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Algorithmic proofs of two theorems of Stafford
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Abstract

Two classical results of Stafford say that every (left) ideal of the n-th
Weyl algebra An can be generated by two elements, and every holonomic
An-module is cyclic, i.e. generated by one element. We modify Stafford’s
original proofs to make the algorithmic computation of these generators
possible.

1 Introduction

Let k is a field of characteristic 0, and An = An(k) = k 〈x1, ..., xn, ∂1, ..., ∂n〉 be
the n-th Weyl algebra, which is an associative k-algebra generated by x’s and
∂’s with the relations ∂ixi = xi∂i + 1 for all i. This algebra may be thought of
as the algebra of linear differential operators with polynomial coefficients.

There are several things that are nice about the Weyl algebra. First of all the
dimension theory can be developed for it; this is done, for example, in Chapter
1 of Björk [1]. It is shown that the Gelfand-Kirillov dimension of An equals 2n,
moreover, if M is a nontrivial An-module, then n ≤ dimM ≤ 2n. The modules
of dimension n (minimal possible dimension) constitute the Bernstein class.

One of the distinctive properties of the modules in Bernstein class, which
are also called holonomic modules, is their finite length. Below we shall show
that this property implies that every holonomic module can be generated
by one element.

Another striking fact, which is very simple to state, but quite hard to prove,
is that for every left ideal of An there exist 2 elements that generate
it.

Both statements were proved by Stafford in [6], also these results appear in
[1]. Unfortunately, the arguments given by Stafford can’t be converted to algo-
rithms straightforwardly. There are several obstacles to this, many of which one
can overcome with the theory of Gröbner bases for Weyl algebras. However, the
main difficulty is that both proofs contain an operation of taking an irreducible
submodule of an An-module. To our best knowledge, there doesn’t exist an al-
gorithm for this; moreover, even if such algorithm is invented one should expect
it to be quite involved.
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We were able to modify the original proofs in such a way that computations
are possible and implemented the corresponding algorithms in the computer
algebra system Macaulay 2 [2].

We have to mention that in their recent paper [3] Hillebrand and Schmale
construct another effective modification of Stafford’s proof which leads to an
algorithm. We shall discuss the differences of their and our approaches in the
last section.

2 Notation Table

For the convenience of the reader we provide the notation lookup table. All of
the symbols listed below show up sooner or later in the paper along with more
detailed definitions.

k is a (commutative) field of characteristic 0,

Ar = Ar(k) = k〈x1, ..., xr, ∂1, ..., ∂r〉,

A is a simple ring of infinite length as a left module over itself,

D is a skew field of characteristic 0,

K is a commutative subfield of D,

S = D(x)〈∂〉,

S(m) = Sε1 + ...+ Sεm, a free S-module of rank m,

δ1, ..., δm is a finite set of K-linearly independent elements in K〈x, ∂〉,

σ(α, f) =

m
∑

i=1

αδifεi ∈ S(m), (α ∈ S, f ∈ K〈x, ∂〉),

P (α, f) = Sσ(α, f), ideal of S(m),

Dr is the quotient ring of Ar,

Rr = Dr(xr+1, ..., xn)〈∂r+1, ..., ∂n〉,

Sr = Dr(xr+1, ..., xn)〈∂r+1〉.

With exception of some minor changes we tried to stick to the notation in [1].

3 Preliminaries

Several useful properties of Weyl algebras are discussed in this section. Also,
we introduce a few rings that will come handy later on.

3.1 A
n
is simple

To see that An is simple, i.e. has no nontrivial two-sided ideals, we notice that,
for f =

∑

i x
αi∂βi ∈ An \ {0} in the standard form, df/dxr = ∂rf − f∂r for

r = 1, ..., n, where ∂f/∂xr is the formal derivative of the above expression of
f with respect to xr. Similarly, df/d∂r = fxr − xrf for the formal derivative
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with respect to ∂r. Note that these formal derivatives as well as all the multiple
derivatives of f belong to the two-sided ideal AnfAn.

Now assume xα∂β is the leading term of f with respect to some total degree
monomial ordering. We are going to perform |α| + |β| differentiations: for all
i = 1, ..., n differentiate f αi times with respect to xi and βi times with respect
to ∂i. Under such operation the leading term becomes equal to

∏n

i=1 αi!βi! and
all the other terms vanish. Since the derivatives of f don’t leave AnfAn, we
showed that there is a simple algorithm to find such si, ri ∈ An that

m
∑

i=1

sifri = 1.

Hence, AnfAn = An, so An is simple.

3.2 A
n
is an Ore domain

Proposition 1 An is an Ore domain, i.e. Anf ∩Ang 6= 0 and fAn ∩ gAn 6= 0
for every f, g ∈ An \ {0}.

Proof. See the proof of Proposition 8.4 in Björk [1].

Let us point out that using Gröbner bases methods (see next subsection) we
can find a left(right) common multiple of f, g ∈ An \ {0}, in other words we can
find a nontrivial solution to the equations af = bg and fa = gb where a and b
are unknowns.

3.3 Gröbner bases in A
n

As we mentioned before, the notion of Gröbner basis of a (left) ideal can be de-
fined for Weyl algebras in the same way as it is defined in the case of polynomials.
Moreover, Buchberger algorithm for computing Gröbner bases works, leading to
algorithms for computing intersections of ideals, kernels of maps, syzygy mod-
ules, etc. A good reference on Gröbner bases for algebras of solvable type is
[4].

3.4 More rings

There is a quotient ring D associated to every Ore domain A. Ring D is a skew
field that can be constructed both as the ring of left fractions a−1b and as the
ring of right fractions cd−1, where a, b, c, d ∈ A. There is a detailed treatment
of this issue in [1].

Let D be a skew field, we will be interested in the ring S = D(x)〈∂〉, which
is a ring of differential operators with coefficients in D(x). It is easy to see that
S is simple.

Since the Weyl algebra Ar is an Ore domain, we can form its quotient
ring, which we denote by Dr. The S we are going to play with is Sr =
Dr(xr+2, ..., xn)(xr+1)〈∂r+1〉. Let us state without proof a proposition which
shall help us to compute Gröbner bases in Sr.
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Proposition 2 Let F = {f1, ..., fk} ⊂ An is a generating set of left ideal I of

Sr. Compute a Gröbner basis G = {g1, ..., gm} of An · F with respect to any

monomial ordering eliminating ∂r+1. Then G is contained in Sr ∩An and is a

Gröbner basis of I.

4 Holonomic modules are cyclic

In this section we consider a simple ring A such that A has finite length as a
left module over itself. Note that An is such a ring.

Theorem 3 Every left A-module M of finite length is cyclic. In particular

every holonomic An module is cyclic.

Suppose we know how to compute a cyclic generator for every module M ′

of length less than l. For length 0 such generator would be 0.
Consider a module M of length l. Take 0 6= α ∈ M . If M = Aα then we are

done. If not then since l(M/Aα) < l by induction we can find β such that its
image in M/Aα is a cyclic generator. Now M = A · {α, β} and what we need
to prove is

Lemma 4 Let M be a left A-module of finite length and α, β ∈ M . Then there

exists γ ∈ M such that Aγ = Aα+Aβ.

Proof. Define two functions l1 and l2 for pair (α, β).

l1(α, β) = length(Aβ)

l2(α, β) = length ((Aα+Aβ) /Aα) .

Let also introduce an order < on the set of pairs (α, β) ∈ M ×M :

(α′, β′) < (α, β) ⇔ (l1(α
′, β′), l2(α

′, β′)) <lex (l1(α, β), l2(α, β))

⇔ l1(α
′, β′) < l1(α, β)

OR (l1(α
′, β′) = l1(α, β) AND l2(α

′, β′) < l2(α, β))

Suppose for any pair (α′, β′) < (α, β), we can find γ′ ∈ M such that Aγ′ =
A · {α′, β′}.

Let the ideals L(α) and L(β) in A be the annihilators of α and β respectively.
Since length(A) = ∞, we know that L(α) 6= 0; pick any element 0 6= f ∈ L(α).
Since A is simple we can find si, ri ∈ A, I = 1, ...,M such that

m
∑

i=1

sifri = 1. (1)

Consider two cases:

1. There is some r = ri such that L(β) + L(α)r = A.
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2. The opposite is true.

Case 1. We can write 1 = Eαr+Eβ for some Eα, Eβ ∈ A such that Eαα = 0
and Eββ = 0. Let γ = α+ rβ.

Now we can get β from γ:

β = (Eαr + Eβ)β = Eαrβ = Eαα+ Eαrβ = Eαγ.

Hence β ∈ Aγ and since α = γ − rβ the module M = Aα + Aβ is indeed
generated by γ.

Case 2. From (1) it follows that
∑

L(β) + Afri = A, hence,
∑

A(friβ) =
Aβ, so there is r = ri such that

A(frβ) * Aα. (2)

Since we are not in case 1, L(β) + Afr ⊂ L(β) + L(α)r 6= A. Take this
modulo L(β) to get

A(frβ) ∼= (L(β) +Afr) /L(β) ( A/L(β) ∼= Aβ, (3)

so A(frβ) is proper in Aβ.
The last statement implies l1(α, frβ) < l1(α, β), hence, (α, frβ) < (α, β),

so by induction hypothesis we can find γ′ ∈ M such that Aγ′ = A(frβ) +Aα.
Now (2) guarantees that l2(γ

′, β) < l2(α, β), and by induction we can find γ
for which

Aγ = Aγ′ +Aβ = A(frβ) +Aα +Aβ = Aα+Aβ.

Remark 5 There is an algorithm that finds a cyclic generator for a holonomic

left module over a Weyl algebra, since every step in the proof of the Lemma 4

is computable. The most non-trivial and time consuming operation is producing

the annihilators L(α+ rβ) and L(frβ) in the proof of Lemma 4 provided L(α)
and L(β). This is done using Gröbner bases technique.

We have programmed the algorithm corresponding to the proof of Theorem
3 using Macaulay 2.
Example. Let us view the ring of polynomials k[x] as an A1-module un-
der the natural action of differential operators. It has an irreducible module,
because starting with a nonzero polynomial f we can obtain a nonzero con-
stant by differentiating it deg(f) times. The module M = k[x]3 is the direct
sum of 3 copies of k[x], is holonomic (length(M) = 3) and is generated by
vectors (1, 0, 0), (0, 1, 0), (0, 0, 1). Our algorithm produces a cyclic generator
γ = (x2, x, 1) and its A1-annihilator L(γ) = A1∂

3.
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5 Ideals are 2-generated

In this section we give an effective proof of

Theorem 6 Every left ideal of the Weyl algebra An can be generated by two

elements.

Proof for A1. In this case the theorem follows from the fact that module
A1/J is holonomic for any nonzero ideal J of A1.

Indeed, let I be a left ideal of A1. Pick f ∈ I and set J = A1f . Then I/J is
a submodule of the holonomic module A1/J , hence, is holonomic. By Theorem
3 there is ḡ ∈ I/J such that A1ḡ = I/J . Find a lifting g ∈ A1 such that ḡ = g
mod J . Elements f and g generate I.

However, the theorem for n > 1 makes a much tougher challenge.

5.1 Lemmas for S

Let us explore some properties of S = D(x)〈∂〉, the ring of linear differential
operators with coefficients in rational expressions in x over a skew field D.

Let K be a commutative subfield of D, let δ1, ..., δm be a finite set of K-
linearly independent elements in K〈x, ∂〉 ⊂ S, and let S(m) = Sε1 + ... + Sεm
be a free S-module of rank m.

Also define σ(α, f) ∈ S(m) to be the following sum σ(α, f) =
∑m

i=1 αδifεi,
and P (α, f) = Sσ(α, f) the submodule of S(m) generated by σ(α, f). Note that
σ(α, f) is S-linear in α and respects addition in f .

Lemma 7 Let 0 6= α ∈ S and let M be an S-submodule of S(m) generated by

{σ(α, f)|f ∈ K〈x, ∂〉}. Then M = S(m).

Proof. Without loss of generality let us assume that α ∈ D〈x, ∂〉: if not we
can always find such p ∈ D[x] that pα ∈ D〈x, ∂〉.

Fix a monomial ordering that respects the total degree in x and ∂. For
vector v =

∑

viεi ∈ (D〈x, ∂〉)(m) denote by lm(v) the largest of the the leading
monomials of the components vi of v in this ordering.

Now start with vector v = v(0) = σ(α, 1); its components vi = αδi are D-
linearly independent. Note that computing expressions π(v) = ∂v − v∂ and
χ(v) = vx − xv has an effect of differentiating each component of v formally
with respect to x and ∂ respectively. These operations lower the total degree of
v by 1 if the differentiation is done with respect to a variable that is present in
lm(v). Also, it is not hard to see that they keep us in module M ; for example,
for v0 we have π(v0) = ∂v0 − v0∂ = ∂σ(α, 1)− σ(α, ∂).

Run the following algorithm: initialize v := v0, while lm(v) contains an x
set v := π(v), then while lm(v) contains a ∂ we set v := χ(v). Since each step
lowers the total degree of v by 1, this procedure terminates producing vector
w ∈ M of total degree 0.
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Hence, w = wi1εi1 + ... + witεit where 0 6= wij ∈ D for j = 1, ..., t. Via
multiplying on the left by the inverse of wi1 we can get the relation

εi1 = a2εi2 + ...+ atεit (4)

with aj ∈ D for j = 2, ..., t.
Now take v(0) and reduce it using (4). We get vector v(1) whose i1-th com-

ponent is 0 and the remaining components are D-linearly independent, since
the components of v(0) are.

Repeat the above algorithm for v = v(1) and so on. At the end we get a
vector which is a scalar multiple of εi for some i, hence ei ∈ M . Using relations
(4) we see that all basis vectors εj , for j = 1, ...,m, are in M .

Remark 8 From the proof it follows that given a submodule M of S(m) and

α ∈ S one can find f ∈ K〈x, ∂〉 such that σ(α, f) /∈ M algorithmically.

The next lemma is central in the proof of the result. Note that every step
of the proof of the lemma can be carried out algorithmically.

Lemma 9 Let M be an S-submodule of S(m) = Sε1 + ... + Sεm such that

length(S(m)/M) < ∞. We can find f ∈ K〈x, ∂〉 such that S(m) = M +P (α, f).

Proof. Let l = length(S(m)/M). Assume the assertion is proved for all M ′

such that length(S(m)/M ′) < l. Remark 8 says that we can find an f ∈ K〈x, ∂〉
such that σ(α, f) doesn’t belong to M .

For t ∈ S, g ∈ K〈x, ∂〉 let us define two S-modules

N1 = M + P1, where P1 = P (α, g),

N2 = M + P2, where P2 = P (tα, g).

Claim. There is a module M ′ such that M ⊂ M ′ ⊂ M + P (α, f), t ∈ S,
and g ∈ K〈x, ∂〉 for which

tσ(α, f) ∈ M,

M ′ + P (tα, g) = S(m),

N1 = N2.

To prove this we employ (second) induction on length(M ′/M). We start
with M ′ = M + P (α, f). We can find 0 6= t ∈ S such that tα

∑

δifεi ∈ M ;
it follows from S being Ore. By the first induction hypothesis, for M ′ and tα
there exists g ∈ K〈x, ∂〉 such that M ′ + P (tα, g) = S(m). Notice that N1 ⊃ N2

and M ′ + Pi = S(m) for i = 1, 2. Also for i = 1, 2 we have

S(m)/Ni = (M ′ + Pi)/(M + Pi) = M ′/(M +M ′ ∩ Pi).

If length(S(m)/N1) = length(S(m)/N2) then N1 = N2 and we are done. We
are done as well if N1 = S(m). If both conditions above fail, by looking at the
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right hand side of 5.1 we determine that M ′′ = M + M ′ ∩ P1 both contains
M and is contained in M ′ properly, plus length(M ′′/M) < length(M ′/M). Set
M ′ := M ′′ and repeat the above procedure.

To finish the proof of the lemma we take M ′, t, g as in the claim and assert
that N ′ = M + P (α, f + g) equals S(m). Indeed, σ(tα, f + g) = tσ(α, f) +
σ(tα, g) = σ(tα, g) modulo M , so N2 ⊂ N ′. But N1 = N2, thus σ(α, g) ∈ N ′,
hence, σ(α, f) = σ(α, f + g) − σ(α, g) ∈ N ′. Now we see that M ′ ⊂ N ′ and
P2 ⊂ N ′. Since M ′ + P2 = S(m), we proved N ′ = S(m).

5.2 Lemmas for R
r

At this stage we shall specify the components in the definition of S = D(x)〈∂〉.
We set D = Dr(xr+2, ..., xn), x = xr+1 and ∂ = ∂r+1, so that new S is equal to
Sr = Dr(xr+1, xr+2, ..., xn)〈∂r+1〉 which is a subring of Rr. Also the commuta-
tive subfield K of D that showed up before is replaced by the k, the coefficient
field from the definition of An = An(k).

Proposition 10 Let δ1, ..., δm be a finite set of K-linearly independent elements

in K〈xr+1, ∂r+1〉 and let 0 6= ρ ∈ Ar+1[xr+2, ..., xn]. Let S(m+1) = Sε0 + Sε1 +
...+ Sεm be a free S-module of rank m+ 1 And let S(m+1)ρ ⊂ S(m+1) be its S-
submodule generated by {ρε0, ρε1, ..., ρε2}. Then there exists some f ∈ K such

that

S(m+1) = S(m+1)ρ+ S(ε0 + δ1fε1 + ...+ δmfεm).

Proof. Follows from Lemma 9

Lemma 11 Let q ∈ Ar[xr+1, ..., xn] and let a1, ..., at be a finite set in An.

Then there exists some 0 6= ρ ∈ Ar[xr+1, ..., xn] such that ρaj ∈ Anq for all

j.

Proof. See the proof of Lemma 8.5 in Björk [1].

Let us point out that once we know the statement of the lemma is true, we
can compute the required ρ by finding a Gröbner basis of the module of syzygies
of the columns of the matrix









a1 q 0 ... 0
a2 0 q ... 0
... ... ... ... ...
at 0 0 ... q









with respect to a monomial order that eliminates ∂r+1, ..., ∂n and such that
ε1 > ε2 > ... > εt+1 where ε1, ε2, ..., εt+1 is the basis (εi corresponds to the i-th
column) of the free module At+1

n containing our submodule of syzygies. Such
Gröbner basis is guaranteed (by Lemma 11) to contain some syzygy producing
the relation ρε1 + b2ε2 + ... + bt+1εt+1 = 0 where ρ ∈ Ar[xr+1, ..., xn], bi ∈ An

for i = 2, ..., n. It is not hard to see that this is the ρ we need.
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Lemma 12 Let 0 6= q ∈ Ar+1[xr+2, ..., xn] and let u, v ∈ An with v 6= 0. Then

there is some f ∈ An such that Rr = Rrq +Rr(u+ vf).

Proof. Consider the following subring of An obtained by ”removing” xr+1 and
∂r+1:

A
r̂+1

= k〈x1, ...xr , xr+2, ..., xn, ∂1, ..., ∂r, ∂r + 2, ..., ∂n〉.

Now An = A
r̂+1

⊗k k〈xr+1, ∂r+1〉, so we can write v = δ1g1 + ... + δmgm
where δ1, ..., δm are elements of k〈xr+1, ∂r+1〉 linearly independent over k and
g1, ..., gm ∈ A

r̂+1
. The ring A

r̂+1
is simple, since it is a Weyl algebra, thus we

can find such h1, ..., hl ∈ A
r̂+1

that

A
r̂+1

=
m
∑

i=1

l
∑

j=0

A
r̂+1

gihj .

Since A
r̂+1

is a subring of Rr it means that Rr =
∑∑

Rrgihj .
Sublemma. For any b1, ..., bm ∈ A

r̂+1
there exists some f ∈ k〈xr+1, ∂r+1〉

such that

Rrq +Rru+Rrb1 + ...+Rrbm = Rrq +Rr(u+ δ1fb1 + ...+ δmfbm).

Proof. It follows from Lemma 11 that there is 0 6= ρ ∈ Ar[xr+1, ..., xn] such
that ρb1, ..., ρbm ∈ Anq as well as ρu ∈ Anq. With the help from Proposition
10 we get f ∈ k〈xr+1, ∂r+1〉 such that S(m+1) = S(m+1)ρ+ S(ε0 + δ1fε1 + ...+
δmfεm) and since S is a subring of Rr we have

R(m+1)
r = R(m+1)

r ρ+Rr(ε0 + δ1fε1 + ...+ δmfεm). (5)

Now map ε0 7→ u and εi 7→ bi for all i; this map from Rm
r to Rr has its image

equal to Rrq+Rru+Rrb1 + ...+Rrbm and maps the right hand side of (5) to
a subset of Rrq +Rr(u + δ1fb1 + ...+ δmfbm), because ρu, ρb1, ..., ρbm ∈ Anq.
Moreover these two expressions are equal, since it is easy to see that the latter
is contained in the former as well.

Proof of lemma continued. We apply our Sublemma to bi = gih1 (i =
1, ...,m) to get f1 ∈ k〈xr+1, ∂r+1〉 such that

Rrq +Rru+

m
∑

j=1

Rrgih1 = Rrq +Rr(u+

m
∑

j=1

δif1gih1).

Since v = δ1g1+ ...+ δmgm and since f1 commutes with all gi, the last equation
transforms into

Rrq +Rru+
∑

Rrgih1 = Rrq +Rr(u+ vf1h1).

Now reapply the Sublemma with u replaced by u + vf1h1 and bi = gih2

(i = 1, ...,m). As in the first step we get

Rrq +Rru+
∑

Rrgih1 +
∑

Rrgih2

= Rrq +Rr(u+ vf1h1) +
∑

Rrgih2

= Rrq +Rr(u+ vf1h1 + f2h2)
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for some f2 ∈ k〈xr+1, ∂r+1〉. After l many steps we arrive at

Rr = Rrq +Rru+

m
∑

i=1

l
∑

j=1

Rrgihj = Rrq +Rr(u+ v

l
∑

j=1

fihi),

which proves the lemma with f = f1h1 + ...+ flhl.

The following lemma follows from the previous one.

Lemma 13 Let 0 ≤ r ≤ n − 1 and let 0 6= q ∈ Ar+1[xr+2, ..., xn] and let

u, v ∈ An with v 6= 0. Then there is some f ∈ An,q
′ ∈ Ar[xr+1, ..., xn] such that

q′ ∈ Anq + An(u+ vf).

Proof. It is easy to see that this lemma is equivalent to the previous one.

5.3 Final chords

Proposition 14 (r) Let 0 ≤ r ≤ n, there is some qr ∈ Ar[xr+1, ..., xn] and
dr, er ∈ An such that qrc ∈ An(a+ drc) +An(b+ erc).

Proof. The statement is true for r = n, since An is Ore and Anc∩(Ana+Anb).
Fix r. Assume that the statement is true for r + 1, ..., n, then there exist

qr+1, dr+1, er+1 such that qr+1c ∈ Ana
′ + Anb

′, where a′ = a + dr+1c and
b′ = b + er+1c. Hence we can write qr+1c = h1a

′ + h2b
′, where we can take

h1h2 6= 0 since Ana
′ ∩ Anb

′ 6= 0. Also since h1An ∩ h2An 6= 0 we can also find
g1, g2 satisfying h1g1+h2g2 = 0, and since Anqr+1c∩Anb

′ 6= 0 there are s, t such
that sqr+1c = tb′ . Using Lemma 13 to q = qr+1 with u = 0 and v = tg2, we
get qr = q′ and f such that qr = p1qr+1+ p2tg2f for some p1, p2. Summarizing,
there exist such h1, h2, g1, g2, s, t, p1, p2 ∈ An \ {0} that

qr = p1qr+1 + p2tg2f

qr+1c = h1a
′ + h2b

′

h1g1 + h2g2 = 0

sqr+1c = tb′

Using these 4 equations, make the following calculation: (In each section the
underlined terms sum up to 0.)

qrc = p1qr+1c+ p2tg2fc

= p1qr+1c− p2sqr+1c

+ p2tg2fc+ p2tb
′

= (p1 − p2s)qr+1c+ p2t(b
′ + g2fc)

= (p1 − p2s)(h1a
′ + h2b

′) + p2t(b
′ + g2fc)

= (p1 − p2s)h1a
′ + (p1 − p2s)h1g1fc

+ (p1 − p2s)h2b
′ + (p1 − p2s)h2g2fc+ p2t(b

′ + g2fc)

= (p1 − p2s)h1(a
′ + g1fc) + ((p1 − p2s)h2 + p2t)(b

′ + g2fc).
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Thus, with dr = dr+1 + g1fc and er = er+1 + g2fc the conclusion of the
proposition holds.

The proposition above (for r = 0) shows that by “elimination” of variables
∂i one at a time we can get such d, e ∈ An that q0c ∈ An(a + dc) + An(b + ec)
where q0 ∈ k[x1, ..., xn]. This proves a 50% version of Theorem 6:

Theorem 15 Every ideal of k(x1, ..., xn)〈∂1, ..., ∂n〉 can be generated by two

elements.

To go other 50% of the way one has to do a similar kind of “elimination”
of xi-s. This amounts to making copies of all lemmas that we stated for a
slightly different set of rings. The trickiest part is considering ring Sr

′ =
k(x1, ..., xr)〈xr+1, ∂r+1〉 instead of Sr. In other words instead of a ring of type
D(x)〈∂〉 where D is a skew field, we have to consider the first Weyl algebra
A1(K) where K is a (commutative) field. Fortunately, analogues of Lemmas 7
and 9 for the latter ring can be effectively proved along the same lines.
Examples. (1) Consider A3. For a = ∂1,b = ∂2,c = ∂3 one can show that
A3 · {a, b, c} = A3 · {a, b+ x1c}. Indeed, the following calculation displays it:

c = (−x1∂3 − ∂2)a+ ∂1(b+ x1c).

(2) Another example is produced by our algorithm implemented in Macaulay

2. Let a = ∂1 + x3, b = ∂2
2 + x2 + x2

3, c = ∂3 + x1. Then the ideal A3 · {a, b, c}
is generated by ∂1 + x3 and ∂2

2 + (x2
1x3 + x1)∂3 + x3

1x3 + x2
1 + x2

3 + x2.
(3) In case of A1 we can construct a more efficient algorithm based on the

proof of Theorem 6 given for this special case. Here is a Macaulay 2 script
computing 2 generators for the annihilating ideal I ⊂ A1(Q) of the set of poly-
nomials {ax4 + bx6 + cx8 + dx10 | a, b, c, d ∈ Q} ⊂ Q[x].

i1 : load "D-modules.m2"; load "stafford.m2";

i3 : R = QQ[x,D, WeylAlgebra=>{x=>D}];

i4 : L = {4,6,8,10};

i5 : I = ideal gens gb intersect apply(L, i->PolyAnn x^i);

4 4 3 3 2 2 11
o5 = ideal (x D - 22x D + 207x D - 975x*D + 1920, D , ...

o5 : Ideal of R

i6 : time J = ideal stafford I
-- used 73.08 seconds

4 4 3 3 2 2
o6 = ideal (x D - 22x D + 207x D - 975x*D + 1920,

3 15 2 15 2 14 14 13
x D + x D + 15x D + 9x*D + 58x*D

13 12 11
+ 15D + 50D + D )

o6 : Ideal of R
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i7 : I == J

o7 = true

6 Conclusion

The implementations of the algorithms constructed along the lines of the proofs
of Theorems 3 and 6 in Macaulay 2 work only on rather small examples for quite
obvious reason: the expression swell in Gröbner bases computations.

Let us comment on the differences of algorithm of Hillebrand and Schmale
[3] and ours. Their algorithm takes care of (weaker) Theorem 15. As a step it
includes enumerating a certain infinite subset of polynomials in one variable and
testing them to satisfy a certain property, where the testing procedure involves
Gröbner bases computations. Although we believe that their argument could
be extended to build an algorithm for 100% of Stafford’s theorem, it looks as
the “test set” for the remaining 50% will be significantly more complicated.
Hence, our constructive approach at every step of the algorithm seems to be
more practical. Having programmed Hillebrand and Schmale’s algorithm as
well, we have to point out, that it faces the same type of expression swell as our
program, hence the comparison of performance is just a theoretical question at
this point.

Finally, let us mention that the algorithm for finding a cyclic generator of a
holonomic module is already included in the D-modules package for Macaulay

2 [5]; eventually, the algorithms for finding two generators of a An-ideal will be
added to the package as well.
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