. 804–807.

[4] M. J. de Dieu, P. Liang, M. Shahin, How do developers search for architectural information? an
industrial survey, in: Proceeding of the 19th International Conference on Software Architecture
(ICSA), Honolulu, Hawaii, USA, 2022, pp. 58–68.

[5] T. Bi, P. Liang, A. Tang, X. Xia, Mining architecture tactics and quality attributes knowledge in
Stack Overflow, Journal of Systems and Software 180 (2021) 111005.

[6] M. Soliman, M. Galster, A. R. Salama, M. Riebisch, Architectural knowledge for technology decisions
in developer communities: An exploratory study with StackOverflow, in: Proceedings of the 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, 2016, pp. 128–
133.

[7] T. Diamantopoulos, A. Symeonidis, Employing source code information to improve question-
answering in Stack Overflow, in: Proceedings of the 12th IEEE/ACM Working Conference on
Mining Software Repositories (MSR), Florence, Italy, 2015, pp. 454–457.

[8] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, M. Kimm, Are code examples on an online Q&A
forum reliable?: A study of API misuse on Stack Overflow, in: Proceedings of the 40th IEEE/ACM
International Conference on Software Engineering (ICSE), Gothenburg, Sweden, 2018, pp. 886–896.

[9] D. Liu, Z.-L. Ren, Z.-T. Long, G.-J. Gao, H. Jiang, Mining design pattern use scenarios and related
design pattern pairs: A case study on online posts, Journal of Computer Science and Technology
35 (5) (2020) 963–978.

[10] M. Soliman, A. R. Salama, M. Galster, O. Zimmermann, M. Riebisch, Improving the search for
architecture knowledge in online developer communities, in: Proceedings of the 15th IEEE Interna-
tional Conference on Software Architecture (ICSA), Seattle, WA, USA, 2018, pp. 186–195.

[11] M. Soliman, M. Wiese, Y. Li, M. Riebisch, P. Avgeriou, Exploring web search engines to find
architectural knowledge, in: Proceedings of the 18th IEEE International Conference on Software
Architecture (ICSA), Stuttgart, Germany, 2021, pp. 162–172.

[12] H. Cervantes, R. Kazman, Designing software architectures: a practical approach, Addison-Wesley
Professional, 2016.

[13] I. Malavolta, K. Chinnappan, S. Swanborn, G. A. Lewis, P. Lago, Mining the ros ecosystem for green
architectural tactics in robotics and an empirical evaluation, in: Proceedings of the 18th IEEE/ACM
International Conference on Mining Software Repositories (MSR), Madrid, Spain, 2021, pp. 300–311.

[14] F. Tian, P. Liang, M. A. Babar, How developers discuss architecture smells? An exploratory study on
Stack Overflow, in: Proceedings of the 16th IEEE International Conference on Software Architecture
(ICSA), Hamburg, Germany, 2019, pp. 91–100.

40

[15] Z. Zhu, D. Bernhard, I. Gurevych, A multi-dimensional model for assessing the quality of answers
in social Q&A sites, in: Proceedings of the 14th International Conference on Information Quality
(ICIQ), Potsdam, Germany, 2009, pp. 264–265.

[16] G. D. Israel, Determining sample size, Fact Sheet PEOD-6, Florida, USA (1992).

[17] K. S. P. Ralph, F. Brian, Grounded theory in software engineering research: A critical review and
guidelines, in: Proceedings of the 38th IEEE/ACM International Conference on Software Engineer-
ing (ICSE), Austin, TX, USA, 2016, pp. 120–131.

[18] H. Christine, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, P. America, A general model of software
architecture design derived from five industrial approaches, Journal of Systems and Software 80 (1)
(2007) 106–126.

[19] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. A. Babar, A comparative study of architecture
knowledge management tools, Journal of Systems and Software 83 (3) (2010) 352–370.

[20] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, P. America, A general model of software
architecture design derived from five industrial approaches, Journal of Systems and Software 80 (1)
(2007) 106–126.

[21] Z. Li, P. Liang, P. Avgeriou, Application of knowledge-based approaches in software architecture:
A systematic mapping study, Information and Software Technology 55 (5) (2013) 777–794.

[22] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd Edition, Addson-Wesley
Professional, 2012.

[23] C. Rafael, A. Jansen, A. Tang, P. Avgeriou, M. A. Babar, 10 years of software architecture knowledge
management: Practice and future, Journal of Systems and Software 116 (2017) 191–205.

[24] A. Jansen, J. Bosch, Software architecture as a set of architectural design decisions, in: Proceed-
ings of the 5th IEEE/IFIP Working Conference on Software Architecture (WICSA), Pittsburgh,
Pennsylvania, USA, 2005, pp. 109–120.

[25] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What industry needs from architectural
languages: A survey, IEEE Transactions on Software Engineering 39 (2013) 869–891.

[26] T. Bi, W. Ding, P. Liang, A. Tang, Architecture information communication in two oss projects:
The why, who, when, and what, Journal of Systems and Software 181 (2021) 111035.

[27] A. Bedjeti, P. Lago, G. A. Lewis, R. D. D. Boer, R. Hilliard, Modeling context with an architecture
viewpoint, in: Proceedings of the 14th IEEE International Conference on Software Architecture
(ICSA), Gothenburg, Sweden, 2017, pp. 117–120.

[28] A. Tang, F.-C. Kuo, M. F. Lau, Towards independent software architecture review, in: Proceedings
of the 2nd European Conference on Software Architecture (ECSA), Paphos, Cyprus, 2008, pp.
306–313.

[29] K. E. Harper, J. Zheng, Exploring software architecture context, in: Proceedings of the 12thWorking
IEEE/IFIP Conference on Software Architecture (WICSA), Montréal, Québec, Canada, 2015, pp.
123–126.

[30] K. Petersen, C. Wohlin, Context in industrial software engineering research, in: Proceedings of the
3rd International Symposium on Empirical Software Engineering and Measurement (ESEM), Lake
Buena Vista, Florida, USA, 2009, pp. 401–404.

[31] I. Groher, R. Weinreich, A study on architectural decision-making in context, in: Proceedings of the
12th IEEE/IFIP Working Conference on Software Architecture (WICSA), Montreal, QC, Canada,
2015, pp. 11–20.

[32] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture, Vol. 1, John Wiley & Sons, 1996.

[33] V. R. Basili, G. Caldiera, H. D. Rombach, The goal question metric approach, Encyclopedia of
Software Engineering (1994) 528–532.

41

[34] M. Soliman, M. Riebisch, U. Zdun, Enriching architecture knowledge with technology design de-
cisions, in: Proceedings of the 12th Working IEEE/IFIP Conference on Software Architecture,
(WICSA), Montreal, QC, Canada, 2015, pp. 135–144.

[35] F. Calefatoa, F. Lanubileb, N. Novielli, How to ask for technical help? Evidence-based guidelines
for writing questions on Stack Overflow, Information and Software Technology 94 (2018) 186–207.

[36] A. Barua, S. W. Thomas, A. E. Hassan, What are developers talking about? an analysis of topics
and trends in Stack Overflow, Empirical Software Engineering 19 (3) (2014) 19–32.

[37] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, S. Counsell, Can you tell me if it smells? a study on
how developers discuss code smells and anti-patterns in Stack Overflow, in: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering (EASE), Montreal
Quebec, Canada, 2018, pp. 68–78.

[38] A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec, Discovering value from community activity
on focused question answering sites: A case study of Stack Overflow, in: Proceeding of the 10th
Working Conference on Mining Software Repositories (MSR), Beijing, China, 2013, pp. 53–56.

[39] J. de Dieu Musengamana, P. Liang, M. Shahin, A. A. Khan, Replication package for the paper:
Characterizing architecture related posts and their usefulness in Stack Overflow, https://doi.or
g/10.5281/zenodo.4683744, 2022.

[40] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, Understanding and classifying the quality of
technical forum questions, in: Proceedings of the 14th IEEE International Conference on Quality
Software (QSIC), Allen, TX, USA, 2014, pp. 343–352.

[41] H. Zhang, S. Wang, T. P. Chen, Y. Zou, A. E. Hassan, An empirical study of obsolete answers on
Stack Overflow, IEEE Transactions on Software Engineering 47 (4) (2019) 850–862.

[42] H. Zhang, S. Wang, T.-H. Chen, A. E. Hassan, Reading answers on Stack Overflow: Not enough!,
IEEE Transactions on Software Engineering 47 (11) (2021) 2520–2533.

[43] H. O. Obie, I. Ilekura, H. Du, M. Shahin, J. Grundy, L. Li, J. Whittle, B. Turhan, On the violation
of honesty in mobile apps: Automated detection and categories, in: Proceedings of the 19th Working
Conference on Mining Software Repositories (MSR), Pittsburgh, PA, USA, 2022, pp. 321–332.

[44] J. Cohen, A coefficient of agreement for nominal scales, Educational and psychological measurement
20 (1) (1960) 37–46.

[45] J. L. Campbell, C. Quincy, J. Osserman, O. K. Pedersen, Coding in-depth semistructured interviews:
Problems of unitization and intercoder reliability and agreement, Sociological Methods & Research
42 (3) (2013) 294–320.

[46] P. Kruchten, An ontology of architectural design decisions in software-intensive systems, in: Proceed-
ings of the 2nd Groningen Workshop on Software Variability Management (SVM), Rijksuniversiteit
Groningen, 2004, pp. 54–61.

[47] B. Foote, J. Yoder, Big ball of mud, Pattern Languages of Program Design 4 (1997) 654–692.

[48] R. de Freitas Bulcao Neto, M. da Graca Campos Pimentel, Toward a domain-independent semantic
model for context-aware computing, in: Proceeding of the 3rd Latin American Web Congress (LA-
WEB), Buenos Aires, Argentina, 2005, pp. 10–19.

[49] P. Petrov, U. Buy, R. L. Nord, The need for a multilevel context-aware software architecture analysis
and design method with enterprise and system architecture concerns as first class entities, in: Pro-
ceedings of the 9th Working IEEE/IFIP Conference on Software Architecture (WICSA), Boulder,
Colorado, USA, 2011, pp. 147–156.

[50] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, K. A. Schneider, Answering questions about unan-
swered questions of Stack Overflow, in: Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR), San Francisco, CA, USA, 2013, pp. 97–100.

42

https://doi.org/10.5281/zenodo.4683744
https://doi.org/10.5281/zenodo.4683744

[51] M. Soliman, M. Galster, M. Riebisch, Developing an ontology for architecture knowledge from
developer communities, in: Proceedings of the 14th IEEE International Conference on Software
Architecture (ICSA), Gothenburg, Sweden, 2017, pp. 89–92.

[52] T. Bi, P. Liang, A. Tang, Architecture patterns, quality attributes, and design contexts: How devel-
opers design with them?, in: Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC), Nara, Japan, 2018, pp. 49–58.

[53] S. Wang, T. P. Chen, A. E. Hassan, How do users revise answers on technical Q&A websites? A
case study on Stack Overflow, IEEE Transactions on Software Engineering 46 (3) (2020) 1024–1038.

[54] S. M. Nasehi, J. Sillito, F. Maurer, C. Burns, What makes a good code example? a study of
programming Q&A in StackOverflow, in: Proceedings of the 28th IEEE International Conference
on Software Maintenance (ICSM), Trento, Italy, 2012, pp. 25–34.

[55] H. Zhang, S. Wang, T. P. Chen, A. E. Hassan, Are comments on Stack Overflow well organized for
easy retrieval by developers?, ACM Transactions on Software Engineering and Methodology 30 (2)
(2021) Article No. 22.

[56] S. Nadi, C. Treude, Essential sentences for navigating Stack Overflow answers, in: Proceedings of the
27th IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
London, ON, Canada, 2020, pp. 229–239.

[57] T. Haitzer, U. Zdun, Controlled experiment on the supportive effect of architectural component dia-
grams for design understanding of novice architects, in: Proceedings of the 7th European Conference
on Software Architecture (ECSA), Montpellier, France, 2013, pp. 54–71.

[58] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, J. Lun, Want a good answer? ask a good question first!
(2013), arXiv:1311.6876.

[59] L. Wijerathna, A. Aleti, T. Bi, A. Tang, Mining and relating design contexts and design patterns
from Stack Overflow, Empirical Software Engineering 27 (1) (2022) 1–53.

[60] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
Software Engineering, Springer, 2012.

[61] K. Chinnappan, I. Malavolta, G. A. Lewis, M. Albonico, P. Lago, Architectural tactics for energy-
aware robotics software: A preliminary study, in: Proceedings of the 15th European Conference on
Software Architecture (ECSA), Virtual Event, Sweden, 2021, pp. 164–171.

[62] R. Li, P. Liang, M. Soliman, P. Avgeriou, Understanding architecture erosion: The practitioners’
perceptive, in: Proceeding of the 29th IEEE/ACM International Conference on Program Compre-
hension (ICPC), Madrid, Spain, 2021, pp. 311–322.

[63] J. Zou, L. Xu, M. Yang, X. Zhang, D. Yang, Towards comprehending the non-functional require-
ments through developers’ eyes: An exploration of Stack Overflow using topic analysis, Information
and Software Technology 84 (2017) 19–32.

[64] B. Dagenais, M. P. Robillard, Recovering traceability links between an API and its learning re-
sources, in: Proceedings of the 34th IEEE International Conference on Software Engineering (ICSE),
Zurich, Switzerland, 2012, pp. 47–57.

[65] L. An, O. Mlouki, F. Khomh, G. Antoniol, Stack Overflow: A code laundering platform, in: Proceed-
ings of the 24th IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), Klagenfurt, Austria, 2017, pp. 283–293.

[66] F. Fischer, K. Böttinge, H. Xiao, C. Stransky, Y. Acar, M. Backes, S. Fahl, Stack Overflow considered
harmful? the impact of copy&paste on android application security, in: Proceeding of the 38th IEEE
Symposium on Security and Privacy (S&P), San Jose, CA, USA, 2017, pp. 121–136.

[67] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, R. Oliveto, Toxic code snippets on stack
overflow, IEEE Transactions on Software Engineering 47 (3) (2019) 560–581.

43

[68] A. Zagalsky, O. Barzilay, A. Yehudai, Example overflow: Using social media for code recommenda-
tion, in: Proceedings of the 3rd International Workshop on Recommendation Systems for Software
Engineering (RSSE), Zurich, Switzerland, 2012, pp. 38–42.

[69] C. Treude, M. P. Robillard, Understanding Stack Overflow code fragments, in: Proceedings of the
33rd IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai,
China, 2017, pp. 509–513.

[70] C. Ragkhitwetsagul, J. Krinke, R. Oliveto, Awareness and experience of developers to outdated and
license-violating code on Stack Overflow: An online survey (2018), arXiv:1806.08149.

[71] C. Treude, M. P. Robillard, Augmenting API documentation with insights from Stack Overflow, in:
Proceedings of the 38th International Conference on Software Engineering (ICSE), Austin, Texas,
USA, 2016, pp. 392–403.

[72] E. Wong, J. Yang, L. Tan, Autocomment: Mining question and answer sites for automatic com-
ment generation, in: Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Silicon Valley, CA, USA, 2013, pp. 562–567.

[73] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, H. Mei, Fixing recurring crash bugs via analyzing
Q&A sites, in: Proceedings of the 30th International Conference on Automated Software Engineering
(ASE), Lincoln, NE, USA, 2015, pp. 307–318.

[74] T. McDonnell, B. Ray, M. Kim, An empirical study of API stability and adoption in the android
ecosystem, in: Proceedings of the 29th IEEE International Conference on Software Maintenance
(ICSM), Eindhoven, The Netherlands, 2013, pp. 70–79.

[75] D. H. Dalip, M. Cristo, P. Calado, Exploiting user feedback to learn to rank answers in Q&A
forums: A case study with Stack Overflow, in: Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), Dublin, Ireland, 2013,
pp. 543–552.

[76] B. Xu, Z. Xing, X. Xia, D. Lo, Answerbot: Automated generation of answer summary to developers’
technical questions, in: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Urbana, IL, USA, 2017, pp. 706–716.

[77] F. Calefato, F. Lanubile, N. Novielli, An empirical assessment of best-answer prediction models in
technical Q&A sites, Empirical Software Engineering 24 (2) (2019) 854–901.

44

	1 Introduction
	2 Background
	2.1 Stack Overflow
	2.2 Architecture knowledge
	2.3 Architecture problem
	2.4 Design context
	2.5 Architecture solution

	3 Research design
	3.1 Goal and research questions
	3.2 Study Execution
	3.2.1 Data collection
	3.2.2 Data extraction and analysis

	4 Results
	4.1 Categories of architecture related questions (RQ1)
	4.2 Categories of design contexts (RQ2)
	4.3 Characteristics of architecture related questions that have more than one answer (RQ3)
	4.4 Characteristics of architecture related questions that only have one answer (RQ4)
	4.5 Taxonomy of architecture solutions that are considered useful (RQ5)
	4.6 Characteristics of useful architecture solutions (RQ6)

	5 Discussion
	5.1 Analysis of the results
	5.1.1 The delta between our results and the results from prior work
	5.1.2 Identified categories of ARPs in SO could support architecting activities
	5.1.3 Importance of design context in architecture design
	5.1.4 Identified characteristics of ARPs to improve their quality

	5.2 Implications
	5.2.1 For Stack Overflow
	5.2.2 For SO users
	5.2.3 For researchers

	6 Threats to validity
	7 Related work
	7.1 Architectural knowledge in Q&A Sites
	7.2 Quality assessment of knowledge in Q&A Sites

	8 Conclusions and future work

