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EULER’S FACTORIAL SERIES AT ALGEBRAIC INTEGER POINTS

LOUNA SEPPÄLÄ

Abstract. We study a linear form in the values of Euler’s series F (t) =
∑

∞

n=0
n!tn

at algebraic integer points α1, . . . , αm ∈ ZK belonging to a number field K. Let v|p be
a non-Archimedean valuation of K. Two types of non-vanishing results for the linear
form Λv = λ0 + λ1Fv(α1) + . . .+ λmFv(αm), λi ∈ ZK, are derived, the second of them
containing a lower bound for the v-adic absolute value of Λv. The first non-vanishing
result is also extended to the case of primes in residue classes. On the way to the
main results, we present explicit Padé approximations to the generalised factorial series
∑

∞

n=0

(

∏

n−1

k=0
P (k)

)

tn, where P (x) is a polynomial of degree one.

1. Introduction

Euler’s factorial series

(1) F (t) := 2F0(1, 1 | t) =
∞
∑

n=0

n!tn

converges p-adically for all primes p when |t|p ≤ 1. In the v-adic metric (where v extends
p for some prime p) of a number field K, the series F (t) converges to a point in the

v-adic closure of K (denoted by Kv) when t ∈ K is such that |t|v < p
1

p−1 . Thus we write
∑∞

n=0 n!t
n =: Fv(t) when treating the series as a function in the v-adic domain K.

Euler’s series (1) is a member of the class of F -series (series of the form
∑∞

n=0 ann!z
n,

with certain conditions on the coefficients an) introduced by V. G. Chirskĭı in [3], [4].
In those papers he answered the problem of the existence of global relations1 between
members of the class of F -functions. As he points out in [5], the results can be refined
in terms of estimating the prime p for which there exists a valuation v|p breaking the
global relation. These estimates were made entirely effective by Bertrand, Chirskĭı, and
Yebbou in [2]. In [2, Theorem 1.1] they describe an infinite collection of intervals each
containing a prime number p such that for some valuation v|p it holds

(2) h1f1(ξ) + . . .+ hmfm(ξ) 6= 0,

where hi ∈ ZK and f1(t) ≡ 1, f2(t), . . . , fm(t) are F -series that are linearly independent
over K(z) and constitute a solution to a differential system D, and ξ ∈ K \ {0} is an
ordinary point of the system D. What is more, the non-vanishing in (2) is replaced by a
lower bound for |h1f1(ξ) + . . .+ hmfm(ξ)|v.
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1Let P ∈ K[x1, . . . , xm] be a polynomial of m variables and suppose F1(t), . . . , Fm(t) ∈ K[[t]] are

power series. Take a ξ ∈ K. A relation

P (F1(ξ), . . . , Fm(ξ)) = 0

is called global if it holds in all the fields Kv where all the series F1(ξ), . . . , Fm(ξ) converge.
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In their recent paper [11], T. Matala-aho and W. Zudilin studied the irrationality of
Fp(ξ) at a point ξ ∈ Z\{0} (i.e. global relations of the numbers 1 and Fp(ξ)). In Theorem
3.1 of this paper we generalise their idea to a linear form

Λv := λ0 + λ1Fv(α1) + . . .+ λmFv(αm), λi ∈ ZK,

in values of Euler’s series atm given pairwise distinct algebraic integer points α1, . . . , αm ∈
ZK \ {0}. Theorem 3.1 states that in any collection V of non-Archimedean valuations of
K satisfying a certain condition, there exists a valuation v′ ∈ V such that Λv′ 6= 0. The
result can also be extended to the case of primes in arithmetic progressions, generalising
the recent result of [8]. This is done in Theorem 9.6 of Section 9.

In the second main result, Theorem 3.4, we characterise an interval I(m,H) (where H
is an upper bound for the height of the coefficients λi) from which one can find a prime
p such that there exists a valuation v′|p for which

‖Λv′‖v′ > H−(m+1)−114m2· log log logH
log logH .

Our method is based on explicit Padé approximations, whereas Bertrand, Chirskĭı, and
Yebbou [2] use Siegel’s lemma. In addition, the functional dependence on H in our lower
bound is improved compared to [2].

The proofs of both our main results rely on Padé approximations which are used
to construct small approximation forms for the values Fv(αj), j = 1, . . . , m. Therefore,
before moving to the proofs of the theorems, we shall present explicit Padé approximations
(with the orders of the remainders as free parameters) to the generalised factorial series

(3) G(t) =
∞
∑

n=0

[P ]nt
n,

where P (x) is a polynomial of degree one and [P ]n :=
∏n−1

k=0 P (k) (see Theorem 4.2).
A brief outline of the proofs is presented right after the formulation of the main results

in Section 3. In addition to Theorem 9.6, the last section contains some examples of the
use of the main results. We shall study the sum

∞
∑

n=0

n!fn,

where (fn)
∞
n=0 is the sequence of Fibonacci numbers, and show that for any rational

number a
b
∈ Q there exists a valuation of the field Q

(√
5
)

such that

∞
∑

n=0

n!fn 6= a

b
.

2. Preliminaries: Number fields and valuations

Let K = Q(γ) be an algebraic number field of degree κ, and let ZK be its ring of integers
(the algebraic integers contained in K). All the absolute values of K are extensions of the
absolute values of Q. When p ∈ P∪ {∞}, where P is the set of prime numbers, there are
as many distinct extensions of | · |p to K as there are irreducible factors of the minimal
polynomial of γ in Qp[x] (see [1, Chapter V]). Here Qp denotes the topological closure of
Q with respect to the metric | · |p, so that Q∞ = R.

If | · |v extends the standard p-adic metric | · |p to K, it is customary to write v|p, and
similarly, when extending the Archimedean absolute value | · | = | · |∞, we write v|∞.
The collection of non-Archimedean valuations of K is denoted by V0, and the collection
of Archimedean valuations of K by V∞.

2



The topological closure of K with respect to the metric | · |v is denoted by Kv. We also
denote κv = [Kv : Qp] (local degree), so that

∑

v κv = κ = [K : Q].

2.1. Normalisation. If v|p for a prime p, there is an element π ∈ K such that |π|v < 1
and 〈|π|v〉 = |K \ {0}|v. Then p = uπe, where u is a unit of K and e = ev(K,Q) = [|K|v :
|Q|v] is the ramification index of the extension. It follows naturally from |p|p = 1

p
that

|p|v =
1

p
, |π|v =

1

p
1
e

However, it is convenient to use the normalisation

‖p‖v = |p|
κv
κ
v , ‖π‖v = |π|

κv
κ
v .

Similarly, if v|∞ and corresponds to the ith conjugate field K(i), then we set

‖x‖v =
∣

∣x(i)
∣

∣

κv
κ ,

where x(i) is the ith conjugate of x ∈ K. Since κv

κ
≤ 1, the triangle inequality is valid

also for the normalised Archimedean absolute value.

2.2. Product formula. The following product formula holds for any x ∈ K \ {0}:

(4)
∏

v

‖x‖v = 1,

where the product is taken over all normalised, pairwise non-equivalent valuations of K.
Note that if x ∈ Q, then

(5)
∏

v|p
‖x‖v = |x|p

for any p ∈ P ∪ {∞}.
For more details on valuations, the reader is advised to consult [1] and [10].

3. Results

Let m ∈ Z≥1 and choose m pairwise distinct, non-zero algebraic integers α1, . . . , αm ∈
ZK \ {0}. Denote α = (α1, . . . , αm)

T . We define

c1 = c1(α) =
∏

v∈V∞

(

(

max
1≤j≤m

{

1, ‖αj‖v
}

)m m
∏

i=1

(

‖αi‖v + max
1≤j≤m

{

1, ‖αj‖v
}

)

)

and

c2 = c2 (α, V ) = c1
∏

v∈V
max
1≤j≤m

{

‖αj‖v
}

for any V ⊆ V0

Theorem 3.1. Let λ0, λ1, . . . , λm ∈ ZK be such that λj 6= 0 for at least one j. Suppose

V ⊆ V0 is a collection of non-Archimedean valuations of K such that

(6) lim sup
l→∞

cl2(ml +m)κ(ml +m)!
∏

v∈V
‖(ml)!l!‖v = 0.

Then there exists a valuation v′ ∈ V for which

λ0 + λ1Fv′(α1) + . . .+ λmFv′(αm) 6= 0.
3



Remark 3.2. Let us show that any collection V ⊆ V0 whose complement in V0 is finite
satisfies condition (6). Choose v1, . . . , vk ∈ V0 and let V = V0 \ {v1, . . . , vk}. Suppose in
addition that vi|pi for some pi ∈ P, i = 1, . . . , k. Then, by recalling that

(7) |n!|p ≥ p−
n

p−1 ,

and using the product formula (4), we get

cl2(ml +m)κ(ml +m)!
∏

v∈V
‖(ml)!l!‖v

=
cl2(ml +m)κ(ml +m)!

(

∏k

i=1 ‖(ml)!l!‖vi
)

∏

v∈V∞

‖(ml)!l!‖v

=
cl2(ml +m)κ(ml +m)!

(

∏k

i=1 |(ml)!l!|
κvi
κ

pi

)

(ml)!l!

≤
cl2

(

∏k

i=1 p
κvi
κ

·ml+l
pi−1

i

)

(ml +m)κ(ml +m)!

(ml)!l!

=

(

c2
∏k

i=1 p
κvi
κ

·m+1
pi−1

i

)l

(ml +m)κ(ml + 1) · · · (ml +m)

l!

l→∞→ 0.

Remark 3.3. From the previous remark it follows that there are infinitely many valuations
v ∈ V0 such that Λv 6= 0.

Theorem 3.4. Let logH ≥ ses, where s = max {eκ + 1, c1 + 1, (m+ 3)2 + 1}, κ = [K :
Q]. Suppose that λ0, λ1, . . . λm ∈ ZK are such that at least one of them is non-zero and

∏

v∈V∞

max
0≤i≤m

{‖λi‖v} ≤ H.

Then there exists a prime

p ∈
]

log

(

logH

log logH

)

,
17m logH

log logH

[

and a valuation v′|p for which

(8) ‖λ0 + λ1Fv′(α1) + . . .+ λmFv′(αm)‖v′ > H−(m+1)−114m2 · log log logH
log logH .

The idea behind the following proofs is to use Padé approximations to construct small
linear forms

sl,µ,j = bl,µ,0Fv(αj)− bl,µ,j, bl,µ,0, bl,µ,j ∈ ZK, j = 1, . . . , m,

in the numbers F (αj). (Here l ∈ Z≥1 and µ ∈ {0, 1, . . . , m} are auxiliary parameters.)
With these equations the linear form

Λv = λ0 + λ1Fv(α1) + . . .+ λmFv(αm)

under study can be written as

(9) bl,µ,0Λv = W + λ1sl,µ,1 + . . .+ λmsl,µ,m,
4



where W = W (l, µ) =
∑m

i=0 λibl,µ,i is an integer element in K. In case it is non-zero, the
product formula implies

(10) 1 =
∏

v

‖W‖v.

In the proof of Theorem 3.1, we shall assume that Λv = 0 for all v ∈ V (whence
equation (9) gives W another representation as a linear combination of sl,µ,i), and then
aim at a contradiction by estimating the product

∏

v ‖W‖v from above. For this we
need estimates for the Padé coefficients bl,µ,i, sl,µ,i, expressed in terms of the auxiliary
parameter l. These are very roughly

‖bl,µ,i‖v ≈ (ml)!, i = 0, 1, . . . , m, v|∞,

‖sl,µ,j‖v ≈ (ml)!l!, j = 1, . . . , m, v ∈ V0.

The contradiction with (10) is reached via the condition (6) when l is taken to infinity.
When the target is a precise lower bound for ‖Λv‖v, the use of the parameter l also

becomes more subtle: We define the number ℓ so that it is the largest l for which the
expression

N(l) ≈ logH +ml log log l − l log l

is still positive. Then we make the assumption that

‖bℓ+1,µ,0Λv‖v < ‖λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m‖v
for all v|p, p ∈ [log(ℓ+ 1), m(ℓ+ 2)] ∩ P. This leads to the estimate

0 ≤ log

(

∏

v

‖W (ℓ+ 1, µ)‖v
)

≈ logH +m(ℓ+ 1) log log(ℓ+ 1)− (ℓ+ 1) log(ℓ+ 1) < 0,

giving the desired contradiction. It follows that there exists a prime

(11) p ∈ [log(ℓ+ 1), m(ℓ+ 2)]

and a valuation v′|p such that

‖W (ℓ+ 1, µ)‖v′ ≤ ‖Λv′‖v′ ,
leading to

1 ≤
(

∏

v∈V∞

‖W (ℓ+ 1, µ)‖v
)

‖Λv′‖v′ .

This is the key to the lower bound for ‖Λv′‖v′ , and the final step is to give an estimate
for the product

∏

v∈V∞

‖W (ℓ+ 1, µ)‖v. Approximately it is

(12) log

(

∏

v∈V∞

‖W (ℓ+ 1, µ)‖v
)

≈ (m+ 1) logH +m2ℓ log log ℓ.

The definition of ℓ gives a connection between ℓ and H , enabling us to write the bound
(12) and the interval (11) solely in terms of H :

ℓ log log ℓ ≈ log log logH

log logH
· logH.

As the attentive reader may have noted, one crucial point in the proofs is the non-
vanishing of the quantity W (l, µ). This is the part where the auxiliary parameter µ is
needed. A non-vanishing determinant of the Padé polynomials will ensure that for each
l ∈ Z≥1, there exists a µ ∈ {0, 1, . . . , m} such that W (l, µ) 6= 0.
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4. Padé approximations

Let m ∈ Z≥1, l = (l1, . . . , lm)
T ∈ Zm

≥1, and L :=
∑m

j=1 lj . For a given vector β =

(β1, . . . , βm)
T , define the numbers σi = σi

(

l, β
)

by the equation

(13)

m
∏

j=1

(βj − w)lj =

L
∑

i=0

σiw
i.

Then, by the binomial theorem,

σi

(

l, β
)

= (−1)i
∑

i1+...+im=i

(

l1
i1

)

· · ·
(

lm
im

)

· βl1−i1
1 · · ·βlm−im

m .

Lemma 4.1. We have

(14)

L
∑

i=0

σii
kβi

j = 0

for all j ∈ {1, . . . , m}, k ∈ {0, 1, . . . , lj − 1}. Moreover, when β = (β1, . . . , βm)
T ∈ Km

and ‖ · ‖v is any Archimedean absolute value of the field K, we have

(15)

L
∑

i=0

‖σi‖vti ≤
m
∏

j=1

(‖βj‖v + t)lj

for t ≥ 0.

Proof. It is not too hard to deduce that

(16)

(

x
d

dx

)n

f(x) =

n
∑

i=1

an,ix
i

(

d

dx

)i

f(x),

where the coefficients an,i satisfy the recursions










an,1 = 1;

an,i = an−1,i−1 + ian−1,i, i = 2, . . . , n− 1;

an,n = 1

for all n ∈ Z≥1. Let now j ∈ {1, . . . , m}. For k = 0, the claim (14) follows directly from
the definition (13). For k ∈ {1, . . . , lj − 1}, we use (13) and (16):

L
∑

i=0

σii
kβi

j =

(

w
d

dw

)k m
∏

i=1

(βi − w)li
∣

∣

∣

∣

w=βj

= 0

because
(

d
dw

)h∏m

i=1(βi − w)li
∣

∣

∣

w=βj

= 0 for all h ∈ {1, . . . , k}.
Property (15) follows simply from the expansion of σi and the triangle inequality:

L
∑

i=0

‖σi‖vti ≤
L
∑

i=0

(

∑

i1+...+im=i

∥

∥

∥

∥

(

l1
i1

)

· · ·
(

lm
im

)∥

∥

∥

∥

v

· ‖β1‖l1−i1
v · · · ‖βm‖lm−im

v

)

ti

≤
L
∑

i=0

(

∑

i1+...+im=i

(

l1
i1

)

· · ·
(

lm
im

)

· ‖β1‖l1−i1
v · · · ‖βm‖lm−im

v

)

ti

=

m
∏

j=1

(‖βj‖v + t)lj

6



when t ≥ 0. �

4.1. Generalised factorial series. When l1 = l2 = . . . = lm, the following theorem is
a particular case of Theorem 2.2 in [12]. Due to the special nature of the function (3),
however, we don’t need to restrict the parameters lj .

Theorem 4.2. Let G(t) =
∑∞

n=0[P ]nt
n, where P (x) is a polynomial of degree one and

[P ]n =
∏n−1

k=0 P (k). Let µ ∈ Z≥0 and set

Al,µ,0(t) =

L
∑

i=0

σi

(

l, β
)

[P ]i+µ

tL−i.

Then there exist polynomials Al,µ,j(t) and remainders Rl,µ,j(t), j = 1, . . . , m, such that

(17) Al,µ,0(t)G(βjt)− Al,µ,j(t) = Rl,µ,j(t),

where

(18)











degAl,µ,0(t) = L,

degAl,µ,j(t) ≤ L+ µ− 1,

ordRl,µ,j(t) ≥ L+ µ+ lj .

Proof. Writing

Al,µ,0(t) =
L
∑

h=0

σL−h

(

l, β
)

[P ]L−h+µ

th,

we have

Al,µ,0(t)G(βjt) =

∞
∑

N=0

rN,jt
N ,

where

(19) rN,j =
∑

n+h=N

σL−h

(

l, β
)

· [P ]n
[P ]L−h+µ

· βn
j =

min{L,N}
∑

h=0

σL−h

(

l, β
)

· [P ]N−h

[P ]L−h+µ

· βN−h
j .

When N = L+ µ+ a, 0 ≤ a ≤ lj − 1, then

rN,j = βµ+a
j

L
∑

h=0

σL−h

(

l, β
)

(

a
∏

k=1

P (L+ µ− h− 1 + k)

)

βL−h
j

= βµ+a
j

L
∑

i=0

σi

(

l, β
)

(

a
∏

k=1

P (i+ µ− 1 + k)

)

βi
j .

(Note that the product above equals 1 when a = 0.) Since deg P (x) = 1, we may write
a
∏

k=1

P (i+ µ− 1 + k) =

a
∑

k=0

pki
k,

where the coefficients pk do not depend on i. Hence

rN,j = βµ+a
j

L
∑

i=0

σi

(

l, β
)

(

a
∑

k=0

pki
k

)

βi
j = βµ+a

j

a
∑

k=0

pk

L
∑

i=0

σi

(

l, β
)

ikβi
j = 0

due to (14). Thus we can choose

(20) Al,µ,j(t) =

L+µ−1
∑

N=0

rN,jt
N

7



and

(21) Rl,µ,j(t) =

∞
∑

N=L+µ+lj

rN,jt
N .

�

4.2. Euler’s factorial series. To prove Theorem 3.1, we need approximations to the
series F (αjt). Thus we choose P (x) = 1 + x and β = α = (α1, . . . , αm)

T , and set
lj = l ∈ Z≥1 for all j ∈ {1, . . . , m}. Theorem 4.2 gives

Al,µ,0(t) =

ml
∑

i=0

σi

(i+ µ)!
tml−i, σi = σi

(

l, α
)

,

and, directly by (20) and (19),

Al,µ,j(t) =

ml+µ−1
∑

N=0

tN
min{ml,N}
∑

h=0

σml−h ·
(N − h)!

(ml − h+ µ)!
· αN−h

j , j ∈ {1, . . . , m}.

Similarly by (21) and (19), for N = (m+ 1)l + µ+ k, k ∈ N, we have

rN,j =
ml
∑

h=0

σml−h ·
((m+ 1)l + µ+ k − h)!

(ml − h + µ)!
· α(m+1)l+µ+k−h

j

= αl+µ+k
j

ml
∑

i=0

σi ·
(i+ µ+ l + k)!

(i+ µ)!
· αi

j

= l!k!

(

l + k

k

)

αl+µ+k
j

ml
∑

i=0

σi

(

i+ µ+ l + k

i+ µ

)

αi
j ,

so that

Rl,µ,j(t) = l!t(m+1)l+µ

∞
∑

k=0

tkk!

(

l + k

k

)

αl+µ+k
j

ml
∑

i=0

σi

(

i+ µ+ l + k

i+ µ

)

αi
j, j = 1, . . . , m.

To make the polynomials belong to ZK[t], we multiply everything by (ml + µ)! and
denote

Bl,µ,0(t) := (ml + µ)!Al,µ,0(t) =
ml
∑

i=0

σi ·
(ml + µ)!

(i+ µ)!
· tml−i,

Bl,µ,j(t) := (ml + µ)!Al,µ,j(t) = (ml + µ)!

ml+µ−1
∑

N=0

tN
min{ml,N}
∑

h=0

σml−h ·
(N − h)!

(ml − h+ µ)!
· αN−h

j ,

Sl,µ,j(t) := (ml + µ)!Rl,µ,j(t)

= (ml + µ)!l!t(m+1)l+µ

∞
∑

k=0

k!

(

l + k

k

)

αl+k+µ
j tk

ml
∑

i=0

σi

(

i+ µ+ l + k

i+ µ

)

αi
j .

(22)

In this notation, the Padé approximation formula in (17) may be rewritten as

(23) Bl,µ,0(t)F (αjt)− Bl,µ,j(t) = Sl,µ,j(t), j = 1, . . . , m.
8



5. Linear form and product formula

Let λ0, λ1, . . . , λm ∈ ZK be such that at least one of them is non-zero, and denote

Λv := λ0 + λ1Fv(α1) + . . .+ λmFv(αm)

when v ∈ V0. Equation (23) gives

sl,µ,i = bl,µ,0Fv(αi)− bl,µ,i

where
bl,µ,i = Bl,µ,i(1), i = 0, 1, . . . , m; sl,µ,i = Sl,µ,i(1), i = 1, . . . , m.

Assume that Λv = 0 for all v ∈ V , where the collection V satisfies condition (6). Then
also

0 = bl,µ,0Λv = W + λ1sl,µ,1 + . . .+ λmsl,µ,m,

where
W = W (l, µ) := λ0bl,µ,0 + λ1bl,µ,1 + . . .+ λmbl,µ,m ∈ ZK.

If W 6= 0, then

1 =
∏

v

‖W‖v ≤
(

∏

v∈V∞

‖W‖v
)

∏

v∈V
‖W‖v

≤
(

∏

v∈V∞

‖λ0bl,µ,0 + λ1bl,µ,1 + . . .+ λmbl,µ,m‖v
)

∏

v∈V
‖ − λ1sl,µ,1 − . . .− λmsl,µ,m‖v

≤
(

∏

v∈V∞

(

m
∑

i=0

‖λi‖v
)

max
0≤i≤m

{‖bl,µ,i‖v}
)

∏

v∈V
max
1≤i≤m

{‖sl,µ,i‖v}.

(24)

Next we shall see that such a non-zero W (l, µ) actually exists.

6. Determinant

Lemma 6.1. When the numbers αj, j ∈ {1, . . . , m}, are pairwise different and non-zero,

we have

∆(t) :=

∣

∣

∣

∣

∣

∣

∣

∣

Bl,0,0(t) Bl,0,1(t) · · · Bl,0,m(t)
Bl,1,0(t) Bl,1,1(t) · · · Bl,1,m(t)

...
...

. . .
...

Bl,m,0(t) Bl,m,1(t) · · · Bl,m,m(t)

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Proof. By (18), the degrees of the entries are at most








ml ml − 1 · · · ml − 1
ml ml · · · ml
...

...
. . .

...
ml ml +m− 1 · · · ml +m− 1









.

Hence

deg∆(t) ≤ (m+ 1)ml +
(m− 1)m

2
.

Column operations together with (23) yield the representation

(25) ∆(t) =

∣

∣

∣

∣

∣

∣

∣

∣

Bl,0,0(t) −Sl,0,1(t) · · · −Sl,0,m(t)
Bl,1,0(t) −Sl,1,1(t) · · · −Sl,1,m(t)

...
...

. . .
...

Bl,m,0(t) −Sl,m,1(t) · · · −Sl,m,m(t)

∣

∣

∣

∣

∣

∣

∣

∣

.
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According to (18), the orders of the entries in (25) are at least








0 (m+ 1)l · · · (m+ 1)l
0 (m+ 1)l + 1 · · · (m+ 1)l + 1
...

...
. . .

...
0 (m+ 1)l +m · · · (m+ 1)l +m









.

By expanding (25) by the first column we see that

ord∆(t) ≥
m−1
∑

i=0

((m+ 1)l + i) = m(m+ 1)l +
(m− 1)m

2
.

Thus

∆(t) = btm(m+1)l+
(m−1)m

2 ,

where the coefficient b is an m×m determinant formed from the lowest term coefficients
of the remainders −Sl,µ,j , µ = 0, 1, . . . , m − 1, j = 1, . . . , m (corresponding to k = 0
in (22)), multiplied by the lowest term coefficient of the polynomial Bl,m,0(t) which is
σml = (−1)ml:

b = (−1)ml · (−1)m(l!)m

(

m−1
∏

µ=0

(ml + µ)!

)(

m
∏

j=1

αl
j

)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑ml

i=0 σi

(

i+l

i

)

αi
1

∑ml

i=0 σi

(

i+l

i

)

αi
2 · · ·

∑ml

i=0 σi

(

i+l

i

)

αi
m

α1

∑ml

i=0 σi

(

i+1+l

i+1

)

αi
1 α2

∑ml

i=0 σi

(

i+1+l

i+1

)

αi
2 · · · αm

∑ml

i=0 σi

(

i+1+l

i+1

)

αi
m

...
...

. . .
...

αm−1
1

∑ml

i=0 σi

(

i+m−1+l

i+m−1

)

αi
1 αm−1

2

∑ml

i=0 σi

(

i+m−1+l

i+m−1

)

αi
2 · · · αm−1

m

∑ml

i=0 σi

(

i+m−1+l

i

)

αi
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It remains to show that b 6= 0.
Since
(

i+ µ+ l

i+ µ

)

=
(i+ µ+ l)!

(i+ µ)!l!
=

1

l!
(i+ µ+ 1) · · · (i+ µ+ l) =

1

l!

(

il +
l−1
∑

k=0

pki
k

)

for any µ ∈ {0, 1, . . . , m− 1}, where the coefficients pk do not depend on i, we get

ml
∑

i=0

σi

(

i+ µ+ l

i+ µ

)

αi
j =

1

l!

(

ml
∑

i=0

σii
lαi

j +

l−1
∑

k=0

pk

ml
∑

i=0

σii
kαi

j

)

=
1

l!

ml
∑

i=0

σii
lαi

j

for all j = 1, . . . , m, µ = 0, 1, . . . , m− 1 by the property (14). Hence

b = (−1)m(l+1)

(

m−1
∏

µ=0

(ml + µ)!

)(

m
∏

j=1

αl
j

)

·
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑ml

i=0 σii
lαi

1

∑ml

i=0 σii
lαi

2 · · ·
∑ml

i=0 σii
lαi

m

α1

∑ml

i=0 σii
lαi

1 α2

∑ml

i=0 σii
lαi

2 · · · αm

∑ml

i=0 σii
lαi

m
...

...
. . .

...

αm−1
1

∑ml

i=0 σii
lαi

1 αm−1
2

∑ml

i=0 σii
lαi

2 · · · αm−1
m

∑ml

i=0 σii
lαi

m

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)m(l+1)

(

m−1
∏

µ=0

(ml + µ)!

)(

m
∏

j=1

αl
j

)(

m
∏

j=1

(

ml
∑

i=0

σii
lαi

j

))

∏

1≤i<j≤m

(αj − αi)
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by the Vandermonde determinant formula. Here, using (13) and (16),

ml
∑

i=0

σii
lαi

j =

(

w
d

dw

)l m
∏

i=1

(αi − w)l
∣

∣

∣

∣

w=αj

= (−1)ll!αl
j

m
∏

i=1
i 6=j

(αi − αj)
l 6= 0

for all j = 1, . . . , m. �

Lemma 6.2. For any given l ∈ Z≥1 there exists a µ ∈ {0, 1, . . . , m} such that W (l, µ) 6=
0.

Proof. From Lemma 6.1 it follows in particular that

∣

∣

∣

∣

∣

∣

∣

∣

bl,0,0 bl,0,1 · · · bl,0,m
bl,1,0 bl,1,1 · · · bl,1,m
...

...
. . .

...
bl,m,0 bl,m,1 · · · bl,m,m

∣

∣

∣

∣

∣

∣

∣

∣

= ∆(1) 6= 0.

We assumed that (λ0, λ1, . . . , λm)
T 6= 0, so by linear algebra it follows that the quantity

W (l, µ) = λ0bl,µ,0+λ1bl,µ,1+. . .+λmbl,µ,m must be non-zero for some µ ∈ {0, 1, . . . , m}. �

7. Estimates for the polynomials and remainders and proof of Theorem

3.1

As the last step in proving Theorem 3.1, we give upper bounds for the Padé polynomials
and remainders. Now, using the triangle inequality and property (15) with v|∞,

‖bl,µ,0‖v = ‖Bl,µ,0(1)‖v =
∥

∥

∥

∥

∥

ml
∑

i=0

σi

(ml + µ)!

(i+ µ)!

∥

∥

∥

∥

∥

v

≤
∥

∥

∥

∥

(ml)!

(

ml + µ

µ

)∥

∥

∥

∥

v

ml
∑

i=0

‖σi‖v ≤
∥

∥

∥

∥

(ml)!

(

ml + µ

µ

)∥

∥

∥

∥

v

m
∏

j=1

(‖αj‖v + 1)l

11



and

‖bl,µ,j‖v = ‖Bl,µ,j(1)‖v

=

∥

∥

∥

∥

∥

∥

(ml + µ)!

ml+µ−1
∑

N=0

min{ml,N}
∑

h=0

(N − h)!

(ml − h+ µ)!
σml−hα

N−h
j

∥

∥

∥

∥

∥

∥

v

≤ ‖(ml + µ)!‖v
ml+µ−1
∑

N=0

min{ml,N}
∑

h=0

∥

∥

∥

∥

(N − h)!

(ml − h + µ)!

∥

∥

∥

∥

v

‖σml−h‖v ‖αj‖N−h

v

≤ ‖(ml + µ)!‖v
ml+µ−1
∑

N=0

min{ml,N}
∑

h=0

‖σml−h‖v
(

max
{

1, ‖αj‖v
})N−h

≤ ‖(ml + µ)!‖v
ml+µ−1
∑

N=0

min{ml,N}
∑

h=0

‖σml−h‖v
(

max
{

1, ‖αj‖v
})ml+m−1−h

≤ ‖(ml + µ)!‖v
(

max
{

1, ‖αj‖v
})m−1

(ml +m)·
min{ml,N}
∑

h=0

‖σml−h‖v
(

max
{

1, ‖αj‖v
})ml−h

≤ ‖(ml + µ)!‖v
(

max
{

1, ‖αj‖v
})ml

(ml +m)

m
∏

i=1

(

‖αi‖v +max
{

1, ‖αj‖v
})l

for all j = 1, . . . , m, µ = 0, 1, . . . , m.
We still need non-Archimedean estimates for the remainders, so let now v ∈ V0. Then

‖sl,µ,j‖v = ‖Sl,µ,j(1)‖v

=

∥

∥

∥

∥

∥

(ml + µ)!l!
∞
∑

k=0

k!

(

l + k

k

)

αl+k+µ
j

ml
∑

i=0

σi

(

i+ µ+ l + k

i+ µ

)

αi
j

∥

∥

∥

∥

∥

v

≤ ‖(ml + µ)!l!‖v ‖αj‖lv .

for all j = 1, . . . , m, µ = 0, 1, . . . , m.
So, recalling property (5) of our normalised valuations, the expression in (24) becomes

(

∏

v∈V∞

(

m
∑

i=0

‖λi‖v
)

max
0≤i≤m

{‖bl,µ,i‖v}
)

∏

v∈V
max
1≤i≤m

{‖sl,µ,i‖v}

≤
(

∏

v∈V∞

(

m
∑

i=0

‖λi‖v
)

(ml +m) ‖(ml +m)!‖v
(

max
1≤j≤m

{

1, ‖αj‖v
}

)ml

·

m
∏

i=1

(

‖αi‖v + max
1≤j≤m

{

1, ‖αj‖v
}

)l
)

·
∏

v∈V
‖(ml)!l!‖v

(

max
1≤j≤m

{

‖αj‖v
}

)l

≤
(

∏

v∈V∞

(

m
∑

i=0

‖λi‖v
))

cl2(ml +m)κ(ml +m)! ·
∏

v∈V
‖(ml)!l!‖v,

(26)
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where

c2 =

(

∏

v∈V∞

(

(

max
1≤j≤m

{

1, ‖αj‖v
}

)m m
∏

i=1

(

‖αi‖v + max
1≤j≤m

{

1, ‖αj‖v
}

)

))

·
∏

v∈V
max
1≤j≤m

{

‖αj‖v
}

.

Proof of Theorem 3.1. In Section 6 we saw that for every l ∈ Z≥1, there exists a µ ∈
{0, 1, . . . , m} such that W = W (l, µ) 6= 0. Hence the estimate in (24) holds for infinitely
many W (l, µ), so that our assumption Λv = 0 for all v ∈ V and estimates (24) and (26)
lead to

1 ≤
(

∏

v∈V∞

(

m
∑

i=0

‖λi‖v
))

cl2(ml +m)κ(ml +m)!
∏

v∈V
‖(ml)!l!‖v

which holds for infinitely many l. This is a contradiction with condition (6), and thus
there must exist a valuation v′ ∈ V such that Λv′ 6= 0. �

8. Lower bound: proof of Theorem 3.4

8.1. Product formula again. The fundamental product formula (4) is the starting
point for the proof of our second theorem as well. We repeat Section 5 with a slightly
more refined assumption. First we need some notation though.

Let m ∈ Z≥1 and logH ≥ ses, where

(27) s = max
{

eκ + 1, c1 + 1, (m+ 3)2 + 1
}

,

κ = [K : Q],

c1 =
∏

v∈V∞

(

(

max
1≤j≤m

{

1, ‖αj‖v
}

)m m
∏

i=1

(

‖αi‖v + max
1≤j≤m

{

1, ‖αj‖v
}

)

)

.

Suppose that λ0, λ1, . . . , λm ∈ ZK are such that at least one of them is non-zero and
∏

v∈V∞

max
0≤i≤m

{‖λi‖v} ≤ H.

Define

N(l) := logH +

(

2(m+ 1) +
2m

l
+

log c1
log log l

+
1

log log l
+

(

κ− 1
2

)

log l

l log log l

+
κ logm

l log log l
+

κ log(m+ 1)

l log log l
+

κ

l2 log log l

)

l log log l − l log l

(28)

and let

(29) ℓ := max {l ∈ Z≥2 | N(l) ≥ 0} .
Denote, as before,

Λv = λ0 + λ1Fv(α1) + . . .+ λmFv(αm).

We saw in Section 5 that

bl,µ,0Λv = W + λ1sl,µ,1 + . . .+ λmsl,µ,m,

where

W = W (l, µ) = λ0bl,µ,0 + λ1bl,µ,1 + . . .+ λmbl,µ,m ∈ ZK.
13



By Lemma 6.2 we know that W (ℓ+1, µ) 6= 0 for some µ ∈ {0, 1, . . . , m}. Assume that

‖bℓ+1,µ,0Λv‖v < ‖λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m‖v

for all v|p, p ∈ [log(ℓ+ 1), m(ℓ+ 2)] ∩ P. (The intersection certainly is non-empty due to
Bertrand’s postulate. As for the choice of this interval, see Remark 8.5.) Then

‖W (ℓ+ 1, µ)‖v = ‖bℓ+1,µ,0Λv − (λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m)‖v
= ‖λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m‖v

for all v|p, p ∈ [log(ℓ + 1), m(ℓ + 2)] ∩ P. Hence, using the estimates made in Section 7
together with property (5),

1 =
∏

v

‖W (ℓ+ 1, µ)‖v

≤
(

∏

v∈V∞

‖W‖v
)

∏

p∈[log(ℓ+1),m(ℓ+2)]

∏

v|p
‖W‖v

=

(

∏

v∈V∞

∥

∥

∥

∥

∥

m
∑

i=0

λibℓ+1,µ,i

∥

∥

∥

∥

∥

v

)

∏

p∈[log(ℓ+1),m(ℓ+2)]

∏

v|p
‖λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m‖v

≤
(

∏

v∈V∞

(m+ 1) max
0≤i≤m

{‖λi‖v} max
0≤i≤m

{‖bℓ+1,µ,i‖v}
)

·
∏

p∈[log(ℓ+1),m(ℓ+2)]

∏

v|p
max
1≤i≤m

{‖sℓ+1,µ,i‖v}

≤ (m+ 1)κH

(

∏

v∈V∞

(

(m(ℓ+ 1) +m) ‖(m(ℓ+ 1) + µ)!‖v ·

(

max
1≤j≤m

{

1, ‖αj‖v
}

)m(ℓ+1) m
∏

i=1

(

‖αi‖v + max
1≤j≤m

{

1, ‖αj‖v
}

)ℓ+1
))

·
∏

p∈[log(ℓ+1),m(ℓ+2)]

∏

v|p
‖(m(ℓ+ 1) + µ)!(ℓ+ 1)!‖v

≤(m+ 1)κ(m(ℓ+ 1) +m)κHcℓ+1
1 (m(ℓ+ 1) + µ)!·

∏

p∈[log(ℓ+1),m(ℓ+2)]

|(m(ℓ+ 1) + µ)!(ℓ+ 1)!|p

=
(m+ 1)κ(m(ℓ+ 2))κHcℓ+1

1

∏

p∈[log(ℓ+1),m(ℓ+2)] |(ℓ+ 1)!|p
∏

p<log(ℓ+1) |(m(ℓ+ 1) + µ)!|p
=: Ω,

(30)

where we utilised the fact that #V∞ ≤ κ = [K : Q]. The last equality is due to the
product formula and the fact m(ℓ+ 1) + µ ≤ m(ℓ + 2).
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8.2. Deriving contradiction. We are working to establish a contradiction with (30),
so let us study the expression logΩ more closely. First of all, we have

Ω =
(m+ 1)κ(m(ℓ+ 2))κHcℓ+1

1

∏

p∈[log(ℓ+1),m(ℓ+2)] |(ℓ+ 1)!|p
∏

p<log(ℓ+1) |(m(ℓ+ 1) + µ)!|p

=
(m+ 1)κ(m(ℓ+ 2))κHcℓ+1

1

(ℓ+ 1)!
∏

p<log(ℓ+1) |(m(ℓ+ 1) + µ)!(ℓ+ 1)!|p

≤
(m+ 1)κ(m(ℓ+ 2))κHcℓ+1

1

∏

p<log(ℓ+1) p
m(ℓ+1)+µ+(ℓ+1)

p−1

(ℓ+ 1)!

because of the product formula and property (7). Recall also the Stirling formula

log n! =

(

n +
1

2

)

log n− n+ log
√
2π +

θ(n)

12
, 0 < θ(n) < 1.

With these equations and estimate µ ≤ m we get

logΩ ≤ log





(m+ 1)κ(m(ℓ+ 2))κHcℓ+1
1

∏

p<log(ℓ+1) p
m(ℓ+1)+µ+(ℓ+1)

p−1

(ℓ+ 1)!





≤ κ log(m+ 1) + κ log(m(ℓ + 2)) + logH + (ℓ+ 1) log c1+

∑

p<log(ℓ+1)

log p
m(ℓ+2)+(ℓ+1)

p−1 −
(

(ℓ+ 1) +
1

2

)

log(ℓ+ 1) + (ℓ+ 1)

≤ κ log(m+ 1) + κ logm+ κ log(ℓ+ 2) + logH + (ℓ+ 1) log c1

+ (m(ℓ+ 2) + (ℓ+ 1))
∑

p<log(ℓ+1)

log p

p− 1
− (ℓ+ 1) log(ℓ+ 1)

− 1

2
log(ℓ+ 1) + (ℓ+ 1)

≤ logH + κ logm+ κ log(m+ 1) +
κ

ℓ+ 1
+

(

κ− 1

2

)

log(ℓ+ 1)

+



log c1 +

(

m+ 1 +
m

ℓ+ 1

)

∑

p<log(ℓ+1)

log p

p− 1
+ 1



 (ℓ+ 1)

− (ℓ+ 1) log(ℓ+ 1),

(31)

where

log(ℓ+ 2) < log(ℓ+ 1) +
1

ℓ+ 1

by the mean value theorem.
To be able to continue, we need to know how the sum

∑

p<x

log p

p− 1

behaves. Help is found from [13] (see the corollary of Theorem 6):
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Lemma 8.1. [13]
∑

p≤x

log p

p
< log x, x > 1.

Since p− 1 ≥ p

2
for all primes p, it follows that

(32)
∑

p<x

log p

p− 1
≤ 2

∑

p<x

log p

p
< 2 log x.

Combining estimates (30), (31), and (32), we have

0 ≤ log Ω

≤ logH + κ logm+ κ log(m+ 1) +
κ

ℓ + 1
+

(

κ− 1

2

)

log(ℓ+ 1)

+



log c1 +

(

m+ 1 +
m

ℓ+ 1

)

∑

p<log(ℓ+1)

log p

p− 1
+ 1



 (ℓ+ 1)− (ℓ+ 1) log(ℓ+ 1)

< logH + κ logm+ κ log(m+ 1) +
κ

ℓ + 1
+

(

κ− 1

2

)

log(ℓ+ 1)

+

(

log c1 + 2

(

m+ 1 +
m

ℓ+ 1

)

log log(ℓ+ 1) + 1

)

(ℓ+ 1)− (ℓ+ 1) log(ℓ+ 1)

< logH +

(

2(m+ 1) +
2m

ℓ+ 1
+

log c1
log log(ℓ+ 1)

+
1

log log(ℓ+ 1)

+

(

κ− 1
2

)

log(ℓ+ 1)

(ℓ+ 1) log log(ℓ+ 1)
+

κ logm

(ℓ+ 1) log log(ℓ+ 1)
+

κ log(m+ 1)

(ℓ+ 1) log log(ℓ+ 1)

+
κ

(ℓ+ 1)2 log log(ℓ+ 1)

)

(ℓ+ 1) log log(ℓ+ 1)− (ℓ+ 1) log(ℓ+ 1)

= N(ℓ+ 1) < 0,

a contradiction with (29). Thus there must exist a prime

(33) p ∈ [log(ℓ+ 1), m(ℓ+ 2)]

and a valuation v′|p such that ‖bℓ+1,µ,0Λv′‖v′ ≥ ‖λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m‖v′ . Then,
for this valuation v′,

‖W‖v′ = ‖bℓ+1,µ,0Λv′ − (λ1sℓ+1,µ,1 + . . .+ λmsℓ+1,µ,m)‖v′ ≤ ‖bℓ+1,µ,0Λv′‖v′ ≤ ‖Λv′‖v′ ,
and

(34) 1 =
∏

v

‖W‖v ≤
(

∏

v∈V∞

‖W‖v
)

‖W‖v′ ≤
(

∏

v∈V∞

‖W‖v
)

‖Λv′‖v′ .

8.3. Bounds for ℓ. For the final stages of the proof, we need to express the number ℓ
in terms of the height H . In order to do this, we introduce the inverse function of the
function y(z) = z log z, z ≥ 1/e, considered in [9].

Lemma 8.2. [9] The inverse function z(y) of the function y(z) = z log z, z ≥ 1/e, is
strictly increasing. Define z0(y) = y and zn(y) =

y

log zn−1(y)
for n ∈ Z≥1. Suppose y > e,
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then z1 < z3 < · · · < z < · · · < z2 < z0. Thus the inverse function may be given by the

infinite nested logarithm fraction

z(y) = lim
n→∞

zn(y) =
y

log y

log y
log···

, y > e.

Another little lemma from [7] gives a useful upper estimate:

Lemma 8.3. [7] If y ≥ rer, where r ≥ e, then

z(y) ≤
(

1 +
log r

r

)

y

log y
.

Proof. Denote z := z(y) with y ≥ rer. Then

z =
y

log z
=

y

log y

log y

log z
=

y

log y

(

1 +
log log z

log z

)

≤ y

log y

(

1 +
log r

r

)

,

because log z ≥ r ≥ e. �

Now, N(ℓ+ 1) < 0 implies

(35) (ℓ+ 1) log(ℓ+ 1) > logH ≥ ses,

so that (applying the z-function) ℓ+ 1 > es. According to (27), we have

(36) ℓ > es − 1 ≥ max
{

ee
κ

, ec1, e(m+3)2
}

.

Hence, using the lower bound (36) and the fact that m ≥ 1, we may estimate from the
definition of N(l) in (28):

0 ≤ N(ℓ)

< logH +

(

2(m+ 1) +
2m

e(m+3)2
+ 1 +

1

2 log(m+ 3)
+

(

κ− 1
2

)

(m+ 3)2

e(m+3)2 · κ

+
κ logm

e(m+3)2 · κ +
κ log(m+ 1)

e(m+3)2 · κ +
κ

e2(m+3)2 · κ

)

ℓ log log ℓ− ℓ log ℓ

≤ logH +
(

2(m+ 1) + 1 + 0.360674 + 3 · 10−6
)

ℓ log log ℓ− ℓ log ℓ

< logH + (2m+ 3.361) ℓ log log ℓ− ℓ log ℓ.

(37)

Thus

(38) ℓ log ℓ

(

1− (2m+ 3.361) log log ℓ

log ℓ

)

≤ logH,

where
log log ℓ

log ℓ
<

2 log(m+ 3)

(m+ 3)2

by (36), and so

(39) 1− (2m+ 3.361) log log ℓ

log ℓ
> 1− (2m+ 3.361) · 2 log(m+ 3)

(m+ 3)2
> 0

for all m ≥ 1.
By inequalities (38) and (39) and the lower bound in (36), we have

(m+ 3)2

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH > ℓ log ℓ > (m+ 3)2e(m+3)2 ,
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so we may apply Lemma 8.3 with r = (m+ 3)2:

ℓ < z

(

(m+ 3)2

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH

)

≤
(

1 +
2 log(m+ 3)

(m+ 3)2

) (m+3)2

(m+3)2−(2m+3.361)·2 log(m+3)
· logH

log logH
.

(40)

8.4. Measure. To get the measure from (34), we need an upper estimate for the product
∏

v∈V∞

‖W‖v. Back in (30) we estimated that
∏

v∈V∞

‖W‖v ≤ (m+ 1)κ(m(ℓ+ 2))κHcℓ+1
1 (m(ℓ + 2))!

(taking into account that µ ≤ m). From (37) it follows that

ℓ log ℓ < (2m+ 3.361) ℓ log log ℓ+ logH

and by the mean value theorem we have

log(ℓ+ 2) <
2

ℓ
+ log ℓ.

With these estimates we get

log

(

∏

v∈V∞

‖W‖v
)

≤ log
(

(m+ 1)κ(m(ℓ+ 2))κHcℓ+1
1 (m(ℓ+ 2))!

)

≤ κ log(m+ 1) + κ logm+ κ log(ℓ+ 2) + logH + (ℓ+ 1) log c1

+ (m(ℓ + 2)) log(m(ℓ+ 2))

= κ log(m+ 1) + κ logm+ κ log(ℓ+ 2) + logH + ℓ log c1 + log c1

+ (m logm)ℓ+mℓ log(ℓ+ 2) + 2m logm+ 2m log(ℓ+ 2)

≤ κ log(m+ 1) + κ logm+
2κ

ℓ
+ κ log ℓ+ logH + ℓ log c1 + log c1 + (m logm)ℓ

+mℓ log ℓ+ 2m+ 2m logm+ 2m log ℓ+
4m

ℓ

< κ log(m+ 1) + κ logm+
2κ

ℓ
+ κ log ℓ+ logH + ℓ log c1 + log c1 + (m logm)ℓ

+m ((2m+ 3.361) ℓ log log ℓ+ logH) + 2m+ 2m logm+ 2m log ℓ+
4m

ℓ

= (m+ 1) logH +

(

κ log(m+ 1)

ℓ log log ℓ
+

κ logm

ℓ log log ℓ
+

2κ

ℓ2 log log ℓ
+

κ log ℓ

ℓ log log ℓ

+
log c1

log log ℓ
+

log c1
ℓ log log ℓ

+
m logm

log log ℓ
+ 2m2 + 3.361m+

2m

ℓ log log ℓ

+
2m logm

ℓ log log ℓ
+

2m log ℓ

ℓ log log ℓ
+

4m

ℓ2 log log ℓ

)

ℓ log log ℓ

In the coefficient of ℓ log log ℓ, we have (using the bound (36) and the fact that m ≥ 1)

m logm

log log ℓ
<

m logm

2 log(m+ 3)
<

m

2
,

log c1
log log ℓ

< 1,
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and the rest of the fractions together are less than 0.0000034. Hence

(41) log

(

∏

v∈V∞

‖W‖v
)

≤ (m+ 1) logH +
(

2m2 + 3.861m+ 1.0000034
)

ℓ log log ℓ.

By (40) and the assumption logH ≥ ses > (m+ 3)2e(m+3)2 , we have

ℓ <

(

1 + 2 log(m+3)
(m+3)2

)

(m+ 3)2

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH

2 log(m+ 3) + (m+ 3)2

=
1

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH < logH.

Thus

(42) log log ℓ < log log logH.

Let us next estimate (2m2 + 3.861m+ 1.0000034) ℓ, again using (40):

(

2m2 + 3.861m+ 1.0000034
)

ℓ

≤
(2m2 + 3.861m+ 1.0000034)

(

1 + 2 log(m+3)
(m+3)2

)

(m+ 3)2

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH

log logH

=
m2
(

2 + 3.861
m

+ 1.0000034
m2

)

(

1 + 2 log(m+3)
(m+3)2

)

1− 2·2m log(m+3)
(m+3)2

− 2·3.361 log(m+3)
(m+3)2

· logH

log logH

< 114m2 · logH

log logH

(43)

since m ≥ 1.
Combining estimates (41), (42), and (43), yields

log

(

∏

v∈V∞

‖W‖v
)

<

(

(m+ 1) + 114m2 · log log logH
log logH

)

logH,

so that inequality (34) implies

‖Λv′‖v′ ≥
1

∏

v∈V∞

‖W‖v
> H−(m+1)−114m2 · log log logH

log logH .

8.5. Infinitely many intervals. We still need an upper estimate for m(ℓ+ 1) in terms
of the height H in order to write the interval (33) with respect to H . Once more we use
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(40) and the assumption logH ≥ ses > (m+ 3)2e(m+3)2 :

m(ℓ + 2)

≤ m ·

(

1 + 2 log(m+3)
(m+3)2

)

(m+ 3)2

(m+ 3)2 − (2m+ 3.361) · 2 log(m+ 3)
· logH

log logH
+ 2m

= m

(

1 + 2 log(m+3)
(m+3)2

1− 2·2m log(m+3)
(m+3)2

− 2·3.361 log(m+3)
(m+3)2

+
2 log logH

logH

)

· logH

log logH

≤ m

(

1 + 2 log(m+3)
(m+3)2

1− 2·2m log(m+3)
(m+3)2

− 2·3.361 log(m+3)
(m+3)2

+
4 log(m+ 3) + 2(m+ 3)2

(m+ 3)2e(m+3)2

)

· logH

log logH

< 17m · logH

log logH

(44)

since m ≥ 1.
By (35) and Lemma 8.3 we have

log(ℓ+ 1) > log(z(logH)) > log(z1(logH)) = log

(

logH

log logH

)

.

Combining this with (44) above leads to

[log(ℓ+ 1), m(ℓ+ 2)] ⊆
]

log

(

logH

log logH

)

,
17m logH

log logH

[

=: I(m,H).

Letting H have values in a very rapidly increasing sequence, something like Hi+1 = ee
Hi ,

the intervals I(m,Hi) will be distinct.
This ends the proof of Theorem 3.4.

�

Remark 8.4. The constants 114 and 17 can be improved by adjusting the lower bound of
logH , i.e. the choice of s in (27). For instance, taking (m+ 3)3 instead of (m+ 3)2 will
reduce them considerably.

Remark 8.5. There is a connection between the width of the interval I(m,H) and the
error term in the lower bound (8). Our choice of log(ℓ + 1) in the interval (33) results
in the term log log logH in (8) (see (42)), improving the corresponding lower bound of
Bertrand et. al. in [2] for this function. This is done at a cost, though, since our interval

I(m,H) is wider than theirs. Had we chosen e
√

log(ℓ+1) instead of log(ℓ + 1), we would
have ended up with

√
log logH instead of log log logH . Then the dependence on H in the

error term of (8) would have been 1√
log logH

, just as it is in [2], and the interval I(m,H)

would have had exp

(
√

log
(

logH
log logH

)

)

as its lower bound, very much like in [2] and [14].

The best lower bound (in terms of H) would have been achieved by considering an
interval of the form [2, ml] with no dependence on l in the lower bound, because the empty
sum

∑

p<2
log p
p−1

would not then cause an extra term in our estimates. The disappearing of

log log l from the estimates would mean that we would have 1
log logH

instead of log log logH
log logH

in the error term. This is in line with the exponential function (see [7]). However, this
result won’t give us infinitely many distinct primes when H grows, like Theorem 3.4 does.
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9. Corollaries and examples

9.1. The field of rationals. When K = Q, Theorem 3.1 reduces to:

Corollary 9.1. Let m ∈ Z≥1 and λ0, λ1, . . . , λm ∈ Z where λj 6= 0 for at least one j.
Choose m pairwise distinct, non-zero integers αj ∈ Z \ {0}, j = 1, . . . , m. Suppose P is

a subset of the prime numbers such that

lim sup
l→∞

cl2(ml +m)(ml +m)!
∏

p∈P
|(ml)!l!|p = 0,

where

c2 =

(

max
1≤j≤m

{1, |αj|}
)m
(

m
∏

i=1

(

|αi|+ max
1≤j≤m

{1, |αj |}
)

)

∏

p∈P
max
1≤j≤m

{

|αj |p
}

.

Then there exists a prime p′ ∈ P for which

λ0 + λ1Fp′(α1) + . . .+ λmFp′(αm) 6= 0.

Example 9.2. For instance, take α1 = 1 and α2 = −1. Then, if P ⊆ P is such that

lim sup
l→∞

4l(2l + 2)(2l + 2)!
∏

p∈P
|(2l)!l!|p = 0,

there exists a prime p′ ∈ P for which

λ0 + λ1Fp′(1) + λ2Fp′(−1) 6= 0.

In particular, taking λ0 = 2a ∈ Z and λ1 = λ2 = −b ∈ Z, it follows that there exists a
prime p ∈ P such that

a− b

∞
∑

n=0

(2n)! 6= 0,

i.e.
∑∞

n=0(2n)! 6= a
b
for some p′ ∈ P .

9.2. Linear recurrences. A sequence (xn)
∞
n=0 satisfies a kth order homogeneous linear

recurrence with constant coefficients, if, for all n ∈ Z≥k,

xn = c1xn−1 + c2xn−2 + . . .+ ckxn−k

for some c1, . . . , ck ∈ C with ck 6= 0. If the characteristic polynomial xk−c1x
k−1−. . .−ck ∈

C[x] of this recurrence has k distinct zeros α1, . . . , αk ∈ C, then the solution (xn)
∞
n=0 is

given by the linear combination

xn = a1α
n
1 + . . .+ akα

n
k , n ∈ Z≥0,

where the coefficients a1, . . . , ak ∈ C are determined by given initial conditions. (More
about recurrences in [6].)

Suppose now that c1, . . . , ck ∈ Z. Then the roots α1, . . . , αk lie in a number field K of
degree at most k, and so do the coefficients a1, . . . , ak. Furthermore, if α1, . . . , αk ∈ ZK,
then F (αi), i = 1, . . . , k, converges for any non-Archimedean valuation v of K, and we
have

k
∑

i=1

aiFv(αi) =
k
∑

i=1

ai

∞
∑

n=0

n!αn
i =

∞
∑

n=0

n!
k
∑

i=1

aiα
n
i =

∞
∑

n=0

n!xn.
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Multiplying both sides by d := lcm1≤i≤k{den ai} 2we get a linear form with coefficients
bi := dai ∈ ZK:

k
∑

i=1

biFv(αi) = d

∞
∑

n=0

n!xn.

If at least one of the coefficients ai is non-zero, it follows from Theorem 3.1 that for any
a, b ∈ ZK there exists a non-Archimedean valuation v′ of K such that

∞
∑

n=0

n!xn 6= a

b
.

Example 9.3 (The Fibonacci numbers). The Fibonacci numbers are given by the se-
quence

fn =
1√
5
(αn − βn), α =

1 +
√
5

2
, β =

1−
√
5

2
, n ∈ Z≥0.

Let us work in Q(
√
5) and study the series

∑∞
n=0 n!fn. The minimal polynomial of α

and β is x2 − x − 1, so α and β are algebraic integers and thus ‖α‖v, ‖β‖v ≤ 1 for
any non-Archimedean valuation v of the field Q(

√
5). Actually, as αβ = −1, we get

‖α‖v = ‖β‖v = 1 for all v ∈ V0. Hence both series 1√
5

∑∞
n=0 n!α

n and − 1√
5

∑∞
n=0 n!β

n

converge v-adically and their sum is

1√
5
(Fv(α)− Fv(β)) =

1√
5

( ∞
∑

n=0

n!αn −
∞
∑

n=0

n!βn

)

=
1√
5

∞
∑

n=0

n!(αn − βn) =

∞
∑

n=0

n!fn.

Because x2 − 5 =
(

x−
√
5
) (

x+
√
5
)

in R[x], the Archimedean absolute value of Q

has two extensions to Q(
√
5). These are given by

∣

∣

∣
a + b

√
5
∣

∣

∣

1
=
∣

∣

∣
a+ b

√
5
∣

∣

∣
,
∣

∣

∣
a+ b

√
5
∣

∣

∣

2
=
∣

∣

∣
a− b

√
5
∣

∣

∣
,

where now | · | is the unique Archimedean extension of the Archimedean absolute value
of Q to C, the algebraic closure of the Archimedean completion of Q. Further,

∥

∥

∥
a + b

√
5
∥

∥

∥

1
=
∣

∣

∣
a + b

√
5
∣

∣

∣

1
2

1
=

√

∣

∣

∣
a+ b

√
5
∣

∣

∣
,

∥

∥

∥
a+ b

√
5
∥

∥

∥

2
=
∣

∣

∣
a + b

√
5
∣

∣

∣

1
2

2
=

√

∣

∣

∣
a− b

√
5
∣

∣

∣
.

Let a, b ∈ Z, b 6= 0 and choose α1 = α, α2 = β. Then

c2 ((α, β), V ) = (max {1, ‖α‖1 , ‖β‖1})
2 (max {1, ‖α‖2 , ‖β‖2})

2 ·
(‖α‖1 +max {1, ‖α‖1 , ‖β‖1}) (‖β‖1 +max {1, ‖α‖1 , ‖β‖1}) ·
(‖α‖2 +max {1, ‖α‖2 , ‖β‖2}) (‖β‖2 +max {1, ‖α‖2 , ‖β‖2}) ·
∏

v∈V
max {‖α‖v , ‖β‖v}

= 4

(

1 +
√
5

2

)3




√

−1 +
√
5

2
+

√

1 +
√
5

2





2

≈ 72.

By taking λ0 = 5a ∈ Z, λ1 = λ2 = −b
√
5 ∈ ZK \ {0}, Theorem 3.1 gives:

2The denominator denα of an algebraic number α ∈ K is the smallest positive rational integer n such
that nα is an algebraic integer.
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Corollary 9.4. If V is any collection of non-Archimedean valuations of Q(
√
5) such that

lim sup
l→∞

cl2(2l + 2)(2l + 2)!
∏

v∈V
‖(2l)!l!‖v = 0,

then there exists a valuation v′ ∈ V for which

a− b
∞
∑

n=0

n!fn 6= 0.

9.3. Arithmetic progressions. In [8] the authors prove:

Proposition 9.5. [8, Theorem 3] Let a ∈ Z, b, ξ ∈ Z \ {0}, and n ∈ Z≥3 be given.

Assume that R is any union of the primes in r residue classes in the reduced residue

system modulo n, where r > ϕ(n)
2
. Then there are infinitely many primes p ∈ R such that

a− bFp(ξ) 6= 0.

Because each non-Archimedean valuation of the number field K is attached to the
prime it extends, the division of primes into ϕ(n) residue classes induces a division of the
non-Archimedean valuations into ϕ(n) classes. How many of these classes are needed to
fulfil condition (6)?

Theorem 9.6. Let m ∈ Z≥1 and λ0, λ1, . . . , λm ∈ ZK where λj 6= 0 for at least one j.
Choose m pairwise distinct, non-zero algebraic integers α1, . . . , αm ∈ ZK. Let n ∈ Z≥3 be

given. Assume that R is a union of the primes in r residue classes in the reduced residue

system modulo n, where r > mϕ(n)
m+1

, and let V = {v ∈ V0 | v|p for some p ∈ R}. Then

there exists a valuation v′ ∈ V such that

λ0 + λ1Fv′(α1) + . . .+ λmFv′(αm) 6= 0.

Proof. Let us show that the collection V satisfies condition (6). We shall follow the
method in [8]. By [8, Lemma 1] we have

log





∏

p≡a (mod n)

|l!|p



 = − l log l

ϕ(n)
+O(l log log l)

when n ∈ Z≥3 and gcd(a, n) = 1. Using this, the fact

log((ml +m)!) = ml log l +O(l),
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and property (5), we get

log

(

cl2(ml +m)κ(ml +m)!
∏

v∈V
‖(ml)!l!‖v

)

= l log c2 + κ log(m(l + 1)) + log((ml +m)!) +
∑

v∈V
log ‖(ml)!l!‖v

= ml log l +O(l) +
∑

p∈R

∑

v|p
log ‖(ml)!l!‖v

= ml log l +O(l) +
∑

p∈R
log |(ml)!l!|p

= ml log l +O(l)− rml log l

ϕ(n)
− rl log l

ϕ(n)
+O(l log log l)

=

(

m− r(m+ 1)

ϕ(n)

)

l log l +O(l log log l)

l→∞→ −∞,

because the coefficient
(

m− r(m+1)
ϕ(n)

)

is negative. The result follows from Theorem 3.1.

�
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Louna Seppälä, Matematiikka, PL 8000, 90014 Oulun yliopisto, Finland

E-mail address : louna.seppala@oulu.fi

25


	1. Introduction
	2. Preliminaries: Number fields and valuations
	2.1. Normalisation
	2.2. Product formula

	3. Results
	4. Padé approximations
	4.1. Generalised factorial series
	4.2. Euler's factorial series

	5. Linear form and product formula
	6. Determinant
	7. Estimates for the polynomials and remainders and proof of Theorem ??
	8. Lower bound: proof of Theorem ??
	8.1. Product formula again
	8.2. Deriving contradiction
	8.3. Bounds for 
	8.4. Measure
	8.5. Infinitely many intervals

	9. Corollaries and examples
	9.1. The field of rationals
	9.2. Linear recurrences
	9.3. Arithmetic progressions

	Acknowledgements
	References

