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Abstract

Algebraic independence of values of certain infinite products is proved, where the
transcendence of such numbers was already established by Tachiya. As applications
explicit examples of algebraically independent numbers are also given.
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1 Introduction and the main results

Let K be an algebraic number field and OK the ring of integers of K. For α ∈ K we
shall denote the size of α by ‖α‖ = max(|α| , den(α)), where |α| is the maximum of
the absolute values of its conjugates and den(α) is the least positive integer such that
den(α)α ∈ OK . In the present paper we are interested in infinite products of the form

(1) Φ(z) =
∞∏
k=0

Ek(z
rk)

Fk(zr
k)
,

where r ≥ 2 is an integer and

(2) Ek(z) = 1 + ak,1z + · · ·+ ak,Lz
L, Fk(z) = 1 + bk,1z + · · ·+ bk,Lz

L ∈ K[z]

with an integer L ≥ 1.
In [7] Tachiya proved that under some conditions Φ(α) with algebraic α, 0 < |α| < 1,

is algebraic if and only if Φ(z) ∈ K(z). For this proof he applied the method developed
in [3], which is based on inductive argument introduced in [2] and a variant of Mahler’s
method created by Loxton and van der Poorten in [5]. Here it is essential that a sequence
of functions

Ψn(z) =

∞∏
k=0

En+k(z
rk)

Fn+k(zr
k)
, n ≥ 0,

(note that Ψ0(z) = Φ(z)) satisfies a chain of Mahler type functional equations

(3) Ψn+1(zr) =
Fn(z)

En(z)
Ψn(z), n ≥ 0.

The results of [7] were further developed in [1], in particular a quantitative refinement
of Tachiya’s result was obtained in [1, Theorem 4] if the irrationality measure of the
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function Φ(z) is finite. Recall that the irrationality measure µ(f) of f(z) ∈ K[[z]] is
defined to be the infimum of µ such that

ord(A(z)f(z)−B(z)) ≤ µM,

holds for all nonzero (A(z), B(z)) ∈ K[z]2 satisfying max(deg A, deg B) ≤ M pro-
vided that M ≥ M0 with some sufficiently large M0 depending only on f(z), where for
g(z) ∈ K[[z]] we denote by ord g(z) the zero order of g(z) at z = 0. If there does not
exist such a µ, we define µ(f) :=∞. Note that the condition µ(Φ) <∞ can be verified
in some cases by using [1, Lemma 9].

Remark 1. Under the above notations, if f(z) ∈ K(z), then µ(f) = ∞, but
ord(A(z)f(z)−B(z)) ≤ 2M when A(z)f(z)−B(z) 6= 0 and M is at least the maximum
of the degrees of the numerator and the denominator of f(z).

Our main aim here is to study the algebraic independence of values of several products
of type (1). Let

(4) Φj(z) =
∞∏
k=0

Ej,k(z
rk)

Fj,k(zr
k)
, j = 1, . . . ,m,

with

(5) Ej,k(z) = 1 + aj,k,1z + · · ·+ aj,k,Lz
L, Fj,k(z) = 1 + bj,k,1z + · · ·+ bj,k,Lz

L ∈ K[z].

We assume that the coefficients aj,k,i and bj,k,i satisfy

(6) log |aj,k,i| , log
∣∣bj,k,i∣∣ = o(rk) (k →∞), j = 1, . . . ,m; i = 1, . . . , L,

and, for each j = 1, . . . ,m, there exists a positive integer Dj such that

(7) DjEj,k(z), DjFj,k(z) ∈ OK [z], k ≥ 0.

For f(z) = (f1(z), . . . , fm(z)) ∈ K[[z]]m and I = (i1, . . . , im) ∈ Zm we define

f I(z) = f i11 (z) · · · f imm (z).

Let Φ(z) = (Φ1(z), . . . ,Φm(z)). In the following considerations we assume that for all
I = (i1, . . . , im) ∈ Zm \ {0} there exists a positive constant c(I) depending on Φ(z) and
I such that

(8) µ(ΦI) < c(I).

To introduce our main results we denote, for each place w of K, by | |w the absolute
value of K normalized in the usual way. The absolute height H(α) of α ∈ K is defined
by

H(α) =
∏
w

Mw(α), Mw(α) := max(1, |α|κw/κw ),

2



where κ = [K : Q], κw = [Kw : Qw]. By the product formula we have H(α) = H(α−1)
for all nonzero α ∈ K. Further, the absolute height of the vector α = (α1, . . . , αk) ∈ Kk

is defined by
H(α) =

∏
w

Mw(α), Mw(α) := max(1, |α|κw/κw )

with |α|w = max(|α1|w , . . . , |αk|w). Then, for any nonzero vector α ∈ Kk, the inequality

(9) H(α)−κ/κw ≤ |α|w ≤ H(α)κ/κw

holds. In the following we fix an infinite place v of K, denote | |v = | | and assume that
α ∈ K satisfies

(10) 0 < |α| < 1,
m∏
j=1

Ej,k(α
rk)Fj,k(α

rk) 6= 0, k ≥ 0

and

(11) λ(α) = λK(α) :=
κ logH(α−1)

κv log |α−1|
<
d+ 1

d

with a positive integer d. Then we have

Theorem 1. Let Φ1(z), . . . ,Φm(z) be infinite products (4) with (5) satisfying (6),
(7) and (8). Let α be an element of K satisfying (10) and (11). Then, for a finite subset
Λ ⊂ Zm \ {0} with d = |Λ|, the number of elements of Λ, there exist positive constants
φ(Λ) and h0 depending only on α,Φ and Λ such that∣∣∣∣∣a0 +

∑
I∈Λ

aIΦ
I(α)

∣∣∣∣∣ > h−φ(Λ)

holds for any aI ∈ OK , I ∈ Λ ∪ 0, not all zero, with h = max(h0, H((a0, . . . , aI , . . .))).
In particular, if λ(α) = 1, then the numbers Φ1(α), . . . ,Φm(α) are algebraically in-

dependent.

If the functions Φj(z), j = 1, ...,m, satisfy single functional equations of Mahler
type, that is Ej,k(z) = Ej(z) and Fj,k(z) = Fj(z) for all k ≥ 0, then there exist
general results on algebraic independence for values of Φj(z). In fact, we have the
following result as a particular case of a result by Nishioka [6, Theorem 4.4.1], where
the qualitative part of it is due to Kubota [4] (see also [6, Theorem 3.5]) : Assume
that E1(z)/F1(z), ..., Em(z)/Fm(z) are multiplicatively independent modulo H, where
H = {g(zr)/g(z) | g(z) ∈ K(z)\0}. Then the functions Φ1(z), ...,Φm(z) are algebraically
independent over K(z) and, for any algebraic number α with 0 < |α| < 1 satisfying (10),
the numbers Φ1(α), ...,Φm(α) are algebraically independent. Moreover, for any H and
s ≥ 1 and for any polynomial R ∈ Z[x1, ..., xm] whose degree does not exceed s and
whose coefficients are not greater than H in absolute values, we have

|R(Φ1(α), ...,Φm(α))| > exp
(
−γsm(logH + sm+2)

)
,
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where γ is a positive constant depending only on α and the functions Φ1, ...,Φm.
On the other hand, as far as we know, Theorem 1 seems to be the first one which gives

algebraic independence for values of Φj(z) satisfying a chain of functional equations of
Mahler type as above. We note that our proof of Theorem 1 uses the original inductive
method by Duverney given in [2]. The reason why it works is based on the fact that
the set of infinite products form a group under the usual multiplication, by which ΦI(z)
belong to this set for all I ∈ Zm. Note also that our previous result [1, Theorem 4]
implies, without assuming (11), the measure given in Theorem 1 in the case d = 1.
Therefore, it is ensured that the starting point of our proof of Theorem 1 by using
induction on d is correct. However, we shall give an alternative proof of this result for
self-containdness as well as for its own interest.

With the aid of [1, Lemma 9] (which is Lemma 1 in Section 2) we have the following
corollary to Theorem 1, which allows us to give explicit examples of algebraically inde-
pendent numbers Φ1(α), . . . ,Φm(α).

Corollary. Let Φ1(z), . . . ,Φm(z) be infinite products (4) with (5) satisfying (6) and
(7). Assume that each Ej,k(z)/Fj,k(z) has only real zeros or poles, if r ≥ 3, and has only
positive zeros or poles, if r ≥ 2. Assume further that for any I = (i1, . . . , im) ∈ Zm \{0}
there exists a positive constant C = C(I) such that, for any sufficiently large n,

m∏
j=1

Ej,N (z)ij 6=
m∏
j=1

Fj,N (z)ij

holds for some N = N(n) with n ≤ N < n + C. Let α be an element of K satisfying
(10) and λ(α) = 1. Then the numbers Φ1(α), . . . ,Φm(α) are algebraically independent
having the measure given in Theorem 1.

Example 1. For a sequence (ak)k≥0 of non-zero integers such that

log |ak| = o(rk),

and for a partition Sj = {nj,k ; k ∈ N}, j = 1, ...,m, of N such that nj,k+1 − nj,k are
uniformly bounded from above for all j and k, we define

Φj(r, z) =
∏
k∈Sj

(1− akzr
k
), j = 1, . . . ,m.

Let α, 0 < |α| < 1, be an algebraic number with λ(α) = 1 in Q(α) such that

akα
rk 6= 1, k ≥ 0.

If r ≥ 3, or if r = 2 and all ak are also positive, then the numbers

Φ1(r, α), . . . ,Φm(r, α)

are algebraically independent.
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In the following two examples we denote by (n(k))k≥0 a sequence of strictly increas-
ing positive integers such that n(k+1)−n(k) are uniformly bounded from above for all k.

Example 2. For sequences (aj,k)k≥0, j = 1, . . . ,m, of non-zero integers such that

log |aj,k| = o(rk), j = 1, . . . ,m,

and that
ai,k 6= aj,k, i 6= j, k ≥ 0,

we define

Φj(r, z) =
∞∏
k=0

(1− aj,n(k)z
rn(k)), j = 1, . . . ,m.

Let α, 0 < |α| < 1, be an algebraic number with λ(α) = 1 in Q(α) such that

aj,n(k)α
rn(k) 6= 1, j = 1, . . . ,m, k ≥ 0.

If r ≥ 3, or if r = 2 and all aj,k are also positive, then the numbers

Φ1(r, α), . . . ,Φm(r, α)

are algebraically independent.

Example 3. Let (Fn)n≥0 and (Ln)n≥0 denote Fibonacci and Lucas sequences, re-
spectively. Let c, d1 and d2 be positive integers such that cr + d1 is even and cr + d2 is
odd. Further, let (bj,k)k≥0, j = 1, 2, be sequences of positive integers such that

log bj,k = o(rk), j = 1, 2.

If r ≥ 3, then the numbers

∞∏
k=0

(
1 +

b1,n(k)

Fcrn(k)+d1

)
,

∞∏
k=0

(
1 +

b2,n(k)

Lcrn(k)+d2

)
are algebraically independent.

We organize this paper as follows. In Section 2, we state and prove Theorem 2, a
functional analogue of Theorem 1. Though we do not use this theorem for proving The-
orem 1, its proof, which is easier than the proof of Theorem 1, will show us the algebraic
structure of the proof of Theorem 1. Then, in Section 3, we prove Theorem 1 along the
same line of the proof of Theorem 2, but with necessary arithmetical estimations. The
proof of the corollary to Theorem 1 and the examples are also given in Section 3.
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2 Algebraic independence of our functions

In this section we denote by K an arbitrary field with characteristic zero, and consider
infinite products (4) with (5) as elements of the formal power series ring K[[z]]. Under
the assumption (8) they are multiplicatively independent modulo K(z). In fact (8) gives
much more, namely the following algebraic independence result generalizing [7, Lemma
1] to the case m > 1.

Theorem 2. Let Φ1(z), . . . ,Φm(z) be infinite products (4) with (5) satisfying (8).
Then, for any finite subset Λ of Zm \ {0}, there exists positive constants c(Λ) and M0

depending on Φ(z) and Λ such that

ord
(
A0(z) +

∑
I∈Λ

AI(z)Φ
I(z)

)
≤ c(Λ)M

holds for all AI(z) ∈ K[z], I ∈ Λ ∪ {0}, not all zero, of degrees not greater than M
provided that M ≥M0.

Before proving Theorem 2 we note that the conditions µ(f) <∞ and µ(g) <∞ for
our infinite products f(z) and g(z) do not always ensure (8), even if they are multiplica-
tively independent modulo K(z). To give an example we refer the following lemma ([1,
Lemma 9]), which will be used also for the proof of the corollary to Theorem 1.

Lemma 1. Let Φ(z) be an infinite product (1) with (2), where K is any subfield of
the field of complex numbers. Assume that there exists a positive integer C such that,
for any n, EN (z)/FN (z) 6= 1 with some N = N(n) satisfying n ≤ N < n+ C. Assume
further that all the quotients Ek(z)/Fk(z) 6= 1 have only real zeros or poles if r ≥ 3, and
only positive zeros or poles if r = 2. Then µ(Φ) ≤ C∗, where C∗ is a positive constant
depending only on c, r and L.

Let us take our infinite products f(z) and g(z) as

f(z) =
∞∏
k=0

(1− zrk), g(z) =
∞∏
k=0
k 6=n!

(1− zrk)−1.

For (i, j) ∈ Z2 \ {0} it follows from Lemma 1 that µ(f igj) < ∞ when i 6= j. On the
other hand, under the assumption i = j > 0, by denoting

Pn(z) = (1− zr1!) · · · (1− zrn!), n ≥ 1,

we see that ord(f(z)ig(z)i − Pn(z)i) = ir(n+1)!. Since degPn(z) ≤ r1!+···+n! ≤ r2n!,
we obtain µ(f igi) = ∞. Hence we have also µ(f−ig−i) = µ(f igi) = ∞. Moreover,
the above facts together with Remark 1 imply that f(z) and g(z) are multiplicatively
independent modulo K(z).
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Proof of Theorem 2. Starting from (4) we now define sequences of functions

Φj,n(z) =
∞∏
k=0

Ej,n+k(z
rk)

Fj,n+k(zr
k)
, j = 1, . . . ,m; n ≥ 0.

By denoting
Φn(z) = (Φ1,n(z), . . . ,Φm,n(z)), n ≥ 0,

and

Ek(z) = (E1,k(z), . . . , Em,k(z)), F k(z) = (F1,k(z), . . . , Fm,k(z)), k ≥ 0,

we have

ΦI
n(z) =

∞∏
k=0

EIn+k(z
rk)

F In+k(z
rk)

, n ≥ 0.

Since the components of I may have negative values, we write

EIk(z)

F Ik(z)
=
ek,I(z)

fk,I(z)
,

where ek,I(z) and fk,I(z) are polynomials of degree ≤ cIL with a positive constant cI
depending on I. Then

(12) ΦI
n(z) =

∞∏
k=0

en+k,I(z
rk)

fn+k,I(zr
k)
, n ≥ 0,

and analogously to (3) we have a chain of functional equations

(13) ΦI
n+1(zr) =

fn,I(z)

en,I(z)
ΦI
n(z), n ≥ 0.

In Theorem 2 we consider a finite subset Λ ⊂ Zm \ {0}, so we may assume that for all
I ∈ Λ the degrees of ek,I(z) and fk,I(z) in the expression (12) are ≤ L∗ ≤ cΛL, where
cΛ = max(cI).

We shall prove Theorem 2 by using induction on d = |Λ|. Our assumption (8) gives
Theorem 2 if d = 1. We take an arbitrary Λ with d = |Λ| ≥ 2, and assume that our
claim holds for all Λ with a number of elements less that d. Let

(14) Ω(z) = A0(z) +
∑
I∈Λ

AI(z)Φ
I(z),

where AI(z) ∈ K[z], I ∈ Λ∪{0}, not all zero, have degrees ≤M . To estimate the order
of zero at z = 0 for Ω(z) we use Pade approximations. For every integer n ≥ 0 there
exist Qn(z), Pn,I(z) ∈ K[z] \ {0}, I ∈ Λ, such that

(15) Qn(z)ΦI
n(z)− Pn,I(z) = zd

2L∗+dL∗+1Gn,I(z),
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where
degQn(z) ≤ d2L∗, degPn,I(z) ≤ d2L∗,

and

Gn,I(z) =
∞∑
`=0

gn,I,`z
` ∈ K[[z]] \ {0}.

We replace z by zrn in (15) and use (13) to get

(16) Qn(zr
n
)ΦI

0(z)− Tn,I(z)Pn,I(zr
n
) = z(d2L∗+dL∗+1)rnTn,I(z)Gn,I(z

rn),

where

Tn,I(z) =

n−1∏
k=0

ek,I(z
rk)

fk,I(zr
k)
.

By using (14) we then obtain an equality

(17) Dn(z)Qn(zr
n
)Ω(z) = Dn(z)Pn(z) +Dn(z)z(d2L∗+dL∗+1)rnGn(z),

where

Dn(z) =
∏
I∈Λ

n−1∏
k=0

fI,k(z
rk), Pn(z) = Qn(zr

n
)A0(z) +

∑
I∈Λ

AI(z)Tn,I(z)Pn,I(z
rn),

and
Gn(z) =

∑
I∈Λ

AI(z)Tn,I(z)Gn,I(z
rn).

Here Dn(z)Pn(z) is a polynomial of degree ≤M + (d2L∗ + dL∗)rn, and therefore

(18) ordΩ(z) ≤M + (d2L∗ + dL∗)rn

if Pn(z) 6= 0 and M < rn.
Assume now that Pn(z) = 0. Let q be the least integer ` such that gn,I,` 6= 0 for

some I ∈ Λ, and let J be an element of Λ such that gn,J,q 6= 0. By (16),

Dn,J(z)Qn(zr
n
)ΦJ

0 (z)− Cn,J(z)Pn,J(z)(zr
n
) = z(d2L∗+dL∗+1)rnCn,J(z)Gn,I(z

rn)

with

Cn,J(z) =
n−1∏
k=0

eJ,k(z
rk), Dn,J(z) =

n−1∏
k=0

fJ,k(z
rk).

This implies, by (8), the quantity (d2L∗ + dL∗ + 1 + q)rn is estimated from above by

C(J) max(degDn,J(z)Qn(zr
n
), degCn,I(z)Pn,I(z)(z

rn)) ≤ C(J)(d2L∗ + dL∗),

and so

(19) q ≤ (C(J)− 1)(d2 + d)L∗.
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Let Λ′ = {I − J : I ∈ Λ \ {0}}. Since Tn,I(z) ≡ ΦI
0(z) (mod zr

n
) we have

Gn(z) ≡
∑
I∈Λ

AI(z)Φ
I
0(z)gn,I,qz

qrn

≡ ΦJ
0 (z)zqr

N
(
AJ(z)gn,J,q +

∑
I∈Λ\{J}

AI(z)Φ
I−J
0 (z)gn,I,q

)
(mod z(1+q)rn).

By the induction hypothesis the order of the term in the parenthesis above is estimated
from above by c(Λ′)M . We now fix n in such a way that

rn−1 ≤ c(Λ′)M < rn.

Then Gn(z) 6= 0 and ordGn(z) < (1 + q)rn. Thus, by (17),

(20) ordΩ(z) ≤ (d2L∗ + dL∗ + 2 + q)rn.

From the choice of n we get rn ≤ rc(Λ′)M . This together with (18), (19) and (20) gives
the truth of our Theorem 2.

3 Proof of the main results

In the proof of Theorem 1 below we shall again use induction on d = |Λ|. Further, p
and n are positive integer parameters and ε is a positive constant all to be specified later
in order of ε, p and n. We shall denote by c1, c2, . . . positive constants independent on
ε, p, n. For the parameter n, we always assume

n ≥ n(ε, p),

where n(ε, p) denotes a positive integer depending on ε and p which will be chosen
suitably in the course of the proof. Moreover we use the notation Ĥ(P ) to denote the
maximum of the conjugates of the coefficients of any polynomial P (z) ∈ K[z].

Let us write

ΦI
n(z) =

∞∑
`=0

an,I,`z
`.

By using the assumptions (6) and (7) we see, analogously to the proof of [7, Lemma 1],
that, for any given ε > 0,

(21) log |an,I,`| ≤ εrn(1 + `), den(an,I,`)
∣∣∣ (D1 · · ·Dm)c1(1+`)

for all I ∈ Λ, n (≥ n(ε)) and ` ≥ 0, where c1 is a positive constant.
We prepare our proof of Theorem 1 by giving the following lemma.

Lemma 2. Let ε > 0 and Λ ⊂ Zm \ {0} with |Λ| = d ≥ 1 be given. Under the
notations and assumptions of Theorem 1 there exist auxiliary functions

gn,I(z) = qn(z)ΦI
n(z)− pn,I(z) ∈ K[[z]], I ∈ Λ,
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with polynomials qn(z), pn,I(z) ∈ OK [z] \ {0} of degrees at most dp, such that

(22) τI := ord gn,I(z) ≥ dp+ p+ 1,

(23) Ĥ(qn), Ĥ(pn,I) ≤ eεc2p
2rn ,

(24) |gn,I,`| ≤ eε(c3p
2+`)rn , |gn,I,τI | ≥ e

−εc4p2rn ,

where we denote

gn,I(z) =

∞∑
`=0

gn,I,`z
`, I ∈ Λ.

Proof. Let us denote

Q∗n(z) =

dp∑
k=0

µ∗kz
k.

Then

Q∗n(z)ΦI
n(z) =

∞∑
`=0

ν∗n,I,`z
`, ν∗n,I,` =

min(`,dp)∑
k=0

µ∗kan,I,`−k.

We define

P ∗n,I(z) =

dp∑
`=0

ν∗n,I,`z
`, I ∈ Λ,

and consider a system of homogeneous linear equations

(25) ν∗n,I,` = 0, ` = dp+ 1, . . . , dp+ p, I ∈ Λ.

Here we have dp equations in dp+ 1 unknown coefficients µ∗k. By using Siegel’s lemma
(see [6, Lemma 1.4.2]) under (21) we find a non-zero polynomialQ∗n(z) ∈ OK [z] satisfying
(25). The coefficients of P ∗n,I(z) are not necessarily in OK , but the use of (21) gives a
common denominator Dn,Λ such that the polynomials

qn(z) =

dp∑
k=0

qkz
k := Dn,ΛQ

∗
n(z), pn,I(z) =

dp∑
k=0

pn,I,kz
k := Dn,ΛP

∗
n,I(z)

satisfy the conditions (22) and (23).
We next use (21) and (23) to get

|gn,I,`| =

∣∣∣∣∣
dp∑
k=0

qkan,I,`−k

∣∣∣∣∣ ≤ (dp+ 1)eεc2p
2rneεr

n(1+`) ≤ eε(c3p2+`)rn

for all ` ≥ τI . This is the first inequality in (24). To get the second inequality in (24)
we note that the construction above gives, by using the notations of section 2,

Cn,I(z)gn,I(z
rn) = Dn,I(z)qn(zr

n
)ΦI

0(z)− Cn,I(z)pn,I(zr
n
).
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We use the assumption (8), µ(ΦI
0) ≤ c(I), and compare the orders on both sides of this

equality to get
τI ≤ c(I)(dp+ L∗).

The first inequality in (24) and the above estimate for τI together with (21) gives an
upper bound

‖gn,I,τI‖ ≤ e
ε(c5p2+τI)rn ≤ eεc6p2rn .

Since |γ| ≥ ‖γ‖−2[K:Q] for all nonzero γ ∈ K and gn,I,τI 6= 0 , we get immediately the
second estimate in (24). Thus Lemma 2 is proved.

Our next lemma considers the function Tn,I(z) defined after (16).

Lemma 3. If

(26) ε <
1

4
log(|α|−1),

then

(27) Tn,I(α) = ΦI
0(α) + δn,I , |δn,I | ≤ c7 |α|r

n/2 .

Proof. We have

Tn,I(z) =

n−1∏
k=0

ek,I(z
rk)

fk,I(zr
k)

= ΦI
0(z)

∞∏
k=n

fk,I(z
rk)

ek,I(zr
k)
.

By using [7, Lemma 1] we get

∞∏
k=n

fk,I(z
rk)

ek,I(zr
k)

=
∞∏
k=0

fn+k,I(z
rn+k)

en+k,I(zr
n+k)

= 1 +
∞∑
`=1

σ`z
rn`,

where, by (26) together with `+ 1 ≤ 2`,

|σ`| ≤ eεr
n(1+`) ≥ |α|−rn`/2.

Thus we obtain

|δn,I | ≤ |ΦI
0(α)||αrn/2|

∞∑
`=0

|α|−rn`/2 ≤ c7 |α|r
n/2 .

This proves Lemma 3.

Proof of Theorem 1. By using the construction of Lemma 2 we get, analogously to
(16),

qn(αr
n
)ΦI

0(α) = Tn,I(α)Pn,I(α
rn) + Tn,I(α)gn,I(α

rn).

11



Let Dn(z) be the polynomial defined after (17). Its degree and the degrees of the
polynomials Dn(z)Tn,I(z) are bounded from above by dL∗rn, and there exists a common
denominator D∗ ≤ ec8n for the coefficients of all these polynomials. Let

Γ = a0 +
∑
I∈Λ

aIΦ
I
0(α).

Then

(28) QnΓ− Pn = α(dp+p+1)rnRn,

where

Qn = D∗Dn(α)qn(αr
n
),

Pn = a0D
∗Dn(α)qn(αr

n
) +

∑
I∈Λ

aID
∗Dn(α)Tn,I(α)pn,I(α

rn),

Rn =
∑
I∈Λ

aID
∗Dn(α)Tn,I(α)g∗n,I(α

rn), g∗n,I(z)z
dp+p+1 := gn,I(z).

In the following we shall use (28) to prove Theorem 1 in five steps.

Step 1. A lower bound for |Pn| in the case Pn 6= 0. Note first that D∗Dn(α)qn(αr
n
)

and D∗Dn(α)Tn,I(α)pn,I(α
rn) appearing in Pn are polynomials in OK [α] of degrees at

most d(p+ L∗)rn. Moreover, by using (6) and (23), we get an upper bound

(29) eεc9p
2rn

for the absolute values of the conjugates of the coefficients of these polynomials. Thus∏
w 6=v
|Pn|κw/κw ≤

∏
w-∞

Mw(α)d(p+L∗)rn ·
∏

w|∞,w 6=v

Mw(α)d(p+L∗)rneεc10p
2rnMw(a)

≤ H(a) max(1, |a|)−κv/κeεc11p2rnH(α)d(p+L∗)rn .

Then the product formula implies in the case Pn 6= 0

(30) |Pn| ≥ max(1, |a|)H(a)−
κ
κv e−εc12p

2rnH(α)−
κ
κv
d(p+L∗)rn .

Step 2. An upper bound for |Rn|. By using (23) and (29) we obtain

|D∗Dn(α)Tn,I(α)| ≤ eεc13p2rn .

Further, the first inequality in (24) gives

∣∣g∗n,I(αrn)
∣∣ ≤ ∞∑

`=0

eε(c3p
2+dp+p+1+`)rn |α|`r

n

≤ eεc14p2rn
∞∑
`=0

(eε |α|)`rn .

Assuming (26) we then have
|Rn| ≤ |a| eεc15p

2rn .

12



By combining this bound with (28) and (30) we obtain in the case Pn 6= 0

(31) |QnΓ| ≥ |a|H(a)−
κ
κv Ω(p, ε)

(
1−H(a)

κ
κv eε(c12+c15)p2rn |α|ω(p)rn),

where

Ω(p, ε) = e−
(
εc12p2+ κ

κv
d(p+L∗) logH(α)

)
rn , ω(p) = p∗ − λ(α)d(p+ L∗)

with p∗ = dp+ p+ 1.

In the case Pn = 0 we have QnΓ = αp
∗rnRn, and to study this case we need a lower

bound for |Rn|. Let q be the least integer such that gn,I,p∗+q 6= 0 for some I ∈ Λ. By
the assumption (8),

q ≤ c16p.

We shall divide the following argument into two parts, in the first part d = 1 and in the
second d ≥ 2.

Step 3. A lower bound for |Rn|, the case d = 1. Let Λ = {I}. Then we have

Rn = aID
∗Dn(α)Tn,I(α)

(
gn,I,p∗+q +

∑
`≥q+1

gn,I,p∗+`α
rn`
)
.

It follows from the second inequality in (24) that

|gn,I,p∗+q| ≥ e−εc4p
2rn

and

(32)

∣∣∣∣∣∣
∑
`≥q+1

gn,I,p∗+`α
rn`

∣∣∣∣∣∣ ≤ eεc17p2rn |α|(q+1)rn

if (26) holds. Since the condition (10) gives D∗Dn(α)Tn,I(α) 6= 0, similarly to Step 1,
we then obtain

|D∗Dn(α)Tn,I(α)| ≥ e−εc18p2rnH(α)−
κ
κv
d(p+L∗)rn .

Moreover, by (9), |aI | ≥ H(aI)
− κ
κv . (Theorem 1 holds trivially if aI = 0, so we may

assume that aI 6= 0.) The above estimates give

(33) |Rn| ≥ H(aI)
− κ
κvH(α)−

κ
κv
d(p+L∗)rne−ε(c4+c18)p2rn

(
1− eε(c4+c17)p2rn |α|(q+1)rn).

Step 4. A lower bound for |Rn|, the case d ≥ 2. We assume now that Theorem 1
holds for all Λ with |Λ| ≤ d − 1. By this induction hypothesis we may assume in the
following that aI 6= 0 for all I ∈ Λ. We have

Rn = D∗Dn(α)
∑
I∈Λ

aITn,I(α)
∑
`≥q

gn,I,p∗+`α
rn`,

13



for which let us write

Rn = D∗Dn(α)

(∑
1

+
∑

2

)
,

where ∑
1

=
∑
I∈Λ

aITn,I(α)gp∗+qα
rnq,

∑
2

=
∑
I∈Λ

aITn,I(α)
∑
`≥q+1

gn,I,p∗+`α
rn`.

We first consider
∑

1 and use (27) to divide it into two parts

∑
1

= D∗Dn(α)αr
nq

∑
1,1

+
∑
1,2

 ,

where ∑
1,1

=
∑
I∈Λ

gn,I,p∗+qaIΦ
I
0(α),

∑
1,2

=
∑
I∈Λ

gn,I,p∗+qaIδn,I .

By the first inequality in (24) and (27),

(34)

∣∣∣∣∣∣
∑
1,2

∣∣∣∣∣∣ ≤ |a| eεc19p2rn |α|rn/2
Further, take J ∈ Λ in such a way that gn,J,p∗+q 6= 0 and denote Λ∗ = Λ \ {J}. Then∑

1,1

= ΦJ
0 (α)

(
gn,J,p∗+qaJ +

∑
I∈Λ∗

gn,I,p∗+qaIΦ
I−J
0 (α)

)
.

In this expression

gn,I,` =

dp∑
k=0

qkan,I,`−k

and so the least common denominator Gn of all gn,I,`, I ∈ Λ, appearing above satisfies,
by (21),

|Gn| ≤ ec20p.

Thus the induction hypothesis together with the first inequality in (24) gives an estimate∣∣∣∣∣Gn(gn,J,p∗+qaJ +
∑
I∈Λ∗

gn,I,p∗+qaIΦ
I−J
0 (α)

)∣∣∣∣∣ ≥ (eεc21p2rn h̃)−φ(Λ∗)

with h̃ = max(h̃0, H(a)), where φ(Λ∗) and h̃0 are positive constants depending only on
α, Φ0 and Λ∗. This implies

(35)

∣∣∣∣∣∣
∑
1,1

∣∣∣∣∣∣ ≥ e−εc22p2rn h̃−c23 .
14



To estimate
∑

2 we assume (26) and use (27) and (32) to get

(36)

∣∣∣∣∣∑
2

∣∣∣∣∣ ≤ |a| eεc24p2rn |α|(q+1)rn .

Finally, by using the above estimates (34), (35)and (36) with the first inequality in
(9) and a lower bound for |D∗Dn(α)| ≥ e−c25rn (obtained as in Step 1) we have

(37) |Rn| ≥ e−c25r
n |α|r

nq e−εc22p
2rn h̃−c23

(
1− h̃c26∆1(p, ε)r

n − h̃c26∆2(p, ε)r
n)

if (26) holds, where

∆1(p, ε) = eε(c19+c22)p2 |α|1/2 , ∆2(p, ε) = eε(c22+c24)p2 |α| .

Step 5. End of the proof. By our assumption (11) we can fix the parameter p such
that ω(p) in (31) is positive. In the case d = 1 we then choose and fix ε > 0 in such a
way that (26) and

(38) ε < min

(
ω(p) log(|α|−1)

(c12 + c15)p2
,

(q + 1) log(|α|−1)

(c4 + c17)p2

)
are satisfied. Then

(39) eε(c4+c17)p2rn |α|(q+1)rn <
1

2

for all n ≥ n(p, ε), where n(p, ε) is taken so that all the estimates given above also hold
for all n ≥ n(p, ε). After that we fix the parameter n to be the least integer satisfying

(40) h
κ
κv ∆(p, ε)r

n
<

1

2
,

where
∆(p, ε) = eε(c12+c15)p2 |α|ω(p)

and h = max(h0, H(a)) with a positive constant h0 large enough to imply n ≥ n(p, ε).
Then we have

h
κ
κv ∆(p, ε)r

n−1 ≥ 1

2
,

which gives rn ≤ ĉ27 log h (here ĉ27 as also ĉ28 later depends on p and ε, which we
fixed above). This estimate together with (31), (33), (39) and (40) ensures the truth of
Theorem 1 in the case d = 1.

We now assume that d ≥ 2. In the choice of ε we in this case replace (38) by

ε < min

(
ω(p) log(|α|−1)

(c12 + c15)p2
,

log(|α|−1)

2(c19 + c22)p2
,

log(|α|−1)

(c22 + c24)p2

)
.

Let then n be the least integer satisfying

max
(
h
κ
κv ∆(p, ε)r

n
, hc26∆1(p, ε)r

n
, hc26∆2(p, ε)r

n)
<

1

3
,
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where h = max(h0, H(a)) and h0 ≥ h̃0 large enough to imply n ≥ n(p, ε). As above
we have rn ≤ ĉ28 log h. The use of the estimates (31) and (37) with the above results
immediately leads to a desired lower bound for |Γ|. Theorem 1 now follows by induction.

Proof of the corollary and the examples. The corollary follows imediately from The-
orem 1 together with Lemma 1. Also both Example 1 and Example 2 are direct conse-
quences of the corollary. Hence, there remains to ensure the validity of Example 3.

As is shown in [1, Section 4] we have, for k ≥ 1,

1 +
b1,k

Fcrk+d1

=
E1,k(ρ

−crk)

F1,k(ρ−cr
k)
, 1 +

b2,k
Lcrk+d2

=
E2,k(ρ

−crk)

F2,k(ρ−cr
k)
,

where ρ = (1 +
√

5)/2 and

E1,k(z) = 1 +
√

5b1,kρ
−d1z − ρ−2d1z2, F1,k(z) = 1− ρ−2d1z2,

E2,k(z) = 1 + b2,kρ
−d2z − ρ−2d2z2, F2,k(z) = 1− ρ−2d2z2.

Therefore, if we take

Φj(z) =

∞∏
k=0

Ej,n(k)(z
rn(k))

Fj,n(k)(zr
n(k)

)
, j = 1, 2,

then

Φ1(ρ−c) =
∞∏
k=0

(
1 +

b1,n(k)

Fcrn(k)+d1

)
, Φ2(ρ−c) =

∞∏
k=0

(
1 +

b2,n(k)

Lcrn(k)+d2

)
,

where we have λ(ρ−c) = 1. We show that µ(Φs
1Φt

2) <∞ for any (s, t) ∈ Z2\{(0, 0)}. To
this end, by Lemma 1, it is enough to show that

E1,k(z)
sF2,k(z)

t 6= E2,k(z)
tF1,k(z)

s, k ≥ 0.

Assume on the contrary that the equality holds. Then, comparing the zeros and the
poles in both sides with multiplicity, we should have

s(α1,k + β1,k) + t(ρ−d2 − ρ−d2) = t(α2,k + β2,k) + s(ρ−d1 − ρ−d1),

that is, s(α1,k + β1,k) = t(α2,k + β2,k), where αj,k and βj,k are the zeros of Ej,k(z) for
j = 1, 2. This implies that sρd1

√
5b1,k = tρd2b2,k. Since ρd1−d2

√
5 is irrational, this holds

only when s = t = 0. This contradicts our assumption, and hence µ(Φs
1Φt

2) <∞. Thus
Example 3 follows from the corollary.

We finally note that Lemma 1 is not applicable in the case r = 2, since Fj,k(z) cannot
have only positive zeros.
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