
An Empirical Study of Security Practices for Microservices Systems
Rezaei Nasab Alia, Shahin Mojtabab, Hoseyni Raviz Seyed Alia, Liang Penga,∗, Mashmool Amirc
and Lenarduzzi Valentinad
aSchool of Computer Science, Wuhan University, 430072 Wuhan, China
bSchool of Computing Technologies, RMIT University, 3000 Melbourne, Australia
cDepartment of Computer Science, Bioengineering, Robotics and System Engineering, University of Genoa, 16126 Genoa, Italy
dFaculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014 Oulu, Finland

ART ICLE INFO
Keywords:
Microservice
Security
Empirical Study
Practitioners
Practice

ABSTRACT
Despite the numerous benefits of microservices systems, security has been a critical issue in such
systems. Several factors explain this difficulty, including a knowledge gap among microservices prac-
titioners on properly securing a microservices system. To (partially) bridge this gap, we conducted an
empirical study. We first manually analyzed 861 microservices security points, including 567 issues,
9 documents, and 3 wiki pages from 10 GitHub open-source microservices systems and 306 Stack
Overflow posts concerning security in microservices systems. In this study, a microservices security
point is referred to as “a GitHub issue, a Stack Overflow post, a document, or a wiki page that entails 5
or more microservices security paragraphs”. Our analysis led to a catalog of 28 microservices security
practices. We then ran a survey with 74 microservices practitioners to evaluate the usefulness of these
28 practices. Our findings demonstrate that the survey respondents affirmed the usefulness of the
28 practices. We believe that the catalog of microservices security practices can serve as a valuable
resource for microservices practitioners to more effectively address security issues in microservices
systems. It can also inform the research community of the required or less explored areas to develop
microservices-specific security practices and tools.

1. Introduction
Over the past few years, the Microservices Architecture

(MSA) style has been popularly and widely used in the soft-
ware industry. TheMSA style aims to decompose a software
application into or build it consisting of a set of microser-
vices (i.e., small business-driven services) that can be imple-
mented, tested, and deployed independently [1, 2]. Another
benefit of this style is that it allows software development
organizations to use the best-fit programming language and
technology (e.g., database) to implement each microservice.
Several other merits of microservices systems (software sys-
tems that employ the MSA style) are pointed out in the lit-
erature, such as scalability, modularity, and fault-tolerance
[1, 3].

Since the advent of the MSA style, securing microser-
vices systems has been a challenge for software practition-
ers and organizations [4, 5, 6, 7, 8, 9, 10]. The potential
security challenges associated with microservices systems
may compel software organizations to revisit their decision
to adopt or migrate to microservices [11, 12]. The diffi-
culty in securing microservices systems lies in several fac-
tors: (i) Tools and technologies that microservices use or
rely on are prone to several security weaknesses and vulner-
abilities; (ii) There is a knowledge gap among practitioners
and organizations on securing microservices systems as the
MSA style is an emerging and evolving architecture style

∗Corresponding author
rezaei.ali.nasab@gmail.com (R.N. Ali);

mojtaba.shahin@rmit.edu.au (S. Mojtaba); s.ali.hoseyni@gmail.com (H.R.
Seyed Ali); liangp@whu.edu.cn (L. Peng); 5245307@studenti.unige.it (M.
Amir); valentina.lenarduzzi@oulu.fi (L. Valentina)

ORCID(s):

[13, 14, 15, 16]; (iii) The distributed nature and character-
istics of microservices systems make security harder than
monolithic systems. For example, it is more difficult to guar-
antee security in such systems than monolithic systems as
hundreds of microservices might be simultaneously running
in production. Some works have been conducted on security
in microservices systems (e.g., [6, 9, 17]), and recent review
studies have called for more studies on security in microser-
vices systems [1, 18, 8].

While these works are valuable for security in microser-
vices systems, documented knowledge and guidelines on how
software practitioners design and implement securemicroser-
vices systems are scarce (if any) [6]. It is argued that soft-
ware practitioners are keen to learn and apply the practices
and decisions that their peers used or are using during their
development process [19, 20, 14]. Software practitioners
are also interested in learning bad practices adopted by their
peers to avoid repeating mistakes. Hezavei et al. [20] de-
fined a software development practice as “an activity or step
carried out to achieve a goal during the development pro-
cess”. To the best of our knowledge, no systematic attempt
has been made to develop and document a catalogue of best
practices used by software practitioners that enable the de-
velopment of secure microservices systems. Hence, the ul-
timate goal of this study is to empirically collect and docu-
ment microservices-specific security practices. At the same
time, it is also important to understand how practitioners per-
ceive the usefulness of these security best practices. To this
end, we define the following two research questions (RQs).

RQ1. What are the security practices to secure mi-
croservices systems?

RQ2. To what extent do practitioners consider the iden-

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 1 of 22

ar
X

iv
:2

11
2.

14
92

7v
4

 [
cs

.S
E

]
 1

8
N

ov
 2

02
2

tified microservices security practices useful?
To answer these two RQs, we conducted an empirical

study that identified and validated 28 security practices for
microservices systems. We first collected and manually an-
alyzed 861 microservices security points, including 567 is-
sues, 9 documents, and 3 wiki pages from 10 GitHub open-
source microservices systems and 306 Stack Overflow posts
concerning security in microservices systems (see Section
3.1). A microservices security point is defined as “a GitHub
issue, a Stack Overflow post, a document, or a wiki page that
entails 5 or more microservices security paragraphs”. This
manual analysis led to a catalog of 28 microservices secu-
rity practices. The security practices identified from GitHub
and StackOverflow are based on the authors’ analysis, which
might be subjective and unreliable. Consequently, we ran an
industrial survey completed by 74 practitioners to seek their
perceptions about the usefulness of the identified security
practices (see Section 3.2).

The key contributions of this paper can be summarized
as follow:

• Identification of 28 security practices in 6 categories
for microservices systems;

• Validation of the usefulness of these security practices
from 74 microservices practitioners;

• Providing an online replication package of the data
used in this study for researchers and practitioners to
replicate and validate the findings [21];

• A set of actionable recommendations formicroservices
practitioners and researchers.

The rest of the paper is organized as follows: Section 2
provides the background on microservices systems and their
security and summarizes the related work. Section 3 details
our research methodology. The findings are presented in
Section 4, followed by a set of recommendations for prac-
titioners and researchers in Section 5. Section 6 elaborates
on the threats of our study. Section 7 concludes our work
and provides future work directions.

2. Background and Related Work
2.1. Background
2.1.1. Microservices Systems

Despite the MSA style being originated from Service-
OrientedArchitecture (SOA), they have some significant dif-
ferences [1, 2]. Both include (small) services with dedicated
responsibilities, while services in the MSA style are inde-
pendent and autonomous and communicate through different
lightweight mechanisms, services in SOA are not full-stack
and fully autonomous [22].

The development, test, and deployment of eachmicroser-
vice can be done independently by a different development
team using divergent technologies and programming languages.
The unique characteristics of the MSA style allow microser-
vices to scale independently from each other [3]. Further-
more, the MSA style enables the development teams to use

the hardware that adequately meets their needs to deploy
each microservice. As microservices are small and inde-
pendent, their maintenance and making them fault-tolerant
would be much easier. It is because the failure of one service
will not lead to the entire system down, which may occur in
monoliths [2].

The research and industry communities have investigated
several aspects of microservices systems. One of the most
prevailing investigated and demanding aspects is how to mi-
grate a legacy/monolithic application to microservices [4,
18]. For example, Balalaie et al. [23] identified 15 patterns
for this purpose, and Auer et al. [24] developed an assess-
ment framework to help software organizations specify and
measure possible advantages and difficulties of migration to
microservices. However, the migration to or adoption of mi-
croservices can be associated with many serious challenges
and issues, which need careful consideration [8, 25]. These
issues and challenges are enormous, such as the cost over-
head due to the migration, the higher complexity of the sys-
tem due to the increased amount and variety of components
integrated into the system, and security issues [11, 12].

Some researchers also looked at approaches and tools for
microservices systems. Cinque et al. [26] developed an ap-
proach for monitoring microservices, and Heorhiadi et al.
[27] introduced a framework, Gremlin, to test the “failure-
handling capabilities” of microservices. Other researchers
empirically investigated how microservices systems are de-
signed, implemented, tested, and monitored in the software
industry (e.g., [28, 29]).
2.1.2. Security in Microservices Systems

Besides the various advantages brought bymicroservices,
security often becomes an issue during their deployment.
Similar to other types of systems (e.g., monolithic systems),
improved security in microservices systems may be accom-
plished in different ways, such as by applying a secure de-
velopment methodology [30, 31, 32]. A monolithic system
is a single system, and usually, a single application server
needs to be secured, while in microservices systems, each
microservice represents a possible attack surface [7]. Inmono-
lithic systems, communications between different compo-
nents happen locally, with local calls, while in microservices
systems, the communication happens through the network,
creating another possible attack surface. In the MSA style,
a compromised microservice can send malicious requests to
other microservices.

Another aspect to consider is the authorization between
services since not all the services might be authorized to
connect to other services. Different systems, such as Kuber-
netes1 or Istio2 provide inter-service authorization mecha-
nisms. However, these mechanisms need to be developed,
and new distributed access rules need to be defined sepa-
rately for each service. The authorizationmechanisms should
try to reduce the privileges between services as much as pos-
sible instead of opening granting full access to all the ser-

1https://kubernetes.io
2https://istio.io

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 2 of 22

https://kubernetes.io
https://istio.io

vices [7].
When dealing with authentications, distributed authen-

tication mechanisms need to be considered. As an example,
developers need to decide how to handle authentication, if
using an authentication server, or independent authentica-
tion systems in different microservices [7]. Moreover, devel-
opers need to discriminate how to update the authentication
mechanisms every time when new services or new users are
included in the system.

The security and authentication issues need to be care-
fully designed by the architects, who are designing a spe-
cific system. Microservices systems also need to consider
possible vulnerabilities due to the usage of public container
images that might be potentially infected [33]. An attempt
to reduce this issue is provided by the “Moving Target De-
fenses”, which proposes to modify component images to cre-
ate uncertainty for attackers [34].

Moreover, when migrating from a monolithic system to
microservices, companies need to keep the monolithic sys-
tem and the microservices alive and connected at the same
time until the migration is completed and the monolithic sys-
tem is shut-down [8, 25]. This requires creating a secure
communication channel between the monolithic system and
themicroservices system and integrating the security and au-
thentication system adopted for the monolithic system with
the new one adopted in the microservices system [8, 25].
The main challenges are to identify a suitable approach to:

• Manage and synchronize the authentication ofmicroser-
vices with the monolithic system, so as that end-users
will not realize that the system is being migrated;

• Secure themicroservices, the communication between
the monolithic system and the microservices, but also
the communication intra-microservices ;

• Understandwhich type of vulnerabilities are introduced
during the migration.

2.2. Related Work
Researchers and practitionersmay use security techniques,

tools, practices, patterns, or secure development methodolo-
gies to support the development of secure software systems
[30, 31, 32]. This section covers the studies that have tar-
geted security in microservices systems.

Several secondary studies have been conducted on mi-
croservices systems and on security in microservices. In
a recent review study, Waseem et al. [18] observed that
there are a few concrete solutions for addressing security
concerns when implementing microservices systems in De-
vOps. Another systematic mapping review on 46 papes by
Hannousse and Yahiouche [10] revealed that most studies on
security in microservices are the solutions proposed in the
soft-infrastructure layer. They argued that internal attacks,
compared to external attacks, are less explored in the litera-
ture. They also indicated more efforts should be allocated on
other layers of MSA (e.g., communication and deployment
layers) and developing mitigation techniques. Pereira-Vale
et al. [7] carried out a multivocal literature review on 36

academic literature and 34 grey literature. Their review led
to a classification of 15 security mechanisms, in which au-
thentication and authorization are the security mechanisms
most reported in the literature. In addition, “mitigate/stop
attacks” are expressed in about 2/3 of the security mecha-
nisms. Ponce et al. [35] focused on security smells and
refactorings and collected and analyzed 58 white and grey
literature published from 2014 to 2021. They found 10 se-
curity smells with their security properties and correspond-
ing refactorings. They also elaborated on how the corre-
sponding refactorings mitigate the effects of the smells. A
recent systematic grey literature study by Billawa et al. on 57
microservices-related grey literature sources identified 7 se-
curity challenges, including “trust between services”, “large
attack area”, “testing”, “container management”, “low vis-
ibility”, “secret management”, and “polyglot architecture”
[36]. Billawa et al. also found that the practices, such as
“defense in depth”, “DevSecOps”, “encrypt sensitive data”,
“immutable container”, “rate throttling”, “secure-by-design”,
and “least privilege” can help develop secure microservices
systems.

Waseem et al. [5] empirically investigated the issues re-
ported in 5 open source microservices systems hosted on
GitHub. They found that 10.18% of these issues can be at-
tributed to security. Yarygina and Bagge [9] asserted that
security in microservices systems is a multi-faceted prob-
lem, and a layered security solution can address it. Hence,
they categorized microservices security concerns into 6 lay-
ers (hardware, virtualization, cloud, communication, service/application,
and orchestration) with solutions to address them (e.g., se-
cure implementation of service discovery and registry com-
ponents). Richardson [37] introduced 44 microservices pat-
terns that are categorized into 16 groups (e.g., “data consis-
tency” patterns). Among them, “Access Token” is the only
pattern related to security.

To secure IoT microservices, Pahl et al. [17] proposed
a graph-based access control module in a network of IoT
nodes. This module can monitor the communication of IoT
microservices systems to create robust security and mitigate
the security holes of such systems. Moreover, Pahl andDonini
[38] provided a method based on “X.509 certificates” for au-
thenticating IoTmicroservices. One of the main goals of this
method is to verify the security properties locally through
the distributed IoT nodes. Yu et al. [39] focused on secu-
rity issues of microservices-based fog applications because
such systems are composed of numerous microservices with
complex communications, which is a challenge in terms of
security. They reviewed 66 articles and identified 17 secu-
rity issues (e.g., kernel exploit or DOS attack) regarding the
microservices communication categorized in 4 groups: con-
tainers issues, data issues, permission issues, and network
issues.

By surveying 67 participants, Rezaei Nasab et al. [6]
affirmed that security challenges in microservices systems
differ from non-microservices systems. To bridge the secu-
rity knowledge gap among microservices practitioners [13,
14, 15, 16], they developed a set of machine and deep learn-

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 3 of 22

ing approaches to automatically recognize security discus-
sions (including security design decisions, challenges, or so-
lutions) from open source microservices systems. Chon-
damrongkul et al. [40] also developed an automated ap-
proach using ontology reasoning and model checking tech-
niques to identify security threats of microservices architec-
tures through analyzing security characteristics. The iden-
tified security threats show how the attack scenarios may
happen. Sun et al. [41] designed an API primitive FlowTap
that provides security-as-a-service for microservices-based
cloud applications. The proposed technique can monitor and
protect the network of such systems from internal and exter-
nal threats.

In contrast to the works above, our study presents 28
trusted and ready-to-use security best practices for microser-
vices systems. For example, although practices identified in
[36] are valuable, they are still general and need concrete
solutions to be implemented in microservices system devel-
opment. Our 28 practices were collected from developer dis-
cussions occurring during the development of microservices
systems. We further validated the usefulness of these prac-
tices by seeking feedback from 74 microservices practition-
ers. Finally, we articulated the positive and negative sides
(if any) of the 28 practices.

3. Methodology
Our goal in this study is to identify and evaluate a cat-

alog of security practices for microservice systems. In this
section, we first explain our approach to identifying 28 se-
curity practices for microservice systems from GitHub and
Stack Overflow (RQ1) in Section 3.1. We then discuss the
design and execution of a survey to evaluate these security
practices (RQ2) in Section 3.2.
3.1. Mining Security Practices (RQ1)

In this section, we first describe how we collected data
related tomicroservices security fromGitHub and StackOver-
flow (see Section 3.1.1), and then how the collected data was
analyzed to identifymicroservices security practices (see Sec-
tion 3.1.2).
3.1.1. Data Collection

GitHub issues and StackOverflow posts (including Stack
Exchange) are valuable sources for identifying development
practices (e.g., architectural practices [42, 43] and security
practices [44]). Hence, we focused on GitHub and Stack
Overflow to collect data related to microservices security.

Step 1. In our previous work [6], we manually created
a dataset of 5,018 security paragraphs collected from 567
GitHub issues in 7 open-source microservices systems and
505 Stack Overflow posts. These security paragraphs in-
clude “design decisions, challenges, or solutions relating
to security in microservices systems” [6]. The architectural
style of these 7 open-source systems (i.e., goa, eShopOn-
Containers, microservices-demo, scalecube-services, moleculer,
deep-framework, and light-4j shown in Table 2) was deter-
mined as the microservices architecture style by enquiring

the core contributors of those projects through an online sur-
vey. The core contributors are defined as “the top 3 contrib-
utors who have the most commits in a project” [6]. Our pre-
vious work [6] aimed to develop ML/DL-based approaches
to automatically differentiate security paragraphs from non-
security paragraphs in GitHub issues and Stack Overflow
posts concerning security in microservices. In contrast, this
work aims to identify security best practices for microser-
vices systems from GitHub and Stack Overflow and then
evaluate them with software practitioners.

Hence, the 5,018 security paragraphs collected from our
previous work could be a good source to identify security
practices. Despite this, the security paragraphs are short
(i.e., 2-3 sentences), and there might be the chance of losing
the design context by reading the security paragraphs indi-
vidually. Our strategy to (partially) mitigate this challenge
was to read the entire GitHub issues or Stack Overflow posts
that entail equal or more than 5 such security paragraphs.
Our decision to set the threshold to 5 security paragraphs
was based on our experience in the previous work [6] as is-
sues and posts with 5 or more security paragraphs are more
suitable for identifying security practices. As shown in Fig-
ure 1, this process led to 76 candidate GitHub issues and
306 candidate Stack Overflow posts, which are called secu-
rity points. The creation date of the 306 candidate Stack
Overflow posts ranges from August 2014 to July 2020.

Step 2. Apart from the 7 open-source microservices sys-
tems used in our previous work [6], we found 3 larger open-
source microservices systems (spinnaker with 6,514 issues,
jaeger with 3,222 issues, and cortex with 4,438 issues shown
in Table 2) on GitHub. These 3 new systems also employ the
MSA style. We used the same approach in [6] (i.e., enquiring
the core contributors) to identify these new microservices
systems.

We applied DeepM1 (i.e., the best performing ML/DL
approach developed in [6]) to identify security paragraphs
from the GitHub issues of these 3 new projects. Since the
unit of analysis in theDeepM1 approach [6] was a paragraph,
we converted the GitHub issues of these 3 projects to para-
graphs using their HTML tag<p>. The pre-processing used
in [6] was also used for these paragraphs. Note that DeepM1
with a recall of 84.25% and a precision of 86.73% works at
the paragraph level. This process led to identifying 9,566
security paragraphs from the GitHub issues of these 3 new
systems, which include 5,931 security paragraphs from spin-
naker project, 1,629 security paragraphs from jaeger project,
and 2,006 security paragraphs from cortex project (see Fig-
ure 1). Similar to the approach used in Step 1, we only se-
lected the GitHub issues of these 3 projects that entail equal
or more than 5 such security paragraphs. This resulted in a
collection of 467 security points from spinnaker, cortex, and
jaeger projects (see Figure 1).

Step 3. Among all systems discussed in Step 1 and Step
2, 9 systems (i.e., eShopOnContainers, spinnaker, cortex,
jaeger, goa, moleculer, deep-framework, microservices-demo,
and light-4j) have documentation with 5 or more security
paragraphs. Further, 3 systems, including eShopOnContain-

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 4 of 22

Cross-checkersPilot survey
6 Participants

Online survey
74 Participants

Survey
Results

5,018 security paragraphs from
Rezaei Nasab et al. [12]

10 microservices systems from
Rezaei Nasab et al. [12]

382 security points

No

Yes

12 security points

Has
documentation/wiki

pages?

6,514 issues 3,222 issues 4,438 issues

567 issues and 505
posts

76 issues and 306
posts

119,083 paragraphs

9,566 security
paragraphs

3,925 issues

467 issues

467 security points

9 documentations
and 3 wiki pages

Step 1 Step 2 Step 3

861 security points

Pilot phaseMain phase

Meetings Meetings

Analysts

Feedback

36 microservices
security practices

28 microservices
security practices

Feedback Feedback

Process Legend

Converting paragraphs to issues

Converting issues to paragraphs

Issues or Posts >= 5 security paragraphs

Applying DeepM1

Data Analysis

Data Collection

+

Figure 1: An overview of extracting microservices security practices

ers, scalecube-services, and light-4j, have a wiki page with 5
or more security paragraphs. We considered these 9 pieces
of documentation and 3 wiki pages as security points. As
shown in Figure 1, our dataset includes 861 security points,
which were manually analyzed to identify security practices
(see Section 3.1.2).
3.1.2. Identification of Security Practices

Identifying and extracting microservices security prac-
tices from the 861 microservices security points include 3
phases.

Pilot Phase. We randomly selected 20 security points
from the 861 security points and asked 3 analysts (3 authors)
to analyze them independently. The goal was to get famil-
iar with data and understand what sort of security points
should be considered a security practice. Each analyst ap-
plied the open coding and constant comparison techniques
fromGrounded Theory [45] to extract security practices. They
then held a meeting to check the similarities and dissimilar-
ities of the extracted security practices and resolve any dis-
agreements.

Main Phase. The 3 analysts collaboratively analyzed the
remaining 841 security points. 90 security points were allo-

cated to the 3 analysts each week. In other words, each ana-
lyst was asked to extract security practices from 30 allocated
security points using the open coding and constant compar-
ison techniques [45]. Further, an Excel file was created and
sharedwith all the analysts. Theywere requested tomaintain
the link between an identified practice and its corresponding
security point. At the end of each week, the analysts held a
meeting to discuss their extracted security practices, identify
the duplicate ones, merge, or rephrase them. This process
led to the identification of 36 practices, which were grouped
into 6 categories based on their topics: Authorization and
Authentication, Token and Credentials, Internal and Exter-
nal Microservices, Microservices Communications, Private
Microservices, and Database and Environments.

Feedback Phase. In this phase, the other 3 authors re-
viewed the 36 security practices. They mainly checked the
36 security practices to identify and mitigate possible incon-
sistencies and ambiguities. This step resulted in merging 4
practices with other microservices security practices and re-
ducing the number of security practices to 32 practices.

Next, we ran a pilot survey to seek microservices practi-
tioners’ feedback on the 32 identified security practices. The
pilot survey was designed using Google Forms and com-

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 5 of 22

Table 1
Demographic questions of our online survey

Demographic Questions Question Type Example Answers
“How many years have you been involved in software development?” Multiple choice 0 <year <= 2
“What is your main role in software development?” Multiple choice Developer, Architect, Tester
“How many years have you been involved in microservices system development?” Multiple choice 0 <year <= 1
“How many years of experience do you have with security in microservices systems?” Multiple choice 0 <year <= 1
“How large is your organization?” Multiple choice 20 <= employees <= 50
“What are the domains of your organization?” Checkbox Financial, E-commerce
“Which country do you currently work in?” Free Text Australia

pleted by 6 microservices practitioners. We asked the practi-
tioners to demonstrate their level of agreement or disagree-
ment with the 32 identified security practices (Likert scale
questions rated from “strongly agree = 5” to “strongly dis-
agree = 1”). Each Likert scale question was followed by
an optional open-ended question to obtain further feedback.
Based on feedback collected from the practitioners and our
internal discussions, we reduced the number of security prac-
tices from 32 to 28. This reduction was because the prac-
titioners indicated that 2 security practices did not contain
enough information to be understood. We also found 2 prac-
tices that overlapped and merged them. We further slightly
rephrased the wording of some practices (e.g., adding more
information to a security practice) to remove any ambigui-
ties. These 28 security practices are distributed into the 6
categories developed in the Main Phase as follows: Autho-
rization and Authentication (6 practices), Token and Cre-
dentials (5 practices), Internal and External Microservices
(7 practices), Microservices Communications (4 practices),
Private Microservices (2 practices), and Database and En-
vironments (4 practices).
3.2. Validation Survey (RQ2)

In this section, we elaborate on the design and execution
of a survey (called the validation survey) to evaluate the use-
fulness of the 28 security practices formicroservices systems
collected in Section 3.1.
3.2.1. Protocol

Considering the guidelines proposed by Kitchenham and
Pfleege [46], an online survey (i.e., the validation survey)
was developed to evaluate the usefulness of the 28 microser-
vices security practices identified in Section 3.1. The sur-
vey was anonymous and hosted on Google Forms. The sur-
vey preamble describes the goal of the survey and briefly
explains how and from which sources these 28 microser-
vices security practices are identified. The survey includes
45 questions and takes about 25 minutes to complete. The
survey questions can be classified into 3 groups.

Demographic questions. We asked 7 questions to get
background information about the survey participants (e.g.,
“how many years of experience do you have with security in
microservices systems?”). Table 1 shows these 7 questions.
All demographic questions except one were compulsory.

Likert scale questions. The respondents were asked to
rate the usefulness of each of the 28 identified security prac-

tices using a Likert question. The mandatory Likert scale
questions were ranked on a 4-point scale as “Absolutely Use-
ful”=4, “Useful”=3, “Not Useful”=2, and “Absolutely Not
Useful”=1. We also added the option “I Don’t Know” to al-
low practitioners not to respond to the practices when they
were unsure about or unclear to them.

Open-ended questions. As discussed in Section 3.1.2,
the 28 security practices are classified into 6 categories. For
each category, we asked the participants to provide the rea-
son for their response for one of the practices in that cat-
egory that they rated “Absolutely Useful/Useful” or “Abso-
lutely Not Useful/Not Useful”. The participants were also
requested to list the practice number. Note that answering
these questions was optional. Finally, 2 more optional ques-
tions were asked. The respondents were requested to share
any feedback about the security practices in microservices
systems. The second question was to allow the participants
to provide their email addresses if they were interested in the
results of our study.
3.2.2. Participants

We used the following methods to recruit microservices
practitioners.
Ê We collected the publicly available emails of 868 con-
tributors involved in the 10 projects listed in Table 2. We
emailed them and asked them to fill up the survey.
ËThe spinnaker project has a workplace on Slackwithmany
active contributors. The workplace has some Special Inter-
est Group (SIG) channels that focus on different topics (e.g.,
security). We advertised our survey in the workplace.
Ì The third strategy was to broadly advertise the survey in
some microservices groups on social networks like Twitter
and LinkedIn. Further, we sent private messages to practi-
tioners who were a member of these groups.
ÍWe asked the invited practitioners to share the survey with
their colleagues who had experience in microservices secu-
rity.

In total, we received 74 valid responses. The initial anal-
ysis of the survey responses revealed that 2 responses were
invalid. For example, one participant answered all 28 Lik-
ert questions as “I Don’t Know”. Note that we did not cal-
culate the response rate for our survey because of our het-
erogeneous recruitment process (e.g., the respondents might
contribute to one or more projects in Table 2, and at the same
time, they might be involved in multiple LinkedIn groups).

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 6 of 22

Table 2
A list of 10 microservices systems used in this study. Release (Rel.); Contributors (Cont.);
Line of Codes (LoC)

Project Name URL Stars Forks Issues Rel. Cont. LoC Languages Docs Wiki

1 eShopOnContainers https://bit.ly/2X40b4M 18.6k 7.9k 1,752 17 142 120k C# 4 4

2 jaeger https://bit.ly/2YvyJgN 14.2k 1.7k 3,222 44 221 105k Go, Shell 4 8

3 spinnaker https://bit.ly/3ndjJyu 8k 1.1k 6,514 132 116 6k Shell, Go 4 8

4 moleculer https://bit.ly/2X5DayD 4.6k 441 1,003 99 92 98k Javascript 4 8

5 goa https://bit.ly/38LUYkD 4.4k 459 2,907 55 88 88k Go 4 8

6 cortex https://bit.ly/3nbq65x 4.3k 604 4,438 50 204 1.2m Go 4 8

7 light-4j https://bit.ly/3zOnhL0 3.3k 554 1,030 140 34 57k Java 4 4

8 microservices-demo https://bit.ly/38LtxY2 2.8k 1.8k 875 13 55 15k Python 4 8

9 deep-framework https://bit.ly/3ncbgM4 538 75 647 22 12 956k Javascript 4 8

10 scalecube-services https://bit.ly/3DTFhGn 507 79 820 178 21 11k Java 8 4

Table 1

0 < year <= 2 2 < year <= 4 4 < year <=10 10 < year <= 20 year > 20 Developer Architect Technical Lead Software Engineer DevOps Engineer Project Manager Requirements
Engineer Engineering

Manager Consultant
year = 0

2.7 8.11 37.84 44.59 6.76 28.4 24.32 14.86 21.62 2.7 2.7 1.35 1.35 2.7 1.35

(A)
Experienced in

Software
Development

year > 20
6.8%

10 < year <= 20
44.6% 4 < year <=10

37.8%

2 < year <= 4
8.1%

0 < year <= 2
2.7%

(D)
Main Roles

Consultant
3%

Engineering Manager
1%

Requirements Engineer
1.4%

Project Manager
2.7%

DevOps Engineer
2.7%

Software Engineer
21.6%

Technical Lead
14.9% Architect

24.3%

Developer
28.4%

(B)
Experienced in
Microservices

Systems

year > 6
5.4%

5 < year <= 6
12.2%

4 < year <= 5
14.9%

3 < year <= 4
17.6%

2 < year <=3
18.9%

1< year <= 2
17.6%

0 < year <= 1
12.2%

year = 0
1.4%

(C)
Experienced in

Security of
Microservices

Systems

year > 3
21.6%

2 < year <=3
20.3%

1< year <= 2
28.4%

0 < year <= 1
25.7%

year = 0
4.1%

(E)
Organization Size

more than 1000 employees
59.5%

500 < employees <= 1000
10.8%

100 < employees <= 500
13.5%

50 < employees <= 100
4.1%

20 <= employees <= 50
5.4%

less than 20 employees
6.8%

1

Figure 2: Experience of the participants (n=74) in software development (A), experience of the participants in microservices
system development (B), experience of the participants in securing microservices systems (C), main roles of the participants (D),
and organization size of the participants (E).

3.2.3. Data Analysis
Descriptive statistics were used to study the responses

to the closed-ended questions, i.e., demographic and Likert
scale questions. We also applied the open coding technique
to analyze the responses to the open-ended questions [45].
Note that we used the answers (if any) to the open-ended
questions to clarify why a particular security practice was
chosen “Useful/AbsolutelyUseful” or “NotUseful/Absolutely
Not Useful” by the respondents.

4. Findings
4.1. Demographics

We provide the demographics of the survey respondents.
Experience. Figure 2 (A) shows that 51.4% of the partic-

ipants (n=74) have been involved in software development
for at least 10 years. All participants, except for one partic-

ipant, had at least one year of experience in developing mi-
croservices systems, with 50.1% having more than 3 years
of experience (see Figure 2 (B)). Regarding Figure 2 (C),
more than 70% of the respondents had one year of experi-
ence with securing microservices systems. 25.7% worked
with security in microservices systems in less than one year.
The rest (4.1%) did not have any experience in this regard.

Role. As shown in Figure 2 (D), the participants mainly
worked asDeveloper (28.4%, 21 out of 74), Architect (24.3%,
18 out of 74), Software Engineer (21.6%, 16 out of 74), and
Technical Lead (14.9%, 11 out of 74).

Organization size and domain. The majority of the
participants (83.8%) came from organizationswithmore than
100 employees (see Figure 2 (E)). 59.5% (44 out of 74 par-
ticipants) were from organizations with more than 1000 em-
ployees. The participants’ organization domains are shown
in Figure 3. The participants were able to choose one ormore

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 7 of 22

https://bit.ly/2X40b4M
https://bit.ly/2YvyJgN
https://bit.ly/3ndjJyu
https://bit.ly/2X5DayD
https://bit.ly/38LUYkD
https://bit.ly/3nbq65x
https://bit.ly/3zOnhL0
https://bit.ly/38LtxY2
https://bit.ly/3ncbgM4
https://bit.ly/3DTFhGn

Table 1

Consulting and
IT services

Financial E-commerce Telecommunic
ation

Healthcare Retail Insurance Education Embedded
system

Others

33 31 17 12 11 9 9 6 6 14

Consulting and IT services

Financial

E-commerce

Telecommunication

Healthcare

Retail

Insurance

Education

Embedded system

Others

0 10 20 30 40

14

6

6

9

9

11

12

17

31

33

1

Figure 3: Participants’ organization domains (n=74). Note:
Participants could select more than one domain

Pakistan Bangladesh Canada Chile China Estonia Ethiopia
2 1 1 1 1 1 1

© Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, TomTom, Wikipedia
Powered by Bing

13

5

4

3

2

1

24

13

5
4 4

3 3
2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0

5

10

15

20

25

N/
A
Ind
ia
Bra
zil

Au
str
alia UK Ira

n
US
A

Pa
kis
tan

Ba
ng
lad
esh

Ca
na
da

Ch
ile
Ch
ina

Est
on
ia

Eth
iop
ia

Fin
lan
d

Ge
rm
an
y
Gh
an
a

Ita
ly

Ko
so
vo

Ne
the

rla
nd
s
Sp
ain

Sw
ed
en

Sw
itze

rla
nd

Tu
rke
y

Figure 4: Number of participants (n=74) from 23 countries

organization domains in the demographic question. The dom-
inant domains are “consulting and IT services” and “finan-
cial”, followed by “E-commerce” and “telecommunications”.

Country. The distribution of participants per country is
shown in Figure 4. Since this question was optional, we only
received 50 responses for this question. The 50 participants
who indicated their country information came from 23 coun-
tries across 6 continents, including Europe (10 countries),
Asia (6 countries), NorthAmerica (2 countries), SouthAmer-
ica (2 countries), Africa (2 countries), and Oceania (1 coun-
try). Most of them were from India, Brazil, and Australia
(see Figure 4).
4.2. Security Practices

This section details the 28 security practices identified
through mining 861 security points (RQ1). We also present
the perspective of the survey respondents about the useful-
ness of these security practices (RQ2). As described in Sec-
tion 3.1.2, these 28 practices are classified into 6 groups.
Similar to the arguments by Malavolta et al. [43], the main
goal behind revealing the usefulness of these security prac-
tices is to indicate their applicability in practice and assess
the reliability of our analysis of the practices. We do not aim
to rank these practices. Still, practitioners need to consider
the design context and the requirements and constraints of

-80 -60 -40 -20 0 20 40 60 80 100 120

PD4

PD3

PD2

PD1

PP2

PP1

PM4

PM3

PM2

PM1

PI7

PI6

PI5

PI4

PI3

PI2

PI1

PT5

PT4

PT3

PT2

PT1

PA6

PA5

PA4

PA3

PA2

PA1

NOT useful Don't know Useful Absolutely Useful

Figure 5: The level of usefulness of the 28 identified security
practices for microservices systems from the perspective of 74
practitioners

their microservices systems and organizations when using
these practices (see Section 5.1).
4.2.1. Authorization and Authentication

This group includes 6 practices for authorizing microser-
vices or authenticating users in microservices systems (see
Table 3).

 PA1. Add an “identity microservice”, and authorize
microservices access through “identity microservice” and
token of each microservice. Each microservice has its own
token, which is passed in each request between the microser-
vices. A microservices system includes several microser-
vices, and each of the microservices performs specific tasks.
Mostly, they need to communicate with each other to reach
out to a target. Hence, authorizing microservices is an im-
portant task in these systems. Assume a user wants to be
authenticated once and then access all the relevant microser-
vices and client apps with their protected resources. This
process is referred to as Single Sign-On (SSO) [7]. PA1 is a
way to implement SSO [47]. In this practice, a microservice
called “identity microservice” will check the token of mi-
croservices related to the user and make sure they are valid
microservices. In case they are not valid microservices, the
user will be redirected for the authentication.

This practice may negatively affect performance due to
too many round trips to the authentication server. Also, it
affects scalability because of the increased number of mi-
croservices. 58 (78.38%) out of the 74 survey respondents

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 8 of 22

Table 3
Security practices for authorizing and authentication and the survey responses (in %).
AU: Absolutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t
Know, MED: Median, AVG: Average

Security practices for authorizing and authentication Sources AU U NU ANU IDK MED AVG

PA1 Add an “identity microservice”, and authorize microservices access through
“identity microservice” and token of each microservice. Each microservice
has its own token, which is passed in each request between the microser-
vices.

[47], [48], [49], [50],

[51], [52], [53], [54]
32.43 45.95 16.22 1.35 4.05 3 3.14

PA2 Each microservice in the microservices architecture must be responsible for
its own security, i.e., each microservice must have security enabled.

[47], [55], [56], [57] 40.54 33.78 17.57 6.76 1.36 3 3.10

PA3 Suppose you use an API Gateway approach in the microservices architec-
ture. In that case, you do not need to have each microservice security
enabled (you do not need to implement PA2) because the internal mi-
croservices can be protected by not being published out of the Docker
Host.

[58] 28.39 24.32 24.32 12.16 10.81 3 2.77

PA4 A large microservices system is recommended to use an API Gateway ap-
proach for securing∕authorizing∕routing microservices.

[58], [57], [59], [60], [61] 70.27 25.68 4.05 0.00 0.00 4 3.66

PA5 Set an authorization boundary on each microservice even when (1) mi-
croservices are “internal” and (2) it is possible to set the authorization at
the API Gateway level.

[62] 45.95 40.54 12.16 0.00 1.35 3 3.34

PA6 Use Public Key Infrastructure (PKI) signing∕verification system to prevent
round trips to the Authorization Service.

[63] 21.63 47.30 14.86 1.35 14.86 3 3.05

confirmed that this practice is (absolutely) useful. Some of
the comments that the participants posted to support or refuse
this practice are:

- “[It is] useful to maintain traceability in requests
between microservices.” (Architect)
- “I believe that microservices should have one ser-
vice that is dedicated to authentication. Authentication
service may be developed inside or subscribed as a ser-
vice from other companies. Default gateway routes all
incoming requests to the authentication service then
the authentication service validates whether the re-
quest has a valid token or not. In my experience, each
microservice has a private key of JWT, which checks
all incoming requests before allowing access to a re-
source.” (Software Engineer)
, “[I am] not sure [about] the latency impact [of this
practice].” (DevOps Engineer)
, “When working with microservices, it is important
to remember that you have to follow your good prac-
tices, if you pass the token to all microservices, they
will have to call the microservice for authorization al-
ways, in this case it is faster and safer to use middle-
ware in the API gateway, this way centralizes authen-
tication.” (Software Engineer)

 PA2. Each microservice in the microservices archi-
tecture must be responsible for its own security, i.e., each
microservice must have security enabled. Another way to
implement SSO is to use a decentralized authentication pro-
tocol like OpenID, with which each microservice can handle
its own security [47]. In other words, with this practice, the
user will have to authorize each microservice individually.
More than half of the respondents (74.32%) acknowledged
that the practice is absolutely useful or useful. The follow-

ing are 4 examples of the participants’ comments that sup-
port PA2.

- “Eachmicroservice should enable security and have
to check all incoming requests before allowing ac-
cess to the resource, but [other stuff related to] mi-
croservice security such as token creation, refresh to-
ken, OAuth implementation should be handled by a
separately dedicated authentication service.” (Soft-
ware Engineer)
- “Each service needs to be protected with security
token.” (Developer)
- “Absolutely useful as long as microservices don’t
bother each other with different security protocols.
In my company we used to secure every module sep-
arately to ensure powerful security while maintaining
their best performance.” (Developer)
- “Enabling security between microservices - this de-
pends on the use case. But it is additional overhead.
If we are isolated from APIGW and the microservices
needs to communicate with any microservices and if
protected, then only it is advisable to have the security
between microservices.” (Architect)

On the other hand, some respondents mentioned that it
is not necessary to secure all microservices:

, “[It is] not necessarily all microservices in the ar-
chitecture should be concerned with security, as this
should be in the gateway API or in the infrastructure
layer.” (Software Engineer)

 PA3. Suppose you use an API Gateway approach in
the microservices architecture. In that case, you do not need
to have each microservice security enabled (you do not need
to implement PA2) because the internal microservices can

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 9 of 22

be protected by not being published out of the Docker host.
One of the key challenges for practitioners is to decide to
authorize microservices at the microservices level only, au-
thorize at the API Gateway level, or both of them [58]. Sup-
pose they choose theAPIGateway approach for this purpose.
In that case, the microservices could only be accessed by
other Containers within the Docker host through the “inter-
nal port” of each Container. 39 survey participants (52.71%)
considered this practice (absolutely) useful. On the other
hand, 27 (36.48%) opposed it (24.32% rated it as not useful,
and 12.16% rated it as absolutely not useful). The following
is a positive comment that we received from the respondents.

- “ If we make the security check at api gateway level,
then the microservices behind the gateway can ignore
token validity check request to auth server. This will
reduce overhead. Though they need to check the ac-
cess level for maintaining Role-Based Access Control
(RBAC).” (Technical Lead)

Some participants indicated that authorizing microser-
vices at the microservices level and the API Gateway level
is required for microservices systems as there should be zero
trust security in such systems.

, “You can’t know who is making the requests and
you should have authentication/authorization enabled
(zero trust)” (Software Engineer)
, “Having an API gateway does not mean to disable
security in microservices. In fact API gateway is used
for coarse grained security issues, microservices are
used for fine grained security. Both levels of security
are required.” (Requirements Engineer)
, “It is important to secure communication between
microservices even if you use API Gateway.” (Techni-
cal Lead)

 PA4. A large microservices system is recommended to
use an APIGateway approach for securing/authorizing/routing
microservices. The API Gateway approach causes overhead
in small microservices systems and needs too many steps
when coding and updating features [57, 58]. Out of 28 prac-
tices, PA4 was mostly rated by the survey participants as
absolutely useful or useful (more than 95%). No one voted
this practice as absolutely not useful.

We received only positive comments on this practice, in-
dicating that it works well for routing, minimizes coupling,
and supports the evolution of microservices.

- “[This practice] simplify code and is robust”
- “I agree default gateway [can be used] for routing
but authentication and authorization should be han-
dled by separate service.” (Software Engineer)
- “Using gateway makes it easier for the client be-
cause (1) they don’t have to deal with many different
addresses of each service, (2) abstraction is highly en-
forcedwhich also enhances security because endpoints

of the services are not directly exposed, thereby mak-
ing it difficult for attackers, and (3) coupling is min-
imised.” (Developer)
- “We are using it, and it enables routing correctly.”
(Technical Lead)

PA5. Set an authorization boundary on eachmicroser-
vice even when (1) microservices are “internal” and (2) it
is possible to set the authorization at the API Gateway. This
practice is recommended when developers want to add au-
thorization with Ocelot3 [62]. However, developers need to
balance between security and simplicity. Themajority of our
survey respondents agreed with the usefulness of this prac-
tice (86.49% rated it as absolutely useful or useful).

As shown in the following comments, PA5 (1) provides
a native cloud solution, (2) is useful for accidental wrong
access/modification, and (3) reduces the security concerns
in internal microservices.

- “It uses a native cloud solution.” (DevOps Engi-
neer)
- “Authorisation boundary is very important and use-
ful not only in terms of security but also for accidental
wrong access/modification.” (Software Engineer)
- “[It] is cool because you create an outer layer of
security and your internal services don’t have to worry
about security.” (Software Engineer)

In contrast, a detractor mentioned that:
, “Some requests navigate through many services be-
fore returning a response, so implementing authoriza-
tion in API Gateway, I believe, is not the best practice.
The default gateway should only do the routing stuff,
adding some security-related task to the default gate-
way is not a scalable solution. Because if you want to
implement SSO in the future, I think it’s a bit difficult
to implement it.” (Software Engineer)

PA6. Use Public Key Infrastructure (PKI) signing/verification
system to prevent round trips to the Authorization Service.
This practice aims to handle the authorization in a microser-
vices environment [63]. Most respondents (68.93% consid-
ered this practice useful or absolutely useful. As an example
of the positive comments from the respondents on this prac-
tice, we have:

- “If we use PKI then each microservice can vali-
date the security tokens instead of sending a request
to identity microservice to validate the tokens.” (De-
veloper)

Detractors noted that the use of PKI in a microservices
architecture is costly.

3https://ocelot.readthedocs.io/en/latest/index.html#

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 10 of 22

https://ocelot.readthedocs.io/en/latest/index.html#

Table 4
Security practices for tokens and credentials and the survey responses (in %). AU: Ab-
solutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t Know,
MED: Median, AVG: Average

Security practices for tokens and credentials Sources AU U NU ANU IDK MED AVG

PT1 Use a method based on the Public/Private key to secure microservices
through JSON Web Token (JWT).

[64], [65], [66],

[67], [68]
39.19 51.35 2.70 0.00 6.76 3 3.39

PT2 In microservices systems, use JSON Web Tokens (JWTs) to handle the
session expiration/revocation.

[47], [69] 40.54 48.65 4.05 0.00 6.76 3 3.39

PT3 Secure caches of credentials in each microservice that needs to access
other microservices.

[70] 14.87 43.24 20.27 10.81 10.81 3 2.70

PT4 Decode JSON Web Token (JWT) at the microservices level instead of
the API Gateway level.

[71] 27.03 33.78 18.92 6.76 13.51 3 2.94

PT5 Endpoints of microservices like server information, health check, and
logging level must be secured in the request/response chain.

[72], [73], [62] 36.49 35.14 18.91 2.70 6.76 3 3.13

, “Not useful, depending on the number of requests
betweenmicroservices, performing key verification can
be very costly.” (Architect)
, “This will have a high cost of development and
maintenance.” (DevOps Engineer)

4.2.2. Token and Credentials
As shown in Table 4, this group includes 5 practices for

handling sensitive information in a microservices system.
 PT1. Use a method based on the Public/Private key

to secure microservices through JSON Web Token (JWT).
JWTs can be signed in a microservices system and generate
2 key pairs (private signing key and public verification key)
[74]. The public verification key generated by a JWT can be
distributed to all microservices in the microservices system.
If microservice A wants to decrypt the information in mi-
croservice B, it only needs to know the private signing key
created by microservice B [64]. If the microservices system
uses the API Gateway approach, the API Gateway should
also know the private signing key.

90.54% (67) of the survey respondents rated it as abso-
lutely useful or useful. Only 2 practitioners chose not useful.
This practice received only positive comments, in which the
respondents offered to use the OAuth stream in addition to
JWT.

- “JWT alone is not enough. [It is] interesting to use
an OAuth stream with client credentials + cookie, in
a Gateway API strategy.” (Architect)
- “For external facing APIs, we can useOAuth based
authentication.” (DevOps Engineer)

 PT2. In microservices systems, use JSONWeb Tokens
(JWTs) to handle the session expiration/revocation. This
practice recommends using Redis tool4 to track token revo-
cations [47]. PT2 received almost similar positive feedback
to PT1 from the survey respondents (89.19% absolutely use-
ful or useful). A respondent stated that this practice is use-

4https://redis.io

ful if someone uses JWT for communication between mi-
croservices behind the gateway. Another participant con-
firmed PT2 as a useful practice, but he/she mentioned that
JWT is not the only method to handle the session expiration
and revocation.

- “Communication betweenmicroservices behind the
gateway can be JWT which is a value token. But from
client to gateway should be a reference token which
does not contain any sensitive information.” (Archi-
tect)
- “JWT is not the only option.” (Software Engineer)

 PT3. Secure caches of credentials in each microser-
vice that needs to access other microservices. More than
55% of the practitioners verified that PT3 [70] is absolutely
useful or useful, while 31.08% rated it as not useful or abso-
lutely not useful. A software engineer with more than 3 years
of experience in security of microservices systems pointed
out:

- “If the cached credentials are not secured, the en-
tire credential system is questionable.” (Software En-
gineer)

Some respondents believed that (1) the usefulness of PT3
depends on whether the microservice is stateful or stateless,
and (2) the overhead of securing credentials.

, “It depends on the [micro]service type weather it
is stateful or stateless. If the service is stateful, we
may think about a way how to store the credential and
use it in the next request. Else we use a private key to
validate the request token.” (Software Engineer)
, “Security is necessary but an overhead, only se-
cure what needs securing. Maintain separation of con-
cerns,manage/cache user credentials in one dedicated
service.” (Technical Lead)

 PT4. Decode JSONWeb Token (JWT) at the microser-
vices level instead of the API Gateway level. 45 participants

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 11 of 22

https://redis.io

(60.81%) believed that JWTs should be decoded at the mi-
croservices level because they mostly include relevant infor-
mation for authentication and authorization. API Gateway
can manage the JWTs in the form of Fail-fast (a.k.a. fail
early), and it is just recommended to verify access tokens
at the microservices level [71]. Our analysis shows that 19
respondents (25.68%) did not agree with the usefulness of
PT4. Below are 3 comments that question PT4 and rational-
ize why decoding JWTs should be done at the API Gateway
level.

, “Since JSON token is decoded once at the gateway
level, the overhead of each service having to deal with
the decoding is removed, thereby making availability
better.” (Developer)
, “I believe decoding can be done at the API Gate-
way level and from there, the request should opt for a
different way to hit the internal services. That will free
the services from doing any kind of decoding work. I
think it would have better performance and be more
secure.” (Architect)
, “I think that JWT tokens can be checked at the API
Gateway, but not ’instead of’ the microservice level.
Checking at the gateway will keep failed authentica-
tions away from any unnecessary processing but they
should be verified by the Microservice.” (Technical
Lead)

 PT5. Endpoints of microservices like server informa-
tion, health check, and logging level must be secured in the
request/response chain. Our analysis shows that server in-
formation, health check, and logging level contain sensitive
information and should be secured as part of securing a mi-
croservices system [72, 73]. Depending on the requirements
of a microservices system, developers may only use some of
these endpoints. 71.63% of the respondents opted for abso-
lutely useful or useful for this practice. Some comments that
indicate the importance of securing endpoints are shown as:

- “Leaving diagnostics information unsecured may
expose loopholes in the system, which makes it eas-
ier for attackers. Again sensitive information can be
leaked to unauthorized users.” (Developer)
- “All endpoints, including diagnostic endpoints, must
be secured. These are prone to attacks and can leak
potentially sensitive data.” (Technical Lead)
- “Specially logs could contain data that need to be
protected at all time.” (DevOps Engineer)

In contrast, a respondent disagreedwith protecting health
checks as it may not allow the implementation of a fault tol-
erance strategy.

, “Health checks should not be protected, in a fault
tolerance strategy whoever makes the request needs to
know if the microservice is active, to allow a retry al-
ternative.” (Architect)

4.2.3. Internal and External Microservices
This group of practices focuses on securing a set of mi-

croservices. Part of these microservices (internal microser-
vices) is used inside an organization, and the rest (external
microservices) may be used by any third-party (see Table 5).

 PI1. Developers can use internal microservices se-
cured with a different token than external microservices. In
this scenario, API Gateway acts as a token issuer for the
internal microservices. 52 respondents (70.27%) acknowl-
edged that developers could use unique tokens for securing
internal and external microservices. Two practitioners rated
it absolutely not useful (2.7%), and 12 practitioners consid-
ered it not useful (16.22%). Below are 2 negative comments
on this practice.

, “The default gateway should not handle Identity
and Access Management (IAM) task.” (Software En-
gineer)
, “There is no need to use token and secure internal
microservices as long as they are not accessible from
outside.” (Software Engineer)

 PI2. Developers can use internal microservices se-
cured using the tokens of external microservices, and their
permissionmust be controlled using Access Control List (ACL).
In this scenario, API Gateway forwards the tokens to the in-
ternal microservices. Similar to PI1, PI2 aims to secure in-
ternal microservices. However, it uses the tokens of exter-
nal microservices for securing internal microservices [75].
60.81% of the participants stated that PI2 is absolutely use-
ful or useful. 20.27% rated this practice as not useful or abso-
lutely not useful. The following comment includes negative
feedback on this practice.

, “I don’t know how useful is to having the same token
internally and externally and encrypting the token is
always the best.” (Architect)
, “External authorization and Internal authorization
are different. External token must be used to autho-
rize the user. Don’t mix.” (Architect)

 PI3. Whether microservices are only internally used
within an organization or are externally accessible to third
parties, authentication is required either way. The majority
of the survey respondents (83.78%, 62 out of 74) consid-
ered PI3 as absolutely useful or useful. They argued that the
authenticated microservices remain secure in the following
scenarios: (1) the occurrence of misconfigurations that lead
to exposure of internal microservices to outside, and (2) if a
security hole is opened in the firewall [76].

- “If authentication is not enabled for internal mi-
croservices, then as soon as the internal physical net-
work gets compromised, the entire microservices sys-
tem is compromised, which is a disaster.” (Software
Engineer)

On the other hand, some respondents believed that this
practice would be only necessary or useful under certain cir-
cumstances.

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 12 of 22

Table 5
Security practices for internal and external microservices and the survey responses (in %).
AU: Absolutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t
Know, MED: Median, AVG: Average

Security practices for internal and external microservices Sources AU U NU ANU IDK MED AVG

PI1 Developers can use internal microservices secured with a different token
than external microservices. In this scenario, API Gateway acts as a
token issuer for the internal microservices.

[75] 27.03 43.24 16.22 2.7 10.81 3 3.06

PI2 Developers can use internal microservices secured using the tokens of
external microservices, and their permission must be controlled using
Access Control List (ACL). In this scenario, API Gateway forwards the
tokens to the internal microservices.

[75] 17.57 43.24 13.51 6.76 18.92 3 2.88

PI3 Whether microservices are only internally used within an organization
or are externally accessible to third parties, authentication is required
either way.

[76], [77], [78] 54.05 29.73 6.76 5.41 4.05 4 3.38

PI4 In an internal microservice use case, “client credential” should not get
exposed to the third party.

[79] 56.76 35.14 4.05 1.35 2.70 4 3.51

PI5 Microservices systems made of components should be isolated and in-
ternal calls should not be leaked outside their boundaries.

[80] 51.35 40.54 5.41 0.00 2.70 4 3.47

PI6 Encrypt tokens if they are going to be exposed to the outside of the
system boundary.

[81] 55.41 22.97 12.16 4.05 5.41 4 3.37

PI7 It is recommended to minimize the number of HTTP dependencies
between internal microservices. This will minimize the future impact
on microservices performance and Denial-of-Service attacks.

[82] 37.84 39.19 13.51 0.00 9.46 3 3.27

, “It depends on the service that the microservice
gives. Some services may need authentication, and
some may not need a user to authenticate.” (Devel-
oper)
, “By having communication via the [message] bro-
ker, it is not necessary to authenticate in internal mi-
croservices, but if you use REST inmicroservices, this
is making a bad practice, and in that case, it will be
necessary.” (DevOps Engineer)

 PI4. In an internal microservice use case, “client
credential” should not get exposed to the third party. The
client credentials are identifiers for accessing client data. It
is strongly advised to distinguish internal client credentials
from external ones [79]. This practice was rated as abso-
lutely useful or useful by more than 90% participants. Only
one respondent noted that if the third party is valid for the
internal microservices, there is no problem exposing client
credentials to the third party.

, “If we are talking about the grant type client cre-
dentials in OAuth2 and the client ID/secret identifies
the third party system, I don’t see a problem exchang-
ing the “client credential” with the third party.” (Re-
quirements Engineer)

PI5. Microservices systemsmade of components should
be isolated and internal calls should not be leaked outside
their boundaries. This practice has more focus on control-
ling the components’ exposure. Most participants (91.89%,
68 out of 74) marked it as absolutely useful or useful. Similar
to PI4, none of the participants rated this practice as abso-
lutely not useful.

 PI6. Encrypt tokens if they are going to be exposed
to the outside of the system boundary. From the perspec-
tive of a software developer with 10 years of experience, it
is needed to encrypt the tokens because they contain some
authorization-related information [81]. This practice was
absolutely useful for 41 respondents (55.41%) and useful for
17 respondents (22.97%). The following are 2 positive com-
ments which state that the tokens should be encrypted at all
times.

- “Tokens can be hacked so should always be en-
crypted.” (Architect)
- “Tokens should be encrypted with a public key and
get decrypted with a private key regardless of the fact
that the internal service is receiving it or a client.” (Ar-
chitect)

However, a survey respondent questioned the need for
adding another layer of encryption if tokens are already signed.

, “Assuming tokens are already signed, what is the
reason to have another layer of encryption?” (Soft-
ware Engineer)

 PI7. It is recommended to minimize the number of
HTTP dependencies between internal microservices. This
will minimize the future impact onmicroservices performance
and Denial-of-Service attacks. Our analysis of the secu-
rity points revealed that some developers advised that fewer
communications between internal microservices are better
because being autonomous and available to the client is one
of the purposes of microservices. If we employ HTTP de-
pendencies between microservices, it can violate the auton-
omy of microservices [82]. It also impacts the performance

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 13 of 22

Table 6
Security practices for microservices communications and the survey responses (in %).
AU: Absolutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t
Know, MED: Median, AVG: Average

Security practices for microservices communications Sources AU U NU ANU IDK MED AVG

PM1 Use OAuth2 “Client Credentials Flow” if two microservices that trust
each other want to talk together from the backends.

[83], [84], [85], [86] 24.32 50.0 6.76 2.70 16.22 3 3.15

PM2 The connection between a microservice and its respective database
should be protected by a security protocol, like Transport Layer Security
(TLS).

[87], [88] 48.65 36.49 8.11 2.70 4.05 4 3.37

PM3 When a microservice in a microservices architecture needs to call an-
other microservice, the access token should be passed around microser-
vices with the request.

[89] 35.14 37.84 18.92 4.05 4.05 3 3.08

PM4 It is recommended to use the gRPC framework for internal microservice-
to-microservice synchronous communication.

[86], [90], [91], [92],

[93], [94]
20.27 37.84 16.22 0.00 25.67 3 3.05

of microservices when one of them does not perform well
[82].

57 (77.03%) participants considered PI7 as absolutely
useful or useful. The survey respondents pointed out that it
would be useful to avoid HTTP calls as much as possible be-
cause they may create some problems for internal microser-
vices calls. Furthermore, the respondents emphasized that
HTTP dependencies should be reduced because it is against
the separation of concerns principle in the design of mi-
croservices systems. They also recommended using gRPC
instead of HTTP for synchronous calls. An alternative to
prevent the Distributed Denial-of-Service (DDoS) attack is
to use the Backends For Frontends (BFF) pattern5.

- “HTTP calls are synchronous. Hence too much use
of it for inter-service calls may cause availability is-
sues. If indeed synchronous calls are required, then
gRPC may be used.” (Developer)
- “One way to prevent DDoS is to work with Back-
ends For Frontends (BFF) and only expose it to the
world, and not expose each of your microservices to
be accessible by external HTTP requests.” (Software
Engineer)
- “Separation of concerns is a major feature of pure
microservices.” (Software Engineer)
- “This is required for performance.”

A negative comment that we received on this practice is:
, “When we came to microservice architecture, the
most used way of synchronous messaging between
services was by usingHTTP so asmany requests could
be sent and received to do the task. I don’t recommend
minimizing the number of requests as a solution.” (De-
veloper)

4.2.4. Microservices Communications
Table 6 represents 4 practices that are related to authen-

ticating and authorizing requests when 2 or more microser-
vices are communicating.

5https://samnewman.io/patterns/architectural/bff

 PM1. Use OAuth2 “Client Credentials Flow” if two
microservices that trust each other want to talk together from
the backends. In such communications, there is no end-user
identity involved. PM1 emphasizes the trust between mi-
croservices where they explicitly call each other [83]. As-
sume that there are a user and 2 microservices (A, B). The
user accesses microservice A through a JSON Web Token
(JWT). At this time, microservice A needs to access mi-
croservice B. The “OAuth2 client credentials grant” is rec-
ommended to handle the communication between these 2
microservices. If 2 microservices do not trust each other,
the “OAuth2 client credentials grant” provides a good way
to handle the authentication between these 2 microservices
[84]. In this case, each microservice will use its own creden-
tials to obtain a token through the “token microservice” (i.e.,
a microservice that is responsible for generating, renewing,
and validating a token) and use it to connect to another mi-
croservice.

A large number of the survey participants (i.e., more than
70%) considered this as an (absolutely) useful practice. A
few were the opposite of it (less than 10%). As a positive
comment on this practice, we have:

- “Client credential is only valid when the intercom-
munication does not specify the current active user.”
(Architect)

We only received a negative comment on this practice.
, “Intercommunications betweenmicroservices should
be a custom grant type, not client credential.” (Archi-
tect)

 PM2. The connection between a microservice and its
respective database should be protected by a security pro-
tocol, like Transport Layer Security (TLS). Our analysis of
the collected security points taught us that developers should
be worried about the security of communication between a
microservice and its database (or even other databases) [87].
As an essential part of the data protection strategy, Microsoft
strongly advises protecting data in transit [95]. Moreover,
because the data is exchanged from many locations, Secure

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 14 of 22

https://samnewman.io/patterns/architectural/bff

Sockets Layer (SSL) or TLS protocols are highly recom-
mended. 63 respondents admitted this practice (48.65% ab-
solutely useful and 36.49% useful).

They mentioned that PM2 is useful to prevent unautho-
rized access of microservices to the database. They also rec-
ommended that using the gRPC framework with the TLS
protocol is a good practice when a microservice wants to
communicate to its own database.

- “It is better to secure the connection of a service and
its database because it prevents unauthorized access
to the database.” (Developer)
- “It’s good to use gRPC framework and TLS while
accessing the DB.” (Architect)
- “TLSwill ensure that all traffic is encrypted.” (Tech-
nical Lead)

Some others argued that (1) there is no need to use PM2
once the database is in a private network, and (2) adding a
security protocol in a connection causes more complexity.

, “TheDBmust be embedded in the service container
or in a private network. Therefore there is no need to
encrypt a local connection.” (Architect)
, “Adding SSL to database connection only addsmore
complexity.” (Software Engineer)

 PM3. When a microservice in a microservices ar-
chitecture needs to call another microservice, the access to-
ken should be passed around microservices with the request.
Imagine there are a user and 2 microservices (A and B). The
user and microservice A are in Scope A (i.e., the user is au-
thorized for microservice A). Microservice B is in Scope B
(i.e., the user is not authorized for microservice B). Suppose
the user with the access token wants to use a resource from
microservice A and at the same time, microservice A must
call microservice B to give the resource to the user. In that
case, PM3 is recommended to prevent any communication
failure [89].

72.98% of the proponents agreed PM3 is (absolutely)
useful. Two participants provided conditions for the useful-
ness of this practice in the following comments.

- “Only if you are going to get some information
from the user, otherwise, it [passing the access token
around microservices with the request] is not neces-
sary.” (DevOps Engineer)
- “This is useful when each microservice parses the
token, gets the requester information and use that for
some operation. This strongly verifies that the owner
of the session is doing that particular operation, rather
that reading some parameters to identify who is the
owner of the operation.” (Technical Lead)

 PM4. It is recommended to use the gRPC framework
for internal microservice-to-microservice synchronous com-
munication. gRPC is a communication protocol usingHTTP2

[96] and Protocol Buffers [97]. The analysis of the security
points indicated that gRPC provides an effective solution for
direct synchronous communication between microservices
[90], [91]. 43 respondents agreed that PM4 is a (absolutely)
useful practice (58.11%). More than 25% of the participants
were not familiar with this practice. No one selected abso-
lutely not useful for this practice.

Proponents argued that gRPC is faster than HTTP be-
cause it uses binary encoding. However, the costs of using
it should be considered.

- “gRPCuses binary encoding, whichmakes it faster.”
(Developer)
- “You can take benefit over HTTP. But it depends.”
(Technical Lead)
- “gRPC is useful but it has a cost, you should think
about its advantages to implement it.” (Software En-
gineer)

In contrast, a few respondents pointed out that PM4 is
not useful and should be avoided because, e.g., it causes dif-
ficulties in development and debugging.

, “This is an option, but should not be a require-
ment.” (Software Engineer)
, “Binary data transfer makes development and de-
bugging very difficult and does not add much of value
in terms of security or network performance.” (Soft-
ware Engineer)
, “gRPC should be avoided at any time.” (Architect)

4.2.5. Private Microservices
Table 7 provides 2 practices to increase the security of

privatemicroservices. Privatemicroservices are internalmi-
croservices in an organization that only a specific group of
end-users or applications can access.

PP1. Remote nodes (e.g., remotemicroservices) should
not be able to even list/check for the existence of private mi-
croservices. If there are some private microservices in a
microservices architecture, none of the remote nodes must
be allowed to call private microservices’ actions [80]. In
addition, they should not be allowed to check any informa-
tion about private microservices directly (even the number
of private microservices). In this scenario, private microser-
vices can only contact internal microservices. 50 out of 74
survey respondents (67.57%) considered this practice abso-
lutely useful or useful. We also did not receive absolutely not
useful for this practice. Two participants shared their feed-
back on this practice as follow:

- “The requirement/responsibility of checking for the
existence [of private microservices] may cause tight
coupling between services which may cause availabil-
ity issues and also potential “distributedmonolith” be-
cause a service may not function if other services are
unavailable.” (Developer)

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 15 of 22

Table 7
Security practices for private microservices and the survey responses (in %). AU: Abso-
lutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t Know,
MED: Median, AVG: Average

Security practices for private microservices Sources AU U NU ANU IDK MED AVG

PP1 Remote nodes (e.g., remote microservices) should not be able to even
list/check for the existence of private microservices.

[80] 40.54 27.03 13.51 0.00 18.92 3.50 3.33

PP2 Use “service grouping” to limit the visibility and callability (of both actions
and events) of the private microservices in a group of microservices.

[80] 32.43 33.78 6.76 0.00 27.03 3 3.35

Table 8
Security practices for database and environments and the survey responses (in %). AU:
Absolutely Useful, U: Useful, NU: Not Useful, ANU: Absolutely Useful, IDK: I Don’t
Know, MED: Median, AVG: Average

Security practices for database and environments Sources AU U NU ANU IDK MED AVG

PD1 Although security policies should be applied in both development and
production environments, production environments need stronger se-
curity.

[82], [98], [94] 68.92 20.27 5.41 2.70 2.70 4 3.6

PD2 In a microservices architecture, databases should not be exposed to any
unauthenticated request.

[99] 71.63 18.92 4.05 2.70 2.70 4 3.64

PD3 Suppose a microservice needs to validate some data against data from
another microservice synchronously. In that case, it is recommended
to combine both microservices and have only one microservice.

[100] 10.82 24.32 40.54 13.51 10.81 2 2.36

PD4 Suppose a microservice needs to validate some data against data from
another microservice synchronously. In that case, the first microservice
should replicate data from the second microservice in its own database
with an eventual consistency syncing system.

[100] 18.92 35.14 24.32 4.05 17.57 3 2.84

 PP2. Use “service grouping” to limit the visibility
and callability (of both actions and events) of the private
microservices in a group of microservices. More than 65%
of the survey participants (49 out of 74) acknowledged that
the use of service grouping for private microservices is (ab-
solutely) useful. This practice received the highest rate of “I
don’t know” among all practices (27.03%). However, PP2
did not receive absolutely not useful, and only a few partici-
pants (6.76%) rated it as not useful.

An architect commented that service grouping is a ben-
eficial method in microservices systems and is always re-
quired. A technical lead also detailed that using this practice
can lead to preventing the awareness of systems and improv-
ing security.

- “As a best practice from Microservices or Con-
tainerization point of view, service grouping is always
required and beneficial.” (Architect)
- “Ensuring visibility is restricted to the necessary
services is an essential part of zero trust. It prevents
the awareness of systems, improving security.” (Tech-
nical Lead)

4.2.6. Database and Environments
Four practices are categorized into the database and envi-

ronments group and are shown in Table 8. They focus on se-
curity concerns that databases and production environments
may raise in microservices systems.

 PD1. Although security policies should be applied in
both development and production environments, production

environments need stronger security. The majority of the
survey participants (89.19%) accepted that production envi-
ronments need more security policies than development en-
vironments. Among these participants, more than 65% rated
it as absolutely useful. Less than 10% disagreedwith the use-
fulness of this practice. In the following, we received some
comments that support or refute/question PD1:

- “Because different kinds of clients with different un-
known intentions will access the system.” (Developer)
, “It is best to keep development and production en-
vironments as similar as possible to avoid surprise is-
sues.” (Software Engineer)
, “Best practice would enable the same in develop-
ment environment.” (DevOps Engineer)
, “Depending on the information, the development
environment needs to have a security level equivalent
to the production one.” (Software Engineer)
, “Security should be repeated across all environ-
ments.” (Software Engineer)

From the comments, some participants believed that the
production environment should enable security policiesmore
than the development one because various types of clients
with unknown intentions can use the microservices system
in the production environment. Conversely, other partic-
ipants believed that development and production environ-
ments should have equal security policies tomake them iden-
tical as much as possible.

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 16 of 22

PD2. In amicroservices architecture, databases should
not be exposed to any unauthenticated request. The clients
send various requests to resources in a microservices archi-
tecture. Since the resources always contain important in-
formation, it is extremely recommended that no resources
accept the requests which are not authenticated [99]. We re-
ceived a high rate of usefulness (absolutely useful or useful)
for PD2 (90.55%) which more than 70% of them were abso-
lutely useful. A few comments which support or refute this
practice are shown below:

- “Unauthenticated requests should not be enabled
on database.” (Technical Lead)
- “Needs to have its default secure authentication,
as well as its own private VPN network.” (Software
Engineer)
, “There are some cases that don’t require authenti-
cation and it requires to do database operation, e.g.,
scheduler to clean up log table.” (Architect)

 PD3. Suppose a microservice needs to validate some
data against data from another microservice synchronously.
In that case, it is recommended to combine both microser-
vices and have only one microservice. Almost 65% of the
survey participants disagreedwith the usefulness of the prac-
tice or indicated that they had no idea about this practice (see
Table 8). Still, 35.14% of our survey participants chose PD3
as (absolutely) useful.

The main reason stated this practice is not useful is that
it can be against the Single Responsibility principle and in-
crease the size of microservices.

, “[In] some exceptional cases, this item might be
useful but in most of the cases if we follow this we will
end up a few huge services instead of a real microser-
vices system.” (Software Engineer)
, “To handle the synchronization scenario, I don’t
think that it is a good idea to break the Single Respon-
sibility principle rather eventual consistency needs to
follow.” (Architect)

 PD4. Suppose a microservice needs to validate some
data against data from another microservice synchronously.
In that case, the first microservice should replicate data from
the second microservice in its own database with an even-
tual consistency syncing system. Nearly 55% of the survey
participants agreed with this practice, and less than 30% of
our survey participants voted PD4 as (absolutely) not useful.
Two positive comments on this practice are:

- “The recommendation in case of a sync would be to
actually keep a copy of the data in the two services, re-
membering theConsistency-Availability-Partition tol-
erance (CAP) theorem.” (Software Engineer)
- “One of the problems working with microservices
is data replication. This should not be a problem if
you guarantee that your data will always be updated.
You can use saga pattern or event out box pattern for
this.” (Software Engineer)

5. Recommendations
In this section, we present concrete and actionable rec-

ommendations formicroservices practitioners and researchers
based on our reflections on the findings.
5.1. Recommendation for Practitioners

The most useful practices. All 28 practices, except for
practice PD3, tend to have the median Likert score of 3, 3.5
or 4, indicating that the vast majority of the survey partici-
pants affirmed these practices are useful or absolutely useful.
At the same time, we acknowledge that software organiza-
tions and practitioners may not be willing to or cannot adopt
all 28 security practices (e.g., lack of enough resources).
Hence, we highlight the 8 most important security practices,
including PA4, PI3, PI4, PI5, PI6, PM2, PD1, and PD2,
with a median Likert score of 4 (absolutely useful) and en-
courage microservices practitioners to adopt these security
practices to ensure the desired level of security in microser-
vices systems.

PA4 from the “authorization and authentication” group
emphasizes usingAPIGateway to handle authorizing or rout-
ingmicroservices in large-scalemicroservices systems. Four
out of these 8 highly accepted practices, including PI3, PI4,
PI5, andPI6, come from the “internal and external microser-
vices” group. This can (partially) show the importance of the
network of microservices in terms of internal and external
domains and the level of security policies and practices that
should be considered. PM2 from the “microservices com-
munications” group shows that using security protocols for
the communication between microservices and databases is
important. PD1 and PD2 focus on security concerns in pro-
duction environments and databases. PD1 argues that mi-
croservices systems need more security policies when ex-
ecuting in production environments compared to develop-
ment environments. PD2 informs microservices practition-
ers that microservices’ databases should not accept any types
of unauthenticated requests.

Several factors still matter while using security prac-
tices. Although the survey participants considered almost
all identified security practices useful, we do not claim that
these 28 practices are the best options for all contexts and do-
mains. We assert that practitioners should carefully consider
different context-sensitive factors and trade-offs when using
each of these practices. According to the responses of our
participants, such factors and trade-offs are enormous, rang-
ing from design context to user experience, from required
security skills and expertise to infrastructure resources. For
example, it is important to consider if the given system or
service is public or private. What are the impacts of the secu-
rity practices on other quality attributes (e.g., performance)?
How sensitive is the data? It is also important to consider to
what extent a security practice may impact the user experi-
ence. Cost and complexity associated with some practices
were mentioned by several respondents as other important
factors. A Technical Lead with more than 5 years of expe-
rience in microservices systems summarized it as: “All sce-
narios [practices] are useful, depending on system require-

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 17 of 22

ments. Security is an essential overhead; however, it is an
overhead (with speed and complexity). So be sensible, don’t
over-engineer it. Equally, make sure sensitive data cannot
be leaked - use private networks where possible.”
5.2. Recommendations for Researchers

Study how the identified practices are used in different
microservices systems in different domains and contexts.
In Section 5.1, we discussed that althoughmost of the survey
participants affirmed the usefulness of the identified security
practices, the successful implementation of these practices
depends on too many factors and trade-offs. In this study,
we have tried, to some extent, to show in which circum-
stances some practices are useful (e.g., PT3, PI7) or their
impacts on other quality attributes (e.g., PA1, PA6). How-
ever, it is out of the scope of our study to explore and discuss
all factors and trade-offs. More efforts should be allocated
to investigate the short-term and long-term impacts of each
of the identified practices, their impacts on a specific type of
microservices systems, e.g., IoT microservices systems, and
their associated costs and overhead.

Study why some practices are controversial. There are
still some practices that were slightly controversial (e.g., PA1,
PA2, PA3, PT4, PI1, PI2, PI3 and PD1). For example, PT4
suggests decoding JWT at the microservices level instead of
the API Gateway level (i.e., more than 60% agreed with this
practice). At the same time, 25.68% of the practitioners still
thought that decoding JWT at the API Gateway level is bet-
ter than at the microservices level. Also, the survey respon-
dents tended to disagree with a few security practices (e.g.,
PD3 and PD4) that we found from GitHub and Stack Over-
flow. There might be several reasons behind controversial
practices. As we discussed before, several factors (e.g., the
design context and user experience) may impact the opin-
ion of practitioners on using or not using security practices
in a software system. Given that the security practices were
detected in open-source projects and the survey respondents
came from both open-source projects and industrial projects,
they might have had a different experience in implementing
these practices. Finally, the security practices were provided
to the survey respondents in 1-2 sentences, which might not
be the best way to describe all aspects of some practices.
This can be another reason to cause some controversial prac-
tices. Thereby, we argue that an important research direction
in future could be exploring the reasons behind controversial
practices in securing microservices systems.

Pay attention to security practices in other or less ex-
plored aspects of microservices systems. In this study, we
only looked at 2 developer discussion platforms (10microser-
vices systems from GitHub and 306 posts from Stack Over-
flow) to identify 28 security practices categorized into 6 groups.
We do emphasise that these 28 practices are only a subset of
available and required security practices for microservices
systems. We believe that many security practices were not
discussed or could not be found in our data sources. For ex-
ample, we were not able to find any concrete practices and
guidelines regarding security audits, how to safely recover

from security failures and how to secure data in microser-
vices systems. Potential security risks associated with tools
and technologies used in microservices system development
and deployment also play an important role in achieving se-
cure microservices systems. For example, container images
generated by third parties (e.g., Docker) may be associated
with several security risks. However, our analysis of open-
source projects hosted on GitHub and Stack Overflow posts
did not find any concrete practices on how to address the se-
curity risks. While some other works (e.g., [7, 10]) have re-
cently examined (gray) literature to understand security in
microservices systems, we encourage researchers to mine
other sources, such as other developer discussion platforms
(e.g., Reddit6) to identify more practices. These new prac-
tices can either complement our security practices in a given
group (e.g., the “database and environments” group) or be
new categories of security practices (e.g., security practices
for containerized microservices systems).

6. Threats to Validity
In this section, we summarize potential threats to the va-

lidity of this study and the strategies that we used to mitigate
these threats [101].
6.1. External Validity

Three threats might limit the generalizability of our find-
ings. First, we identified the 28 security practices from only
2 data sources: GitHub and Stack Overflow. Although these
platforms are the most popular online platforms among dif-
ferent types of software practitioners to share and discuss
software development challenges, knowledge, and solutions,
they do not represent all views of software practitioners. Sec-
ond, we chose 10 open-sourcemicroservices systems onGitHub,
which is only one popular software repository. These projects
vary in terms of domain, number of contributors, size, etc.
Despite this fact, we cannot claim that these projects are rep-
resentative of all types of microservices systems (e.g., IoT
microservices systems) and all the OSS repositories. Our
validation study did not receive many responses (i.e., 63),
and not all the respondents answered the open-ended ques-
tions in the survey. This threat was, to some extent, reduced
as software practitioners with different characteristics (e.g.,
possessing different roles and working in organizations with
diverse domains) completed the survey.
6.2. Internal Validity

Identifying security practices from Stack Overflow and
GitHub might be subjective and error-prone. We adopted
several strategies to reduce this issue. First, several analysts
and validators were involved in this process. Three analysts
participated in the pilot phase and the main phase of the data
analysis (see Section 3.1.2). Three other authors with ex-
tensive experience in security in microservices systems re-
viewed and validated the identified security practices and

6https://www.reddit.com

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 18 of 22

https://www.reddit.com

suggested some feedback. Finally, we deployed a pilot sur-
vey to seek practitioners’ feedback on the identified security
practices. This helped us remove 4 practices and improved
the wording of some of the security practices.

The validation survey tried to recruit practitioners with
experience in securing microservices systems. As discussed
in Section 3.2.2, we used different recruitment approaches
for this purpose. One of the approaches was to carefully
check the profiles of many practitioners on their websites,
Slack, LinkedIn, etc. This approach might have led to two
threats. We might have mainly recruited practitioners who
successfully applied security in microservices system devel-
opment and ignored the entire microservices practitioners
(e.g., unsuccessful practitioners in applying security in mi-
croservices systems). This bias is referred to as survivorship
bias [102]. On the other hand, still practitioners with poor
knowledge of the MSA style and security may have partici-
pated in the survey, which can be a concern for the validity
of the survey.

We employed some solutions to (partially) mitigate these
threats. Our survey was not filled out by only a few specific
roles and did not recruit the respondents using only one re-
cruitment approach. Practitioners with different roles who
have worked on various open-source and industrial projects,
such as developers, software engineers, DevOps engineers,
requirements engineers, and architects, completed the val-
idation survey. We also added the “I Don’t Know” option
in the survey questions to minimize the concern of lack of
knowledge on some identified practices. We also asked the
survey respondents to comment on why they rated a given
practice “Useful” or “Not Useful”. The detailed comments
from the survey respondents increased our confidence that
the vast majority of them had the right experience and ex-
pertise. We invited the contributors of the 10 open-source
projects fromwhich the some of best practiceswere extracted
to complete the survey. We acknowledge that the survey re-
sponses coming from the contributors of the 10 open-source
projects might have provided a biased assessment of the se-
curity practices. However, given that we used different re-
cruitment approaches, the percentage of survey responses
coming from the contributors of the 10 open-source projects
should not be high.
6.3. Construct Validity

Our decision to use DeepM1 introduced in [6] to ex-
tract security paragraphs from cortex, spinnaker, and jaeger
projects might have introduced threats. Although DeepM1
has a good performance in detecting security paragraphs from
GitHub issues and Stack Overflow posts concerning secu-
rity inmicroservices systems, we acknowledge that wemight
havemissed some important security information from these
projects. Furthermore, we defined security points as an is-
sue or post with equal to or more than 5 security paragraphs.
We admit that some issues or posts with less than 5 secu-
rity paragraphsmay still contain important microservices se-
curity practices. In this study, we only used the validation
survey to evaluate the usefulness of the identified practices.

Other research methods such as case studies could also be
used to indicate all positive and negative aspects of the iden-
tified security practices.
6.4. Reliability

There is a potential threat that other researchers replicate
our study and generate different results. Our first approach to
alleviate this threat was to provide a detailed explanation of
our research method (e.g., the survey design), enabling other
researchers to replicate our study. Furthermore, we created
a replication package [21], including the 861 security points
used to identify security practices and the encoded survey re-
sponses, allowing other researchers and practitioners to val-
idate our findings.

7. Conclusions and Future Work
This study identified 28 security practices for securing

microservices systems through manually examining 861 mi-
croservices security points. These 861 microservices secu-
rity points include 543 GitHub issues, 9 official documents,
and 3 wiki pages from 10 open-source microservices sys-
tems, and 306 Stack Overflow posts concerning security in
microservices systems. These 28 security practices are cat-
egorized into 6 groups: Authorization and Authentication,
Token andCredentials, Internal and ExternalMicroservices,
Microservices Communications, Private Microservices, and
Database and Environments. Through an online survey com-
pleted by 74microservices practitioners, we have shown that
the majority of the respondents rated these 28 practices use-
ful for industrial usage.

In the future, we plan to extend our catalog of security
practices by exploring more resources (e.g., interviews) to
identify more security practices, in particular, in less ex-
plored areas of microservices systems. We also aim to inves-
tigate the positive and negative impacts of the identified se-
curity practices in different types of microservices systems.

Acknowledgements
Thiswork is funded by theNational Natural Science Foun-

dation of China (NSFC) with Grant No. 62172311 and the
Special Fund of Hubei Luojia Laboratory.

References
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M.Mazzara, F. Montesi,

R. Mustafin, L. Safina, Microservices: yesterday, today, and tomor-
row, in: Present and Ulterior Software Engineering, Springer, 2017,
pp. 195–216.

[2] M. Fowler, J. Lewis, Microservices a definition of this new architec-
tural term (2014).
URL https://bit.ly/3zk5xXr

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, S. Tilkov, Mi-
croservices: The journey so far and challenges ahead, IEEE Soft-
ware 35 (3) (2018) 24–35.

[4] P. Di Francesco, P. Lago, I. Malavolta, Architecting with microser-
vices: A systematic mapping study, Journal of Systems and Software
150 (2019) 77–97.

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 19 of 22

https://bit.ly/3zk5xXr
https://bit.ly/3zk5xXr
https://bit.ly/3zk5xXr

[5] M. Waseem, P. Liang, M. Shahin, A. Ahmad, A. Rezaei Nasab,
On the nature of issues in five open source microservices systems:
An empirical study, in: Proceedings of the 25th International Con-
ference on Evaluation and Assessment in Software Engineering
(EASE), ACM, 2021, pp. 201–210.

[6] A. Rezaei Nasab, M. Shahin, P. Liang, M. E. Basiri, S. A. H. Raviz,
H. Khalajzadeh, M. Waseem, A. Naseri, Automated identification
of security discussions in microservices systems: Industrial sur-
veys and experiments, Journal of Systems and Software 181 (2021)
111046.

[7] A. Pereira-Vale, E. B. Fernandez, R. Monge, H. Astudillo,
G. Márquez, Security in microservice-based systems: A multivocal
literature review, Computers & Security 103 (2021) 102200.

[8] J. Soldani, D. A. Tamburri, W.-J. V. D. Heuvel, The pains and gains
of microservices: A systematic grey literature review, Journal of
Systems and Software 146 (2018) 215–232.

[9] T. Yarygina, A. H. Bagge, Overcoming security challenges in mi-
croservice architectures, in: Proceedings of the 12th IEEE Sympo-
sium on Service-Oriented System Engineering (SOSE), IEEE, 2018,
pp. 11–20.

[10] A. Hannousse, S. Yahiouche, Securing microservices and microser-
vice architectures: A systematic mapping study, Computer Science
Review 41 (2021) 100415.

[11] N. C. Mendonça, C. Box, C. Manolache, L. Ryan, The monolith
strikes back: Why istio migrated frommicroservices to a monolithic
architecture, IEEE Software 38 (5) (2021) 17–22.

[12] V. Lenarduzzi, F. Lomio, N. Saarimäki, D. Taibi, Does migrating
a monolithic system to microservices decrease the technical debt?,
Journal of Systems and Software 169 (2020) 110710.

[13] J. Ghofrani, D. Lübke, Challenges of microservices architecture: A
survey on the state of the practice, in: Proceedings of the 10th Cen-
tral EuropeanWorkshop on Services and their Composition (ZEUS),
CEUR-WS.org, 2018, pp. 1–8.

[14] O. Zimmermann, Microservices tenets, Computer Science-Research
and Development 32 (3) (2017) 301–310.

[15] A. Pereira-Vale, G. Márquez, H. Astudillo, E. B. Fernandez, Secu-
rity mechanisms used in microservices-based systems: a systematic
mapping, in: Proceedings of the 45th Latin American Computing
Conference (CLEI), IEEE, 2019, pp. 1–10.

[16] I. Nadareishvili, R.Mitra, M.McLarty, M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture, O’Reilly
Media, Inc., 2016.

[17] M.-O. Pahl, F.-X. Aubet, S. Liebald, Graph-based IoT microservice
security, in: Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS), IEEE, 2018, pp. 1–3.

[18] M. Waseem, P. Liang, M. Shahin, A systematic mapping study on
microservices architecture in devops, Journal of Systems and Soft-
ware 170 (2020) 110798.

[19] G. Moore, Crossing the Chasm: Marketing and Selling Technology
Project, HarperCollins Publishers, 2009.

[20] R. Mahdavi-Hezaveh, J. Dremann, L. Williams, Software develop-
ment with feature toggles: practices used by practitioners, Empirical
Software Engineering 26 (1) (2021) 1–33.

[21] A. Rezaei Nasab, M. Shahin, S. A. Hoseyni Raviz, P. Liang,
A. Mashmool, V. Lenarduzzi, dataset (2022).
URL https://doi.org/10.5281/zenodo.5791337

[22] C. Pahl, P. Jamshidi, O. Zimmermann, Architectural principles for
cloud software, ACM Transactions on Internet Technology 18 (2)
(2018) Article No.: 17.

[23] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architec-
ture enables devops: Migration to a cloud-native architecture, IEEE
Software 33 (3) (2016) 42–52.

[24] F. Auer, V. Lenarduzzi, M. Felderer, D. Taibi, From monolithic sys-
tems to microservices: an assessment framework, Information and
Software Technology 137 (2021) 106600.

[25] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues
for migrating to microservices architectures: An empirical investi-
gation, IEEE Cloud Computing 4 (5) (2017) 22–32.

[26] M. Cinque, R. Della Corte, A. Pecchia, Microservices monitoring
with event logs and black box execution tracing, IEEE Transactions
on Services Computing 15 (1) (2022) 294–307.

[27] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, V. Sekar,
Gremlin: Systematic resilience testing of microservices, in: Pro-
ceedings of the 36th IEEE International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2016, pp. 57–66.

[28] M. Waseem, P. Liang, M. Shahin, A. Di Salle, G. Márquez, Design,
monitoring, and testing of microservices systems: The practitioners’
perspective, Journal of Systems and Software 182 (2021) 111061.

[29] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Microservices
in industry: insights into technologies, characteristics, and software
quality, in: Proceedings of the 16th IEEE International Conference
on Software Architecture Companion (ICSA-C), IEEE, 2019, pp.
187–195.

[30] R. Matulevičius, Fundamentals of Secure System Modelling,
Springer, 2017.

[31] H. Washizaki, T. Xia, N. Kamata, Y. Fukazawa, H. Kanuka, T. Kato,
M. Yoshino, T. Okubo, S. Ogata, H. Kaiya, et al., Systematic liter-
ature review of security pattern research, Information 12 (1) (2021)
36.

[32] A. V. Uzunov, E. B. Fernandez, K. Falkner, Assessing and improv-
ing the quality of security methodologies for distributed systems,
Journal of Software: Evolution and Process 30 (11) (2018) e1980.

[33] J. A. Scott, A Practical Guide to Microservices and Containers,
MapR Data Technologies, 2018.

[34] K. Torkura, M. I. H. Sukmana, C. Meinel, Integrating continuous
security assessments in microservices and cloud native applications,
in: Proceedings of the 10th International Conference on Utility and
Cloud Computing (UCC), ACM, 2017, pp. 171–180.

[35] F. Ponce, J. Soldani, H. Astudillo, A. Brogi, Smells and refactorings
for microservices security: A multivocal literature review, arXiv
preprint arXiv:2104.13303 (2021).

[36] P. Billawa, A. B. Tukaram, N. E. D. Ferreyra, J.-P. Steghöfer,
R. Scandariato, G. Simhandl, Security of microservice applications:
A practitioners’ perspective on challenges and best practices, arXiv
preprint arXiv:2202.01612 (2022).

[37] C. Richardson, Microservices Patterns: With Examples in Java, Si-
mon and Schuster, 2018.

[38] M.-O. Pahl, L. Donini, Securing IoT microservices with certificates,
in: Proceedings of the IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), IEEE, 2018, pp. 1–5.

[39] D. Yu, Y. Jin, Y. Zhang, X. Zheng, A survey on security issues in
services communication of microservices-enabled fog applications,
Concurrency and Computation: Practice and Experience 31 (22)
(2019) e4436.

[40] N. Chondamrongkul, J. Sun, I. Warren, Automated security anal-
ysis for microservice architecture, in: Proceedings of the 17th
IEEE International Conference on Software Architecture Compan-
ion (ICSA-C), IEEE, 2020, pp. 79–82.

[41] Y. Sun, S. Nanda, T. Jaeger, Security-as-a-service for microservices-
based cloud applications, in: Proceedings of the 7th IEEE Inter-
national Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2015, pp. 50–57.

[42] T. Bi, P. Liang, A. Tang, X. Xia, Mining architecture tactics and
quality attributes knowledge in stack overflow, Journal of Systems
and Software 180 (2021) 111005.

[43] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, D. Garlan, Mining
guidelines for architecting robotics software, Journal of Systems and
Software 178 (2021) 110969.

[44] N. Meng, S. Nagy, D. Yao, W. Zhuang, G. A. Argoty, Secure coding
practices in java: Challenges and vulnerabilities, in: Proceedings of
the 40th International Conference on Software Engineering (ICSE),
ACM, 2018, pp. 372–383.

[45] B. G. Glaser, A. L. Strauss, E. Strutzel, The discovery of grounded
theory; strategies for qualitative research, Nursing Research 17 (4)
(1968) 364.

[46] B. A. Kitchenham, S. L. Pfleeger, Personal opinion surveys, in:
Guide to Advanced Empirical Software Engineering, Springer,
2008, pp. 63–92.

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 20 of 22

https://doi.org/10.5281/zenodo.5791337
https://doi.org/10.5281/zenodo.5791337

[47] S. O. member, Single sign-on in microservice architecture (July
2021).
URL https://stackoverflow.com/questions/25595492

[48] G. member, Authorization between services (July 2021).
URL https://github.com/moleculerjs/moleculer/issues/304

[49] G. member, Identity/customer service as a microservice (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/785

[50] G. member, Single sign on: Azure ad b2c vs identityserver4, and
others (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/925

[51] S. O. member, How to refresh request token with microservice mul-
tiple instances? (July 2021).
URL https://stackoverflow.com/questions/48760583

[52] G. member, Discussion on security (July 2021).
URL https://github.com/spinnaker/spinnaker/issues/148

[53] S. O. member, Should api gateway be responsible for authorisation?
(June 2018).
URL https://stackoverflow.com/questions/50700178

[54] G. member, Securing ui of jaeger (June 2017).
URL https://github.com/jaegertracing/jaeger/issues/218

[55] S. O. member, Micro-service architecture, should the spring cloud
config server, zuul gateway server and eureka server be protected as
resources? (July 2021).
URL https://stackoverflow.com/questions/61307668

[56] G. member, Proposal: Create the template function for authentica-
tion in the file for each service (July 2021).
URL https://github.com/goadesign/goa/issues/2361

[57] S. O. member, How to authenticate json web tokens (jwt) across dif-
ferent apis? (July 2021).
URL https://stackoverflow.com/questions/55394912

[58] G. member, gateway api (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/239

[59] S. O. member, Laravel passport, oauth and microservices (July
2021).
URL https://stackoverflow.com/questions/39126827

[60] G. member, Rfc: Allow spring property placeholders in pipeline ex-
pressions (August 2019).
URL https://github.com/spinnaker/spinnaker/issues/4725

[61] S. O. member, Should jwt be a separate auth micro-service and not
sit with the backend business logic? (July 2021).
URL https://stackoverflow.com/questions/58948497

[62] G. member, Startup.cs - add authorization with ocelot (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/647

[63] S. O. member, In a microservice environment, should any producer
be able to verify jwt tokens? (July 2021).
URL https://stackoverflow.com/questions/44471051

[64] S. O. member, Shared signature key for jwt in various microservices
(July 2021).
URL https://stackoverflow.com/questions/43559197

[65] G. member, Rfc: Halyard secret management (November 2018).
URL https://github.com/spinnaker/spinnaker/issues/3649

[66] G. member, Hide passwords in urls on the /config endpoint (Febru-
ary 2020).
URL https://github.com/cortexproject/cortex/pull/2176

[67] G. member, Vulnerable data exposed with metrics endpoint (March
2019).
URL https://github.com/jaegertracing/jaeger/issues/1428

[68] G. member, grpc plugin framework does not respect –query.bearer-
token-propagation flag (September 2019).
URL https://github.com/jaegertracing/jaeger/issues/1821

[69] G. member, Cortex feature request/improvement - refresh aws object
store credentials for expired tokens (January 2021).
URL https://github.com/cortexproject/cortex/issues/3731

[70] S. O. member, Microservices - how to solve security and user au-

thentication? (July 2021).
URL https://stackoverflow.com/questions/32574103

[71] S. O. member, Decoding oauth2 jwt at api gateway level vs at indi-
vidual microservice level (July 2021).
URL https://stackoverflow.com/questions/51524648

[72] G. member, Find the best location to inject server information to the
routing handler (July 2021).
URL https://github.com/networknt/light-4j/issues/11

[73] G. member, Add logging module for light 4j rfc#29 (July 2021).
URL https://github.com/networknt/light-4j/issues/453

[74] JWT, Introduction to json web tokens.
URL https://jwt.io/introduction

[75] G. member, How is https/ssl termination handled? (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/752

[76] S. O. member, If we have already implemented the authorization in
.net core micro-service api gateway do we need to implement in all
micro services as well? (July 2021).
URL https://stackoverflow.com/questions/54631411

[77] G. member, Iam authentication support in ruler and alertmanager s3
client (August 2020).
URL https://github.com/cortexproject/cortex/issues/3034

[78] G. member, Authenticating to gcp when using chunks storage
(bigtable and gcs) (October 2020).
URL https://github.com/cortexproject/cortex/issues/3306

[79] S. O. member, Oauth2 grant for server-to-server communication
(July 2021).
URL https://stackoverflow.com/questions/27838280

[80] G. member, Private services (July 2021).
URL https://github.com/moleculerjs/moleculer/issues/124

[81] S. O. member, How to authenticate and authorize in a microservice
architecture? (July 2021).
URL https://stackoverflow.com/questions/52349986

[82] G. member, Addtocart method relies on the posted productdetails
(July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/250

[83] S. O. member, How to add an api with oauth2 on the top of kong?
(July 2021).
URL https://stackoverflow.com/questions/47324184

[84] S. O. member, Quick solution to handle service to service authenti-
cation in a microservices architecture (July 2021).
URL https://stackoverflow.com/questions/61433192

[85] G. member, Span authentication support in jaeger collector (Septem-
ber 2017).
URL https://github.com/jaegertracing/jaeger/issues/427

[86] G. member, Flaky test: Testreload (November 2020).
URL https://github.com/jaegertracing/jaeger/issues/2622

[87] S. O. member, Microservices and database security (July 2021).
URL https://stackoverflow.com/questions/53621693

[88] G. member, Add tls client reload (August 2020).
URL https://github.com/cortexproject/cortex/issues/3012

[89] S. O. member, Oauth 2.0 in microservices: When a resource server
communicates with another resource server (July 2021).
URL https://stackoverflow.com/questions/52290697

[90] G. member, eshoponcontainers (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

wiki/gRPC

[91] J. member, Jaeger (July 2021).
URL https://www.jaegertracing.io/docs/1.27/architecture/

[92] G. member, Jaeger trace sampling should not be decided by every
service (by default) (July 2018).
URL https://github.com/cortexproject/cortex/issues/885

[93] G. member, Build a secure channel for security reports (October
2017).
URL https://github.com/jaegertracing/jaeger/issues/457

[94] G. member, Allow secure communication between components (Oc-
tober 2017).
URL https://github.com/jaegertracing/jaeger/issues/458

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 21 of 22

https://stackoverflow.com/questions/25595492
https://stackoverflow.com/questions/25595492
https://github.com/moleculerjs/moleculer/issues/304
https://github.com/moleculerjs/moleculer/issues/304
https://github.com/dotnet-architecture/eShopOnContainers/issues/785
https://github.com/dotnet-architecture/eShopOnContainers/issues/785
https://github.com/dotnet-architecture/eShopOnContainers/issues/785
https://github.com/dotnet-architecture/eShopOnContainers/issues/925
https://github.com/dotnet-architecture/eShopOnContainers/issues/925
https://github.com/dotnet-architecture/eShopOnContainers/issues/925
https://github.com/dotnet-architecture/eShopOnContainers/issues/925
https://stackoverflow.com/questions/48760583
https://stackoverflow.com/questions/48760583
https://stackoverflow.com/questions/48760583
https://github.com/spinnaker/spinnaker/issues/148
https://github.com/spinnaker/spinnaker/issues/148
https://stackoverflow.com/questions/50700178
https://stackoverflow.com/questions/50700178
https://github.com/jaegertracing/jaeger/issues/218
https://github.com/jaegertracing/jaeger/issues/218
https://stackoverflow.com/questions/61307668
https://stackoverflow.com/questions/61307668
https://stackoverflow.com/questions/61307668
https://stackoverflow.com/questions/61307668
https://github.com/goadesign/goa/issues/2361
https://github.com/goadesign/goa/issues/2361
https://github.com/goadesign/goa/issues/2361
https://stackoverflow.com/questions/55394912
https://stackoverflow.com/questions/55394912
https://stackoverflow.com/questions/55394912
https://github.com/dotnet-architecture/eShopOnContainers/issues/239
https://github.com/dotnet-architecture/eShopOnContainers/issues/239
https://github.com/dotnet-architecture/eShopOnContainers/issues/239
https://stackoverflow.com/questions/39126827
https://stackoverflow.com/questions/39126827
https://github.com/spinnaker/spinnaker/issues/4725
https://github.com/spinnaker/spinnaker/issues/4725
https://github.com/spinnaker/spinnaker/issues/4725
https://stackoverflow.com/questions/58948497
https://stackoverflow.com/questions/58948497
https://stackoverflow.com/questions/58948497
https://github.com/dotnet-architecture/eShopOnContainers/issues/647
https://github.com/dotnet-architecture/eShopOnContainers/issues/647
https://github.com/dotnet-architecture/eShopOnContainers/issues/647
https://stackoverflow.com/questions/44471051
https://stackoverflow.com/questions/44471051
https://stackoverflow.com/questions/44471051
https://stackoverflow.com/questions/43559197
https://stackoverflow.com/questions/43559197
https://github.com/spinnaker/spinnaker/issues/3649
https://github.com/spinnaker/spinnaker/issues/3649
https://github.com/cortexproject/cortex/pull/2176
https://github.com/cortexproject/cortex/pull/2176
https://github.com/jaegertracing/jaeger/issues/1428
https://github.com/jaegertracing/jaeger/issues/1428
https://github.com/jaegertracing/jaeger/issues/1821
https://github.com/jaegertracing/jaeger/issues/1821
https://github.com/jaegertracing/jaeger/issues/1821
https://github.com/cortexproject/cortex/issues/3731
https://github.com/cortexproject/cortex/issues/3731
https://github.com/cortexproject/cortex/issues/3731
https://stackoverflow.com/questions/32574103
https://stackoverflow.com/questions/32574103
https://stackoverflow.com/questions/32574103
https://stackoverflow.com/questions/51524648
https://stackoverflow.com/questions/51524648
https://stackoverflow.com/questions/51524648
https://github.com/networknt/light-4j/issues/11
https://github.com/networknt/light-4j/issues/11
https://github.com/networknt/light-4j/issues/11
https://github.com/networknt/light-4j/issues/453
https://github.com/networknt/light-4j/issues/453
https://jwt.io/introduction
https://jwt.io/introduction
https://github.com/dotnet-architecture/eShopOnContainers/issues/752
https://github.com/dotnet-architecture/eShopOnContainers/issues/752
https://github.com/dotnet-architecture/eShopOnContainers/issues/752
https://stackoverflow.com/questions/54631411
https://stackoverflow.com/questions/54631411
https://stackoverflow.com/questions/54631411
https://stackoverflow.com/questions/54631411
https://github.com/cortexproject/cortex/issues/3034
https://github.com/cortexproject/cortex/issues/3034
https://github.com/cortexproject/cortex/issues/3034
https://github.com/cortexproject/cortex/issues/3306
https://github.com/cortexproject/cortex/issues/3306
https://github.com/cortexproject/cortex/issues/3306
https://stackoverflow.com/questions/27838280
https://stackoverflow.com/questions/27838280
https://github.com/moleculerjs/moleculer/issues/124
https://github.com/moleculerjs/moleculer/issues/124
https://stackoverflow.com/questions/52349986
https://stackoverflow.com/questions/52349986
https://stackoverflow.com/questions/52349986
https://github.com/dotnet-architecture/eShopOnContainers/issues/250
https://github.com/dotnet-architecture/eShopOnContainers/issues/250
https://github.com/dotnet-architecture/eShopOnContainers/issues/250
https://stackoverflow.com/questions/47324184
https://stackoverflow.com/questions/47324184
https://stackoverflow.com/questions/61433192
https://stackoverflow.com/questions/61433192
https://stackoverflow.com/questions/61433192
https://github.com/jaegertracing/jaeger/issues/427
https://github.com/jaegertracing/jaeger/issues/427
https://github.com/jaegertracing/jaeger/issues/2622
https://github.com/jaegertracing/jaeger/issues/2622
https://stackoverflow.com/questions/53621693
https://stackoverflow.com/questions/53621693
https://github.com/cortexproject/cortex/issues/3012
https://github.com/cortexproject/cortex/issues/3012
https://stackoverflow.com/questions/52290697
https://stackoverflow.com/questions/52290697
https://stackoverflow.com/questions/52290697
https://github.com/dotnet-architecture/eShopOnContainers/wiki/gRPC
https://github.com/dotnet-architecture/eShopOnContainers/wiki/gRPC
https://github.com/dotnet-architecture/eShopOnContainers/wiki/gRPC
https://www.jaegertracing.io/docs/1.27/architecture/
https://www.jaegertracing.io/docs/1.27/architecture/
https://github.com/cortexproject/cortex/issues/885
https://github.com/cortexproject/cortex/issues/885
https://github.com/cortexproject/cortex/issues/885
https://github.com/jaegertracing/jaeger/issues/457
https://github.com/jaegertracing/jaeger/issues/457
https://github.com/jaegertracing/jaeger/issues/458
https://github.com/jaegertracing/jaeger/issues/458

[95] M. member, Azure data security and encryption best practices
(2021).
URL https://docs.microsoft.com/en-us/azure/

security/fundamentals/data-encryption-best-practices#

protect-data-in-transit

[96] I. Grigorik, Surma, Http/2.
URL https://developers.google.com/web/fundamentals/

performance/http2

[97] Google, Protocol buffers.
URL https://developers.google.com/protocol-buffers

[98] G. member, Deploying spinnaker with halyard to k8s with kube v2
provider and ssl enabled for gate fails because k8s readinessprobe
fails (May 2018).
URL https://github.com/spinnaker/spinnaker/issues/2765

[99] S. O. member, Login authentication flow for microservices (July
2021).
URL https://stackoverflow.com/questions/59058573

[100] G. member, After customerbasket has been posted to basketcon-
troller where is the unitprice validated with the catalog in the work-
flow? (July 2021).
URL https://github.com/dotnet-architecture/eShopOnContainers/

issues/945

[101] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
A. Wesslén, Experimentation in Software Engineering, Springer,
2012.

[102] S. J. Brown,W.Goetzmann, R. G. Ibbotson, S. A. Ross, Survivorship
bias in performance studies, The Review of Financial Studies 5 (4)
(1992) 553–580.

Ali Rezaei Nasab et al.: Preprint submitted to Elsevier Page 22 of 22

https://docs.microsoft.com/en-us/azure/security/fundamentals/data-encryption-best-practices#protect-data-in-transit
https://docs.microsoft.com/en-us/azure/security/fundamentals/data-encryption-best-practices#protect-data-in-transit
https://docs.microsoft.com/en-us/azure/security/fundamentals/data-encryption-best-practices#protect-data-in-transit
https://docs.microsoft.com/en-us/azure/security/fundamentals/data-encryption-best-practices#protect-data-in-transit
https://developers.google.com/web/fundamentals/performance/http2
https://developers.google.com/web/fundamentals/performance/http2
https://developers.google.com/web/fundamentals/performance/http2
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/spinnaker/spinnaker/issues/2765
https://github.com/spinnaker/spinnaker/issues/2765
https://github.com/spinnaker/spinnaker/issues/2765
https://github.com/spinnaker/spinnaker/issues/2765
https://stackoverflow.com/questions/59058573
https://stackoverflow.com/questions/59058573
https://github.com/dotnet-architecture/eShopOnContainers/issues/945
https://github.com/dotnet-architecture/eShopOnContainers/issues/945
https://github.com/dotnet-architecture/eShopOnContainers/issues/945
https://github.com/dotnet-architecture/eShopOnContainers/issues/945
https://github.com/dotnet-architecture/eShopOnContainers/issues/945

