
The Journal of Systems & Software 194 (2022) 111483

A

c
s
l
e
a
o
t
I
d
c
f
D

t

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Identification andmeasurement of Requirements Technical Debt in
software development: A systematic literature review✩

na Melo a, Roberta Fagundes a, Valentina Lenarduzzi b,∗, Wylliams Barbosa Santos a

a University of Pernambuco, Recife, Brazil
b University of Oulu, Oulu, Finland

a r t i c l e i n f o

Article history:
Received 18 May 2021
Received in revised form 30 June 2022
Accepted 8 August 2022
Available online 12 August 2022

Keywords:
Technical debt
Requirements Technical Debt
Identification
Measurement
Systematic literature review

a b s t r a c t

Context: Requirements Technical Debt are related to the distance between the ideal value of the
specification and the actual implementation of the system, which are consequences of strategic
decisions for immediate gains, or unintended changes in context. To ensure the evolution of the
software, it is necessary to to manage TD. Identification and measurement are the first two stages
of the management process; however, they are poorly explored in academic research in requirements
engineering.
Objective: We aimed to investigating which evidence helps to strengthen the TD requirements
management process, including identification and measurement.
Method: We conducted a Systematic Literature Review through manual and automatic searches
considering 7499 studies from 2010 to 2020, and including 66 primary studies.
Results: We identified some causes related to Technical Debt requirements, existing strategies to help
in the identification and measurement, and metrics to support the measurement stage.
Conclusion: The studies on Requirements Technical Debt are still preliminary, especially regarding
management software. Yet, however, the interpersonal aspects that prove difficult in the implementa-
tion of such activities are not sufficiently addressed. Finally, the provision of metrics to help measure
technical debt is part of the contribution of this search, providing insights into the application in its
requirements context.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In software development, even in well-planned projects, some
hallenges can negatively impact the final delivery, such as pres-
ure from the customer to complete the software before the dead-
ine, limited resources, or pressure from the market itself (Rios
t al., 2018a). In this scenario, the development team needs to use
lternative solutions to accomplish the tasks in the short term,
ften without considering the possibility of negatively impacting
he software in the long term (da Silva Maldonado et al., 2017).
n this context, quality issues may be identified in the project
uring or after its implementation. Thus, tasks that have been
ompromised must be improved at some point during the project,
ailure to do so may result in a phenomenon known as Technical
ebt (TD) (Cunningham, 1992).
TD refers to problems caused when software development

asks are pending or inefficiently executed (Kruchten et al., 2012).

✩ Editor: Aldeida Aleti.
∗ Corresponding author at: University of Oulu, Oulu, Finland.

E-mail addresses: accm@ecomp.poli.br (A. Melo), roberta.fagundes@upe.br
R. Fagundes), valentina.lenarduzzi@oulu.fi (V. Lenarduzzi), wbs@upe.br
W.B. Santos).
ttps://doi.org/10.1016/j.jss.2022.111483
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
While these actions may provide benefits in the short term, such
as increased productivity, they also pose risks to the project and
hinder its development (Guo et al., 2016; Rios et al., 2018b). Thus,
TD includes items usually controlled in a software project, such as
unimplemented features. Moreover, it covers less visible aspects
such as code smells and outdated documentation (Brown et al.,
2010).

Initially, the focus of TD was on coding activities (Cunningham,
1992), but as the research developed, the concept was extended
to the other phases of software and software development, for
example, in requirements engineering (Li et al., 2015a). According
to Ernst (2012), an inadequate elicitation or analysis of require-
ments causes errors that increase the incidence of TD in software
projects. In this setting, the technical debt of requirements may
occur intentionally, such as when a conscious decision is made
not to be rigorous in the elicitation process, or unintentionally,
when the requirements engineers are inexperienced and may
not have the needed skills to perform technical and long-term
procedures (Rios et al., 2019).

Despite the importance of requirements engineering at the
software development, there is still no consensus whether Re-
quirements Technical Debt should be considered as a type of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111483
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111483&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:accm@ecomp.poli.br
mailto:roberta.fagundes@upe.br
mailto:valentina.lenarduzzi@oulu.fi
mailto:wbs@upe.br
https://doi.org/10.1016/j.jss.2022.111483
http://creativecommons.org/licenses/by/4.0/


A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

T
L
d
(
e
e

a
a
c
I
m
t
e
t
i
t
u

e
s
h
r
t
p
a
g
a

a
e
m
o
e
t
m
t
w
g
r

e
s
s
t
s
t
t
i
n
r

a
t
a
t
c

2

d

D; moreover, the literature lacks a definition (Alves et al., 2014;
enarduzzi and Fucci, 2019). Although Ernst first mentioned the
efinition of Requirements Technical Debt, Wang and Huang
2020) consider it a brief description that does not provide
nough information to conceptualize it, which could involve, for
xample, multiple reasons or causes to induce it.
Regardless of how TD occurs, it is necessary to keep it man-

ged to ensure the software evolution and quality, in order to
void late discovery of its amplitude and consequently, costs that
ause the incidence of interest for correction (Alves et al., 2018).
dentification and measurement are the first two steps in the
anagement process (Li et al., 2014). They are essential activities

o know what type of TD exists, where it is located, and how to
stimate its impact on the software (Alves et al., 2016). However,
hey are considered the phases in which there is greater difficulty
n achieving (Besker et al., 2018) and, that practitioners realize
hat most of the time spent managing technical debt is lost in
nderstanding and measuring it (Besker et al., 2019).
The measurement step is essential to estimate the costs, inter-

st, effort required, and the TD impact on the software. However,
cientific evidence shows that professionals lack knowledge on
ow to calculate the interest of TD, that is, the extra effort
equired that will be spent in the future if the TD is not paid at
he time of its identification (de Melo et al., 2021). In this sense,
resenting evidence and metrics that help calculate TD interest
ssertively can allow software development organizations to or-
anize their refactoring activities based on accurate estimates,
voiding the accumulation of TD (Lenarduzzi et al., 2021).
Although professionals and researchers have been giving much

ttention to TD in recent years to (Rios et al., 2018a; Gama
t al., 2019), in the requirements engineering area, the process
anagement, especially in the identification and measurement
f TD, is still a gap to be explored in academic research (Alves
t al., 2018). Furthermore, Yli-Huumo et al. (2016) believe that
here are no adequate tools or resources to manage a Require-
ents Technical Debt. In this way, sufficient evidence that helps

o meet the information needs that the present study aims at
as not identified, especially regarding the use of metrics that
uide assertive decisions about the reimbursement of the TD of
equirements.

In this context, the current work presents a Systematic Lit-
rature Review (SLR) to identify and give an overview of the
tate of art related to TD management in software requirements,
pecifically about the stages of identification and measurement of
his type of TD. In the end, as main contributions, evidence and
tudies are presented that show the leading causes attributed to
he emergence of the technical debt of requirements; strategies
hat contribute to its identification, as well as supporting metrics
n the measurement stage; finally, identify gaps and opportu-
ities for the development of new research, encouraging other
esearchers to continue research in the area.

In addition to this section, the rest of this work is structured
s follows: Section 2 presents the background; Section 3 contains
he methodology used to perform the SLR; Sections 4 and 5 report
nd discuss the results obtained; Section 6 exposes the threats to
he validity of this research; and finally, Section 7 contains the
onclusions and future studies.

. Background

The purpose of this section is to introduce concepts that un-

erpin this very research, as well of the related works.

2

2.1. Technical debt

According to Seaman and Guo (2011), TD is defined as imma-
ture or incomplete artifacts present in the software development
life cycle, causing higher costs and low quality. The creation of
these artifacts can accelerate development in the short term.
However, low quality tends to generate expenses in the long run
due to maintenance efforts used for corrections. According to Mc-
Connell (2008), technical debt can be categorized into two types:

• Unintentional TD, which occurs involuntarily and non-
strategically, is often caused by poorly planned activities
because of inexperienced professionals or changes in the
environment;

• Intentional TD, is deliberate and strategically motivated
when professionals make decisions to achieve short-term
benefits resulting from shortcuts, alternative solutions, and
unexecuted tasks.

Additionally, according to Rios et al. (2018a), TD may be
present in different activities and phases of the software devel-
opment life cycle. With this, these same authors present a set
containing 15 different types of identified technical debts. Table 1
presents each type and their respective definition.

2.2. Requirements Technical Debt

Requirements engineering is one of the areas of software
engineering that aims at including the usage and analysis of
techniques and activities to obtain, specify, and document a set of
requirements that attend the needs of stakeholders with a high-
quality product (Vazquez and Simões, 2016). The requirements
describe the software, its behavior, functionality, constraints, and
all other attributes. However, this is a tricky step that stake-
holders (analysts, users, developers) often do not pay enough
attention to (Wiegers and Beatty, 2013).

According to Van Vliet et al. (2008), stages and tasks of re-
quirements engineering when performed inadequately can cause
problems that affect the development of the software, such as
low-quality elicitation, incomplete or outdated requirements
along with other existing problems, are real examples of tech-
nical debt. For Ernst (2012) and Brown et al. (2010), the TD of
requirements is related to the distance between the ideal value of
the specification of requirements and the actual implementation
of the system, which is a consequence of strategic decisions for
immediate gains, or unintended changes in context, which lead
to future costs.

This type of technical debt is part of the the exchanges made
regarding which requirements the development team needs to
implement or how they should be implemented and according
to Abad and Ruhe (2015), can be defined as trade-offs during
the specification of requirements. Given what has been said, the
requirements that are partially implemented, not satisfactorily
specified, poorly prioritized or developed without considering
their dependencies and relationships, represent errors that in-
crease the incidence of TD, leading to increased interest and effort
needed for the correction if this type of technical debt is not
identified and managed in a timely manner (Ernst, 2012; Abad
and Ruhe, 2015).

Recently, the work of Lenarduzzi and Fucci (2019) defined the
TD of requirements in three types:

• Type 0: Incomplete Users’ needs

Represents TD that result from neglecting the needs of stake-
holders or a specific group of stakeholders. For example, in the
case of consumer-centric systems such as mobile applications, TD



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483
Table 1
Types of technical debt.
Type Definition

Design Refers to TD discovered by analyzing the
source code and identifying violations of
principles of good object-oriented design.

Code Refers to problems found in the source
code (violating best practices or coding
rules) that negatively affect its readability
and make it difficult to maintain.

Architecture Refers to problems found in the product
architecture, which affect the architecture
requirements. Generally, this TD is the
result of initial solutions below the ideal,
compromising internal aspects of quality.

Test Refers to problems found in testing
activities that affect their quality.

Documentation Refers to the problems found in software
project documentation.

Defect Refers to known defects, usually identified
by test activities or the user. The
development team agrees to correct them,
but due to competing priorities and limited
resources, they will be delayed.

Infrastructure Refers to infrastructure problems that, if
present in the software organization, delay
or hinder development activities. Such TD
negatively affects the team’s ability to
produce a quality product.

Requirements Refers the distance between the optimal
requirements specification and the actual
system implementation.

People Refers to people issues that, if present in
the software organization, can delay or
hinder some development activities.

Build Refers to issues that make the build task
harder, and unnecessarily time consuming.

Process Refers to inefficient processes, e.g. (the
projected process may not be appropriate).

Automation Refers to the work involved in the
automation of functionality tests developed
to support continuous integration and
faster development cycles.

Usability Refers to inappropriate usability decisions
that will need to be adjusted later.

Service Refers to inappropriate web services that
lead to incompatibility between service
features and application requirements.

Versioning Refers to problems in source code
versioning, such as unnecessary code forks.

arises when the needs of users expressed in feedback channels
are forgotten. The authors also present that this type of TD of
requirements can be quantified as the proportion between the
user needs that have already been elicited and all possible ne-
cessities, including neglected ones. The principal one is the cost
of obtaining all the user’s remaining needs, and the interest is
the cost associated with the risk of missing an important need.
In other words, a requirements engineer must decide whether it
is worth spending time identifying additional user needs, taking
into account, for example, the current development stage of the
software associated with implementing a requirement detected
later.

• Type 1: Requirement smells

Represents the TD that arises when linguistic constructions may
indicate a violation of ISO/IEC/IEEE 29148:2018, that relates to the
quality of requirements. These smells also exist for other require-
ments documentation approaches, e.g. UML. If these smells are
3

not removed, the requirement may be implemented incorrectly,
making it difficult to reuse and evaluate. In this sense, the authors
state that requirement smells also need to be reimbursed simi-
larly to code smells. Hence, the principal can be quantified as the
cost to correct them and the interest as the negative impact on
the stages of software development in which they are associated
with.

• Type 2: Mismatch implementation

Represents the TD incurred when developers implement a so-
lution to a requirements problem. Thus, an incompatibility is
identified between the stakeholders’ objective framed during the
specification of requirements and the actual implementation of
the system. According to the authors, a way to identify this type
of technical debt requirement can be based on approaches to
traceability between the requirements specification and source
code, such as RE-KOMBINE (Ernst, 2012) (will be presented in
Section 4.3). Finally, this third type of Requirements Technical
Debt is quantified as the cost of comparing the current soft-
ware implementation with the set of possible changes (Principal),
additionally the performance of the selected change (Interest).

2.3. Technical debt management

According to Li et al. (2015a), the management of TD is an
important step to achieve good quality in the development and
maintenance of the software, since most of the debts are often not
managed. By Tom et al. (2013), it is necessary to define processes
that can track these technical debts, so that later, decisions can be
based on the identified problem. Also, recent research shows that
knowing the existence of technical debt influences the behavior
of the team, i.e. applying the best techniques of identification and
measurement, for example, can significantly improve software
development practices (Tonin, 2018).

The management process includes activities used to control
and reduce the technical debt in a software project. In this cir-
cumstance, with the inclusion of different techniques, tools, and
evidence, companies aim to reduce and prevent shortcuts and
solutions that do not achieve the expected success (Li et al.,
2015a). However, most of the TD items are inadequately man-
aged, thereby further increasing the risk of high maintenance
costs (Tonin et al., 2017). Therefore, it is appropriate to find the
best ways to ensure that the TD achieves is properly managed,
which will facilitate decision-making on future activities (Alves
et al., 2018).

In the work of Li et al. (2014), a technical debt management
method was proposed, containing five steps: identification, mea-
surement, prioritization, repayment, and monitoring, which are
described below.

1. Identification: the process of visualizing the TD, identi-
fying its causes and other attributes present in software
development that led to its existence. This activity is crucial
for the proper management of TD;

2. Measurement: analyzes and quantifies the costs and ef-
forts required to assist in decision making regarding tech-
nical debt reimbursement;

3. Prioritization: organize the payment of technical debts in
order of importance, analyzing factors such as technical
issues and financial implications;

4. Repayment: regarding the partial or total payment of the
technical debt, avoiding postponing it if it could negatively
affect the project;

5. Monitoring: validates whether the technical debt is being
diluted, delayed, or continues to cause costs.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

p
c
p
i

a
h
a
m
1
a
f
a
i

t
t
m
i
p
a
p
p
s

c
m
r
i
J
c
h
e

r
p
T
m
a
b
s

t
2
w
m

Table 2
Related works.
Work Goal

Alves et al.
(2016)

TD management strategies and
TD taxonomy

Nascimento
et al. (2018)

Investigate and conceptualize
requirements smells

BenIdris (2020) Analyze TD in empirical studies

Wang and Huang
(2020)

Conceptualize requirements TD
and find approaches to manage it

Lenarduzzi et al.
(2021)

Identify TD prioritization tools,
strategies, processes and factors

Our work Analyze strategies and metrics to
identify and measure TD of
requirements

2.4. Related works

This subsection presents the works related to the objectives
roposed in this study. They are listed in chronological order and
an be identified in Table 2. Next, the details of each study are
resented, and a comparative analysis of the differences concern-
ng this study is made.

The work of Alves et al. (2016) was aimed at conducting
Systematic Mapping Study (SMS) to analyze which strategies
ave been proposed to help manage TD in software projects and
nalyze their main types. The search process was conducted auto-
atically, recovering searches from 2010 to 2014, and in the end,
00 studies were considered. Among the results, they proposed
n initial taxonomy of the TD types and a list of existing strategies
or identification and management. Finally, a current state-of-the-
rt analysis identified gaps where new research efforts could be
nvested.

According to the authors, this study was the first step towards
he creation and validation of taxonomy on the types of TD and
he development of new technologies that help in its manage-
ent. However, even though it is considered a relevant study

n the area, it still not present evidence to help measure TD,
articularly through the with the use of metrics, so that decisions
bout repayment can be based on this type of evidence, which is
art of the objective of this work. Finally, the authors analyzed
rimary studies until December 2014, so the SLR presented in this
tudy complements the results based on recent years.
In work proposed by Nascimento et al. (2018), an SMS was

onducted to investigate evidence on the subject of require-
ents smells, thus helping in their understanding and assisting

esearchers in future studies. The search was performed automat-
cally, recovering research papers with a publication date from
anuary 2013 to March 2018, and at the end, 41 studies were
onsidered. Among the results, it was identified that the concept
ad gained visibility in recent years and the development and
xistence of support by tools.
Thus, the authors’ focus was on collecting evidence about

equirement smells, which, if not corrected during project im-
lementation, may influence the occurrence of requirements TD.
he respective work , then becomes relevant in presenting infor-
ation that can improve the requirements engineering process
nd other areas dependent on it. However, the authors’ focus
ecame conceptualizing this phenomenon rather then presenting
trategies to address it.
In the work proposed by BenIdris (2020), an SMS was executed

o identify and analyze TD in empirical studies published from
014 to 2017. The search process was carried out in an automated
ay, and in the end, 100 studies were considered. Among the
ain results, the presentation of the most common indicators
4

and evaluators to identify and evaluate TD and, the identification
of tools and strategies that help to investigate and estimate. The
work presents essential information for the study area. However,
the authors have not addressed the results for the software in-
dustry and academia, and it does not present opportunities for
further research. Furthermore, they did not have metrics that
could be used to support their measurement.

The work of Wang and Huang (2020) contemplated the inves-
tigation of the current state of the TD of requirements, in order
to be able to present a precise definition of this type of TD. To
achieve this goal, they conducted an SMS, and a survey. Among
the results, ten measurement techniques were identified, and
suggestions from software professionals about the detection of
this TD. Finally, they discovered that academia and industry deal
with this TD differently and encouraged both sides to collaborate.
It is believed that this work will support the aforementioned
study above since part of the information is associated with
that. Nonetheless, metrics that help measure the costs or efforts,
related to Requirements Technical Debt were not analyzed.

Lastly, the paper of Lenarduzzi et al. (2021) investigated which
approaches to prioritizing TD have been proposed in software en-
gineering research and industry. In order to do so, they conducted
an SLR, which at the end included 44 primary studies. Among
the results, they observed that research on TD prioritization is
preliminary and that there is no consensus on which factors
are essential and how to measure them. Subsequently, they will
propose a mind map that can help software professionals during
TD prioritization.

The referred study is similar to the current proposal of this
work because it aims to provide information that helps to as-
sertively carry out a specific stage of the management process of
TD. However, this work aims to contribute to the first two stages:
identification and measurement, presenting various information
for the context under study.

The works cited and the present article are related because
they seek ways to understand and manage TD. But in contrast
with the works mentioned, this study conducted two types of
search (manual and automatic). Also, we use snowballing method
as a complement. This generates more research sources to be
considered. On the one hand, although, they have not addressed
the causes for their emergence and metrics for measurement
methods, this present work is similar to the study of Nascimento
et al. (2018) and Wang and Huang (2020). The works of Alves
et al. (2016) and BenIdris (2020) focused on TD in general, gath-
ering evidence to help in its management. Finally, the paper
of Lenarduzzi et al. (2021) analyzed a specific step (prioritization)
of the TD management process but differed by not addressing
evidence focused on its identification and measurement.

3. Systematic literature review

The SLR conducted in this work was based on the method
proposed by Kitchenham and Charters (2007). According to the
authors, a systematic approach is pre-defined using a protocol
and procedures to identify and interpret the evidence available
in Primary Studies (P), related to one or more research questions.
About the objectives, SLRs try to connect primary studies in
terms of their results and investigate whether these results are
consistent. SLRs aim, therefore, to synthesize evidence, including
considering its strength (Kitchenham et al., 2011). The process of

this SLR is presented in Fig. 1.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

3

3

i
v
Q
a
w
i

R
d

w
i
i
e
w
r

R
R

m
a
s
e
t
r

R
s

e
a
c
t

R
R

e
H
o
o
r
a
n
p
m

Fig. 1. Process of conducting systematic literature review.
.1. Planning

.1.1. Research questions
This work’s main objective is to provide evidence to assist

dentifying and measuring of TD requirements in software de-
elopment. To understand this objective, the following Research
uestion (RQ) was defined: ‘‘How to assist in the identification
nd measurement of the Requirements Technical Debt in soft-
are development?’’. To answer this question, we have divided

t into sub-questions:

Q1:What has caused the technical debt of requirements in software
evelopment?
Identifying a TD is not only about understanding how and

here it occurred — but also analyzing the causes that led to
ts occurrence. In addition, Rios et al. (2018a) reports that this
s a topic (causes for TD insertion in projects) that remains little
xplored in academic research. The answers to this question
ill help you understand the causes of the emergence of TD
equirements, aiding in their identification and prevention.

Q2: What strategies are proposed to help identify and measure the
equirements Technical Debt in software projects?
As important as managing TD items in a project is imple-

enting efficient and effective management strategies for such
ctivities. Answering this question may help practitioners in the
election of strategies and tools already available. Based on the
vidence, they will be able to analyze and adapt the strategies
hat best fit their needs, objectives, infrastructure, and other
elated factors.

Q3: What metrics are being used to assist in the process of mea-
uring the Requirements Technical Debt?

This question aims to identify a set of metrics that are consid-
red valid and provide more accurate estimates when measuring
TD. In addition, it seeks to understand the main variables

onsidered in this step, such as the principal and interest of the
echnical debt.

Q4: What difficulties are pointed out during the management of
equirements Technical Debt in software development?
As mentioned earlier, the main goal of this work is to provide

vidence to help identify and measure the TD of requirements.
owever, expected to identify and present background gaps and
pportunities for the development of new research to encourage
ther researchers to investigate in this area. In this way, direct
ecent efforts that can offer support in identifying and measuring,
s well as managing, technical debt as a whole. It should also be
oted that some of these difficulties are related to the findings
resented in the paper, such as the challenge of being able to
easure debt.
5

Table 3
Sources and digital libraries used.
Manual search

Information and Software Technology (IST)
International Journal of Software Engineering and Knowledge Engineering
(SEKE)
International Requirements Engineering Conference (RE)
International Workshop on Managing Technical Debt (MTD)
International Conference on Technical Debt (TechDebt)
Journal of Systems and Software (JSS)

Automatic Search

ACM Digital Library
IEEE Digital Library (IEEEXplore)
Science Direct
SCOPUS
SpringerLink

3.1.2. Sources and search string
The research for primary studies was initially conducted

through manual and automated search of specialized and
renowned scholarly scientific sources and digital libraries in Com-
puter Science and the subjects related to the objective of this
thesis. Note that some manual databases are usually indexed
by the digital libraries used in the automated search. However,
we chose to consider them ensure that all primary studies are
analyzed in the respective databases would be analyzed. Table 3
lists the search sources used.

In searching for relevant results among digital libraries in the
automatic search, a search string was formed based on two cri-
teria: (i) higher number of results recovered from digital libraries
and (ii) studies strongly related to the search theme. Considering
the objective of this research, the search string is formed by three
main keywords, that is, we are looking for studies that present
evidence on technical debt in requirements engineering, or that
report on the application of metrics during the measurement of a
TD, so that, in the end, it becomes a support resource for conduct-
ing this stage of the Requirements Technical Debt management
process.

We would like to highlight that our search string is based
on the definitions of the secondary studies of Behutiye et al.
(2017) related to TD; the study of Saha et al. (2012) on software
requirements; finally, the study of Riaz et al. (2009) adapting the
terms related to measurement and metrics. Hereby, the following
search string was defined:

(‘‘technical debt’’ OR ‘‘technical debit’’ OR ‘‘design debt’’ OR ‘‘debt
metaphor’’) AND (‘‘requirement*’’ OR ‘‘requirement engineering’’ OR
‘‘software requirements’’ OR ‘‘user story’’ OR ‘‘measurement’’ OR

‘‘metrics’’ OR ‘‘measure’’ OR ‘‘measurement metrics’’)



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

t

3

s
o

3

s
t
p
i

R
c
C
t
R

Table 4
Inclusion criteria.
I1: Studies published between 2010 and 2020
I2: Studies wrote in English
I3: Studies related to the identification and measurement
of Requirements Technical Debt in software development

Table 5
Exclusion criteria.
E1: The study does not answer at least one research
question
E2: The study is not accessible
E3: Secondary and tertiary studies
E4: The study is a copy or an older version of another
study already considered
E5: Studies published before 2010

We used the asterisk character (*) in order to capture possible
erm variations such as plurals and verb conjugations.

.1.3. Selection criteria
Inclusion (I) and Exclusion (E) criteria were defined to as-

ist the primary studies’ selection process. The criteria can be
bserved in the Tables 4 and 5.

.1.4. Quality assessment criteria
The quality evaluation of the studies was performed to en-

ure that the final selection list included the most relevant to
his work’s objective. For this purpose, the Quality Criteria (Q)
roposed by Dyba et al. (2007) were used, which are evaluated
n the following quality guidelines:

eporting: the quality of the logic of the objectives and the
ontext of the study;
redibility: the rigor of the research methods used to establish
he validity of the data collection tools and analysis;
igor: evaluates the credibility of study methods to ensure that

they are valid and meaningful;
Relevance: address the relevance of the study to the software
industry and the research community.

In this process, all studies were read in their entirety, and a
score was assigned at the end to each criterion listed in Table 6.
The possible scores were:

[0] The study does not meet the quality criteria;
[1] The study fully meets the quality criteria.

It was also defined following Dyba et al. (2007), that if the
primary study did not meet Q1, it would be excluded. Similarly,
if Q2, together with Q3, were not completed, the study would
be removed. Also, following the recommendations of Lima et al.
(2019), a minimum score of 6 points was required for the study
to be considered in the final list of this SLR, i.e. it had to achieve
more than 50% of the criteria. For this study, the quality assess-
ment was performed by three researchers, who assigned their
respective scores to the primary studies, from which, in the end,
the arithmetic mean was calculated, as detailed in Section 3.3.

3.2. Conducting

In the second stage of this SLR, the manual search was initially
performed by the primary studies through access to the annals
of the search sources. In the automatic search, the studies were
identified by applying the search string to the digital libraries.
The primary search resulted in 6508 primary studies. The inclu-
sion and exclusion criteria were used, resulting in 250 selected
studies. These had their titles, abstracts, and keywords analyzed.
During the quality assessment process, the resulting studies were
6

fully read to identify which ones met the quality criteria and
satisfactorily answered the research questions, resulting in 61
studies.

In the sequence, to complement the evidence already identi-
fied and to guarantee the integral inclusion of studies related to
this work’s objective, the conduction of the snowballing method
was included (Wohlin, 2014). At this point, a total of 991 ref-
erences cited in the 61 primary studies included were analyzed.
In the end, 25 studies were selected through the references and,
after full reading and quality assessment, five studies were in-
cluded, resulting in the final version of this SLR (66 studies), as
detailed in Fig. 2.

One of the exclusion criteria in this study is to exclude primary
studies that are a copy or older version of another study already
included in the SLR. Thus, a total of 381 primary studies were ex-
cluded because they were duplicates. Specifically, after applying
the snowballing method, a total of 213 studies (out of a total of
381) were excluded after the analysis of the references.

After the data extraction phase, the data were extracted, aim-
ing to obtain the information needed to answer the research
questions, and a spreadsheet was used for in process. Table 7
presents extracted data from the 66 studies.

The process of interpretation of the results was initiated from
the extracted data, elaborating tables, graphs, and networks to
present the identified information to answer the research ques-
tions. We would like to emphasize that this procedure was per-
formed with the qualitative analysis tool Atlas.ti. The final list of
analyzed studies is available in Appendix. Finally, to avoid re-
search bias, the entire process and analysis of SLR were executed,
discussed, and reviewed by all the authors of this work.

3.3. Verifiability and replicability

To allow replication and extension of our work by other re-
searchers, we prepared a replication package1 for this study with
the complete results obtained.

4. Results

This section reports the evidence found in the systematic lit-
erature review. Sub-questions between the following subsections
present the quantitative and qualitative results and their analysis.
But initially, an overview of the 66 primary studies analyzed in
this systematic review is provided.

4.1. Overview of primary studies

A total of 66 studies were published in the period from 2010 to
2020. The respective search period was considered because Ernst
in 2012 offered the first definition of Requirements Technical
Debt. In this sense, it became appropriate to analyze primary
studies from the last ten years of research in the area. As shown
in Fig. 3, only 19 studies were published by 2014, while almost
71% of the studies were published from 2015 on. With this, it is
possible to identify that the number of publications and research
in the area has increased in recent years. The year 2022 stood
out with 12 publications in contrast to 2014 with only two,
confirming results of other secondary studies published recently,
as the year with fewer publications on the subject of TD (Becker
et al., 2018; Lenarduzzi et al., 2021).

When considering the distribution of studies based on location
and type of search, a relatively high percentage was identifies in
studies (75% or 49 studies) published and attached on a digital
basis. While only 25% of studies (17 studies) have been published

1 http://bit.ly/StudiesPrimary

http://bit.ly/StudiesPrimary


A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

d
t
p
m
s
f
(
o

l
i
s
l
i

m
i
t
m
t
c
c
i
l

(
f
a

Table 6
Quality criteria.
Q1: Is the research related to the identification
and measurement of TD requirements?

Reporting

Q2: Are the objectives clearly defined? Reporting
Q3: Is there an adequate description of the
context in which the research was carried out?

Reporting

Q4: Is the application domain clearly expressed? Reporting
Q5: Was the research design appropriate to
meet the research objectives?

Rigor

Q6: Was the data analysis sufficiently rigorous? Rigor
Q7: Is the type of research conducted clearly expressed? Rigor
Q8: Are the results clearly described? Credibility
Q9: Is it possible to identify the place of publication of the research? Credibility
Q10: Is the contribution clearly expressed? Credibility
Q11: Does the research make it clear who
contributes?

Relevance
Table 7
Information extracted from primary studies.
Information Research question

Title Overview
Author Overview
Year of publication Overview
Place of publication Overview
Research method Overview
Cause attributed to the emergence
of requirements TD

RQ1

Proposed strategy to identify the
requirements TD

RQ2

Proposed strategy to measure the
TD of requirements

RQ2

Metric used to measure the TD of
requirements

RQ3

Difficulty reported when managing
the requirements TD

RQ4

in journals and manual databases. This analysis can be better
visualized previously in Fig. 2.

One of the goals of this work was to analyze studies that ad-
ressed the TD of requirements, as well as studies that examined
he process of measuring and providing metrics to examine the
ossibility of using and, and if necessary, adapting these proposed
etrics in the context of requirements. It was identified that 48
tudies (approximately 72%), were related and provided evidence
ocused on TD of requirements. At the same time, 18 studies
approximately 28%) were associated with analyzing the process
f measuring a technical debt and offering metrics.
Soon after, it was identified that the 66 primary studies se-

ected were written by 130 different authors, showing a broad
nterest in this subject. However, it was found that only 13 re-
earchers were involved in at least three articles each. In the fol-
owing sequence, the respective authors are presented in Table 8
n order of representativeness.

Finally, the analysis of P was performed on the research
ethod applied, which was based on the classification presented

n the work of Molléri et al. (2019). Regarding the primary studies
hat applied more than one research method, we prioritized the
ethod they reported as the primary method used to conduct

he work. For example, one P conducted a case study, and in a
omplementary way, interviews were conducted; however, the
ase study was considered the primary method. Thus, as shown
n Fig. 4, the case study stood out in a total of 26 publications, fol-
owing archival research (10), which investigates the data through
documental analysis and reports, for example. Thematic analysis
9), survey (7), design science research and interview (each with
our publications), empirical study (3), experiment (2), and finally
ction research (1).
7

Table 8
Authors with greater representation among primary studies.
Number of primary studies Author’s name

10 Carolyn Seaman
Rodrigo O. Spínola

8 Manoel Mendonça
7 Antonio Martini
6 Jan Bosch
5 Yuepu Guo

Terese Besker
4 Forrest Shull

Alexander
Chatzigeorgiou
Nicolli Rios

3 Valentina Lenarduzzi
Paris Avgeriou
Nico Zazworka

4.2. RQ1: What has caused the technical debt of requirements in
software development?

Second Li et al. (2015b), one of the variables that that help
identify a TD, are the provoked that caused its emergence. How-
ever, Rios et al. (2018a) reports that this is a topic (causes for
TD insertion in projects) that remains little explored in academic
research. In this sense, the aim of this question was to determine
the main causes of the emergence of TD of requirements, to
facilitate its identification and to present the main indicators of
its occurrence.

After the analysis, 33 causes (codes) were identified and, in
the sequence, the level of grounded (quantity of citations in P)
and density (amount of association with other codes, which can
be observed in the networks) for each one was verified. For space
reasons, the 15 causes of greater representativity considering
these two variables are presented in Table 9. The other causes
are reported throughout this subsection and, are detailed online
at the following link.2

In the sequence, as explained above, the analysis of the re-
sults was supported by the qualitative tool Atlas.ti. This tool
was idealized by Muhr (1991), based on Grounded Theory for its
development. Among its many features is the possibility to build
states of the art, multimedia analysis of videos, statistical treat-
ment of data, analysis of surveys and, database coding. Because
of that, many researchers from different areas have used Atlas.ti
in their research.

Among the analysis options that the tool offers, there is the
possibility to create networks, which would graphically represent
the relationship between the identified codes, and connect those

2 http://bit.ly/DetailingRQ1

http://bit.ly/DetailingRQ1


A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

t
a
r
i
g
t
f

Fig. 2. Process of conducting systematic literature review.
hat can cause or influence the existence of others (Figs. 5, 6, 7,
nd 8). The information illustrated by rectangles with black lines
epresents the evidence of greater representativeness considering
ts ground plan and density. Regarding the rectangles with the
ray stripes represent the knowledge about the lower representa-
iveness of the P is represented. Thus, four networks were created
or this issue, and the 33 causes are illustrated below.
8

The process of building the networks was based on the ev-
idence provided by the primary studies. For example, in Fig. 5,
among the P’s, it was found that poorly planned requirements
elicitation interviews were related to the lack of a script for their
creation, so these two causes were linked. The same process
was applied to the other evidence, ultimately resulting in four
networks.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

a
b
i
a
n
F
d
r
c
t

c
t
t
c

Table 9
Leading causes attributed to the emergence of Requirements Technical Debt.
Cause Grounded Density Amount Primary studies

Low level of detail in requirements documentation 10 3 13 P74, P91, P154, P183, P192, P209,P214, P229, P233, P275
Ambiguous requirements 7 3 10 P101, P125, P134, P135, P247,P249, P263
Non-definition of non-functional requirements 9 1 10 P74, P81, P91, P196, P209, P214,P216, P233, P273
Vague and incomplete requirements 7 2 9 P125, P133, P154, P165, P196,P209, P263
Lack of communication with the customer 6 2 8 P9, P91, P117, P154, P214, P229
Shortcuts and alternative solutions 4 3 7 P11, P13, P111, P117
Schedule pressure 5 1 6 P81, P101, P154, P161, P183
Clients do not reflect what they want 4 2 6 P101, P132, P167, P247
Lack of experience 5 1 6 P8, P167, P183, P229, P249
Inadequate prioritization of requirements 4 1 5 P25, P74, P91, P132
Inadequate writing and grammar 3 1 4 P133, P225, P263
Poorly planned interviews 1 3 4 P167
Lack of a script 1 2 3 P167
Inaccurate or complex requirements 1 1 2 P274
Inadequate elicitation 1 1 2 P25
Fig. 3. Publications evolution in the last 10 years.

Fig. 4. Applied research method in primary studies.

As illustrated in Fig. 5, the first network presents 14 causes
ssociated with the emergence of the TD of requirements. It
ecomes possible to notice, for example, that poorly planned
nterviews are part of an inadequate elicitation, and they are
lso associated with the lack of a script. This often causes clients
ot to reflect what they want, causing ambiguous requirements.
urthermore, it is observed that the absence of details in the
ocumentation may lead to vague and incomplete requirements,
esulting from their low definition and prioritization, as in the
ase of prioritizing requirements that do not offer greater value
o the client.

The second network, presented in Fig. 6, is related to the
auses attributed to the emergence and identification of inten-
ional technical debt requirement. With this, it is possible to see
hat it can be caused when professionals and software teams
onsciously choose to take shortcuts and alternative solutions
9

Fig. 5. Association of the causes of the emergence of the TD requirements
(Network 1).

involving activities related to software requirements. This cause
can be directly influenced by schedule pressure and pressure
from the client itself, which is considered by Spínola et al. (2013)
the root cause of most TD.

The causes associated with the emergence and identification
of unintentional Requirements Technical Debt were associated
and presented in Fig. 7. By this means, it is possible to see that this
TD can be caused by inexperienced professionals and insufficient
amount of budget and human resources available in software
projects.

Also, unintentional Requirements Technical Debt may be
caused by the difficulty of predicting change impacts, i.e., pre-
dicting possible future updates or changes in requirements. This
cause is associated with existing conflicts between stakeholders,
as well as, the volatility of the requirements, i.e., the changes and
updates that will occur throughout the project, since in the initial



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

r

R
i
i
m
r
a

i
c
w
t
a
a

4
t

g
m
w
t
s

t
i
s

Fig. 6. Association of the causes of the emergence of the intentional
equirements TD (Network 2).

Fig. 7. Association of the causes of the emergence of the unintentional
requirements TD (Network 3).

phase the requirements are not precisely defined and specifica-
tions are usually not known until the system is implemented.

Finally, the latest causes associated with the emergence of the
equirements Technical Debt are presented in Fig. 8. For example,
t is possible to see that the non-validation of requirements
s related to the absence of a review of the client’s require-
ents. Sometimes, not enough attention is given to a detailed

eview of the requirements specification regarding their quality
nd domain-specific content.
In addition, the non-validation of requirements is mostly orig-

nated by a lack of communication with the customer. Thus, this
ause can generate outdated requirements, i.e. they refer to cases
here they were developed at an appropriate level of quality (in
he first versions of the system). Subsequently, the specifications
re not updated with new requirements or changes to those
lready existing.

.3. RQ2: What strategies are proposed to help identify and measure
he Requirements Technical Debt in software projects?

This question objective was to identify and present the strate-
ies that already exist to assist in the identification and measure-
ent of the Requirements Technical Debt. In total, 16 strategies
ere identified and shown in Table 10, considering represen-
ativeness among the primary studies. In the sequence, each
trategy is detailed in its applicability.
For this question, it became possible to analyze that part of

he strategies, besides identifying and measuring technical debt,
t also helped in the other management process steps. Thus, the
trategies were separated for further clarification.
10
Fig. 8. Association of the causes of the emergence of the TD requirements
(Network 4).

4.3.1. Identification and measurement

Customer review: the work’s success with quality requirements
consists of involving stakeholders progressively, developing lists
of sustainable requirements, and recording existing pending is-
sues. Therefore, reviewing the requirements with the client, in-
cluding the development team, should be considered essential for
all management. Companies can adjust the product and specified
requirements based on customer feedback to identify TDs more
efficiently;

Face-to-face communication: in general, communication about
requirements is hierarchical and based on e-mails and docu-
ments. However it is recommended that software professionals
communicate directly with their peers and stakeholders. Face-to-
face communication is efficient in the exchange of information
between different stakeholders, helping to identify TDs. There-
fore, face-to-face communication should be considered as essen-
tial;

Peer review: benefits in reviewing requirements are highlighted
in the literature, especially on defect identification and TDs.
Among the forms of review, there is peer review. It consists of the
analyst conducting the interview with the client and recording
the audio of the dialogue. The audio is reviewed by another
analyst (reviewer), who writes down ambiguities and lists the
questions he would have asked if he had been the analyst. The
questions are used for clarification in future interactions with the
client;

Simple cost–benefit analysis: a list is created with TD items,
where each one represents a task that has been left undone but
is at risk of causing future problems. It involves the creation
of a hierarchy of criteria (quantitative and qualitative criteria,
objective and subjective, which are relevant for the decision),
the assignment of weights and scales, and finally a series of
comparisons between the items, indicating which should be paid
first. Part of these criteria would be the definition of principal,
interest, and probability of interest. In the end, for example,
a company may decide to approach 75% of the high interest-
bearing TDs, 25% of the medium interest-bearing TDs, and defer



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

t
a
i
h
f
c
t
n

A
e
e
i
r
p

C
l
a

P
i
t
v
P
a
p
a
m
s
c

P
g
a
t
m
e
t

I
q
e
I
i
t

Table 10
Strategies used to identify and measure Requirements Technical Debt.
Strategy Grounded Density Amount Primary studies

Manual management 5 4 9 P72, P110, P125, P177, P196
Automated management 5 2 7 P61, P125, P177, P196
Customer review 4 2 6 P117, P125, P126, P178
Tools and softwares 3 2 5 P61, P77, P177
Merge manual and automatic management 2 2 4 P76, P134
Documentation template 3 1 4 P72, P79, P110
Face-to-face communication 2 1 3 P132, P178
Peer review 2 1 3 P135, P178
Simple cost–benefit analysis 2 0 2 P23, P49
Analytical hierarchy process 2 0 2 P13, P49
Quantification approach 2 0 2 P15, P192
Approach of the nearest neighbor 2 0 2 P4, P99
Cause and effect diagram 2 0 2 P183, P229
Preventive actions 2 0 2 P203, P275
RE-KOMBINE 1 1 2 P25
Backlog 1 0 1 P76
Payment map 1 0 1 P208
Identification through ISO/IEC/IEEE 29148:2018 1 0 1 P263
those with low interest. This strategy is also used to prioritize
TD (Lenarduzzi et al., 2021).

Quantification approach: used to quantify TD and technical in-
erest, but for this, it would be necessary to answer questions
bout investments, such as (1) How big is my TD? (2) How much
nterest am I paying for the TD? (3) Is the debt growing? and
ow fast? (4) What will be the consequence of keeping this TD
or future maintenance? Finally, the Requirements Technical Debt
an be quantified considering the ratio between the user’s needs
hat are already elicited and all possible user needs, including
eglected ones;

pproach of the nearest neighbor: this approach leverages the
xperience gained in previously resolved TDs and relies on the
ffort required to correct these currently identified debts. The
ntuition is that the average time it takes to convert a TD of
equirements is similar to the correction of previous debts in the
roject;

ause and effect diagram: it is used to organize the causes that
ed to a TDs incidence, helping to identify it quickly, taking into
ccount that the data are previously described;

reventive actions: This strategy is not necessarily related to
dentifying and measuring the TD requirements, but it was
hought essential to present it. Primary studies report that pre-
enting the occurrence of a TD can be cheaper than its payment.
reventive actions support professionals and software teams in
pplying acceptable practices that minimize their occurrence. The
reventive actions related to TD requirements are: controlling
nd negotiating the software requirements; well-defined require-
ents; good communication between stakeholders; well-defined
cope statement; requirements change tracking, and customer
ommitment.

ayment map: software professionals can consult this map to
uide their decisions about eliminating TD in their projects. As
guide, the map it can inform a set of practices in response to

he need for TD payment. Furthermore, can be used as a com-
unication device to support teams to effectively communicate
xisting TDs to managers and better decide on the payment of
he TD requirements, for example.

dentification through ISO/IEC/IEEE 29148:2018: describes the
uality of requirements from specification to other requirements
ngineering activities in the software development life cycle.
t provides details for creating consistent textual requirements,
ncluding characteristics and attributes, and language criteria of
he requirements. From the moment that these quality standards
11
are violated, requirements smells and technical debt may arise.
Analyzing this document according to the specified projects and
documented requirements helps to identify inconsistencies, low
levels of quality, and violations, and, consequently, identify TD.

Documentation template: it is a model that is filled in the
document TD and contains various data, especially concerning the
measurement. The TD documentation template proposed by Sea-
man and Guo (2011) is shown in Table 11.

4.3.2. Management

Manual management: it refers to the process performed manu-
ally by software professionals. It would be to identify and mea-
sure the TD without the use of tools or software;

Automated management: the automated management uses soft-
ware and automated resources to identify and measure the TD.
When selecting one of these resources, the main question is
related to the number of false positives that return: how many
TDs are analyzed in more detail and are not necessarily true.
When these automated resources produce many false positives,
it only distracts the location from the actual technical debts.
After reviewing the primary studies, a single tool (RE-KOMBINE)
was identified to manage TD in requirements (Ernst, 2012). It
is based on the use of objective models used to and follows
the software’s evolution, identifying changes in requirements and
understanding how they impact the current implementation of
the software;

Merge manual and automatic management: combining manual
management with tool and software analysis is a practical and
effective way to identify TDs in industrial projects;

Analytical hierarchy process: this process assigns weights and
scales to different criteria used to measure the TD. Then, a series
of pairwise comparisons are made between the items to obtain
a prioritized TD classification. Based on this process, the items
at the top of the list must be treated first. In other words, this
strategy focuses on those TD items that have a potentially severe
impact on the project regarding the total amount of interest that
the project needs to pay. This strategy is not necessarily ideal,
but it can decrease the project’s risk level and keep the TD under
control;

Backlog: often, part of the requirements documentation needs
to be updated. However, there are more urgent tasks that need
attention. In this case, write down the pending task in a TD list
(similar to a daily task list), so that you do not lose sight of the
correction that needs to be taken in the future.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

r

t
f
d
c
r
m
t
c
2
t
t
4
m

w
R
s
s
w
w

P
b
t
p
t
a

I
l

Table 11
Technical debt documentation template.
ID Technical debt identification number
Date Technical debt identification date
Responsible Person who identified the TD
Location Description of where the debt item is
Description Justification of why that item needs to be considered
Estimated Principal Work required to pay off the TD
Estimated Interest Amount Extra effort needed in the future if the TD item is not paid
Estimated Interest Probability Probability of extra work needed, if

the TD is not paid off in the future
Fig. 9. Association of strategies for identification and measurement of the TD
equirements.

Finally, among the 16 strategies, it was analyzed that 9 of
hem were related, as presented in Fig. 9. It is possible to notice,
or example, that the template of documentation can be used
uring manual management. This type of management is asso-
iated with the review process with the client, which is strongly
ecommended to be performed in person. However, the manual
anagement can also be related to the use of the payment map,

he organization of the information and causes of a TD in the
ause and effect diagram, and the analysis of the ISO/IEC/IEEE
9148:2018 standards. Additionally, it is strongly recommended
o use both management types to ensure an effective TD reduc-
ion process.
.4. RQ3: What metrics are being used to assist in the process of
easuring the Requirements Technical Debt?

This question aimed to identify metrics that could help soft-
are professionals measure data related to the repayment of
equirements Technical Debt. Initially, to provide a better under-
tanding of the measurement stage of a TD, part of the primary
tudies presented definitions regarding the variables associated
ith technical debt that need to be calculated and measured,
hich are defined in detail in the sequence.

rincipal: refers to the effort required to complete a task that has
een left unattended. A task is a representation of a technical debt
hat is at risk of causing future problems if it is not repaid. The
rincipal is calculated according to the number of technical debts
hat must be corrected in the software, the hours to fix each one,
nd the labor cost.

nterest: it is the penalty (in terms of more significant effort and
ower productivity) that will have to be paid in the future due
12
to the non-correction of technical debts at the present moment
of identification. It refers to an estimate of the amount of extra
work required to maintain the quality of the software if there is
an unpaid technical debt.

Interest Probability: it refers to the likelihood that if the technical
debt is not repaid, it will make other works more expensive over
some time. The probability of interest is time-sensitive.

Subsequently, among the metric studies, some elements were
identified that help measure: (i) the principal of TD; (ii) the
interest on TD; (iii) the decision to reimburse TD at the time
of identification; (iv) the decision to reimburse TD at the time
of identification or at some point in the future; finally (v) the
uncertainty about measuring TD. The purpose of this evidence is
to support the decision to reimburse TD requirements. Although
it is not yet possible to present an accurate value in practice
for each variable, these metrics are useful in understanding the
factors involved in measuring technical debt, specifically about
the likelihood of adaptation and use in the context of software
requirements.

4.4.1. Quantifying the principal
Subsequently, the recommendations of Curtis et al. (2012a)

(P258), the primary studies P33 and P177 presented a metric
to calculate the Principal of the TD, being this a function of
three main variables: (i) the number of TD items that should be
reimbursed; (ii) the time needed to correct each item; and (iii)
the cost to fix each TD item. The following metric is presented in
sequence.

Principal =

((
∑

high − severity TD) × (percentage to be fixed)×

(average hours needed to fix) × ($ per hour))+

((
∑

medium − severity TD) × (percentage to be fixed)×

(average hours needed to fix) × ($ per hour))+

((
∑

low − severity TD) × (percentage to be fixed)×

(average hours needed to fix) × ($ per hour))

Following the context of requirements, the number of TD
items can be measured through a detailed analysis and review
of the requirements specification documentation. However, given
certain factors, such as the budget constraints, software compa-
nies are rarely able to correct all the TDs projects. Therefore, each
debt must be weighted according to its severity level, such as
low, medium, and high, to determine the percentage of TDs that
will be reimbursed for each level. The severity level refers to the
impact that the TD may cause on the project. For example, it
analyzes whether the debt is in a strategic area of the software,
which in turn negatively impacts the client’s business. In other
words, a high TD does not necessarily become the most complex
debt that will demand more effort to correct. But it may be related
to the most critical functionalities or areas in the software.

Soon after, the time to correct a TD includes the time to
analyze the debt, understand and determine its correction, assess



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

t
t
2
c
o

4

w
a
i
q
(

M

n
a
m

R
t
e

R

i
t
t
e

Q
i
t
b
s
1

Q

m
t
b

4

w
t
o
i

i
u
k
a
t
t
c
b

he potential side effects, implement and test the correction, and
he time to release the correction in operations (Curtis et al.,
012b). Finally, it is worth noting that this metric’s variables
an be adjusted to reflect better the company’s experience and
bjectives, team, or specific project.

.4.2. Quantifying the interest
As previously presented, TDs interest is the extra costs that

ill be spent on maintenance due to quality problems that will
rise. In this sense, studies P15 and P43, state that the interest
s the difference in maintenance effort between a certain level of
uality and the ideal level. To estimate the Maintenance Effort
ME), the following metric is used:

E =
MF × RV

QF
The metric above shows that the ME is a function of:

Maintenance Fraction (MF): represents the amount of mainte-
ance effort that will be spent on an annual basis, measured as
percentage of changes involving updating requirements (added,
odified, or deleted) annually due to maintenance;

ebuild Value (RV): is an estimate of the effort (person-months)
hat needs to be spent on rebuilding software, i.e. correct the
xisting TDs, determined by the metric:

V = SS × TF

System Size (SS) represents the total size of software measured
n lines of code. Alternatively, SS can be measured using func-
ional size (i.e. function points). Technology Factor (TF) represents
he language’s productivity factor, providing conversion to the
ffort (i.e., person-month).

uality Factor (QF): it is a factor used to explain the level of qual-
ty of the software. It is assumed that the higher the quality level,
he less effort is spent on maintenance. This statement is justified
y previous research, which illustrates that making changes in
oftware with superior quality is more efficient (Chidamber et al.,
998). The QF is determined from the following metric:

F = 2((QualityLevel−3)÷2)

According to primary studies, the above metric is a simplified
odel to consider the quality level (1 to 5 stars). For this purpose,

he metric provides the following factors: 0.5, 0.7, 1.0, 1.4, 2.0,
ased on the work of Bijlsma (2010).

.4.3. ‘‘If’’ decision
In study P96, a metric was presented to calculate whether it

as worth paying back the TD when it was identified by relating
he principal to interest. This metric came from the concept
f Seaman et al. (2012), which states that the TD should be paid
f the principal is lower than the total interest.

CPrincipal
TInterest

= result

CPrincipal is the current principal to be paid, and TInterest
s the total interest in the software life cycle. The total interest
sually cannot be calculated unless the software life cycle is
nown, so TInterest is generally considered the interest calculated
t a chosen point in the future. In other words, stakeholders need
o understand if the repayment cost (principal) is lower than the
otal interest paid from now until the end of the software life
ycle. From the analysis of the result, the following decisions can
e considered:
13
• If the result is less than 1, it means that it is worth paying TD
in the present, i.e. the costs will be lower than those which
require to be refunded in the future;

• If the result is equal to 1, it means that there is no great loss
in putting off the payment of TD. Postponing the reimburse-
ment will not accumulate in great costs;

• If the result is greater than 1, it means that it does not
recommend paying TD at the moment it was identified, that
is, the costs of reimbursement in the future will be lower.

Finally, the authors pinpoints that choosing a point in the
future before the final life cycle of the software is a safe choice. In
fact, in the worst case, it is taken into account that the principal
will cover only part of the interest. Furthermore, they point out
that CPrincipal and TInterest are not described in terms of total
costs in dollars, but in a set of factors associated with the reim-
bursement process of TD requirements, for example. It is assumed
that each element may be related to a positive or negative value
that may increase or decrease over time.

4.4.4. ‘‘When’’ decision
In primary study P96, a metric was presented to calculate the

best time to repay the technical debt, whether in the current
period in which it was identified or at a specific point in the
future. For example, ‘‘should we reimburse now, or can we wait
six months?’’ According to the authors, to answer this question,
stakeholders need to know whether repaying at a chosen point
in the future (F) is more or less convenient than repaying now.
The metric follows in the sequence.

FPrincipal
(TInterest − FInterest)

−
CPrincipal
TInterest

= result

The metric calculates the ratio between the principal in F and
the remaining interest calculated as the total interest (TInterest)
minus the interest paid in F. Soon after, it subtracts the propor-
tion calculated about the same balance on the repayment in the
current situation. From the analysis of the result, one can consider
the following decisions:

• If the first term is greater than the second, the result will
be a negative number, which means that it will be less
convenient to pay TD later since the gain from repaying the
debt about the remaining interest will be smaller than now;

• If the result is low enough (close to 0), it means that repay-
ment is not urgent, since it does not bring many benefits
now compared to making it in the future.

4.4.5. Uncertainty of a measurement
According to Curtis et al. (2012a), there is no exact mea-

surement for the TD, since the calculations are based only on
structural failures that the organization needs to fix. In this sense,
not all organizations reimburse the TDs based on appropriate
techniques and metrics. Moreover, small changes in the variables
related to a TD can cause large changes in its measurement, thus
revealing the final estimates’ sensitivity.

Based on this context, the primary study P43, states that
calculations involving a TD may suffer systematic errors, caused,
for example, by the low measurements of the tools. As a re-
sult, the authors define Uncertainty and Error, reporting that
random errors or uncertainties in the measurement of a TD are
frequent and refer to the delta that exists between the expected
value of a measurement and its actual measurement. These er-
rors can overestimate or underestimate the expected value of a
measurement.

The primary study P43 used as a basis the operations and
theories proposed by Taylor (1997), which states that the correct
way to express the result of a measurement is to produce the



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

o
i
t
t
i
(

c
t
i
F
t
i
T

4
o

p
r
r
a
T
w
d

c
I
c
i
d
T
i
t
T
m
t

Table 12
Difficulties identified in the Requirements Technical Debt management process.
Difficulty Grounded Density Amount Primary studies

Manage TD efficiently 1 9 10 P38
Lack of access to tools 6 1 7 P76, P117, P154, P158, P178
Understanding that TD is a problem 1 4 5 P117
Measure TD 3 1 4 P4, P117, P146
Allocate more time in eliciting requirements 2 2 4 P25, P178
Engage the team in the TD management process 2 1 3 P49, P117
Balance the benefits of repaying TD with the costs
of this process

2 1 3 P8, P132

Manage unintentional TD 2 1 3 P9, P38
Team morale 2 1 3 P119, P228
Adapt the team to the TD management process 1 2 3 P111
Automated management 1 2 3 P61
Urgent management of TD 1 2 3 P24
Customer collaboration in this process 1 1 2 P74
Culture or personal feelings 1 1 2 P50
Manage older TDs 1 1 2 P38
Conflicting goals 1 1 2 P50
Organizational restrictions 1 1 2 P50
Tradition 1 1 2 P50
best estimate of the greatness and the interval within which
you are sure the greatness resides. In this sense, the authors of
the primary study adapted to the context of TD, presenting the
following metric:

measured value of TDprincipal = (TDprincipal)best ± δTD

This metric represents the best estimate of a TD, with a margin
f error or uncertainty about the principal TD (δTD). The estimate
s between (TDprincipal)best−δTD and (TDprincipal)best+δTD. Following
he recommendations of Taylor (1997), for convenience, uncer-
ainty is always defined as positive, so that (TDprincipal)best + δTD
s always the most likely value of the greatness measured and
TDprincipal)best − δTD is the least likely.

Finally, the authors of the primary study conclude that these
alculations become appropriate in the measurement process, but
hat they still need to be validated in the domain of TD, mainly
nvolving the different types of TD, for example, requirements.
urthermore, they reinforce the importance of understanding that
he propagation of uncertainty is a critical factor that needs to be
nvestigated to improve the decision-making process about which
D items to refactor.

.5. RQ4: What difficulties are pointed out during the management
f Requirements Technical Debt in software development?

This question’s objective was to identify the main difficulties
ointed out by the studies in the process of managing the TD
equirements. It is intended to present opportunities for new
esearch, future work, and development of new technologies, and
ssist software professionals in the difficulties reported, shown in
able 12 in order of representativeness. Soon after, two networks
ere created for this issue in order to relate and associate the 18
ifficulties identified.
The first network, illustrated in Fig. 10, presents nine diffi-

ulties reported during the management of TDs requirements.
t becomes possible to notice, for example, that there is a diffi-
ulty in managing the TD efficiently, which causes an increase
n maintenance costs at a rate that will eventually exceed the
elivery value to the client. This difficulty is associated with the
Ds measurement because according to some reports, predict-
ng the debt correction effort is often a more challenging task
han predicting the effort to develop the software (Hassouna and
ahvildari, 2010). In addition, it is also related to the difficulty of
anaging old TD, as the cost of patching increases according to

he time it remains in the software in most cases.
14
Fig. 10. Difficulties reported in requirements TD management (Network 1).

The following, is still, about efficiently managing the technical
debt of requirements efficiently. Report that unintentional TD is
much more problematic to manage than intentional TD. Also,
performing automated management along with the lack of tools
in the context of requirements become difficulties that compro-
mise the quality of correction of the TD, because many projects
do not have access to automated tools, apart from inadequate
infrastructure that makes teams reluctant to take on correction
tasks.

Finally, there is difficulty in adapting the team to the man-
agement process of TD, because during the adaptation time the
productivity usually drops, since the project or company has
to go through a period of learning and education. This diffi-
culty is associated with engaging the team in the management
process because instead of only a few people documenting the
TD requirements in the backlog, the collaboration of the other
members would be necessary. This may be related to the morale
of the team because if the TD is not corrected, it may hurt profes-
sionals’ motivation. Professionals mention that being criticized for
introducing a TD can be a bad feeling. Moreover, of improvements



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

t
w

s
m
o
a
a
a
d

m
w
w
h
e
c
i

t
b
c
t
m
o
a
i

p
r
p

5

r

Fig. 11. Difficulties reported in requirements TD management (Network 2).

hrough technical debt management and to convince managers
hy it is necessary to do so.
In the second network created for this issue, which is pre-

ented in Fig. 11, it is possible to identify that the difficulty in
anaging the TD of requirements efficiently continues to relate to
ther codes, such as the urgency of the client’s correction. This is
ssociated with a lack of collaboration and communication which
re essential elements in requirements engineering. This becomes
challenge to be able to validate requirements that have not been
etailed in a satisfactory way, for example.
Soon after, there is the difficulty in balancing the benefits of

anaging the TD with the costs associated with this process, as
ell as the efforts spent on replanning the requirements, along
ith other implementation demands that the development teams
ave. Furthermore, there is difficulty allocating more time and
ffort to be paid during the elicitation of the requirements, often
aused by conflicting goals, i.e., different objectives to be achieved
n that period.

In the sequence, there is the need to understand that the
echnical debt of requirements if not managed correctly, can
ecome a critical problem to the software project and be the root
ause of other issues that arise. This difficulty may be related to
he culture of the team or to personal feelings, i.e., employees
ay prefer to always or never reduce technical debt, depending
n their feelings and skills regardless of actual interest. It may
lso be associated with organizational constraints, i.e., an action
s only taken if the organization orders it.

Finally, there is the difficulty of tradition, that is, a particular
ractice is not changed or is not included in the daily project
outine because it deviates from the standard way that the team
erforms the tasks.

. Discussion

This systematic literature review aimed to investigate the cur-
ent state of management research, specifically the identification
15
and measurement of the TD requirements present in software
development. To this end, 66 primary studies were analyzed to
provide an overview of what has been discussed in the area by
analyzing four research questions.

This section presents a summary of the main discussions of the
results that indicate their implications for software development
industry professionals and researchers.

5.1. Implications for professionals

The results have essential discussions for software develop-
ment professionals, particularly those seeking guidance, strate-
gies, tools, and information in the literature that can help in
certain situations they face in their projects. The results of this
SLR imply the following discussions for software development
professionals:

(1) When 33 causes that cause the TD of requirements (RQ1)
are presented, professionals are invited to a self-analysis about
which of these inadequate actions exist in their projects. Fur-
thermore, it assists in the identification of already existing TDs
through these listed causes and in the verification of what can be
improved to avoid the appearance of this debt;

(2) Among the recorded causes, the low level of detail in
requirements documentation is highlighted, which is the cause
of the emergence of vague, incomplete and ambiguous require-
ments. Based on this analysis, it is recommended that industry
and professionals pay more attention and effort to the process
of specifying and documenting requirements, and provide more
explicit follow-up and detailed review when implementing these
activities;

(3) It should be noted that part of the causes attributed to
the emergence of the TD of requirements is associated with the
client and stakeholders’ collaboration. It is up to the industry
professionals to tighten their communication during the life cycle
of the requirement, ensuring its integrity according to what the
client wants, avoiding incompatibilities and excessive updates
throughout the software development;

(4) Most of the strategies that already help identify and mea-
sure the TD requirements (RQ2) are related to manual manage-
ment. These are strategies that use documentation templates,
face-to-face communication, and a payment map of TD, which
becomes a challenge to implement in the industry, taking into
account that most processes are automated due to agility and
implementation time. It is up to the professionals to analyze and
adapt the strategies that best fit their needs, infrastructure, and
other related factors;

(5) Among the strategies identified, it is noticeable that two
of them (Simple cost–benefit analysis and Analytical hierarchy
process) can help professionals continue managing the TD re-
quirements. Such strategies can help not only with measurement
by assigning weights and scales to the various criteria used in
estimates, but also with prioritizing the order of payment of iden-
tified items. This happens when making comparisons between
the TD items, concentrating the payment on those that have a
profound potential impact on the project, for example;

(6) Knowing the causes for the emergence of TD requirements
can support software development teams in defining actions that
could have been taken to hamper these items of technical debt.
Evidence in this context is presented in the strategy of preventive
actions reported in RQ2. This information will help professionals
use best practices that will help prevent the emergence of this
type of TD, and consequently avoid future costs and maintenance
efforts.

(7) There is a lack of knowledge on the part of the industry
on how to calculate the principal and mainly the interest of
TD, which leads to increased costs and decreased quality of the



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

s
p
s
b

i
a
e
e
s
a

m
b
w
p
a

s
f
s
t
t
l
m
t
w

5

r
p
t

i
t
m
a

e
w
s
e
r
e

n
i
s
o
r
t
t
c

d

oftware, which will possibly impact the clients. The metrics
resented (RQ3) become a strategy that allows professionals to
upport these estimates, avoiding the accumulation of TD caused
y inaccurate measurements;
(8) It is possible to notice that there is a lack of practical

nformation in TD requirements is short. To solve this problem
nd, the software industry can benefit from these contributions,
valuations, tools, and strategies coming from academia, it is nec-
ssary that software professionals play an active role in empirical
tudies, authorize, participate and provide the required data for
cademic research;
(9) Some of the difficulties reported (RQ4) are associated with

easuring the TD of requirements, managing it efficiently, and
alancing the benefits with this process’s costs. By analyzing this
ork, professionals will find evidence to help them solve these
roblems or to help them execute activities through strategies
nd metrics.
(10) It became possible to analyze that merging the use of the

trategies presented with the help of metrics can become an ef-
ective practice when measuring a TD of requirements. Four of the
trategy, namely, simple cost–benefit analysis; documentation
emplate; quantification approach; analytical hierarchy process,
o be applied in the management of a TD, it is necessary to calcu-
ate, among its variables, the principal and the interest. For these
easurements, metrics were presented throughout this work,

hus increasing the assertiveness of the estimates and results
hen using them.

.2. Implications for researchers

The results present an active investigation area, but it still
equires a deeper analysis, especially to validate the evidence
resented in real cases. To guide future research, the results of
his SLR imply the following discussions for researchers:

(1) There is an absence of tools and software that can be used
n the context of TD requirements. Researchers are encouraged
o develop such automated resources that support the process of
anaging this type of specific TD, especially on its measurement,
dding the metrics identified to provide more accurate estimates;
(2) Empirical studies become necessary to provide practical

vidence for the application of the proposed metrics in the soft-
are industry. Part of the metrics are only mentioned in primary
tudies but not investigated in real cases. This research is nec-
ssary to refine and adapt the metrics in the context of the
equirements, so that they can be integrated into the working
nvironment of the companies;
(3) With the exception of RQ3, the other questions presented

etworks that would represent the relationships between the
dentified codes (information). According to the reports in the
tudies, these networks aimed to associate principles that cause
r influence the existence of others. As a proposal for future
esearch, it is recommended to confirm, in practice, whether
hese presented relationships are associated with real projects, or
o what extent a cause for the emergence of the TD requirements
an influence the existence of another cause, for example;
(4) Most investigations focus on technical aspects of the tech-

nical debt management process, but little attention is given to
social and interpersonal issues. This is proven in RQ4 when part
of the difficulties is related to professionals’ culture and personal
feelings, team morale, tradition, and organizational constraints.
Research on these aspects becomes necessary to help overcome
these problems and strengthen the process of managing TD re-
quirements, proposing solutions that go beyond technical as-
pects;

(5) It becomes necessary, new research to identify technical
ebt from the analysis of quality standards, norms, and other
16
information that an ISO provides, especially in the context of
requirements. Analyze to what level software companies adhere
to these quality standards, in which of them major violations
occur, and consequently the occurrence of TD as well as the
development of a strategy to facilitate the adoption and use of
these ISO in everyday business. All these new researches will
support the construction of consistent and quality requirements.

(6) Difficulties reported include business resistance to manage
TD, engagement of the team in this process, and understanding
that requirements debt can become a critical problem if not man-
aged. This proves the lack of research to strengthen collaboration
between academia and industry. There is a need for training so
that professionals can understand the concept of TD, its conse-
quences and how to differentiate it it from other problems in their
projects. Based on this understanding, companies acceptance of
managing the problem can be fostered as they understand the
real benefits.

(7) Among all the strategies presented in RQ2, only one of
them provides a payment map. That is, there is an absence of
manuals, guides, and mainly evidence briefings that gather the
main information, evidence, strategies, and tools on technical
debt, either in a general context or in its specific types, such as
requirements. The information presented in this template would
facilitate the acceptance and use of industry professionals. Con-
sidering the schedule pressure and time to market, for example,
providing information that is compiled, illustrated, and quickly
understood, would facilitate the integration into the day-to-day
of projects.

6. Threats to validity

This section addresses the possible threats that affect the
SLR results, and in the sequence, the actions taken to mini-
mize these biases are presented. To analyze these threats, we
adopted the guideline proposed by Petersen et al. (2015) (i.e. de-
scriptive validity, theoretical validity, interpretive validity, and
repeatability).

Descriptive validity In order to mitigate this threat, the entire
selection process and, in particular, the data extraction proto-
col have been validated by all the authors verifying whether
the schema was properly formulated according with the de-
fined research goal and the relative research questions. Moreover,
the data extracted from each paper has been checked before
answering to the research questions.

Theoretical validity. To identified this threat, we considered
entire SLR process. To minimize it, the selection processes were
conducted by at least three researchers and all the disagreement
were in deep discussed. Moreover, some inclusion and exclusion
criteria are refined to make them more objective. Additionally,
the search string may not include all terms related to the search
topic. However, pilots were previously performed to adjust the
presented string. The inclusion and exclusion criteria have been
verified by testing with the same bibliographic databases and the
same search string.

Interpretive validity. We are aware that the non identification
and inclusion of primary studies are correlated, causing the loss of
evidence related to the study’s objective. In order to mitigate this
threat, different data sources were first considered to include the
largest possible number of related studies to minimize the men-
tioned threat. In addition, specific and reputable scholarly sources
and digital libraries in the field of computer science and on the
topics related to the objective of this work were considered.
The search strategies were carefully applied, so that a relevant
number of articles were found and consequently included in the
study.

Repeatability. The procedure adopted in this study are care-
fully reported in the paper. Moreover, we include the rawdata
with the complete obtained results in our replication package to
allow replication and extension of our work by other researchers.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

7

e
n
a
o
n
f
p
t
m
d

a
e
t
t
d
a
m
m
r
a
(

t
v
o
q
t
T
m
h
s

T
m
g
a
t
t
n

t
w
p
t
r
s
a
b
p
n
f
d

g
p
g
s
e
t
f
t
r

. Conclusion

When software development stages are pending or not prop-
rly executed, they cause a phenomenon known as TD, which if
ot managed at the time and in the correct way, leads to financial
nd operational losses. TD can be present in the different phases
f the software life cycle. However, specific types of this phe-
omenon still need to be investigated to assist in its management,
or example, the TD of requirements. In this context, this work
resents the results of a secondary study that aimed to answer
he research question ‘‘How to assist in the identification and
easurement of the Requirements Technical Debt in software
evelopment?’’.
The focus of the research was to identify the leading causes

ttributed to the emergence of Requirements Technical Debt,
xisting strategies that help identify and measure it, metrics
hat can be used as support during measurement, and difficul-
ies reported in performing these activities. Rigorous steps and
etailed analysis of evidence were used to conduct the system-
tic literature review. 66 primary studies were included through
anual and automatic searches, together with the snowballing
ethod. These primary studies were returned from renowned

esearch sources and digital databases and provide an overview
nd update of the current state of the art over the past 10 years
2010 to 2020).

The results of this systematic review show different contexts
hat can lead to the emergence of the TD of requirements, in-
olving causes for intentional or unintentional TD, a collaboration
f clients and stakeholders, elicitation and documentation of re-
uirements, and pressure of schedule, for example. Addition to
hese findings, other strategies for identifying and measuring
D of requirements were mapped, emphasizing manual manage-
ent, with different application proposals. However, the results
ighlight the lack of automated resources focused on this type of
pecific TD.
Various metrics have been identified to assist in measuring

D requirements. However, it still requires validation and refine-
ent in the context of requirements. Also, they already provide
uidance and insights into the factors involved in measuring TD
nd how to apply and adapt them in specific contexts. Finally,
he main difficulties in performing these activities were found
o be precisely related to the measurement stage, in addition to
on-technical aspects such as team morale and engagement.
In conclusion, the results provide considerable evidence for

he objective of this work. Thus, the main contributions of this
ork are: (i) the availability of information to help software
rofessionals identify and measure the TD of requirements in
heir projects; (ii) the broadening of understanding of topics
elated to TD and its management process, allowing identify how
pecific contents of this phenomenon can be fragmented; (iii) the
vailability of metrics that can be used in the measuring a TD; (iv)
y identifying the difficulties and gaps that are encountered when
erforming requirements TD management, become an opportu-
ity for the development of new research; (v) the presentation of
indings that go beyond the code TD, for instance, the study of a
ifferent type of TD, which provides additional results in the area.
As future proposals, research will be invested based on the

aps identified in this work, adjusting with the evidence already
laced and new empirical studies. Also, the development of a
uide to support the TD requirements’ identification and mea-
urement is currently at an early stage. The guide will consist of
vidence from the literature and information gathered through
he survey in the software industry. Its objective is to help pro-
essionals identify and measure the existing TD requirements in
heir projects, by knowing and being able to measure the data
equired for the solution.
17
CRediT authorship contribution statement

Ana Melo: Conceptualization, Methodology, Data extraction,
Data analysis, Writing – original draft, Editing. Roberta Fagun-
des: Data analysis, Review. Valentina Lenarduzzi: Methodology,
Writing – review & editing. Wylliams Barbosa Santos: Supervi-
sion, Data analysis, Writing – review.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brazil (CAPES) - Finance
Code 001, for the financial support for the development of this
research.

Appendix. Selected primary studies

[P4] Hassouna, A., & Tahvildari, L. (2010). An effort prediction
framework for software defect correction. Information and
Software Technology, 52(2), 197–209.

[P8] Guo, Y., & Seaman, C. (2011, May). A portfolio approach
to technical debt management. In Proceedings of the 2nd
Workshop on Managing Technical Debt (pp. 31–34).

[P9] Klinger, T., Tarr, P., Wagstrom, P., & Williams, C. (2011, May).
An enterprise perspective on technical debt. In Proceed-
ings of the 2nd Workshop on managing technical debt
(pp. 35–38).

[P11] Theodoropoulos, T., Hofberg, M., & Kern, D. (2011, May).
Technical debt from the stakeholder perspective. In Pro-
ceedings of the 2nd Workshop on Managing Technical Debt
(pp. 43–46).

[P13] Seaman, C., & Guo, Y. (2011). Measuring and monitor-
ing technical debt. In Advances in Computers (Vol. 82,
pp. 25–46). Elsevier.

[P15] Nugroho, A., Visser, J., & Kuipers, T. (2011, May). An empir-
ical model of technical debt and interest. In Proceedings of
the 2nd workshop on managing technical debt (pp. 1–8).

[P23] Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai,
Y., & Vetrò, A. (2012, June). Using technical debt data in
decision making: Potential decision approaches. In 2012
Third International Workshop on Managing Technical Debt
(MTD) (pp. 45–48). IEEE.

[P24] Snipes, W., Robinson, B., Guo, Y., & Seaman, C. (2012,
June). Defining the decision factors for managing defects:
A technical debt perspective. In 2012 Third International
Workshop on Managing Technical Debt (MTD) (pp. 54–60).
IEEE.

[P25] Ernst, N.A. (2012, June). On the role of requirements in un-
derstanding and managing technical debt. In 2012 Third In-
ternational Workshop on Managing Technical Debt (MTD)
(pp. 61–64). IEEE.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

P33] Curtis, B., Sappidi, J., & Szynkarski, A. (2012, June). Esti-
mating the size, cost, and types of technical debt. In 2012
Third International Workshop on Managing Technical Debt
(MTD) (pp. 49–53). IEEE.

P34] Letouzey, J.L. (2012, June). The SQALE method for evaluat-
ing technical debt. In 2012 Third International Workshop
on Managing Technical Debt (MTD). IEEE.

P38] Spínola, R.O., Vetrò, A., Zazworka, N., Seaman, C., & Shull,
F. (2013, May). Investigating technical debt folklore: Shed-
ding some light on technical debt opinion. In 2013 4th In-
ternational Workshop on Managing Technical Debt (MTD)
(pp. 1–7). IEEE.

P43] Izurieta, C., Griffith, I., Reimanis, D., & Luhr, R. (2013, June).
On the uncertainty of technical debt measurements. In
2013 International Conference on Information Science and
Applications (ICISA) (pp. 1–4). IEEE.

P45] Zazworka, N., Spínola, R.O., Vetro’, A., Shull, F., & Seaman,
C. (2013, April). A case study on effectively identifying
technical debt. In Proceedings of the 17th International
Conference on Evaluation and Assessment in Software En-
gineering (pp. 42–47).

P49] Codabux, Z., & Williams, B. (2013, May). Managing techni-
cal debt: An industrial case study. In 2013 4th International
Workshop on Managing Technical Debt (MTD) (pp. 8–15).
IEEE.

P50] Falessi, D., Shaw, M.A., Shull, F., Mullen, K., & Keymind, M.S.
(2013, May). Practical considerations, challenges, and re-
quirements of tool-support for managing technical debt. In
2013 4th International Workshop on Managing Technical
Debt (MTD) (pp. 16–19). IEEE.

P61] Sneed, H.M. (2014, January). Dealing with Technical Debt
in agile development projects. In International Conference
on Software Quality (pp. 48–62). Springer, Cham.

P72] Oliveira, F., Goldman, A., & Santos, V. (2015, August). Man-
aging technical debt in software projects using scrum: An
action research. In 2015 Agile Conference (pp. 50–59). IEEE.

P74] Soares, H.F., Alves, N.S., Mendes, T.S., Mendonça, M., &
Spinola, R.O. (2015, April). Investigating the link between
user stories and documentation debt on software projects.
In 2015 12th International Conference on Information
Technology-New Generations (pp. 385–390). IEEE.

P76] Suryanarayana, G., Samarthyam, G., & Sharma, T. (2015).
Repaying Technical Debt in Practice.

P77] Tools for Repaying Technical Debt

P79] Li, Z., Liang, P., & Avgeriou, P. (2015, May). Architectural
technical debt identification based on architecture deci-
sions and change scenarios. In 2015 12th Working IEEE/IFIP
Conference on Software Architecture (pp. 65–74). IEEE.

P81] Abad, Z.S.H., & Ruhe, G. (2015, August). Using real options
to manage technical debt in requirements engineering. In
2015 IEEE 23rd International Requirements Engineering
Conference (RE) (pp. 230–235). IEEE.

P91] Mendes, T.S., de F. Farias, M.A., Mendonça, M., Soares, H.F.,
Kalinowski, M., & Spínola, R.O. (2016, April). Impacts of ag-
ile requirements documentation debt on software projects:
a retrospective study. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (pp. 1290–1295).
18
[P96] Martini, A., & Bosch, J. (2016, May). An empirically devel-
oped method to aid decisions on architectural technical
debt refactoring: AnaConDebt. In 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering Compan-
ion (ICSE-C) (pp. 31–40). IEEE.

[P99] Akbarinasaji, S., Bener, A.B., & Erdem, A. (2016, May). Mea-
suring the principal of defect debt. In Proceedings of the
5th International Workshop on Realizing Artificial Intelli-
gence Synergies in Software Engineering (pp. 1–7).

[P101] Ghanbari, H. (2016, January). Seeking technical debt in
critical software development projects: An exploratory
field study. In 2016 49th Hawaii International Conference
on System Sciences (HICSS) (pp. 5407–5416). IEEE.

[P110] Guo, Y., Spínola, R.O., & Seaman, C. (2016). Exploring the
costs of technical debt management–a case study. Empiri-
cal Software Engineering, 21(1), 159–182.

[P111] Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). The
Effects of Software Process Evolution to Technical Debt—
Perceptions from Three Large Software Projects. In Man-
aging Software Process Evolution (pp. 305–327). Springer,
Cham.

[P117] Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How
do software development teams manage technical debt?–
An empirical study. Journal of Systems and Software, 120,
195–218.

[P119] Ghanbari, H., Besker, T., Martini, A., & Bosch, J. Looking for
Peace of Mind? Manage your (Technical) Debt.

[P125] Femmer, H., Fernández, D.M., Wagner, S., & Eder, S.
(2017). Rapid quality assurance with requirements smells.
Journal of Systems and Software, 123, 190–213.

[P126] Mohagheghi, P., & Aparicio, M.E. (2017). An industry ex-
perience report on managing product quality requirements
in a large organization. Information and Software Technol-
ogy, 88, 96–109.

[P132] Heikkilä, V.T., Paasivaara, M., Lasssenius, C., Damian, D., &
Engblom, C. (2017). Managing the requirements flow from
strategy to release in large-scale agile development: a case
study at Ericsson. Empirical Software Engineering, 22(6),
2892–2936.

[P133] Beer, A., Junker, M., Femmer, H., & Felderer, M. (2017,
September). Initial investigations on the influence of re-
quirement smells on test-case design. In 2017 IEEE 25th
International Requirements Engineering Conference Work-
shops (REW) (pp. 323–326). IEEE.

[P134] Femmer, H., Unterkalmsteiner, M., & Gorschek, T. (2017,
September). Which requirements artifact quality defects
are automatically detectable? A case study. In 2017 IEEE
25th International Requirements Engineering Conference
Workshops (REW) (pp. 400–406). IEEE.

[P135] Ferrari, A., Spoletini, P., Donati, B., Zowghi, D., & Gnesi, S.
(2017, September). Interview review: detecting latent am-
biguities to improve the requirements elicitation process.
In 2017 IEEE 25th International Requirements Engineering
Conference (RE) (pp. 400–405). IEEE.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

P146] Ampatzoglou, A., Michailidis, A., Sarikyriakidis, C., Ampat-
zoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2018, May). A
framework for managing interest in technical debt: an in-
dustrial validation. In Proceedings of the 2018 International
Conference on Technical Debt (pp. 115–124).

P154] Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., &
Tsiridis, N. (2018, August). Integrating traceability within
the ide to prevent requirements documentation debt. In
2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (pp. 421–428). IEEE.

P158] Tsoukalas, D., Siavvas, M., Jankovic, M., Kehagias, D.,
Chatzigeorgiou, A., & Tzovaras, D. (2018, September). Meth-
ods and Tools for TD Estimation and Forecasting: A State-
of-the-art Survey. In 2018 International Conference on
intelligent systems (IS) (pp. 698–705). IEEE.

P161] Conejero, J.M., Rodríguez-Echeverría, R., Hernández, J.,
Clemente, P.J., Ortiz-Caraballo, C., Jurado, E., & Sánchez
-Figueroa, F. (2018). Early evaluation of technical debt im-
pact on maintainability. Journal of Systems and Software,
142, 92–114.

P165] de O. Passos, A.F., de Freitas Farias, M.A., de Mendonça
Neto, M.G., & Spínola, R.O. (2018, October). A Study on
Identification of Documentation and Requirement Techni-
cal Debt through Code Comment Analysis. In Proceedings
of the 17th Brazilian Symposium on Software Quality.

P167] Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., & Donati, B.
(2018, August). Learning frommistakes: An empirical study
of elicitation interviews performed by novices. In 2018 IEEE
26th International Requirements Engineering Conference
(RE) (pp. 182–193). IEEE.

P171] Martini, A., Sikander, E., & Madlani, N. (2018). A semi-
automated framework for the identification and estima-
tion of architectural technical debt: A comparative case-
study on the modularization of a software component.
Information and Software Technology, 93, 264–279.

P175] Conejero, J.M., Rodríguez-Echeverría, R., Hernández, J.,
Clemente, P.J., Ortiz-Caraballo, C., Jurado, E., & Sánchez-
Figueroa, F. (2018). Early evaluation of technical debt im-
pact on maintainability. Journal of Systems and Software,
142, 92–114.

P177] Kouros, P., Chaikalis, T., Arvanitou, E.M., Chatzigeorgiou,
A., Ampatzoglou, A., & Amanatidis, T. (2019, April). Jcaliper:
search-based technical debt management. In Proceedings
of the 34th ACM/SIGAPP Symposium on applied computing
(pp. 1721–1730).

P178] Rindell, K., Bernsmed, K., & Jaatun, M.G. (2019, August).
Managing Security in Software: Or: How I Learned to Stop
Worrying and Manage the Security Technical Debt. In Pro-
ceedings of the 14th International Conference on Availabil-
ity, Reliability and Security (pp. 1–8).

P183] Rios, N., Spínola, R.O., Mendonça, M., & Seaman, C. (2019,
May). Supporting analysis of technical debt causes and
effects with cross-company probabilistic cause–effect di-
agrams. In 2019 IEEE/ACM International Conference on
Technical Debt (TechDebt) (pp. 3–12). IEEE.

P192] Lenarduzzi, V., & Fucci, D. (2019, September). Towards a
holistic definition of requirements debt. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM) (pp. 1–5). IEEE.

19
P196] Mendes, T.S., Gomes, F.G., Gonçalves, D.P., Mendonça,
M.G., Novais, R.L., & Spínola, R.O. (2019). VisminerTD: a
tool for automatic identification and interactive monitoring
of the evolution of technical debt items. Journal of the
Brazilian Computer Society, 25(1), 1–28.

P203] Freire, S., Rios, N., Mendonça, M., Falessi, D., Seaman,
C., Izurieta, C., & Spínola, R.O. (2020, March). Actions and
impediments for technical debt prevention: results from a
global family of industrial surveys. In Proceedings of the
35th Annual ACM Symposium on Applied Computing.

P208] Freire, S., Rios, N., Gutierrez, B., Torres, D., Mendonça,
M., Izurieta, C., . . .& Spínola, R. O. (2020). Surveying soft-
ware practitioners on technical debt payment practices and
reasons for not paying off debt items. In Proceedings of
the Evaluation and Assessment in Software Engineering
(pp. 210–219).

P209] Behutiye, W., Seppänen, P., Rodríguez, P., & Oivo, M.
(2020). Documentation of quality requirements in agile
software development. In Proceedings of the Evaluation
and Assessment in Software Engineering (pp. 250–259).

P214] Behutiye, W., Rodríguez, P., Oivo, M., Aaramaa, S., Par-
tanen, J., & Abhervé, A. (2020, August). How agile soft-
ware development practitioners perceive the need for doc-
umenting quality requirements: a multiple case study. In
2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (pp. 93–100). IEEE.

P216] Li, Y., Soliman, M., & Avgeriou, P. (2020, August). Identi-
fication and Remediation of Self-Admitted Technical Debt
in Issue Trackers. In 2020 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA)
(pp. 495–503). IEEE.

P225] Lenarduzzi, V., Fucci, D., & Mendéz, D. (2020). On the
perceived harmfulness of requirement smells: An empir-
ical study. In Joint 26th International Conference on Re-
quirements Engineering: Foundation for Software Quality
Workshops, Doctoral Symposium, Live Studies Track, and
Poster Track, Pisa; Italy, 24 March 2020 through 27 March
2020 (Vol. 2584).

P228] Besker, T., Ghanbari, H., Martini, A., & Bosch, J. (2020). The
influence of Technical Debt on software developer morale.
Journal of Systems and Software, 167, 110586.

P229] Rios, N., Spínola, R.O., Mendonça, M., & Seaman, C. (2020).
The practitioners’ point of view on the concept of technical
debt and its causes and consequences: a design for a global
family of industrial surveys and its first results from Brazil.
Empirical Software Engineering, 25(5).

P233] de Freitas Farias, M.A., de Mendonça Neto, M.G., Kali-
nowski, M., & Spínola, R.O. (2020). Identifying self-admitted
technical debt through code comment analysis with a
contextualized vocabulary. Information and Software Tech-
nology, 121, 106270.

P247] Dar, H.S. (2020, August). Reducing Ambiguity in Require-
ments Elicitation via Gamification. In 2020 IEEE 28th In-
ternational Requirements Engineering Conference (RE) (pp.
440–444). IEEE.



A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

[

[

[

[

[

[

R

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

d

d

D

E

G

G

H

K

K

K

L

L

L

L

L

L

M

M

M

N

P

R

R

R

R

S

P249] Panis, M.C. (2020, August). An Analysis of Requirements-
Related Problems that Occurred in an organization Using
a Mature Requirements Engineering Process. In 2020 IEEE
28th International Requirements Engineering Conference
(RE) (pp. 291–299). IEEE.

P258] Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimat-
ing the principal of an application’s technical debt. IEEE
software, 29(6), 34–42.

P263] Femmer, H., Fernández, D.M., Juergens, E., Klose, M., Zim-
mer, I., & Zimmer, J. (2014, June). Rapid requirements
checks with requirements smells: Two case studies. In
Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering (pp. 10–19).

P273] Robiolo, G., Scott, E., Matalonga, S., & Felderer, M. (2019,
November). Technical debt and waste in non-functional re-
quirements documentation: An exploratory study. In Inter-
national Conference on Product-Focused Software Process
Improvement (pp. 220–235). Springer, Cham.

P274] Lenarduzzi, V., Orava, T., Saarimäki, N., Systa, K., & Taibi,
D. (2019, September). An empirical study on technical debt
in a finnish sme. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement
(ESEM) (pp. 1–6). IEEE.

P275] Rios, N., Mendes, L., Cerdeiral, C., Magalhães, A.P.F., Perez,
B., Correal, D., . . .& Spínola, R.O. (2020, March). Hearing
the voice of software practitioners on causes, effects, and
practices to Deal with documentation debt. In Interna-
tional Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, Cham.

eferences

bad, Z.S.H., Ruhe, G., 2015. Using real options to manage technical debt in
requirements engineering. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE). IEEE, pp. 230–235.

lves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Sea-
man, C., 2016. Identification and management of technical debt: A systematic
mapping study. Inf. Softw. Technol. 70.

lves, M., Nunes, Gava, V., Luiz, 2018. Uma proposta para identificar, medir
e gerenciar dívida técnica em requisitos de software. In: International
Conference on Information Systems and Technology Management.

lves, N.S., Ribeiro, L.F., Caires, V., Mendes, T.S., Spínola, R.O., 2014. Towards an
ontology of terms on technical debt. In: 2014 Sixth International Workshop
on Managing Technical Debt. IEEE, pp. 1–7.

ecker, C., Chitchyan, R., Betz, S., McCord, C., 2018. Trade-off decisions across
time in technical debt management: a systematic literature review. In:
Proceedings of the 2018 International Conference on Technical Debt.

ehutiye, W.N., Rodríguez, P., Oivo, M., Tosun, A., 2017. Analyzing the concept
of technical debt in the context of agile software development: A systematic
literature review. Inf. Softw. Technol. 82, 139–158.

enIdris, M., 2020. Investigate, identify and estimate the technical debt: a
systematic mapping study. Available at SSRN 3606172.

esker, T., Martini, A., Bosch, J., 2018. Technical debt cripples software developer
productivity.

esker, T., Martini, A., Bosch, J., 2019. Software developer productivity loss due
to technical debt—a replication and extension study examining developers’
development work. J. Syst. Softw. 156, 41–61.

ijlsma, D., 2010. Indicators of issue handling efficiency and their relation
to software maintainability. (Ph.D. thesis). Master’s thesis, University of
Amsterdam.

rown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., Mac-
Cormack, A., Nord, R., Ozkaya, I., et al., 2010. Managing technical debt in
software-reliant systems. In: Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research. ACM, pp. 47–52.

hidamber, S.R., Darcy, D.P., Kemerer, C.F., 1998. Managerial use of metrics for
object-oriented software: An exploratory analysis. IEEE Trans. Softw. Eng. 24
(8), 629–639.

unningham, W., 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4 (2), 29–30.
20
urtis, B., Sappidi, J., Szynkarski, A., 2012a. Estimating the principal of an
application’s technical debt. IEEE Softw. 29 (6), 34–42.

urtis, B., Sappidi, J., Szynkarski, A., 2012b. Estimating the size, cost, and types
of technical debt. In: 2012 Third International Workshop on Managing
Technical Debt (MTD). IEEE, pp. 49–53.

a Silva Maldonado, E., Shihab, E., Tsantalis, N., 2017. Using natural language
processing to automatically detect self-admitted technical debt. IEEE Trans.
Softw. Eng. 43 (11), 1044–1062.

e Melo, A.C.C., Fagundes, R., Lima, J.V.V., Alencar, F., Santos, W., 2021. Identifi-
caçao e Mensuraçao da Dıvida Técnica de Requisitos: um survey na indústria
de software. In: WER.

yba, T., Dingsoyr, T., Hanssen, G.K., 2007. Applying systematic reviews to
diverse study types: An experience report. In: First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007). IEEE, pp.
225–234.

rnst, N.A., 2012. On the role of requirements in understanding and manag-
ing technical debt. In: 2012 Third International Workshop on Managing
Technical Debt (MTD). IEEE, pp. 61–64.

ama, E., Paixao, M., Freire, E.S.S., Cortés, M.I., 2019. Technical debt’s state of
practice on stack overflow: a preliminary study. In: Proceedings of the XVIII
Brazilian Symposium on Software Quality, pp. 228–233.

uo, Y., Spínola, R.O., Seaman, C., 2016. Exploring the costs of technical debt
management–a case study. Empir. Softw. Eng. 21 (1).

assouna, A., Tahvildari, L., 2010. An effort prediction framework for software
defect correction. Inf. Softw. Technol. 52 (2).

itchenham, B.A., Budgen, D., Brereton, O.P., 2011. Using mapping studies as
the basis for further research–a participant-observer case study. Inf. Softw.
Technol. 53 (6), 638–651.

itchenham, B., Charters, S., 2007. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Citeseer.

ruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. Ieee Softw. 29 (6), 18–21.

enarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A., 2021. A systematic
literature review on technical debt prioritization: Strategies, processes,
factors, and tools. J. Syst. Softw. 171.

enarduzzi, V., Fucci, D., 2019. Towards a holistic definition of requirements
debt. In: 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, pp. 1–5.

i, Z., Avgeriou, P., Liang, P., 2015a. A systematic mapping study on technical
debt and its management. J. Syst. Softw. 101.

i, Z., Liang, P., Avgeriou, P., 2014. Architectural debt management in value-
oriented architecting. In: Economics-Driven Software Architecture. Elsevier,
pp. 183–204.

i, Z., Liang, P., Avgeriou, P., 2015b. Architectural technical debt identification
based on architecture decisions and change scenarios. In: 2015 12th Working
IEEE/IFIP Conference on Software Architecture. IEEE.

ima, J.V., Júnior, M.d.M.A., Moya, A., Almeida, R., Anjos, P., Lencastre, M.,
Fagundes, R.A.d.A.F., Alencar, F., 2019. As metodologias ativas e o ensino
em engenharia de software: uma revisão sistemática da literatura. In: Anais
Do Workshop de Informática Na Escola. 25, (1), p. 1014.

cConnell, S., 2008. Managing technical debt. Construx Software Builders, Inc
1–14.

olléri, J.S., Petersen, K., Mendes, E., 2019. Cerse-catalog for empirical research
in software engineering: A systematic mapping study. Inf. Softw. Technol.
105, 117–149.

uhr, T., 1991. Atlas/ti—A prototype for the support of text interpretation.
Qualitative Sociol. 14 (4), 349–371.

ascimento, R., Aranha, E., Kulesza, U., Lucena, M., 2018. Requirements Smells
como indicadores de má qualidade na especificação de requisitos: Um
Mapeamento Sistemático da Literatura. In: WER.

etersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting system-
atic mapping studies in software engineering: An update. Inf. Softw. Technol.
64, 1–18.

iaz, M., Mendes, E., Tempero, E., 2009. A systematic review of software main-
tainability prediction and metrics. In: 2009 3rd International Symposium on
Empirical Software Engineering and Measurement. IEEE.

ios, N., de Mendonça Neto, M.G., Spínola, R.O., 2018a. A tertiary study on
technical debt: Types, management strategies, research trends, and base
information for practitioners. Inf. Softw. Technol. 102, 117–145.

ios, N., Spínola, R.O., Mendonça, M., Seaman, C., 2018b. The most common
causes and effects of technical debt: first results from a global family
of industrial surveys. In: Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 1–10.

ios, N., Spínola, R.O., Mendonça, M., Seaman, C., 2019. Supporting analysis of
technical debt causes and effects with cross-company probabilistic cause-
effect diagrams. In: 2019 IEEE/ACM International Conference on Technical
Debt (TechDebt).

aha, S.K., Selvi, M., Büyükcan, G., Mohymen, M., 2012. A systematic review on
creativity techniques for requirements engineering. In: 2012 International
Conference on Informatics, Electronics & Vision (ICIEV). IEEE, pp. 34–39.

http://refhub.elsevier.com/S0164-1212(22)00165-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb2
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb2
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb2
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb2
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb2
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb4
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb4
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb4
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb4
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb4
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb7
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb7
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb7
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb8
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb8
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb8
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb9
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb9
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb9
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb9
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb9
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb12
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb12
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb12
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb12
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb12
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb16
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb16
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb16
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb16
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb16
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb24
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb24
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb24
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb25
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb25
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb25
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb26
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb26
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb26
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb26
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb26
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb28
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb28
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb28
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb29
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb29
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb29
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb29
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb29
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb33
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb33
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb33
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb33
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb33
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb34
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb34
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb34
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb37
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb37
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb37
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb37
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb37
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb41


A. Melo, R. Fagundes, V. Lenarduzzi et al. The Journal of Systems & Software 194 (2022) 111483

S

S

S

T

T

T

T

V

V

W

W
W

Y

A
g
t
t
o
i
C

eaman, C., Guo, Y., 2011. Measuring and monitoring technical debt. In: Advances
in Computers. Vol. 82, Elsevier, pp. 25–46.

eaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetrò, A., 2012.
Using technical debt data in decision making: Potential decision approaches.
In: 2012 Third International Workshop on Managing Technical Debt (MTD).
IEEE, pp. 45–48.

pínola, R.O., Vetrò, A., Zazworka, N., Seaman, C., Shull, F., 2013. Investigating
technical debt folklore: Shedding some light on technical debt opinion. In:
2013 4th International Workshop on Managing Technical Debt (MTD). IEEE,
pp. 1–7.

aylor, J.R., 1997. An introduction to error analysis, 327 pp. Univ. Sci. Books,
Sausalito, Calif.

om, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst.
Softw. 86 (6).

onin, G.S., 2018. Technical debt management in the context of agile methods
in software development. (Ph.D. thesis). Universidade de São Paulo.

onin, G.S., Goldman, A., Seaman, C., Pina, D., 2017. Effects of technical debt
awareness: A classroom study. In: International Conference on Agile Software
Development. Springer, Cham, pp. 84–100.

an Vliet, H., Van Vliet, H., Van Vliet, J., 2008. Software Engineering: Principles
and Practice. Vol. 13, Citeseer.

azquez, C.E., Simões, G.S., 2016. Engenharia de Requisitos: Software Orientado
Ao Negócio. Brasport.

ang, Q., Huang, Y., 2020. Identification and management of requirements debt:
Systematic mapping study and survey.

iegers, K., Beatty, J., 2013. Software Requirements. Pearson Education.
ohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
pp. 1–10.

li-Huumo, J., Maglyas, A., Smolander, K., 2016. How do software development
teams manage technical debt?–an empirical study. J. Syst. Softw. 120,
195–218.

na Melo is a Master’s student in the Post Graduate Program in Computer En-
ineering (PPGEC) at the University of Pernambuco (UPE), where she researches
echnical debt in software development. Bachelor’s degree in Information Sys-
ems (2019) from the Federal Rural University of Pernambuco (UFRPE). Member
f the REACT Research Labs Research Group. His research areas of interest
nclude software development, technical debt, and requirements engineering.
ontact her accm@ecomp.poli.br.
21
Roberta Fagundes has a Post-Doctorate in Statistics (2015) from the Federal
University of Pernambuco (UFPE), Brazil. She also holds a doctorate (2013) and a
master’s degree (2006) in Computer Science from UFPE. Graduated in Telematics
Technology (2002) from the Federal Center for Technological Education of
Paraíba (CEFET-PB). She is currently an Adjunct Professor at the University
of Pernambuco (2007) in Information Systems and Computer Engineering at
the University of Pernambuco (UPE), Brazil. She is also a vice-coordinator and
professor of the Graduate Program in Computer Engineering (PPGEC), where
there are Masters and Doctorate courses. She is interested in researching in
research in the area of Computer Science, with emphasis on Computational
Intelligence. Contact her roberta.fagundes@upe.br.

Valentina Lenarduzzi is an assistant professor (tenure track) at University
of Oulu (Finland). Her research activities are related to modern software
development practices and methodologies, including data analysis in software
engineering, software quality, software maintenance and evolution, focusing
on Technical Debt as well as code and architectural smells. She got the
Ph.D. in Computer Science in 2015 and was a postdoctoral researcher at the
Free University of Bozen-Bolzano, (Italy), at the Tampere University (Finland),
and at LUT University (Finland). Moreover, she was visiting researcher at the
University of Kaiserslautern (TUK) and the Fraunhofer Institute for Experimental
Software Engineering IESE (Germany). She served as a program committee
member of various international conferences (e.g., ICPC, ICSME, ESEM), and for
various international journals (e.g., TSE, EMSE, JSS, IST) in the field of software
engineering. She has been program co-chair of OSS 2021 and TechDebt 2022.
She was also one of the organizer of the last edition of MaLTeSQuE workshop
(2022) collocated with ESEC/FSE. Dr. Lenarduzzi is recognized by the Journal of
Systems and Software (JSS) as one of the most active SE researcher in top-quality
journals in the period 2013 to 2020. Contact her valentina.lenarduzzi@oulu.fi

Wylliams Santos is adjunct professor at the University of Pernambuco (UPE),
Brazil, where he leads the REACT Research Labs. Ph.D. in Computer Science
(2018), Informatics Center (CIn) at Federal University of Pernambuco (UFPE),
Brazil. M.Sc. in Computer Science (2011), Informatics Center at Federal Uni-
versity of Pernambuco, Brazil. He undertook his sandwich Ph.D. (2015–2016)
research at the Department of Computer Science and Information Systems
(CSIS) of the University of Limerick, Ireland and in collaboration with Lero
— the Irish Software Research Centre. His research areas of interest include
management of software projects, agile software development, technical debt
and industry-academia collaboration. Contact her wbs@upe.br.

http://refhub.elsevier.com/S0164-1212(22)00165-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb44
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb45
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb45
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb45
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb46
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb46
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb46
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb47
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb47
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb47
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb48
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb48
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb48
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb48
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb48
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb49
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb49
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb49
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb51
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb51
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb51
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb52
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb54
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb54
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb54
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb54
http://refhub.elsevier.com/S0164-1212(22)00165-0/sb54
mailto:accm@ecomp.poli.br
mailto:roberta.fagundes@upe.br
mailto:valentina.lenarduzzi@oulu.fi
mailto:wbs@upe.br

	Identification and measurement of Requirements Technical Debt in software development: A systematic literature review
	Introduction
	Background
	Technical debt
	Requirements Technical Debt
	Technical debt management
	Related works

	Systematic literature review
	Planning
	Research questions
	Sources and search string
	Selection criteria
	Quality assessment criteria

	Conducting
	Verifiability and replicability

	Results
	Overview of primary studies
	RQ1: What has caused the technical debt of requirements in software development?
	RQ2: What strategies are proposed to help identify and measure the Requirements Technical Debt in software projects?
	Identification and measurement
	Management

	RQ3: What metrics are being used to assist in the process of measuring the Requirements Technical Debt?
	Quantifying the principal
	Quantifying the interest
	``If'' decision
	``When'' decision
	Uncertainty of a measurement 

	RQ4: What difficulties are pointed out during the management of Requirements Technical Debt in software development?

	Discussion
	Implications for professionals
	Implications for researchers

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Selected Primary Studies
	References


