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A theorem for the closed-form evaluation of the first generalized
Stieltjes constant at rational arguments and some related summations

Iaroslav V. Blagouchine∗

University of Toulon, France.

Abstract

Recently, it was conjectured that the first generalized Stieltjes constant at rational argument may be

always expressed by means of Euler’s constant, the first Stieltjes constant, the Γ-function at ratio-

nal argument(s) and some relatively simple, perhaps even elementary, function. This conjecture was

based on the evaluation of γ1(1/2), γ1(1/3), γ1(2/3), γ1(1/4), γ1(3/4), γ1(1/6), γ1(5/6), which

could be expressed in this way. This article completes this previous study and provides an elegant

theorem which allows to evaluate the first generalized Stieltjes constant at any rational argument. Sev-

eral related summation formulæ involving the first gener- alized Stieltjes constant and the Digamma

function are also presented. In passing, an interesting integral representation for the logarithm of the

Γ-function at rational argument is also obtained. Finally, it is shown that similar theorems may be de-

rived for higher Stieltjes constants as well; in particular, for the second Stieltjes constant the theorem

is provided in an explicit form.

Keywords: Stieltjes constants, Generalized Euler’s constants, Special constants, Number theory, Zeta

function, Gamma function, Digamma function, Psi function, Malmsten, Rational arguments,

Logarithmic integrals, Logarithmic series, Complex analysis, Orthogonal expansions.

I. Introduction and notations

I.1. Introduction

The ζ-functions are one of more important special functions in modern analysis and theory of

functions. The most known and frequently encountered ζ-functions are Riemann and Hurwitz ζ-
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functions. They are classically introduced as the following series

ζ(s) =
∞

∑
n=1

1

ns
, ζ(s, v) =

∞

∑
n=0

1

(n + v)s
, v 6= 0, −1, −2, . . .

convergent for Re s > 1, and may be extended to other domains of s by the principle of analytic

continuation. It is well known that ζ(s) and ζ(s, v) are meromorphic on the entire complex s-plane

and that their only pole is a simple pole at s = 1 with residue 1. They can be, therefore, expanded in

the Laurent series in a neighborhood of s = 1 in the following way

ζ(s) =
1

s − 1
+

∞

∑
n=0

(−1)n(s − 1)n

n!
γn, s 6= 1, (1)

and

ζ(s, v) =
1

s − 1
+

∞

∑
n=0

(−1)n(s − 1)n

n!
γn(v), s 6= 1, (2)

respectively. Coefficients γn appearing in the regular part of expansion (1) are called Stieltjes con-

stants or generalized Euler’s constants, while those appearing in the regular part of (2), γn(v), are called

generalized Stieltjes constants. It is obvious that γn(1) = γn since ζ(s, 1) = ζ(s).

The study of these coefficients is an interesting subject and may be traced back to the works of

Thomas Stieltjes and Charles Hermite [25, vol. I, letter 71 and following]. In 1885, first Stieltjes and

then Hermite, proved that

γn = lim
m→∞

{
m

∑
k=1

lnn k

k
− lnn+1 m

n + 1

}
, n = 0, 1, 2, . . . (3)

Later, this formula was also obtained or simply stated in works of Johan Jensen [47, 50], Jørgen Gram

[37], Godfrey Hardy [42], Srinivasa Ramanujan [19] and many others. From (3), it is visible that γ0 is

Euler’s constant γ. However, the study of other Stieltjes constants revealed to be more difficult and,

at the same time, interesting. In 1895 Franel [33], by using contour integration techniques, showed

that2

γn =
1

2
δn,0 +

1

i

∞̂

0

dx

e2πx − 1

{
lnn(1 − ix)

1 − ix
− lnn(1 + ix)

1 + ix

}
, n = 0, 1, 2, . . . (4)

Ninety years later this integral formula was discovered independently by Ainsworth and Howell who

also provided a very detailed proof of it [4]. Following Franel’s line of reasoning, one can also obtain

these formulæ3

γn = − π

2(n + 1)

+∞
ˆ

−∞

lnn+1( 1
2 ± ix

)

ch2πx
dx n = 0, 1, 2, . . . (5)

2There was a priority dispute between Jensen, Kluyver and Franel related to this formula [33, 50]. In fact, it can be straight-

forwardly deduced from the first integral formula for the ζ-function (88) which was first obtained by Jensen in 1893 [49]. By

the way, we corrected the original Franel’s formula which was not valid for n = 0 [this correction comes from (13) and (14)

here after].
3The proof is analogous to that given for the formula (13) here after, except that the Hermite representation should be

replaced by the third and second Jensen’s formulæ for ζ(s) (88) respectively.
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and

γ1 = −
[

γ − ln 2

2

]
ln 2 + i

∞̂

0

dx

eπx + 1

{
ln(1 − ix)

1 − ix
− ln(1 + ix)

1 + ix

}

γ2 = −
[

2γ1 + γ ln 2 − ln22

3

]
ln 2 + i

∞̂

0

dx

eπx + 1

{
ln2(1 − ix)

1 − ix
− ln2(1 + ix)

1 + ix

}

γ3 = −
[

3γ2 + 3γ1 ln 2 + γ ln22 − ln32

4

]
ln 2 + i

∞̂

0

dx

eπx + 1

{
ln3(1 − ix)

1 − ix
− ln3(1 + ix)

1 + ix

}

. . . . . . . . .

(6)

first of which is particularly simple.4 Other important results concerning the Stieltjes constants lie

in the field of rational expressions of natural numbers, as well as in the closely related field of inte-

ger parts of functions. In 1790 Lorenzo Mascheroni [69, p. 23], by using some previous findings of

Gregorio Fontana, showed that5

γ =
∞

∑
k=1

|ak|
k

, where
z

ln(1 + z)
= 1 +

∞

∑
k=1

akzk, |z| < 1 (7)

i.e. ak are coefficients in the Maclaurin expansion of z/ ln(1 + z) and are usually referred as to (recip-

rocal) logarithmic numbers or Gregory’s coefficients (in particular a1 = 1
2 , a2 = − 1

12 , a3 = 1
24 , a4 = − 19

720 ,

a5 = 3
160 , a6 = − 863

60 480 , . . . ).6 Fontana–Mascheroni’s series (7) seems to be the first known series

representation for Euler’s constant containing rational coefficients only and was subsequently redis-

covered several times, in particular by Kluyver in 1924 [52], by Kenter in 1999 [51] and by Kowalenko

in 2008 [55] (this list is far from exhaustive, see e.g. [56]). In 1897 Niels Nielsen [73, Eq. (6)] showed

that

γ = 1 −
∞

∑
k=1

2k−1

∑
l=2k−1

k

(2l + 1)(2l + 2)
(8)

This formula was also the subject of several rediscoveries, e.g. by Addison in 1967 [3] and by Gerst in

1969 [35].7 In 1906 Ernst Jacobsthal [48, Eq. (9)] and in 1910 Giovanni Vacca [84], apparently indepen-

4Despite the surprising simplicity of these formulæ, we have not found them in the literature devoted to Stieltjes constants.

In contrast, formula (5) seems to be known; at least its variant for the generalized Stieltjes constant may be found in [17].
5The series itself was given by Fontana, who, however, failed to find a constant to which it converges (he only proved

that it should be lesser than 1). Mascheroni identified this Fontana’s constant and showed that it equals Euler’s constant [69,

pp. 21–23]. Taking into account that both Fontana and Mascheroni did practically the equal work, we propose to call (7)

Fontana–Mascheroni’s series for Euler’s constant.
6These coefficients have a venerable history and were named after James Gregory who gave first six of them in November

1670 in a letter to John Collins [83, vol. 1, p. 46] (although in the fifth coefficient there is an error or misprint: 3
164 should be

replaced by 3
160 ). Coefficients ak are also closely related to the Cauchy numbers of the first kind C1,k, to the generalized Bernoulli

numbers, to the Stirling polynomials and to the signed Stirling numbers of the first kind S1(k, l). In particular, ak =
C1,k

k! =
1
k! ∑

S1 (k,l)
l+1 , where the summation extends over l = [1, k], see e.g. [26], [20, pp. 293–294, no 13], [7, vol. III, p. 257], [56], [13].

7The actual Addison’s formula [3] is slightly different, but it straightforwardly reduces to (8) by partial fraction decompo-

sition. In [3], we also find a misprint: the upper bound in the second sum on p. 823 should be the same as in (8). As regards

Gerst’s formula [35], it is exactly the same as (8).
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dently, derived a closely related series

γ =
∞

∑
k=2

(−1)k

k
⌊log2 k⌋ (9)

which was also rediscovered in numerous occasions, in particular by H.F. Sandham in 1949 [76], by

D.F. Barrow, M.S. Klamkin and N. Miller in 1951 [6] or by Gerst in 1969 [35].8 In 1910 James Glaisher

[36] proposed yet another proof of the same result and derived a number of other series with rational

terms for γ. In 1912 Hardy [42] extended (9) to the first Stieltjes constant

γ1 =
ln 2

2

∞

∑
k=2

(−1)k

k
⌊log2 k⌋ · (2 log2 k − ⌊log2 2k⌋) (10)

However, this expression is not a full generalization of (9) since it also contains irrational coefficients.

In 1924 Jan Kluyver [52] generalized Jacobsthal–Vacca’s series (9) in the another direction and showed

that

γ =
∞

∑
k=m

βk

k
⌊logm k⌋, βk =





m − 1, k = multiple of m

−1, k 6= multiple of m
(11)

where m is an arbitrary chosen positive integer.9 In 1924–1927 Kluyver [53, 54] also tried to obtain

series with rational coefficients for higher Stieltjes constants, but these attempts were not successful.

Currently, apart from γ0, no closed-form expressions are known for γn. However, there are works

devoted to their estimations and to the asymptotic series representations for them [8, 46, 58, 60, 81, 72,

96, 97, 94, 89, 98, 99]. Besides, there are also works devoted to the behavior of their sign [11, 71]. In

particular, Briggs in 1955 [11] demonstrated that there are infinitely many changes of sign for them.

Finally, aspects related to the computation of Stieltjes constants were considered in [4, 37, 57, 64].

As regards generalized Stieltjes constants, they are much less studied than the usual Stieltjes con-

stants. In 1972 Berndt, by employing the Euler–Maclaurin summation formula and by proceeding

analogously to Lammel [58], showed that γn(v) can be given by an asymptotic representation of the

same kind as (3)

γn(v) = lim
m→∞

{
m

∑
k=0

lnn(k + v)

k + v
− lnn+1(m + v)

n + 1

}
,

n = 0, 1, 2, . . .

v 6= 0, −1, −2, . . .
(12)

see [8].10 Similarly to Franel’s method of the derivation of (4), one may also derive the following

integral representation for the nth generalized Stieltjes constant

γn(v) =

[
1

2v
− ln v

n + 1

]
lnnv − i

∞̂

0

dx

e2πx − 1

{
lnn(v − ix)

v − ix
− lnn(v + ix)

v + ix

}
(13)

8Series (9), thanks to the error of Glaisher, Hardy and Kluyver, was long-time attributed to Giovanni Vacca and is widely

known as Vacca’s series, see e.g. [36, 42, 52]. It was only in 1993 that Stefan Krämer found that this series was first obtained by

Jacobsthal in 1906. Besides, Krämer also showed that Nielsen’s series (8) and Jacobsthal–Vacca’s series (9) are closely related

and can be derived one from another via a simple geometrical progression 1
2 = 1

4 + 1
8 + 1

16 + . . . [56].
9For example, if m = 2 then βk = (−1)k.

10We, however, note that Wilton, by using Vallée–Poussin’s expansion of the Hurwitz ζ-function, provided a similar formula

already in 1927 [88].
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n = 0, 1, 2, . . . , Re v > 0.11 This formula was rediscovered several times, for example, by Mark Coffey

in 2009 [17, 24]. From both latter formulæ, it follows that γ0(v) = −Ψ(v). Consider, for instance, (13)

and put n = 0. Then, the latter equation takes the form

γ0(v) =
1

2v
− ln v + 2

∞̂

0

x dx

(e2πx − 1)(v2 + x2)

︸ ︷︷ ︸
− 1

4v+
1
2 ln v− 1

2 Ψ(v)

= −Ψ(v) (14)

where the last integral was first calculated by Legendre.12 The demonstration of the same result from

formula (12) may be found, for example, in [72]. For rational v, the 0th Stieltjes constant may be,

therefore, expressed by means of Euler’s constant γ and a finite combination of elementary functions

[thanks to the Gauss’ Digamma theorem (B.4a,b)]. However, things are much more complicated for

higher generalized Stieltjes constants; currently, no closed-form expressions are known for them and

little is known as to their arithmetical properties. Basic properties, such as the multiplication theorem

n−1

∑
l=0

γp

(
v +

l

n

)
= (−1)pn

[
ln n

p + 1
− Ψ(nv)

]
lnp n + n

p−1

∑
r=0

(−1)rCr
pγp−r(nv) · lnr n,

n = 2, 3, 4, . . . , where Cr
p denotes the binomial coefficient Cr

p = p!
r!(p−r)!

, and the recurrent relationship

γp(v + 1) = γp(v)−
lnp v

v
,

p = 1, 2, 3, . . .

v 6= 0, −1, −2, . . .
(15)

may be both straightforwardly derived from those for the Hurwitz ζ-function, see e.g. [10, pp. 101–

102].13 In attempt to obtain other properties, several summation relations involving single and double

infinite series were quite recently obtained in [15, 16]. Also, many important aspects regarding the

Stieltjes constants were considered by Donal Connon [24, 23, 21].

Let now focus our attention on the first generalized Stieltjes constant. The most strong and perti-

nent results in the field of its closed-form evaluation is the formula for the difference between the first

generalized Stieltjes constant at rational argument and its reflected version

γ1

(
m

n

)
− γ1

(
1 − m

n

)
= 2π

n−1

∑
l=1

sin
2πml

n
· ln Γ

(
l

n

)
− π(γ + ln 2πn) ctg

mπ

n
(16)

In the literature devoted to Stieltjes constants this result is usually attributed to Almkvist and Meur-

man who obtained it by deriving the functional equation for ζ(s, v), Eq. (33), with respect to s at

rational v, see e.g. [2], [5, p. 261, §12.9], [70, Eq. (6)]. However, it was comparatively recently that

we discovered that this formula, albeit in a slightly different form, was obtained by Carl Malmsten

11This formula follows straightforwardly from the well-known Hermite representation for ζ(s, v), see e.g. [44, p. 66], [65,

p. 106], [7, vol. I, p. 26, Eq. 1.10(7)]. First, recall that 2(v2 + x2)−s/2 sin[s arctg(x/v)] = −i[(v − ix)−s − (v + ix)−s], and then,

expand 1
2 v−s + (s − 1)−1v1−s into the Laurent series about s = 1. Performing the term-by-term comparison of the derived

expansion with the Laurent series (2) yields (13).
12And not by Binet as stated in [7, vol. I, p. 18, Eq. 1.7.2(27)], see [61, tome II, p. 190] and [10, p. 83, no 40, Eq. (55)].
13As regards the multiplication theorem, see e.g. [23, Eq. (6.6)] or [10, p. 101]. We can also find its particular case for v = 1/n

in [18, p. 1830, Eq. (3.28)].
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already in 1846. On pp. 20 and 38 [67], we, inter alia, find the following expression

∞

∑
l=0

{
ln
[
(2l + 1)n − m

]

(2l + 1)n − m
− ln

[
(2l + 1)n + m

]

(2l + 1)n + m

}
=

=






−π(γ + ln 2π)

2n
tg

πm

2n
− π

n
·
n−1

∑
l=1

(−1)l−1 sin
πml

n
· ln





Γ
(

n+l
2n

)

Γ
(

l
2n

)





if m + n is odd,

−π(γ + ln π)

2n
tg

πm

2n
− π

n
·
⌊1

2 (n−1)⌋
∑
l=1

(−1)l−1 sin
πml

n
· ln





Γ
(

n−l
n

)

Γ
(

l
n

)





if m + n is even,

(17)

where m and n are integers such that m < n.14 It is visible that the left part of this equality contains

the difference of two first-order derivatives of ζ(s, v) at s → 1 and v = 1
2 ± m

2n . Putting 2m − n instead

of m and using the Laurent series expansion (2) yields, after some algebra, formula (16). A somewhat

different way to get (16) is to directly apply the Mittag–Leffler theorem to one of Malmsten’s integrals

at rational points; we developed such a method in our preceding study [10, pp. 97–98, no 63 and

pp. 106–107, no 67].

Recently, Coffey [18] derived several formulæ for the linear combination of the first generalized

Stieltjes constants at some rational arguments. From these expressions, one may conjecture that in

some cases (author gave only two examples of such cases [18, p. 1821, Eqs. (3.33)–(3.34)]), not only the

Γ-function, but also the second-order derivative of the Hurwitz ζ-function could be related, in some

way, to the first generalized Stieltjes constant. However, these preliminary findings do not permit to

precisely identify their roles in the general problem of the closed-form evaluation of the first Stieltjes

constant at any rational argument (the problem which we come to solve here).

Very recently, it has been conjectured in [10, p. 103] that similarly to the Digamma theorem for

γ0(v), the first generalized Stieltjes constant γ1(v) at rational v may be expressed by means of the

Euler’s constant γ, the first Stieltjes constant γ1, the Γ-function and some “relatively simple” func-

tion. For seven rational values of v in the range (0, 1), namely for 1
6 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 and 5
6 , we showed

in [10, pp. 98–101, no 64] that this “relatively simple” function is elementary.15 In this manuscript,

we extend these preceding researches by providing a theorem which allows to evaluate the first

generalized Stieltjes constant at any rational argument in a closed-form by precisely identifying this

“relatively simple” function. The latter consists of elementary functions containing the Euler’s con-

stant γ and of the reflected sum of two second-order derivatives of the Hurwitz ζ-function at zero

ζ ′′(0, p) + ζ ′′(0, 1 − p), parameter p being rational in the range (0, 1). A close study of this reflected

sum reveals that it has several important integral and series representations, one of which is quite

14Unfortunately, this Malmsten’s work contains a huge quantity of misprints in formulæ. We already corrected many of them

in our previous work [10, Sections 2.1 & 2.3]. As regards the above-referenced Malmsten’s original equation (55), case m + n

even, note that Γ( n−i
2n ) should be replaced by Γ( n−i

n ). Formula (56) also has an error: Γ( n+i
n ) should be replaced by Γ( n−i

n ).
15Further to remarks we received after the publication of [10], we note that similar closed-form expressions for γ(1/4),

γ(3/4) and γ(1/3) were also obtained in [21, pp. 17–18].
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similar to an integral representation for the logarithm of the Γ-function at rational argument (see Sec-

tion II.5 and Appendix C). Moreover, the derived theorem represents also the finite Fourier series for

the first generalized Stieltjes constant, so that classic Fourier analysis tools may be used at their full

strength. With the help of the latter, we derive several summation formulæ including summation with

trigonometric functions, summation with square, summation with the Digamma function and sum-

mation giving the first-order moment (see Section II.4). Obviously, the same method can be applied

to other discrete functions allowing similar representations. In particular, its application to a variant

of Gauss’ Digamma theorem yields several beautiful summation formulæ for the Digamma function

which are derived in Appendix B. We also derive, in passing [in Appendix C, Eq. (C.4)], an interesting

integral representation for the logarithm of the Γ-function at rational argument. Finally, in Section III,

we discuss extensions of the derived theorem to the higher Stieltjes constants and provide closed-form

expressions for the second generalized Stieltjes constant at rational arguments.

I.2. Notations

Throughout the manuscript, the following abbreviated notations are used: γ = 0.5772156649 . . .

for Euler’s constant, γn for the nth Stieltjes constant, γn(p) for the nth generalized Stieltjes constant

at point p, ⌊x⌋ for the integer part of x, tg z for the tangent of z, ctg z for the cotangent of z, ch z for the

hyperbolic cosine of z, sh z for the hyperbolic sine of z, thz for the hyperbolic tangent of z.16 In order to

avoid any confusion between compositional inverse and multiplicative inverse, inverse trigonomet-

ric and hyperbolic functions are denoted as arccos, arcsin, arctg, . . . and not as cos−1, sin−1, tg−1, . . . .

Writings Γ(z), Ψ(z), ζ(s) and ζ(s, v) denote respectively the Γ-function, the Ψ-function (or Digamma

function), the Riemann ζ-function and the Hurwitz ζ-function. When referring to the derivatives of

the Hurwitz ζ-function, we always refer to the derivative with respect to its first argument s (unless

otherwise specified). Re z and Im z denote, respectively, real and imaginary parts of z. Natural num-

bers are defined in a traditional way as a set of positive integers, which is denoted by N. Kronecker

symbol of arguments l and k is denoted by δl,k. Letter i is never used as index and is
√
−1. The writing

resz=a f (z) stands for the residue of the function f (z) at the point z = a. By Malmsten’s integral we

mean any integral of the form

∞̂

0

R(sh px, ch px) · ln x

R(sh x, ch x)
dx

where R denotes a rational function and the parameter p is such that the convergence is guaranteed.

Other notations are standard.

II. Evaluation of the first generalized Stieltjes constant at rational argument

II.1. Generalized Stieltjes constants and their relationships to Malmsten’s integrals

Formula (16) provides a closed-form expression for the difference of two first Stieltjes constants at

rational arguments. It should be therefore interesting to investigate if there could be some expres-

sions containing other combinations of Stieltjes constants. In our previous work [10, pp. 97–107], we

16Most of these notations come from Latin, e.g. “ch” stands for cosinus hyperbolicus, “sh” stands for sinus hyperbolicus, etc.
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already demonstrated that some Malmsten’s integrals are connected with the first generalized Stielt-

jes constants. This connection was quite fruitful and permitted not only to prove by another method

formula (16), but also to evaluate the first generalized Stieltjes constant γ1(p) at p = 1
2 , 1

3 , 1
4 , 1

6 , 2
3 , 3

4 , 5
6

by means of elementary functions, Euler’s constant γ, the first Stieltjes constant γ1 and the Γ-function,

see for more details [10, pp. 98–101, no 64]. Taking into account that aforementioned manuscript was

quite long, many results and theorems were given as exercises with hints and without rigorous proofs.

Below, we provide several useful proofs and unpublished results (given as lemmas and corollaries)

showing that Malmsten’s integrals of the first and second orders may be expressed by means of the

first generalized Stieltjes constants. This connection between Malmsten’s integrals and Stieltjes con-

stants is crucial and plays the central role in the proof of the main theorem of this manuscript.

Lemma 1. For any |Re p| < 1 and Re a > −1,

∞̂

0

xa−1(ch px − 1)

sh x
dx =

Γ(a)

2a

{
ζ

(
a,

1

2
− p

2

)
+ ζ

(
a,

1

2
+

p

2

)
− 2 (2a − 1) ζ(a)

}
(18)

Proof 1. From elementary analysis it is well-known that sh−1 x, for Re x > 0, may be represented by the

following geometric series

1

sh x
= 2

∞

∑
n=0

e−(2n+1)x, Re x > 0.

This series, being uniformly convergent, can be integrated term-by-term. Hence

∞̂

0

xa−1(ch px − 1)

sh x
dx =

∞

∑
n=0

∞̂

0

xa−1
{

e−(2n+1−p)x + e−(2n+1+p)x − 2e−(2n+1)x
}

dx

= Γ(a)
∞

∑
n=0

{
1

(2n + 1 − p)a
+

1

(2n + 1 + p)a
− 2

(2n + 1)a

}

=
Γ(a)

2a

{
ζ

(
a,

1

2
− p

2

)
+ ζ

(
a,

1

2
+

p

2

)
− 2ζ

(
a,

1

2

)}
,

where the integral on the left converges if |Re p| < 1 and Re a > −1. In order to obtain (18), it suffices to

notice that ζ(a, 1
2 ) = (2a − 1)ζ(a).

Corollary 1. For any p lying in the strip |Re p| < 1, we always have

∞̂

0

(ch px − 1) ln x

sh x
dx = (γ + ln 2) ·

{
Ψ

(
1

2
+

p

2

)
+ ln 2 − π

2
tg

πp

2

}

+ γ2 + γ1 −
1

2
γ1

(
1

2
+

p

2

)
− 1

2
γ1

(
1

2
− p

2

)
. (19)

This result is straightforwardly obtained from Lemma 1 by differentiating (18) with respect to a, and then by

making a → 1. In order to evaluate the limit in the right-hand side, we make use of Laurent series (1) and (2).

Another Malmsten’s integral of the first order which also contains Stieltjes constants appear in the

next lemma.
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Lemma 2. For any |Re p| < 1 and Re a > −1,

∞̂

0

xa−1 sh px

ch x
dx =

Γ(a)

2a

{
ζ

(
a,

1

2
+

p

2

)
− ζ

(
a,

1

2
− p

2

)

−21−aζ

(
a,

1

4
+

p

4

)
+ 21−aζ

(
a,

1

4
− p

4

)}

Proof 2. Analogous to that of Lemma 1.

Corollary 2. For any |Re p| < 1,

∞̂

0

sh px · ln x

ch x
dx =

1

2

{
π(γ + ln 2) tg

πp

2
− (γ + 2 ln 2)

[
Ψ

(
1

4
+

p

4

)
− Ψ

(
1

4
− p

4

)]

+γ1

(
1

2
− p

2

)
− γ1

(
1

2
+

p

2

)
− γ1

(
1

4
− p

4

)
+ γ1

(
1

4
+

p

4

)}
.

This result can be shown in the same way as that in Corollary 1.

By the same line of argument, one may also prove that following logarithmic integrals may be

expressed in terms of first generalized Stieltjes constants.

∞̂

0

sh px · ln x

sh x
dx = −1

2

{
π(γ + ln 2) tg

πp

2
+ γ1

(
1

2
− p

2

)
− γ1

(
1

2
+

p

2

)}

∞̂

0

ch px · ln x

ch x
dx =

1

2

{
γ1

(
1

2
+

p

2

)
+ γ1

(
1

2
− p

2

)
− γ1

(
1

4
+

p

4

)
− γ1

(
1

4
− p

4

)}

− 1

2
ln22 + ln 2 · Ψ

(
1

2
+

p

2

)
+

π

2
(γ + ln 2) tg

πp

2
− π

2
(γ + 2 ln 2) ctg

(π

4
− πp

4

)

∞̂

0

sh2 px · ln x

sh2x
dx =

1

2

{
ln π − ln sin πp + p

[
γ1(p)− γ1(1 − p)

]
− (γ + ln 2)(1− πp ctg πp)

}

∞̂

0

ch px · ln x

ch2x
dx =

p

2

{
γ1

(
p

2

)
− γ1

(
1 − p

2

)
− γ1

(
p

4

)
+ γ1

(
1 − p

4

)}
+ ln tg

πp

4

− πp

2

{
(γ + 2 ln 2) csc

πp

2
+ ln 2 · ctg

πp

2

}

(20)

where parameter p should be such that |Re p| < 1 in the first three integrals and |Re p| < 2 in the

fourth one. Interestingly, higher Malmsten’s integrals seem to not contain higher Stieltjes constants,

but rather other ζ-function related constants. For instance, the evaluation of the third-order Malm-
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sten’s integral by the same method yields:

∞̂

0

sh3 px · ln x

sh3x
dx =

1

4

{
3ζ ′
(
−1,

1

2
+

p

2

)
− 3ζ ′

(
−1,

1

2
− p

2

)
− ζ ′

(
−1,

1

2
+

3p

2

)

+ζ ′
(
−1,

1

2
− 3p

2

)}
+

3(1− p2)

16

{
γ1

(
1

2
+

p

2

)
− γ1

(
1

2
− p

2

)}

−1 − 9p2

16

{
γ1

(
1

2
+

3p

2

)
− γ1

(
1

2
− 3p

2

)}
− 3p

4
ln
(
2 cos πp − 1

)

+
π(γ + ln 2)

16

{
3(p2 − 1) tg

πp

2
− (9p2 − 1) tg

3πp

2

}

(21)

in the strip |Re p| < 1. In contrast, the evaluation of Malmsten’s integrals containing higher powers

of the logarithm in the numerator of the integrand17 leads precisely to higher Stieltjes constants. In

fact, differentiating twice (18) with respect to a, and then making a → 1, yields

∞̂

0

(ch px − 1) ln2x

sh x
dx = −γ2 +

1

2

{
γ2

(
1

2
+

p

2

)
+ γ2

(
1

2
− p

2

)}
− 2γ1(γ − ln 2)

+(γ + ln 2) ·
{

γ1

(
1

2
+

p

2

)
+ γ1

(
1

2
− p

2

)}
− γ3 − γ

6

(
π2 + 6 ln22

)

−
[
(γ + ln 2)2 +

π2

6

]
·
{

Ψ

(
1

2
+

p

2

)
− π

2
tg

πp

2

}
− ln 2

3

(
π2 + 2 ln22

)

(22)

where |Re p| < 1. More generally, the same integral containing lnn x instead of ln2 x will lead to the

nth Stieltjes constants.

Nota Bene. As showed in [10, pp. 51–60, Sect. 4, no 3, 6, 11, 13], integrals (20)–(21) for rational p ∈
(0, 1) may be reduced to the Γ-function and its logarithmic derivatives. Besides, integral (21), for any

|Re p| < 1, may be written in terms of antiderivatives of ln Γ(z) instead of ζ ′(−1, z). We, however,

noticed that currently there is no agree about the exact definition of Ψ−2(z) ≡
´

ln Γ(z) dz. From the

well-known identity ζ ′(0, z) = ln Γ(z)− 1
2 ln 2π and the fact that ∂ζ(s, z)/∂z = −sζ(s+ 1, z), it clearly

follows that

Ψ−2(z) = ζ ′(−1, z)− z2

2
+

z

2
(1 + ln 2π) + C (23)

where C is the constant of integration.18 Notwithstanding, we found that Maple 12 uses a different

definition

Ψ−2(z) = ζ ′(−1, z)− z2

2
+

z

2
− 1

12

17We propose to call such integrals generalized Malmsten’s integrals.
18The Hurwitz ζ-function whose first argument is a negative integer may be trivially expressed in terms of Bernoulli poly-

nomials. In particular ζ(−1, z) = − 1
2 z2 + 1

2 z − 1
12 .
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Yet, we remarked that Wolfram Alpha Pro employs another expression, which numerically corre-

sponds to19

Ψ−2(z) = z ln Γ(z)− z2

2
ln z +

z2

4
+

z

2
+

ln 2π

12
− 1 − γ

12
− ζ ′(2)

2π2
+

∞̂

0

x ln(x2 + z2)

e2πx − 1
dx

These three definitions are all different, but it may be easily seen that first definition (23) differs from

the last one only by a constant of integration, while Maple’s definition is really different.

II.2. Malmsten’s series and Hurwitz’s reflection formula

We now show that the integral from Lemma 1 may be also evaluated via a trigonometric series.

Lemma 3. In the vertical strip |Re a| < 1, the following equality holds

∞̂

0

xa−1(ch px − 1)

sh x
dx = πa sec

πa

2

∞

∑
n=1

(−1)n cos pπn − 1

n1−a
(24)

for −1 < p < +1.

Proof 3. The Mittag–Leffler theorem is a fundamental theorem in the theory of functions of a complex variable

and allows to expand meromorphic functions into a series accordingly to its poles.20 Application of this theorem

to the meromorphic function (ch pz − 1)/ sh z, p ∈ (−1, +1), having only first-order poles at z = πni,

n ∈ Z, with residue (−1)n(cos πpn − 1), leads to the following expansion

ch pz − 1

sh z
= 2z

∞

∑
n=1

(−1)n cos pπn − 1

z2 + π2n2
, z ∈ C, z 6= πni, n ∈ Z,

which is uniformly convergent on the entire complex z-plane except discs |z − πin| < ε, n ∈ Z, where the

positive parameter ε can be made as small as we please. Therefore

∞̂

0

xa−1(ch px − 1)

sh x
dx = 2

∞

∑
n=1

(−1)n(cos pπn − 1)

∞̂

0

xa

x2 + π2n2
dx

︸ ︷︷ ︸
1
2 πana−1 sec 1

2 πa

= πa sec
πa

2

∞

∑
n=1

(−1)n cos pπn − 1

n1−a
(25)

which holds only for −1 < p < +1 and |Re a| < 1 (the elementary integral in the middle, whose evaluation

is due to Euler, is convergent only in the strip |Re a| < 1, see e.g. [85, p. 126, no 880], [28, p. 197, no 856.2],

[1, p. 256, no 6.1.17], [39, p. 67, no 587], [65, p. 51]). However, the above equality can be analytically continued

for other values of a: the integral is the analytic continuation of the sum for Re a > +1, while the sum

analytically continues the integral for Re a 6 −1. We obviously have to expect trouble with the right-hand

19Wolfram Alpha Pro does not explain how Ψ−2(z) is evaluated. Expression given below is derived by the author by calculat-

ing the antiderivative of Binet’s integral formula for the logarithm of the Γ-function subject to the initial condition Ψ−2(0) = 0

(for Binet’s formula for ln Γ(z), see e.g. [9, pp. 335–336], [86, pp. 250–251], [7, vol. I, p. 22, Eq. 1.9(9)], [10, p. 83, Eq. (54)]).
20For more details, see [68], [85, pp. 147–148, no 994–1002], [32, Chap. V, §27, no 27.10-2], [79, Chap. VII, p. 175], [65].
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part at a = ±1, ±3, ±5, . . . because of the secant. Since when a = −1, −3, −5, . . . the sum in the right-hand

side converges, these points are poles of the first order for the analytic continuation of integral (25). In contrast,

for a = 1, 3, 5, . . . , the integral on the left remains bounded, and thus, these points are removable singularities

for the right-hand side of (25). In other words, formally ∑(−1)n(cos pπn − 1)na−1, n > 1, must vanish

identically for any odd positive a (exactly as η(1 − a), the result which has been derived by Euler, see e.g. [30,

p. 85]). These matters are treated in detail in the next corollary.

Corollary 3. For 0 < p < 1






∞

∑
n=1

cos 2πpn

n1−a
= Γ(a)(2π)−a cos

πa

2
{ζ(a, p) + ζ(a, 1 − p)} (a)

∞

∑
n=1

sin 2πpn

n1−a
= Γ(a)(2π)−a sin

πa

2
{ζ(a, p)− ζ(a, 1 − p)} (b)

(26)

where both series on the left-hand side are uniformly convergent in Re a < 1 and are absolutely convergent in

the half-plane Re a < 0. These important formulæ seem to be obtained for the first time by Malmsten in 1846.

Proof 4. In view of the fact the alternating ζ-function η(s) may be reduced to the ordinary ζ-function and by

making use of Euler–Riemann’s reflection formula for the ζ-function ζ(1 − s) = 2ζ(s)Γ(s)(2π)−s cos 1
2 πs,

we may continue (25) as follows

πa sec
πa

2

∞

∑
n=1

(−1)n cos pπn − 1

n1−a
= πa sec

πa

2

{
∞

∑
n=1

(−1)n cos pπn

n1−a
− (2a − 1) ζ(1 − a)

}

= πa sec
πa

2

∞

∑
n=1

(−1)n cos pπn

n1−a
− 2

(
1 − 2−a

)
Γ(a)ζ(a)

Comparing the latter expression to the result of Lemma 1 gives

∞

∑
n=1

(−1)n cos pπn

n1−a
= Γ(a)(2π)−a cos

πa

2

{
ζ

(
a,

1

2
+

p

2

)
+ ζ

(
a,

1

2
− p

2

)}

Writing in this expression 2p − 1 instead of p yields immediately (26a). Now, by partially differentiating (26a)

with respect to p and by remarking that aΓ(a) = Γ(a + 1), and then, by writing a instead of a + 1, we arrive

at (26b). Note also that both sums (26a,b) may be analytically continued to other domains of a by means of

expressions in corresponding right parts.

Interestingly, nowadays, formulæ (26a,b) seem to be not particularly well-known (for instance,

advanced calculators such as Wolfram Alpha Pro expresses both series in terms of polylogarithms).

Notwithstanding, Eq. (26b) can be found in an old Malmsten’s work published as early as 1849 [67,

p. 17, Eq. (48)], and (26a) is a straightforward consequence of (26b).

Corollary 4. If we notice that

Γ(a) =
π

sin πa · Γ(1 − a)
=

π

2 sin 1
2 πa · cos 1

2 πa · Γ(1 − a)

then, the sum of (26a) with (26b) leads to an important formula

ζ(a, p) =
2Γ(1 − a)

(2π)1−a

[
sin

πa

2

∞

∑
n=1

cos 2πpn

n1−a
+ cos

πa

2

∞

∑
n=1

sin 2πpn

n1−a

]
, (27)
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with 0 < p 6 1 and Re a < 1, which is usually attributed to Adolf Hurwitz who derived it in 1881, see [45,

p. 93],21 [86, p. 269], [65, p. 107], [82, p. 37], [8, p. 156], [7, vol. I, p. 26, Eq. 1.10(6)].22 Sometimes, it is

written in a complex form

ζ(a, p) =
iΓ(1 − a)

(2π)1−a

[
e−

1
2 πia

∞

∑
n=1

e−2πipn

n1−a
− e+

1
2 πia

∞

∑
n=1

e+2πipn

n1−a

]
,

0 < p 6 1, Re a < 1, see e.g. [14, p. 87], which is completely equivalent to (27).

Nota Bene. It is quite rarely emphasized that latter representations coincide with the trigonometric

Fourier series for ζ(a, p). Remarking this permits to immediately derive several integral formulæ,

whose demonstration by other means is more difficult





1
ˆ

0

ζ(a, p) dp = 0

1
ˆ

0

ζ(a, p) cos 2πpn dp = Γ(1 − a)(2πn)a−1 sin
πa

2

1
ˆ

0

ζ(a, p) sin 2πpn dp = Γ(1 − a)(2πn)a−1 cos
πa

2

Re a < 1 (28)

for n = 1, 2, 3, . . . . Furthermore, in virtue of Parseval’s theorem, we also have

1
ˆ

0

ζ2(a, p)dp = 2Γ2(1 − a)(2π)2a−2ζ(2 − 2a), Re a < 1, a 6= 1

2
(29)

Differentiating this formula with respect to a and then setting a = 0, yields:

2

1
ˆ

0

(
1

2
− p

)

︸ ︷︷ ︸
ζ(0,p)

·
(

ln Γ(p)− 1

2
ln 2π

)

︸ ︷︷ ︸
ζ ′(0,p)

dp =
γ + ln 2π

6
− ζ ′(2)

π2

21Hurwitz derived all his results for the function f (s, a) which is related to the modern Hurwitz ζ-function as f (s, a) ≡
fm(s, a) = m−sζ(s, a/m), see [45, p. 89]. By the way, this famous Hurwitz’s paper begins with several factual errors. The

reflection formula for the L-function, which he attributed to Oscar Schlömilch [45, p. 86, first two formulæ for f (s)], was first

deduced by mathematical induction by Leonhard Euler in 1749 [30, p. 105]. Then, it was rigorously proved by two different

methods by Malmsten in 1842 [66] and in 1846 [67]. As regards Schlömilch’s contribution, he gave the same formula only in

1849 [77], and this, without the proof (the proof [78] was published 9 years later). Similarly, Hurwitz erroneously attributed

the reflection formula for the ζ-function to Bernhard Riemann, although it was first given also by Euler [30, p. 94], albeit in a

slightly form, and Riemann’s contribution consists mainly in the more rigorous proof of it [75]. Further information about the

history of these two important formulæ may be found in [87], [43, p. 23], [27, p. 861], [10, pp. 35–37].
22There is a slight error in this formula in the latter reference: it remains valid not only for Re a < 0, but also for Re a < 1.

13



Whence, accounting for the well-known result23

1
ˆ

0

ln Γ(p) dp =
1

2
ln 2π (30)

we obtain

1
ˆ

0

p ln Γ(p) dp =
ζ ′(2)
2π2

− γ − 2 ln 2π

12

Integration by parts of the latter expression leads to the antiderivatives of ln Γ(x) which are currently

not well-studied yet (see the Nota Bene on p. 10). Similarly, differentiating twice (29) with respect to a

at a = 0, and accounting for21

1
ˆ

0

ln2 Γ(p) dp =
γ2

12
+

π2

48
+

γ ln 2π

6
+

ln2 2π

3
− (γ + ln 2π)ζ ′(2)

π2
+

ζ ′′(2)
2π2

=
1

6
+

π2

36
+

ln2 2π

4
− 2ζ ′(−1)− ζ ′′(−1) (31)

yields another integral

1
ˆ

0

pζ ′′(0, p) dp =
π2

144
− γ2

12
− γ ln 2π

6
− ln2 2π

12
+

(γ + ln 2π)ζ ′(2)
π2

− ζ ′′(2)
2π2

= −1

6
+ 2ζ ′(−1) + ζ ′′(−1)

Some further results related to the Fourier series expansion of the Hurwitz ζ-function are provided in

[29].22

Corollary 5. In (27), the index n may be represented as n = mk + l, where for each k = 0, 1, 2, . . . , ∞, the

index l runs over [1, 2, . . . , m] and where m is some positive integer. Then, (27) may be written in the form:

ζ(a, p) =
2Γ(1 − a)

(2π)1−a

[
sin

πa

2

m

∑
l=1

∞

∑
k=0

cos 2πp(mk + l)

(mk + l)1−a
+ cos

πa

2

m

∑
l=1

∞

∑
k=0

sin 2πp(mk + l)

(mk + l)1−a

]

Now, let p be a rational part of m, i.e. p = r/m, where r and m are positive integers such that r 6 m. Then

cos[2πp(mk + l)] = cos(2πrl/m), and similarly for the sine. Hence, for positive rational p not greater than

23The value of integral (30), as well as that of (31), may be both straightforwardly deduced from a similar Fourier series

expansion for the logarithm of the Γ-function, see e.g. [7, vol. I, pp. 23–24, §1.9.1] or [80, p. 17, Eq. (36)]. This expansion,

attributed erroneously to Ernst Kummer, was first derived by Malmsten and colleagues from the Uppsala University in 1842.

This interesting historical question is discussed in details in [10, Sect. 2.2, Fig. 2 and exercise no 20 on pp. 66–68]. By the way,

the evaluation of integral (31) may be also found in several modern works, see e.g. [29, p. 177, Eq. (7.3)], [22, p. 14, Eq. (3.19)].
22However, in many formulæ domains of validity remain unspecified, and sometimes, are incorrect (e.g. compare [29,

Eqs. (1.26) and (3.5)] with (28) and (29) respectively).
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1, the previous formula takes the form

ζ
(

a,
r

m

)
=

2Γ(1 − a)

(2π)1−a

[
sin

πa

2

m

∑
l=1

cos
2πrl

m

∞

∑
k=0

1

(mk + l)1−a

︸ ︷︷ ︸
ma−1ζ(1−a, l/m)

+

+ cos
πa

2

m

∑
l=1

sin
2πrl

m

∞

∑
k=0

1

(mk + l)1−a

]

=
2Γ(1 − a)

(2πm)1−a

m

∑
l=1

sin

(
2πrl

m
+

πa

2

)
· ζ

(
1 − a,

l

m

)
, r = 1, 2, . . . , m.

(32)

This equality holds in the entire complex a-plane for any positive integer m > 2. Furthermore, by putting in

the latter formula 1 − a instead of a, it may be rewritten as

ζ
(

1 − a,
r

m

)
=

2Γ(a)

(2πm)a

m

∑
l=1

cos

(
2πrl

m
− πa

2

)
· ζ

(
a,

l

m

)
, r = 1, 2, . . . , m. (33)

In the case r = m, the above formulæ reduce to Euler–Riemann’s reflection formulæ for the ζ-function (simply

use the multiplication theorem for the Hurwitz ζ-function, see e.g. [10, p. 101]). Formulae (32) and (33) are

known as functional equations for the Hurwitz ζ-function and were both obtained by Hurwitz in the same

article [45, p. 93] in 1881. By the way, the above demonstration also shows that they can be elementary derived

from Malmsten’s results (26a,b) obtained as early as 1840s.

Nota Bene. Malmsten’s series (26a,b) are actually particular cases of a more general series

f (s) ≡
∞

∑
n=1

an

ns
, an ∈ C, |an| 6 1, (34)

which is uniformly and absolutely convergent in the region Re s > 1 (it may also converge, albeit

non-absolutely, in the half-plane Re s > 0).23 Such a series is known as the Dirichlet series. Let now

focus our attention on a particular case of this series in which coefficients an are m-periodic, i.e. an =

an+m = an+2m = . . . (period m being natural).24 The first important consequence of such a particular

case is that f (s) may be reduced to a linear combination of Hurwitz ζ-functions at rational argument.

Representing again the summation’s index n = mk + l yields

f (s) =
m

∑
l=1

∞

∑
k=0

amk+l

(mk + l)s
=

m

∑
l=1

al

∞

∑
k=0

1

(mk + l)s
=

1

ms

m

∑
l=1

alζ

(
s,

l

m

)
(35)

The right-hand side continues f (s) to the entire complex s-plane, except possibly the point s = 1.25 In

order to identify the character of the point s = 1, we evaluate the corresponding residue

res
s=1

f (s) = lim
s→1

[(s − 1) f (s)] =
1

m

m

∑
l=1

al lim
s→1

[
(s − 1)ζ

(
s,

l

m

)]
=

1

m

m

∑
l=1

al

23Indeed ∑ |ann−s| 6 ∑ |n−s| = ζ (Re s), the latter being uniformly and absolutely convergent in Re s > 1.
24If an is a character, the above series may be, in turn, an example of the Dirichlet L-function.
25This is the unique point where the Hurwitz ζ-function is not regular.
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Therefore, if the coefficients a1, a2, . . . , am are chosen so that the latter sum vanishes, then f (s) is

holomorphic; otherwise f (s) is a meromorphic function with a unique pole at s = 1. Typical examples

of cases when f (s) is regular everywhere are Malmsten’s series (26a,b) at rational p because

m

∑
l=1

al =
m

∑
l=1

sin
2πrl

m
= 0 and

m

∑
l=1

cos
2πrl

m
= 0 , r = 1, 2, . . . , m − 1.

As to the reflection formula for the Dirichlet series f (s), it may be easily deduced with the help of

(33). Writing in (35) 1 − s for s, and then, using (33), yields

f (1 − s) =
1

m1−s

m

∑
l=1

alζ

(
1 − s,

l

m

)
=

2Γ(s)

m(2π)s

m

∑
l=1

al

m

∑
k=1

cos

(
2πlk

m
− πs

2

)
· ζ

(
s,

k

m

)

=
2Γ(s)

m(2π)s

[
sin

πs

2

m

∑
k=1

αkζ

(
s,

k

m

)
+ cos

πs

2

m

∑
k=1

βkζ

(
s,

k

m

)]
(36)

where

αk =
m

∑
l=1

al sin
2πlk

m
and βk =

m

∑
l=1

al cos
2πlk

m

holding in the entire complex s-plane except at points s = 1, 0, −1, −2, . . . . This formula is also

very useful in that the expression on the right represents the analytic continuation for f (1 − s) to the

domains where the series (34) does not converge. Finally, remark that the latter formula may be also

written in a complex form

f (1 − s) =
Γ(s)

m(2π)s

[
e+

1
2 πis

m

∑
k=1

α̃kζ

(
s,

k

m

)
+ e−

1
2 πis

m

∑
k=1

β̃kζ

(
s,

k

m

)]

s 6= 1, 0, −1, −2, . . . , where

α̃k =
m

∑
l=1

ale
−2πilk/m and β̃k =

m

∑
l=1

ale
+2πilk/m

and some authors precisely prefer this form, see e.g. [14, pp. 88–91]. This form is more appropriated if

one wishes to emphasize the Fourier series aspect (coefficients α̃k and β̃k may be regarded as m-points

Fourier transforms of coefficients al).

II.3. Closed-form evaluation of the first generalized Stieltjes constant at rational argument

We now state the main result of this manuscript allowing to evaluate in a closed-form the first

generalized Stieltjes constant at any rational argument.

Theorem 1. The first generalized Stieltjes constant of any rational argument in the range (0, 1) may be ex-

pressed in a closed form via a finite combination of logarithms of the Γ-function, of second-order derivatives

of the Hurwitz ζ-function at zero, of Euler’s constant γ, of the first Stieltjes constant γ1 and of elementary
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functions:

γ1

(
r

m

)
= γ1 − γ ln 2m − ln22 − ln 2 · ln πm − 1

2
ln2m − π

2
(γ + ln 2πm) ctg

πr

m

− (−1)r

4

[
1 − (−1)m+1

]
· (3 ln 2 + 2 ln π) ln 2 − π ln π · csc

πr

m
· sin

(
πr

m

⌊
m + 1

2

⌋)
×

× sin

(
πr

m

⌊
m − 1

2

⌋)
+ 2(γ + ln 2πm) ·

⌊1
2 (m−1)⌋

∑
l=1

cos
2πrl

m
· ln sin

πl

m
+ π

⌊1
2 (m−1)⌋

∑
l=1

sin
2πrl

m
· ln sin

πl

m

+2π
⌊1

2 (m−1)⌋
∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
+
⌊1

2 (m−1)⌋
∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}

(37)

This elegant formula holds for any r = 1, 2, 3, . . . , m − 1, where m is positive integer greater than 1. The

Stieltjes constants for other “periods” may be obtained from the recurrent relationship:

γ1(v + 1) = γ1(v)−
ln v

v
, v 6= 0, (38)

see, e.g. [10, p. 102, Eq. (64)]. The above theorem is an equivalent of Gauss’ Digamma theorem for the 0th

Stieltjes constant γ0(r/m) = −Ψ(r/m). Three alternative forms of the same theorem are given in Eqs. (50),

(53) and (55) respectively.

Proof 5. Consider the integral (18). Put 2p − 1 instead of p and denote the resulting integral via Ja(p):

Ja(p) ≡
∞̂

0

xa−1(ch [(2p − 1)x]− 1)

sh x
dx =

Γ(a)

2a

{
ζ(a, p) + ζ(a, 1 − p)− 2

(
2a − 1

)
ζ(a)

}
(39)

converging in the strip 0 < Re p < 1. Let now p be rational p = r/m, where r and m are positive integers

such that r < m. Then, the preceding equation becomes

Ja

( r

m

)
=

Γ(a)

2a

{
ζ
(

a,
r

m

)
+ ζ

(
a, 1 − r

m

)
− 2 (2a − 1) ζ(a)

}
(40)

The sum of first two terms in curly brackets may be evaluated via Hurwitz’s reflection formula (32):

ζ

(
a,

r

m

)
+ ζ

(
a, 1 − r

m

)
=

2Γ(1 − a)

(2πm)1−a

m

∑
l=1

[
sin

(
2πrl

m
+

πa

2

)
+ sin

(
2π(m − r)l

m
+

πa

2

)]

×ζ

(
1 − a,

l

m

)
=

4Γ(1 − a)

(2πm)1−a
sin

πa

2
·

m

∑
l=1

cos
2πrl

m
· ζ

(
1 − a,

l

m

)

Thus, by noticing that Γ(a)Γ(1 − a) = 1
2 π csc 1

2 πa · sec 1
2 πa, the integral Ja(r/m) takes the form:

Ja

( r

m

)
=

π

(πm)1−a
sec

πa

2︸ ︷︷ ︸
f1

·
m

∑
l=1

cos
2πrl

m
· ζ

(
1 − a,

l

m

)

︸ ︷︷ ︸
f2

− Γ(a)(2a − 1)ζ(a)

2a−1︸ ︷︷ ︸
f3

(41)

which is third expression for the integral Ja, other two expressions being given by (18) and (24). Let now study

each term of the right part, denoted for brevity f1, f2 and f3 respectively, in a neighborhood of a = 1. The first
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and the third terms have poles of the first order at this point, while the second term f2 is analytic at a = 1.

Thus, in a neighborhood of a = 1, terms f1 and f3 may be expanded in the Laurent series as follows

f1 = − 2

a − 1
− 2 ln πm −

(
π2

12
+ ln2 πm

)
· (a − 1) +O(a − 1)2 (42)

and

f3 =
1

a − 1
+ ln 2 +

(
π2

12
− ln2 2

2
− γ2

2
− γ1

)
· (a − 1) + O(a − 1)2 (43)

while f2 may be represented by the following Taylor series

f2 =
m

∑
l=1

cos
2πrl

m
· ζ

(
0,

l

m

)

︸ ︷︷ ︸
1
2−l/m

−(a − 1)
m

∑
l=1

cos
2πrl

m
·ζ ′
(

0,
l

m

)

︸ ︷︷ ︸
ln Γ(l/m)− 1

2 ln 2π

+

+
(a − 1)2

2

m

∑
l=1

cos
2πrl

m
· ζ ′′

(
0,

l

m

)
+O(a − 1)3 (44)

= −1

2
− (a − 1)

m

∑
l=1

cos
2πrl

m
· ln Γ

(
l

m

)
+

(a − 1)2

2

m

∑
l=1

cos
2πrl

m
· ζ ′′

(
0,

l

m

)
+O(a − 1)3

because




m

∑
l=1

cos
2πrl

m
= 0 r = 1, 2, 3, . . . , m − 1

m

∑
l=1

l · cos
2πrl

m
=

m

2
, r = 1, 2, 3, . . . , m − 1

(45)

In the final analysis, the substitution of (42), (43) and (44) into (41), yields the following representation for the

integral Ja(r/m) in a neighborhood of a = 1:

Ja

(
r

m

)
= ln

πm

2
+ 2Am(r) + (a − 1) ·

[
−Bm(r) + 2Am(r) ln πm − π2

24
+

ln2πm

2

+
γ2

2
+

ln22

2
+ γ1

]
+O(a − 1)2

(46)

where




Am(r) ≡
m

∑
l=1

cos
2πrl

m
· ln Γ

(
l

m

)

Bm(r) ≡
m

∑
l=1

cos
2πrl

m
· ζ ′′

(
0,

l

m

)

Now, if we look at the integral Ja(r/m) defined in (39), we see that it is uniformly convergent and regular near

a = 1, and hence, may be expanded in the following Taylor series

Ja(r/m) = J1(r/m) + (a − 1)
∂Ja(r/m)

∂a

∣∣∣∣
a=1

+O(a − 1)2 (47)
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Equating right-hand sides of (46) and (47), and then, searching for terms with same powers of (a − 1), gives





∞̂

0

ch [(2p − 1)x]− 1

sh x
dx = ln

πm

2
+ 2Am(r)

∞̂

0

(ch [(2p − 1)x]− 1) ln x

sh x
dx = γ1 − Bm(r) + 2Am(r) ln πm − π2

24
+

ln2 πm

2

+
ln2 2

2
+

γ2

2

where p ≡ r/m. Remarking that the reflection formula for the logarithm of the Γ-function reduces the sum

Am(r) to elementary functions26

Am(r) ≡
m

∑
l=1

cos
2πrl

m
· ln Γ

(
l

m

)
= −1

2

{
ln π +

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m

}

yields for the first integral

∞̂

0

ch [(2p − 1)x]− 1

sh x
dx = ln

m

2
−

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
, p ≡ r

m

while the second one reads

∞̂

0

(ch [(2p − 1)x]− 1) ln x

sh x
dx = ln2 2 + ln 2 · ln π +

1

2
ln2 m −

m−1

∑
l=1

cos
2πrl

m
· ζ ′′

(
0,

l

m

)

− ln πm ·
m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
, p ≡ r

m
(48)

where, at the final stage, we separate the last term in the sum Bm(r) whose value is known ζ ′′(0, 1) = ζ ′′(0) =
γ1 +

1
2 γ2 − 1

24 π2 − 1
2 ln2 2π. But the integral (48) was also evaluated in (19) by means of first generalized

Stieltjes constants. Hence, the comparison of (19) to (48) yields

γ1

(
r

m

)
+ γ1

(
1 − r

m

)
= 2γ1 − 2γ ln 2m + 2

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)

+2(γ + ln 2πm)
m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
− 2 ln22 − 2 ln 2 · ln πm − ln2m

(49)

for each r = 1, 2, . . . , m − 1. Adding this to Malmsten’s reflection formula for the first generalized Stieltjes

constant (16) finally gives

γ1

(
r

m

)
= γ1 − γ ln 2m +

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)
+ π

m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
− ln22

−π

2
(γ + ln 2πm) ctg

πr

m
+ (γ + ln 2πm)

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
− ln 2 · ln πm − 1

2
ln2m

(50)

26By using Malmsten’s representation for the Digamma function, see (B.4c), the sum Am(r) may be also written in terms of

the Ψ-function and Euler’s constant γ.
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This is the most simple form of the theorem which we are stating here and can be used as is. It can be also written

in several other forms. For instance, one may notice that sums over l ∈ [1, m − 1] may be further simplified.

Since each pair of terms which occupy symmetrical positions relatively to the center (except for l = m/2 when

m is even) may be grouped together, the first sum may be reduced to

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)
=

1

2

m−1

∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}

=






1
2 (m−1)

∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
, if m is odd

1
2 m−1

∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
+ (−1)rζ ′′

(
0,

1

2

)
, if m is even

=
⌊1

2 (m−1)⌋
∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
−

− (−1)r

4

[
1 − (−1)m+1

]
· (3 ln 2 + 2 ln π) ln 2

(51)

because ζ ′′
(

0, 1
2

)
= − 3

2 ln2 2 − ln π ln 2, see e.g. [10, p. 72, no 24]. Analogously, the second sum may be

written as
m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
=
⌊1

2 (m−1)⌋
∑
l=1

sin
2πrl

m
·
{

ln Γ

(
l

m

)
− ln Γ

(
1 − l

m

)}

︸ ︷︷ ︸
2 ln Γ(l/m)+lnsin(πl/m)−ln π

= 2
⌊1

2 (m−1)⌋
∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
+
⌊1

2 (m−1)⌋
∑
l=1

sin
2πrl

m
· ln sin

πl

m

− ln π · csc
πr

m
· sin

(
πr

m

⌊
m + 1

2

⌋)
· sin

(
πr

m

⌊
m − 1

2

⌋)

(52)

because for natural n
n

∑
l=1

sin(lx) = csc
x

2
· sin

nx

2
· sin

[ x

2
(n + 1)

]

see e.g. [39, no 58, p. 12]. In like manner

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
= 2
⌊ 1

2 (m−1)⌋
∑
l=1

cos
2πrl

m
· ln sin

πl

m

By using the last three identities, Eq. (50) reduces to (37).

The theorem may be also written by means of the Digamma function. In fact, by recalling that Gauss’

Digamma theorem (B.4b) provides a connection between the last sum in (50) and the Ψ-function, formula (50)

may be also written in the following form:

γ1

(
r

m

)
= γ1 + γ2 + γ ln 2πm + ln 2π · ln m +

1

2
ln2m + (γ + ln 2πm) · Ψ

(
r

m

)

+π
m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
+

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

) (53)
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In some cases, it may be more advantageous to have the complete finite Fourier series form. For this aim, it

suffices to take again (50) and to recall that

m−1

∑
l=1

l · sin
2πrl

m
= −m

2
ctg

πr

m
, r = 1, 2, . . . , m − 1. (54)

This yields the following expression

γ1

(
r

m

)
= γ1 − γ ln 2m − ln22 − ln 2 · ln πm − 1

2
ln2m

+π
m−1

∑
l=1

sin
2πrl

m
·
{

ln Γ

(
l

m

)
+

l(γ + ln 2πm)

m

}

+
m−1

∑
l=1

cos
2πrl

m
·
{

ζ ′′
(

0,
l

m

)
+ (γ + ln 2πm) ln sin

πl

m

}

(55)

where r = 1, 2, 3, . . . , m − 1, and m is positive integer greater than 1.

Formulae (37) (50), (53), (55) and (38) permit to readily obtain closed-form expressions for γ1(v) at

any rational v. We, however, remark in passing that in some cases, these expressions may be further

simplified so that the resulting formulæ may not contain at all ζ ′′(0, l/m) + ζ ′′(0, 1− l/m), or contain

only one combination (or transcendent) of them. More detailed information related to these two

special cases are provided in Appendix A.

II.4. Summation formulæ with the first generalized Stieltjes constant at rational argument

The derived theorem is very useful for many purposes, and in particular, for the derivation of

summation formulæ involving the first generalized Stieltjes constant at rational argument.

Theorem 2. For the first generalized Stieltjes constant at rational argument take place following summation

formulæ






m−1

∑
r=1

γ1

(
r

m

)
· cos

2πrk

m
= −γ1 + m(γ + ln 2πm) ln

(
2 sin

kπ

m

)

+
m

2

{
ζ ′′
(

0,
k

m

)
+ ζ ′′

(
0, 1 − k

m

)}

m−1

∑
r=1

γ1

(
r

m

)
· sin

2πrk

m
=

π

2
(γ + ln 2πm)(2k − m)− πm

2

{
ln π − ln sin

kπ

m

}

+mπ ln Γ

(
k

m

)

(56a,b)

for k = 1, 2, 3, . . . , m − 1, where m is natural greater than 1.27

27One of these formulæ also appears in an unpublished work sent to the author by Donal Connon.
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Proof 6. Formula (55) represents the finite Fourier series of the type (B.1). Comparing (55) to (B.1), we

immediately identify





am(0) = γ1 − γ ln 2m − ln2 2 − ln 2 · ln πm − 1

2
ln2 m,

am(l) = ζ ′′
(

0,
l

m

)
+ (γ + ln 2πm) ln sin

πl

m
, l = 1, 2, 3, . . . , m − 1

bm(l) = π

{
ln Γ

(
l

m

)
+

l(γ + ln 2πm)

m

}
, l = 1, 2, 3, . . . , m − 1

(57)

Thus, in virtue of (B.2), for any k = 1, 2, 3, . . . , m − 1,

m−1

∑
r=1

γ1

(
r

m

)
· cos

2πrk

m
= −γ1 + γ ln 2m + ln22 + ln 2 · ln πm +

1

2
ln2m −

m−1

∑
l=1

ζ ′′
(

0,
l

m

)

︸ ︷︷ ︸
− 1

2 ln2m−ln m·ln 2π

−(γ + ln 2πm)
m−1

∑
l=1

ln sin
πl

m
︸ ︷︷ ︸
(1−m) ln2+ln m

+
m(γ + ln 2πm)

2

[
ln sin

πk

m
+ ln sin

π(m − k)

m

]

+
m

2

{
ζ ′′
(

0,
k

m

)
+ ζ ′′

(
0, 1 − k

m

)}
= −γ1 + m(γ + ln 2πm) · ln

(
2 sin

kπ

m

)

+
m

2

{
ζ ′′
(

0,
k

m

)
+ ζ ′′

(
0, 1 − k

m

)}

where we respectively used the multiplication theorem for the Hurwitz ζ-function

m−1

∑
l=1

ζ ′′
(

0,
l

m

)
=

d2

ds2
[(ns − 1)ζ(s)]

∣∣∣∣
s=0

= −1

2
ln2m − ln m · ln 2π (58)

see e.g. [10, p. 101], and the well-known formula from elementary mathematical analysis

m−1

∏
l=1

sin
πl

m
=

m

2m−1

which is, by the way, due to Euler [31, tomus I, art. 240, p. 204], [62, tome II, art. 99, p. 445] or [74, vol. I,

p. 752, no 6.1.2-2]. Analogously, by (B.3), we deduce

m−1

∑
r=1

γ1

(
r

m

)
· sin

2πrk

m
=

πm

2

{
ln Γ

(
k

m

)
− ln Γ

(
1 − k

m

)
+

γ + ln 2πm

m

[
k − (m − k)

]
}

=
π

2
(γ + ln 2πm)(2k − m)− πm

2

{
ln π − ln sin

πk

m

}
+ mπ ln Γ

(
k

m

)
(59)

which holds for k = 1, 2, 3, . . . , m − 1.

Theorem 3. Parseval’s theorem for the first generalized Stieltjes constant at rational argument has the follow-
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ing form

m−1

∑
r=1

γ2
1

(
r

m

)
= (m − 1)γ2

1 − mγ1(2γ + ln m) ln m +
m

4

m−1

∑
l=1

{
ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}2

+m(γ + ln 2πm)
m−1

∑
l=1

{
ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
· ln sin

πl

m
+ mπ2

m−1

∑
l=1

ln2Γ

(
l

m

)

+2π2(γ + ln 2πm)
m−1

∑
l=1

l·ln Γ

(
l

m

)
+

m

4

[
4(γ + ln 2πm)2 − π2

]m−1

∑
l=1

ln2sin
πl

m
+ Cm

(60)

where, for convenience in writing, by Cm we designated an elementary function depending on m and containing

Euler’s constant γ

Cm ≡ −m(m − 1) ln42 − m(m − 1)(2 ln m + 2γ + 3 ln π) ln32 − m(m − 2) ln2m · ln22

−2m
[
2(m − 1) ln π + γ(m − 2)

]
ln m · ln22 − m(m − 1)

[
3 ln2π + 4γ ln π + γ2 + 5

12 π2 + 1
6m π2

]
×

× ln22 − m
[
(m − 5

2 ) ln π − 3γ
]

ln m2 · ln 2 + 2m
[
(1 − m) ln2π − (m − 5

2 )γ ln π
]

ln m · ln 2

+ 1
12

[(
(6π2 + 24γ2)m + 4π2(1 − m2)

)
ln m − 4(m − 1)

(
3m ln3π + 6mγ ln2π + γπ2(m + 1)

+(( 13
4 π2 + 3γ2)m + π2) ln π

)]
ln 2 + 1

4 m ln4m + m(γ + 1
2 ln π) ln3m + 1

12

[
6m ln2 π

+18γm ln π + π2m2 + (12γ2 + 3π2)m + 2π2
]

ln2m + m ln3m · ln 2 + 1
12

[
12mγ ln2π

+
(
(12γ2 + 9π2)m + 4π2(1 − m2)

)
ln π + 2π2(2 + m2)γ

]
ln m

− 1
12 (m − 1)

[
2π2(4m + 1) ln2π + 4γπ2(m + 1) ln π − π2γ2(m − 2)

]

− 1
4 m
[
4(γ + ln 2πm)2 − π2

]
·
[
(1 − m) ln 2 + ln m

]
ln π + m(γ + ln 2πm)( 1

2 ln m + ln 2π) ln π · ln m

and where m is natural greater than 1.

Proof 7. Inserting Fourier series coefficients (57) into (B.3b) and proceeding analogously to (B.7)–(B.8), yields,

after several pages of careful calculations and simplifications, the above result. The unique formula that should

be used in addition to those employed in derivations (B.7)–(B.8) is

m−1

∑
l=1

l · ln sin
πl

m
=

m

2

m−1

∑
l=1

ln sin
πl

m
=

m[(1 − m) ln 2 + ln m]

2
(61)

Also, the fact that the reflected sum ζ ′′(0, l/m) + ζ ′′(0, 1 − l/m), as well as the function ln sin(πl/m), are

both invariant with respect to a change of summation’s index l → m− l greatly helps when simplifying formula

(60).

Analogously, (55) allows us to obtain a number of other interesting summation formulæ for the

first generalized Stieltjes constant at rational argument. For instance, with the help of (B.10), we easily
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deduce these results




m−1

∑
r=0

cos
(2r + 1)πk

m
· γ1

(
2r + 1

2m

)
= m(γ + ln 4πm) ln tg

πk

2m
+

+
m

2

{
ζ ′′
(

0,
k

2m

)
+ ζ ′′

(
0, 1 − k

2m

)}
− m

2

{
ζ ′′
(

0,
1

2
+

k

2m

)
+ ζ ′′

(
0,

1

2
− k

2m

)}

m−1

∑
r=0

sin
(2r + 1)πk

m
· γ1

(
2r + 1

2m

)
= mπ

{
ln Γ

(
k

2m

)
+ ln Γ

(
1

2
− k

2m

)
+

1

2
ln sin

πk

m

}

−πm

2

(
3 ln 2π + ln m + γ

)

(62a,b)

for k = 1, 2, 3, . . . , m − 1, where m is natural greater than 1. By a similar line of argument, we also

deduce




m−1

∑
r=1

cos
(2k + 1)πr

m
· γ1

( r

m

)
=

= −π
m−1

∑
r=1

sin 2πr
m

cos 2πr
m − cos (2k+1)π

m

{
ln Γ

( r

m

)
+

r(γ + ln 2πm)

m

}

m−1

∑
r=1

sin
(2k + 1)πr

m
· γ1

( r

m

)
=

[
γ1 − γ ln 2m − ln2 2 − ln 2 · ln πm − 1

2
ln2 m

]
×

× ctg
(2k + 1)π

2m
+ (γ + ln 2πm) sin

(2k + 1)π

m
·
m−1

∑
r=1

1

cos 2πr
m − cos

(2k+1)π
m

· ln sin
πr

m

+
1

2
sin

(2k + 1)π

m
·

m−1

∑
r=1

1

cos 2πr
m − cos (2k+1)π

m

·
{

ζ ′′
(

0,
r

m

)
+ ζ ′′

(
0, 1 − r

m

)}

which are valid for any k ∈ Z. By the way, two particular cases of (56a) and (62b) may represent some

special interest. Thus putting in the former k = m/2 when m is even yields

2m−1

∑
r=1

(−1)r · γ1

( r

2m

)
= −γ1 + m(2γ + ln 2 + 2 ln m) ln 2 (63)

However, the same relationship may be also derived from the multiplication theorem for the first

Stieltjes constant28

m−1

∑
r=1

γ1

( r

m

)
= (m − 1)γ1 − mγ ln m − m

2
ln2 m (64)

Putting 2m instead of m, and then, treating separately odd and even terms, we have

m−1

∑
r=0

γ1

(
2r + 1

2m

)
= m

{
γ1 − γ ln 4m − 1

2
ln2 m − ln2 2 − 2 ln 2 · ln m

}
(65)

28This is a particular case of the multiplication theorem for the first generalized Stieltjes constant. More general case of this

theorem and equivalent theorems for higher Stieltjes constants were derived in exercise no 64 [10, p. 101, Eqs. (62)–(63)]. Some

particular cases of these theorems appear also in [18, Eqs. (3.28), (3.54)]; Eq. (3.54) contains, unfortunately, an error (see footnote

42 [10, p. 101]).
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Subtracting from the above sum even terms γ1(2r/2m) for r = 1, 2, . . . , m − 1, immediately yields

(63). In other words, (63) may be also regarded as a direct consequence of the multiplication theorem

for the first Stieltjes constant. In contrast, the particular case of Eq. (62b) corresponding to k = m/2

when m is even

2m−1

∑
r=0

(−1)r · γ1

(
2r + 1

4m

)
= m

{
4π ln Γ

(
1

4

)
− π(4 ln 2 + 3 ln π + ln m + γ)

}
(66)

appears to be more interesting and cannot be derived solely from (64). Moreover, we can also combine

(66) with (65) by putting in the later 2m instead of m. Adding and subtracting them respectively yields:

m−1

∑
r=0

γ1

(
4r + 1

4m

)
=

m

2

{
2γ1 − γ

(
π + 6 ln 2 + 2 ln m

)
+ 4π ln Γ

(
1

4

)
− 4π ln 2

− 3π ln π − π ln m − 7 ln22 − 6 ln 2 · ln m − ln2m

}

m−1

∑
r=0

γ1

(
4r + 3

4m

)
=

m

2

{
2γ1 + γ

(
π − 6 ln 2 − 2 ln m

)
− 4π ln Γ

(
1

4

)
+ 4π ln 2

+ 3π ln π + π ln m − 7 ln22 − 6 ln 2 · ln m − ln2m

}

(67a,b)

From these equations it follows, inter alia, that sums γ1(1/8) +γ1(5/8) and γ1(1/12) +γ1(5/12) may

be expressed in terms of Γ(1/4), γ1, γ and elementary functions.29 Besides, the role of ln Γ(1/4) in

three latter identities seems quite intriguing because the logarithm of the Γ-function possesses very

similar properties

2m−1

∑
r=0

(−1)r · ln Γ

(
2r + 1

4m

)
= 2 ln Γ

(
1

4

)
− 1

2
(ln 2 + 2 ln π − ln m)

m−1

∑
r=0

ln Γ

(
4r + 1

4m

)
= ln Γ

(
1

4

)
+

1

2
(m − 1) ln 2π +

1

4
ln m

m−1

∑
r=0

ln Γ

(
4r + 3

4m

)
= − ln Γ

(
1

4

)
+

m

2
ln 2π +

1

4
ln

π2

m

Particular cases of (56b) corresponding to k = m/3 and k = m/6 are also interesting. Put in (56b) 3m

instead of m, and then, set k = m. This yields:

γ1

(
1

3m

)
− γ1

(
2

3m

)
+ γ1

(
4

3m

)
− γ1

(
5

3m

)
+ . . . + γ1

(
3m − 2

3m

)
− γ1

(
3m − 1

3m

)

=
πm√

3

{
6 ln Γ

(
1

3

)
− γ − 4 ln 2π +

1

2
ln 3 − ln m

} (68)

But the multiplication theorem (64) rewritten for 3m in place of m gives

γ1

(
1

3m

)
+ γ1

(
2

3m

)
+ γ1

(
4

3m

)
+ γ1

(
5

3m

)
+ . . . + γ1

(
3m − 2

3m

)
+ γ1

(
3m − 1

3m

)

= 2mγ1 − mγ(2 ln m + 3 ln 3)− m

2

(
3 ln23 + 6 ln 3 · ln m + 2 ln2m

) (69)

29For the value of γ1(3/4), see [10, p. 100].
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and hence

m−1

∑
r=0

γ1

(
3r + 1

3m

)
= m

{
γ1 − γ

(
π

2
√

3
+ ln m +

3

2
ln 3

)
+ π

√
3 ln Γ

(
1

3

)

− π

2
√

3

(
4 ln 2π − 1

2
ln 3 + ln m

)
− 1

4

(
3 ln23 + 6 ln 3 · ln m + 2 ln2m

)}
(69b)

Consider now the particular case of (56a) corresponding to k = m/6. Recalling that ln Γ(1/6) =
1
2 ln 3 − 1

3 ln 2 − 1
2 ln π + 2 ln Γ(1/3) , we have

γ1

(
1

6m

)
+ γ1

(
2

6m

)
− γ1

(
4

6m

)
− γ1

(
5

6m

)
+ . . . − γ1

(
3m − 2

6m

)
− γ1

(
3m − 1

6m

)

=
2πm√

3

{
12 ln Γ

(
1

3

)
− 2γ − 9 ln 2 + ln 3 − 8 ln π − 2 ln m

} (70)

By adding this to (69) rewritten for 2m instead of m, and then, by subtracting (69b) results in another

summation relation

m−1

∑
r=0

γ1

(
6r + 1

6m

)
= m

{
γ1 − γ

(√
3π

2
+ 2 ln 2 +

3

2
ln 3 + ln m

)
+ 3π

√
3 ln Γ

(
1

3

)

− π

2
√

3

(
14 ln 2 − 3

2
ln 3 + 12 ln π + 3 ln m

)
− ln22 − 3

4
ln23

−3 ln 2 · ln 3 − 2 ln 2 · ln m − 3

2
ln 3 · ln m − 1

2
ln2m

}

(71)

Previous relationships permit to derive several summation formulæ for γ1(. . . /12m). Put in (67a) 3m

instead of m and then represent the summation index r as 3l + k, where the new summation index l

runs through 0 to m − 1 for each k = 0, 1, 2. Then (67a) may be written as a sum of three terms last of

which equals (67b). Hence

m−1

∑
l=0

γ1

(
12l + 1

12m

)
+

m−1

∑
l=0

γ1

(
12l + 5

12m

)
=

m

2
{4γ1 − γ(4π + 12 ln 2 + 6 ln 3 + 4 ln m)

+16π ln Γ

(
1

4

)
− π(16 ln 2 + 12 ln π + 3 ln 3 + 4 ln m)− 14 ln22

− 3 ln23 − 18 ln 2 · ln 3 − 12 ln 2 · ln m − 6 ln 3 · ln m − 2 ln2m

}

(72)

Similarly, by separately treating odd and even terms in (71) written for 2m instead of m, we have

m−1

∑
l=0

γ1

(
12l + 1

12m

)
+

m−1

∑
l=0

γ1

(
12l + 7

12m

)
= 2m

{
γ1 − γ

(√
3π

2
+ 3 ln 2 +

3

2
ln 3 + ln m

)

+3π
√

3 ln Γ

(
1

3

)
− π

2
√

3

(
17 ln 2 − 3

2
ln 3 + 12 ln π + 3 ln m

)

−7

2
ln22 − 3

4
ln23 − 9

2
ln 2 · ln 3 − 3 ln 2 · ln m − 3

2
ln 3 · ln m − 1

2
ln2m

}
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From these relationships, it appears that the sum γ1(1/12) + γ1(5/12) may be expressed in terms

of Γ(1/4), γ1, γ and elementary functions, while γ1(1/12) + γ1(7/12) contains Γ(1/3) instead of

Γ(1/4).30 This is certainly correlated with the fact that Γ(1/12) may be written in terms of product

Γ(1/3) · Γ(1/4), see e.g. [12, p. 31]. Many particular cases of equations from pp. 21–24 will also imply

ζ ′′(0, p) + ζ ′′(0, 1 − p) at different rational p. For instance, setting in (56a) k = m/5 and recalling that

cos 2
5 π = 1

4 (
√

5− 1), cos 4
5 π = − 1

4 (
√

5+ 1) and sin 1
5 π = 1

4

√
10 − 2

√
5, as well as using several times

the multiplication theorem (64), yields

m−1

∑
l=0

γ1

(
5l + 1

5m

)
+

m−1

∑
l=0

γ1

(
5l + 4

5m

)
=

m

2
√

5

{
4γ1

√
5 + 10

[
ζ ′′
(

0,
1

5

)
+ ζ ′′

(
0,

4

5

)]

−γ
(

4
√

5 ln m + 10 ln
(
1 +

√
5
)
− 10 ln 2 + 5

√
5 ln 5

)

−10
(
ln 2 + ln 5 + ln π + ln m

)
· ln
(
1 +

√
5) + 10 ln22 − 10

1 +
√

5
ln25 − 2

√
5 ln2m

+15 ln 2 · ln 5 + 10 ln 2 · ln π + 5 ln 5 · ln π + 10 ln 2 · ln m − 5
√

5 ln 5 · ln m

}

Interestingly, the golden ratio φ seems to play a certain role in the above formula.

Let now consider the case k = m/8, where k should be positive integer. Eq. (56b), employed

together with both Eqs. (67a) and (67b), provides

γ1

(
1

8m

)
+ γ1

(
3

8m

)
− γ1

(
5

8m

)
− γ1

(
7

8m

)
+ . . . + γ1

(
8m − 7

8m

)
+ γ1

(
8m − 5

8m

)

−γ1

(
8m − 3

8m

)
− γ1

(
8m − 1

8m

)
= πm

√
2

{
8 ln Γ

(
1

8

)
− 4 ln Γ

(
1

4

)
− 2γ − 11 ln 2

−4 ln π − 2 ln m − 2 ln
(
1 +

√
2
)}

At the same time, Eq. (56a) for k = m/8, used together with (63), leads to

γ1

(
1

8m

)
− γ1

(
3

8m

)
− γ1

(
5

8m

)
+ γ1

(
7

8m

)
+ . . . + γ1

(
8m − 7

8m

)
− γ1

(
8m − 5

8m

)

−γ1

(
8m − 3

8m

)
+ γ1

(
8m − 1

8m

)
= m

√
2

{
4

[
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)]

−4
(
γ + 4 ln 2 + ln π + ln m

)
· ln
(
1 +

√
2
)
+7 ln22 + 2 ln 2 · ln π

}

Adding both equations together results in another summation relation

m−1

∑
r=0

γ1

(
8r + 1

8m

)
−

m−1

∑
r=0

γ1

(
8r + 5

8m

)
=

m√
2

{
4

[
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)]
+ 8π ln Γ

(
1

8

)

−4π ln Γ

(
1

4

)
− 2γ

[
π + 2 ln

(
1 +

√
2
)]
− 2
(
π + 8 ln 2 + 2 ln π + 2 ln m

)
· ln
(
1 +

√
2
)
+

30At the same time, the difference γ1(1/12)− γ1(7/12) may be written as function of Γ(1/4) and ζ ′′(0, 1/12) + ζ ′′(0, 11/12).

This follows from the argument developed here later.
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+7 ln22 + 2 ln 2 · ln π − π(11 ln 2 + 4 ln π + 2 ln m)

}

Analogous relation with “+” instead of “−” in the left part has much more simple form and follows

directly from (67a) rewritten for 2m in place of m

m−1

∑
r=0

γ1

(
8r + 1

8m

)
+

m−1

∑
r=0

γ1

(
8r + 5

8m

)
= m

{
2γ1 − γ

(
π + 8 ln 2 + 2 ln m

)
+ 4π ln Γ

(
1

4

)

− 5π ln 2 − 3π ln π − π ln m − 14 ln22 − 8 ln 2 · ln m − ln2m

}

Similarly, one can obtain equations for ∑[γ1(
8r+3
8m )± γ1(

8r+7
8m )].

The above summation formulæ are not only interesting in themselves, but also may be useful

for the closed-form determination of certain first Stieltjes constants (expressions in Appendix A are

obtained precisely by means of such formulæ). Besides, summation formulæ akin to (65), (67a), (69b),

(71) may be often more easily obtained by the direct summation of (50). For the derivation of such a

formula, we, first, write in (50) mn for m and rn + k for r, where n ∈ N and k = 1, 2, . . . , n − 1. Then,

we remark that for l = 1, 2, 3, . . . , mn − 1, we have

m−1

∑
r=0

cos
2πl(nr + k)

nm
= m cos

2πlk

nm
·
{

δl,m + δl,2m + δl,3m + . . . + δl,(n−1)m

}

m−1

∑
r=0

sin
2πl(nr + k)

nm
= m sin

2πlk

nm
·
{

δl,m + δl,2m + δl,3m + . . . + δl,(n−1)m

}

m−1

∑
r=0

ctg
π(nr + k)

nm
= m ctg

πk

n

see e.g. [38, p. 8, no 33], whence

m−1

∑
r=0

γ1

(
nr + k

nm

)
= m

(
γ1 − γ ln 2mn − ln22 − ln 2 · ln πmn − 1

2
ln2mn

)

+m
n−1

∑
λ=1

cos
2πλk

n
· ζ ′′
(

0,
λ

n

)
+ mπ

n−1

∑
λ=1

sin
2πλk

n
· ln Γ

(
λ

n

)

−mπ

2
(γ + ln 2πmn) ctg

πk

n
+ m(γ + ln 2πmn)

n−1

∑
λ=1

cos
2πλk

n
· ln sin

πλ

n

Comparing the right-hand side of this equation with the parent equation (50) finally yields

1

m

m−1

∑
r=0

γ1

(
nr + k

nm

)
= γ1

(
k

n

)
−
{

γ + ln 2n +
1

2
ln m +

π

2
ctg

πk

n
−

n−1

∑
λ=1

cos
2πλk

n
· ln sin

πλ

n

}
ln m

(73)

This relationship represents a special variant of the generalized multiplication theorem for the first

generalized Stieltjes constant.31

31This variant may be also obtained from [23, Eq. (6.6)] or [10, p. 101, Eq. (63)] by making use of Gauss’ Digamma theorem

(B.4).
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Another summation formula with the first generalized Stieltjes constants may be obtained by us-

ing respectively (54), (56b), (B.9) and (61)

m−1

∑
r=1

ctg
πr

m
· γ1

(
r

m

)
=

π

6

{
(1 − m)(m − 2)γ + 2(m2 − 1) ln 2π − (m2 + 2) ln m

}

−2π
m−1

∑
l=1

l·ln Γ

(
l

m

) (74)

The normalized first-order moment of the first generalized Stieltjes constant may be derived from

(55) by making use of (B.9), (54), (45), (59), as well as (58). This yields

m−1

∑
r=1

r

m
· γ1

(
r

m

)
=

1

2

{
(m − 1)γ1 − mγ ln m − m

2
ln2m

}
− π

2m
(γ + ln 2πm)

m−1

∑
l=1

l·ctg
πl

m

−π

2

m−1

∑
l=1

ctg
πl

m
· ln Γ

(
l

m

) (75)

More complicated summation relations may be obtained if considering other functions. For exam-

ple, the summation formula with the Digamma function reads

m−1

∑
r=1

Ψ

(
r

m

)
· γ1

(
r

m

)
=
[
γ(1 − m)− m ln m

]
γ1 + mγ2 ln m +

{
(m − 1)(m − 2)π2

12

−m(m − 1) ln22 + 2m ln 2 · ln m +
3m

2
ln2m

}
γ − m(m − 1) ln32 +

m

2
ln3m

−
[
m(m − 2) ln m + m(m − 1) ln π

]
ln22 +

3m

2
ln 2 · ln2m + m ln 2 · ln π · ln m

− (m2 − 1)π2

6
ln 2π +

(m2 + 2)π2

12
ln m + m(γ + ln 2πm)

m−1

∑
l=1

ln2sin
πl

m

+
m

2

m−1

∑
l=1

{
ζ ′′
(

0,
l

m

)
+ ζ ′′

(
0, 1 − l

m

)}
· ln sin

πl

m
+ π2

m−1

∑
l=1

l·ln Γ

(
l

m

)

(76)

In order to obtain this expression we start from (50) and we successively employ (B.6), (B.11), (58),

(59) as well as multiplication theorems for the logarithm of the Γ-function and for the Ψ-function

m−1

∑
r=1

ln Γ

(
r

m

)
=

1

2
(m − 1) ln 2π − 1

2
ln m ,

m−1

∑
r=1

Ψ

(
r

m

)
= γ(1 − m)− m ln m (77)

Note that, generally, when summing the first generalized Stieltjes constants with an odd function, one

arrives at the logarithm of the Γ-function, while summing with an even function leads to a reflected

sum of two second-order derivatives of the Hurwitz ζ-function. The latter sum is the subject of a

more detailed study presented in the next section.

II.5. Several remarks related to the sum ζ ′′(0, p) + ζ ′′(0, 1− p)

From the above formulæ it appears that the sum of ζ ′′(0, p) with its reflected version ζ ′′(0, 1 −
p), at positive rational p less than 1, plays the fundamental role for the first generalized Stieltjes

constant at rational argument. We do not know which is the transcendence of such a sum, but it is not
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unreasonable to expect that it is lower than that of solely ζ ′′(0, p). Furthermore, in our previous work

[10, pp. 66–71], we demonstrated that this sum has several comparatively simple integral and series

representations; below, we briefly present some of them. In exercises no 20–21, we dealt with integral

Φ(ϕ), which we, unfortunately, could not reduce to elementary functions (despite of its simple and

naive appearance). Written in terms of this integral, the above sum reads32

ζ ′′(0, p) + ζ ′′(0, 1 − p) = π ctg 2πp ·
{

2 ln Γ(p) + ln sin πp + (2p − 1) ln 2π − ln π
}

−2 ln 2π · ln
(
2 sin πp

)
+

∞̂

0

e−x ln x

ch x − cos 2πp
dx

(78)

where parameter p should lie within the strip 0 < Re p < 1. By a simple change of variable, the last

integral may be rewritten in a variety of other forms. For instance,

∞̂

0

e−x ln x

ch x − cos 2πp
dx = 2

1
ˆ

0

x ln ln 1
x

x2 − 2x cos 2πp + 1
dx = 2

∞̂

1

ln ln x

x(x2 − 2x cos 2πp + 1)
dx

=
±2

sin 2πp
· Im

∞̂

0

ln x

ex − e±2πip
dx =

±2

sin 2πp
· Im

1
ˆ

0

x ln ln 1
x

x − e±2πip
dx

=
±2

sin 2πp
· Im

∞̂

1

ln ln x

x
(
x − e±2πip

) dx (79)

The latter forms are particularly simple and display the close connection to the polylogarithms. Let

now focus our attention on the last integral from the first line. By partial fraction decomposition it

may be written in terms of three other integrals

∞̂

1

ln ln x

xn(x2 − 2x cos 2πp + 1)
dx ,

∞̂

1

ln ln x

xk
dx and

∞̂

1

ln ln x

x2 − 2x cos 2πp + 1
dx (80)

where n and k are positive integers greater than 1. The values of the last two integrals, thanks to Euler,

Legendre and Malmsten, are known,33 so that the problem of the evaluation of (78) may be reduced

to the first integral. We, however, note that the success of this technique depends on the appropriate

choice of p and n. Indeed, by expanding the integrand of the first integral in (80) into partial fractions,

we have

1

xn(x2 − 2x cos 2πp + 1)
=

a0

x(x2 − 2x cos 2πp + 1)
+

a1

x2 − 2x cos 2πp + 1
+

n

∑
l=2

al

xl
(81)

with coefficients al given by

a0 =
sin 2πpn

sin 2πp
, a1 = − sin 2πp(n − 1)

sin 2πp
, a2 = +

sin 2πp(n − 1)

sin 2πp
, . . . ,

al =
sin 2πp(n − l + 1)

sin 2πp
, . . . , an−1 = 2 cos 2πp , an = 1 .

32Put in [10, p. 69, Eq. 49] ϕ = π(2p− 1).
33See [67, p. 24], [10, Sect. 4, no 2, 29-h, 30]) or (C.5) in Appendix C.
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But if parameter p is such that a0 = 0, the wanted integral cannot be collared. The most unpleasant

is that this situation occurs precisely when p = k/n, where k is positive integer or demi-integer not

greater than n. We, in turn, are able to evaluate

∞̂

1

ln ln x

xn(x2 − 2x cos 2πp + 1)
dx =

1
ˆ

0

xn ln ln 1
x

x2 − 2x cos 2πp + 1
dx =

1

2

∞̂

0

e−nx ln x

ch x − cos 2πp
dx (82)

only for those p which may be written as k/n, in which case it can be expressed in terms of ln Γ(k/n)

[see Appendix C]. Thus, the evaluation of the integral

∞̂

0

e−nx · ln x

ch x − cos 2πk
m

dx = 2

1
ˆ

0

xn ln ln 1
x

x2 − 2x cos 2πk
m + 1

dx = 2

∞̂

1

ln ln x

xn
(

x2 − 2x cos 2πk
m + 1

) dx

(83)

with n = 2, 3, 4, . . . , number m being positive integer such that m 6= 2kn/l for l = ±1, ±2, ±3, . . . ,

could bring the solution to our problem, but currently we do not know if this integral can be evaluated

in terms of lower transcendental functions. However, it should be noted that integrals closely related

to (83) and (C.3) were a subject of several investigations appeared already in the XIXth century. The

most significant contribution seems to belong to Malmsten who showed in 1842 that

sin a

Γ(s)

1
ˆ

0

xy · lns−1 1
x

x2 + 2x cos a + 1
dx =

∞̂

0

sh ax

sh πx
·

cos
(
s arctg x

y

)

(x2 + y2)s/2
dx =

∞

∑
l=1

(−1)l−1 sin al

(y + l)s
(84)

y, s ∈ C, −π < a < +π, see [66, pp. 20–25] and [67, p. 12]. He studied these integrals for different

values of parameters y, s and a, and evaluated some of them in a closed form. The above equality

permitted to Malmsten to derive numerous fascinating results, such as, for example, formulæ (17)

and (26b). Furthermore, his investigations devoted to the cases y = 0, a = π/2 and y = 0, a =

π/3 resulted in two important reflection formulæ for the L- and M-functions respectively [66, p. 23,

Eq. (36)], [67, pp. 17–18, Eqs. (51)–(52)], [10, pp. 35–36, Eq. (21), Fig. 3] (these formulæ are similar

to Euler–Riemann’s reflection formula for the ζ-function, see also footnote 21). Notwithstanding,

Malmsten failed to show that more generally, when a is a rational multiple of π, one has

∞

∑
l=1

(−1)l−1 sin al

(y + l)s
=

1

(2n)s

2n−1

∑
l=1

(−1)l−1 sin
πml

n
· ζ

(
s,

y + l

2n

)
, a ≡ mπ

n
(85)

m = 1, 2, 3, . . . , n − 1, which may be obtained by applying Hurwitz’s method used in (27)–(35) to

series (84).34, 35 Now, Malmsten’s integrals from (84) are related to ours from (79) as follows

1
ˆ

0

x ln ln 1
x

x2 − 2x cos 2πp + 1
dx = lim

s→1





∂

∂s

1
ˆ

0

x · lns−1 1
x

x2 − 2x cos 2πp + 1
dx




 (86)

34Actually, Malmsten also studied the case a = mπ/n, but quite superficially and mainly for y = 0.
35Note that for s = 1, 2, 3, . . . the right part of (85) reduces to polygamma functions, see e.g. [10, pp. 71–72, no 23].
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Therefore, by (84) we have

1
ˆ

0

x · lns−1 1
x

x2 − 2x cos 2πp + 1
dx = − Γ(s)

sin 2πp

∞̂

0

sh[π(2p − 1)x]

sh πx
· cos(s arctg x)

(x2 + 1)s/2
dx

= − Γ(s)

2 sin 2πp

+∞
ˆ

−∞

sh[π(2p − 1)x]

sh πx
· dx

(1 ± ix)s
, Re s > 0.

(87)

Integrals appearing on the right-hand side are also quite similar to Jensen’s formulæ for ζ(s) derived

between 1893 and 1895 by contour integration methods, see [49] and [50]. Taking into account that

these references are hard to find and that the same formulæ were later reprinted with misprints,36 we

find it useful to reproduce them here as well

ζ(s) =
1

s − 1
+

1

2
+ 2

π/2
ˆ

0

(cos θ)s−2 sin sθ

e2π tg θ − 1
dθ =

1

s − 1
+

1

2
+ 2

∞̂

0

sin(s arctg x) dx

(e2πx − 1) (x2 + 1)
s/2

ζ(s) =
2s−1

s − 1
+ i 2s−1

∞̂

0

(1 + ix)s − (1 − ix)s

(eπx + 1) (x2 + 1)
s dx =

2s−1

s − 1
− 2s

∞̂

0

sin(s arctg x) dx

(eπx + 1) (x2 + 1)s/2

ζ(s) =
π

2(s − 1)

+∞
ˆ

−∞

1

ch2πx
· dx
(

1
2 + ix

)s−1
=

π 2s−2

s − 1

∞̂

0

cos
[
(s − 1) arctg x

]

(x2 + 1)
(s−1)/2

ch2 1
2 πx

dx

(88)

s ∈ C, s 6= 1, where final simplifications were done later by Lindelöf [65, p. 103] who also gave

details of their derivation.37 Application of contour integration methods to integrals (87) seems quite

attractive as well (especially if p is rational), but the branch point at ±i is really annoying.

Other representations for ζ ′′(0, p) + ζ ′′(0, 1− p) may also involve integrals

∞̂

0

ln(x2 + p2) · arctg(x/p)

e2πx − 1
dx or

∞̂

0

ln2(ip + x)− ln2(ip − x)

e2πx − 1
dx

which directly follow from the well-known Hermite representation for the Hurwitz ζ-function [44,

p. 66], [65, p. 106], [7, vol. I, p. 26, Eq. 1.10(7)].

The sum ζ ′′(0, p) + ζ ′′(0, 1 − p) may be also reduced to an important logarithmic–trigonometric

series

ζ ′′(0, p) + ζ ′′(0, 1 − p) = −2(γ + ln 2π) ln(2 sin πp) + 2
∞

∑
n=1

cos 2πpn · ln n

n

see [10, p. 69, no 22]. This series, unlike the similar sine-series, is not known to be reducible to any

elementary or classical function of analysis; however, it was remarked by Landau [59, pp. 180–182]

36In the well-known monograph [7, vol. I], in formula (13) on p. 33, “(e2πt + 1)−t” should be replaced by “(eπt + 1)−t”.
37Jensen did not provide proofs for these formulæ; he only stated that he had found them in his notes,38and added that they

can be easily derived by Cauchy’s residue theorem. By the way, the first of these three formulæ was also obtained by Franel

[50, 33, 49].
38Je trouve encore, dans mes notes, entre autres, les formules. . . [50].
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that it has some common properties with the logarithm of the Γ-function. Besides, it also appeared in

works of Lerch [63] and Gut [40].

Another way to treat the problem could be to use the antiderivatives of the first generalized Stielt-

jes constant Γ1(p). In [10, p. 69, no 22], we showed that the sum ζ ′′(0, p) + ζ ′′(0, 1 − p) may be also

written in terms of such functions

ζ ′′(0, p) + ζ ′′(0, 1− p) = −(3 ln 2 + 2 ln π) ln 2 − 4Γ1(1/2) + 2Γ1(p) + 2Γ1(1 − p)

The latter formula, inserted into (50), gives an equation which is in some way analogous Malmsten’s

representation for the Digamma function (B.4c) [in the sense that for rational arguments it provides a

connection between the function and its derivative].

Finally, note that almost all above expressions remain valid everywhere in the strip 0 < Re p < 1,

so it is not impossible that for rational p they could be further simplified or reduced to less transcen-

dental forms. Thus, the question of the possibility to express any first generalized Stieltjes constant of

a rational argument not only via the Γ-function, γ1, γ and some “relatively simple” function, but

solely via the Γ-function, γ1, γ and elementary functions remains open and is directly connected to

the transcendence of the reflected sum ζ ′′(0, p) + ζ ′′(0, 1 − p) at rational p, which is currently not

sufficiently well studied.

III. Extensions of the theorem to the second and higher Stieltjes constants

It can be reasonably expected that similar theorems could be derived for the higher Stieltjes con-

stants. Such a demonstration could be carried out again with the help of Ja(p) and integral (19) where

ln x is replaced with lnn x [see below how integral (22) is used for the determination of the second

Stieltjes constant]. As regards the equation for the difference between generalized Stieltjes constants,

which is also necessary, it is simply sufficient to note that from (2) and (32) it follows that

γn

(
r

m

)
− γn

(
1 − r

m

)
= (−1)n lim

a→1

{
ζ(n)

(
a,

r

m

)
− ζ(n)

(
a, 1 − r

m

)}
=

= 4(−1)n lim
a→1

∂n

∂an

{
Γ(1 − a)

(2πm)1−a
cos

πa

2
·
m−1

∑
l=1

sin
2πrl

m
· ζ

(
1 − a,

l

m

)}

n = 1, 2, 3, . . . and where r and m are positive integers such that r < m. In particular, for the second

generalized Stieltjes constant, the latter formula takes the form39

γ2

(
r

m

)
− γ2

(
1 − r

m

)
= 2π

m−1

∑
l=1

sin
2πrl

m
· ζ ′′
(

0,
l

m

)
+ π

[
π2

12
+ (γ + ln 2πm)2

]
ctg

πr

m

−4π(γ + ln 2πm)
m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

) (89)

In order to obtain a formula for γ2(r/m), we take again expansion (46) and write down its terms up

to O(a − 1)3. Hence

∞̂

0

(ch [(2p − 1)x]− 1) ln2 x

sh x
dx =

2

3
Cm(r)− 2Bm(r) ln πm +

{
2 ln2 πm +

π2

6

}
Am(r)−

39This formula also appears in an unpublished work sent to the author by Donal Connon.
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−2γ1(γ − ln 2) +
2

3
ζ(3)− 2

3
γ3 − γ2 +

(
γ2 − π2

6

)
ln 2

+
π2

12
ln πm + ln π · ln m · ln πm +

1

3

(
ln3 π + ln3 m − ln3 2

)

where p ≡ r/m and

Cm(r) ≡
m

∑
l=1

cos
2πrl

m
· ζ ′′′

(
0,

l

m

)
=

m−1

∑
l=1

cos
2πrl

m
· ζ ′′′

(
0,

l

m

)
+

3

2
γ2 + γ3 − ζ(3)

+3γ1γ − 1

2
ln32π +

{
3γ1 +

3

2
γ2 − π2

8

}
ln 2π

Comparing the latter integral to (22) and then using (49), we obtain

γ2

(
r

m

)
+ γ2

(
1 − r

m

)
= 2γ2 − 4γ1 ln m + 2γ2 ln 2 +

4

3

m−1

∑
l=1

cos
2πrl

m
· ζ ′′′

(
0,

l

m

)

−4(γ + ln 2πm)
m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)
+ 2

[
π2

12
− (γ + ln 2πm)2

]
×

×
m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
− π2

6
ln 2 + 2γ

(
ln2m + 2 ln22 + 2 ln 2 · ln πm

)

+2
(

ln22 + ln2m + ln2π + 2 ln π ln m + 2 ln 2 ln πm
)

ln 2 +
2

3
ln3 m

which, being added to (89), finally yields

γ2

(
r

m

)
= γ2 +

2

3

m−1

∑
l=1

cos
2πrl

m
· ζ ′′′

(
0,

l

m

)
− 2(γ + ln 2πm)

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)

+π
m−1

∑
l=1

sin
2πrl

m
· ζ ′′
(

0,
l

m

)
− 2π(γ + ln 2πm)

m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)

+

[
π2

12
− (γ + ln 2πm)2

]
·
m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m
+ γ2 ln 2 − 2γ1 ln m

+

[
π2

12
+ (γ + ln 2πm)2

]
· π

2
ctg

πr

m
+ γ

(
ln2m + 2 ln22 + 2 ln 2 · ln πm

)
−

−π2

12
ln 2 +

(
ln22 + ln2m + ln2π + 2 ln π ln m + 2 ln 2 ln πm

)
ln 2 +

1

3
ln3 m

(90)

This formula is an analog of (50) for the second generalized Stieltjes constant. It can be also reduced

to other forms if necessary. For instance, similarly to (53), we may rewrite it in the form containing
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the Ψ-function

γ2

(
r

m

)
= γ2 +

2

3

m−1

∑
l=1

cos
2πrl

m
· ζ ′′′

(
0,

l

m

)
− 2(γ + ln 2πm)

m−1

∑
l=1

cos
2πrl

m
· ζ ′′
(

0,
l

m

)

+π
m−1

∑
l=1

sin
2πrl

m
· ζ ′′
(

0,
l

m

)
− 2π(γ + ln 2πm)

m−1

∑
l=1

sin
2πrl

m
· ln Γ

(
l

m

)
− 2γ1 ln m

−γ3 −
[
(γ + ln 2πm)2 − π2

12

]
·Ψ
(

r

m

)
+

π3

12
ctg

πr

m
− γ2 ln

(
4π2m3

)
+

π2

12
(γ + ln m)

−γ
(

ln22π + 4 ln m · ln 2π + 2 ln2m
)
−
{

ln22π + 2 ln 2π · ln m +
2

3
ln2m

}
ln m

Thus, corresponding expressions for higher generalized Stieltjes constants at rational points are ex-

pected to be quite long and to contain higher derivatives of the Hurwitz zeta-function at zero at

rational points ζ(n)(0, l/m) whose properties are currently little studied.
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Appendix A. Closed-form expressions for some Stieltjes constants

In this first supplementary part of our work, we provide some information about particular values

of γ1(v) which are free from ζ ′′(0, l/m) + ζ ′′(0, 1− l/m) or which contain only one combination of it.

The value of γ1(1/2) has been long-time known and may be found in numerous works. The values of

γ1(1/4), γ1(3/4) and γ1(1/3) were independently obtained by Donal Connon in [21, pp. 17–18] and

by the author in [10, p. 100]. Closed-form expressions for γ1(2/3), γ1(1/6) and γ1(5/6) were given

by the author in [10, pp. 100–101]. All these values do not contain the Hurwitz ζ-function. Below,

we provide some further values which may be of interest and which may be reduced to only one

transcendent ζ ′′(0, l/m) + ζ ′′(0, 1 − l/m).

γ1

(
1

5

)
= γ1 +

√
5

2

{
ζ ′′
(

0,
1

5

)
+ ζ ′′

(
0,

4

5

)}
+

π
√

10 + 2
√

5

2
ln Γ

(
1

5

)

+
π
√

10 − 2
√

5

2
ln Γ

(
2

5

)
+

{√
5

2
ln 2 −

√
5

2
ln
(
1 +

√
5
)
− 5

4
ln 5 − π

√
25 + 10

√
5

10

}
· γ

−
√

5

2

{
ln 2 + ln 5 + ln π +

π
√

25 − 10
√

5

10

}
· ln
(
1 +

√
5) +

√
5

2
ln22 +

√
5
(
1 −

√
5
)

8
ln25

+
3
√

5

4
ln 2 · ln 5 +

√
5

2
ln 2 · ln π +

√
5

4
ln 5 · ln π − π

(
2
√

25 + 10
√

5 + 5
√

25 + 2
√

5
)

20
ln 2

−π
(
4
√

25 + 10
√

5 − 5
√

5 + 2
√

5
)

40
ln 5 − π

(
5
√

5 + 2
√

5 +
√

25 + 10
√

5
)

10
ln π

= −8.030205511 . . .

Stieltjes constants γ1(2/5), γ1(3/5) and γ1(4/5) may be similarly expressed in terms of ζ ′′(0, 1/5) +

ζ ′′(0, 4/5), Γ(1/5), Γ(2/5), γ1, γ and elementary functions, which, by the way, contain the golden

ratio φ.

γ1

(
1

8

)
= γ1 +

√
2

{
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)}
+ 2π

√
2 ln Γ

(
1

8

)
− π

√
2
(
1 −

√
2
)

ln Γ

(
1

4

)

−
{

1 +
√

2

2
π + 4 ln 2 +

√
2 ln
(
1 +

√
2
)
}
· γ − 1√

2

(
π + 8 ln 2 + 2 ln π

)
· ln
(
1 +

√
2)

−7
(
4 −

√
2
)

4
ln22 +

1√
2

ln 2 · ln π − π
(
10 + 11

√
2
)

4
ln 2 − π

(
3 + 2

√
2
)

2
ln π

= −16.64171976 . . .

γ1

(
3

8

)
= γ1 −

√
2

{
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)}
+ 2π

√
2 ln Γ

(
1

8

)
− π

√
2
(
1 +

√
2
)

ln Γ

(
1

4

)

+

{
1 −

√
2

2
π − 4 ln 2 +

√
2 ln
(
1 +

√
2
)
}
· γ − 1√

2

(
π − 8 ln 2 − 2 ln π

)
· ln
(
1 +

√
2)

−7
(
4 +

√
2
)

4
ln22 − 1√

2
ln 2 · ln π +

π
(
10 − 11

√
2
)

4
ln 2 +

π
(
3 − 2

√
2
)

2
ln π

= −2.577714402 . . .

36



γ1

(
5

8

)
= γ1 −

√
2

{
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)}
− 2π

√
2 ln Γ

(
1

8

)
+ π

√
2
(
1 +

√
2
)

ln Γ

(
1

4

)

−
{

1 −
√

2

2
π + 4 ln 2 −

√
2 ln
(
1 +

√
2
)
}
· γ +

1√
2

(
π + 8 ln 2 + 2 ln π

)
· ln
(
1 +

√
2)

−7
(
4 +

√
2
)

4
ln22 − 1√

2
ln 2 · ln π − π

(
10 − 11

√
2
)

4
ln 2 − π

(
3 − 2

√
2
)

2
ln π

= −0.7353809459 . . .

γ1

(
7

8

)
= γ1 +

√
2

{
ζ ′′
(

0,
1

8

)
+ ζ ′′

(
0,

7

8

)}
− 2π

√
2 ln Γ

(
1

8

)
+ π

√
2
(
1 −

√
2
)

ln Γ

(
1

4

)

+

{
1 +

√
2

2
π − 4 ln 2 −

√
2 ln
(
1 +

√
2
)
}
· γ +

1√
2

(
π − 8 ln 2 − 2 ln π

)
· ln
(
1 +

√
2)

−7
(
4 −

√
2
)

4
ln22 +

1√
2

ln 2 · ln π +
π
(
10 + 11

√
2
)

4
ln 2 +

π
(
3 + 2

√
2
)

2
ln π

= −0.1906592305 . . .

γ1

(
1

12

)
= γ1 +

√
3

{
ζ ′′
(

0,
1

12

)
+ ζ ′′

(
0,

11

12

)}
+ 4π ln Γ

(
1

4

)
+ 3π

√
3 ln Γ

(
1

3

)

−
{

2 +
√

3

2
π +

3

2
ln 3 −

√
3(1 −

√
3) ln 2 + 2

√
3 ln
(
1 +

√
3
)
}
· γ

−2
√

3
(
3 ln 2 + ln 3 + ln π

)
· ln
(
1 +

√
3)− 7 − 6

√
3

2
ln22 − 3

4
ln23

+
3
√

3(1 −
√

3)

2
ln 3 · ln 2 +

√
3 ln 2 · ln π − π

(
17 + 8

√
3
)

2
√

3
ln 2

+
π
(
1 −

√
3
)√

3

4
ln 3 − π

√
3(2 +

√
3) ln π = −29.84287823 . . .

γ1

(
7

12

)
= γ1 −

√
3

{
ζ ′′
(

0,
1

12

)
+ ζ ′′

(
0,

11

12

)}
− 4π ln Γ

(
1

4

)
+ 3π

√
3 ln Γ

(
1

3

)

−
{
−2 +

√
3

2
π +

3

2
ln 3 +

√
3(1 +

√
3) ln 2 − 2

√
3 ln
(
1 +

√
3
)
}
· γ

+2
√

3
(
3 ln 2 + ln 3 + ln π

)
· ln
(
1 +

√
3)− 7 + 6

√
3

2
ln22 − 3

4
ln23

−3
√

3(1 +
√

3)

2
ln 3 · ln 2 −

√
3 ln 2 · ln π − π

(
17 − 8

√
3
)

2
√

3
ln 2

+
π
(
1 +

√
3
)√

3

4
ln 3 − π

√
3(2 −

√
3) ln π = −0.900932495 . . .
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Expressions for Stieltjes constants γ1(5/12) and γ1(11/12)may be similarly written in terms of ζ ′′(0, 1/12)+

ζ ′′(0, 11/12), Γ(1/3), Γ(1/4), γ1, γ and elementary functions, see e.g. (72).

Appendix B. Some results from the theory of finite Fourier series. Applications to certain summa-

tions involving the Ψ-function and the Hurwitz ζ-function

Appendix B.1. Theoretical part

Finite Fourier series are well-known and widely used in discrete mathematics, numerical analysis,

engineering sciences (especially in signal and image processing) and in a lot of related disciplines.

Unlike usual Fourier series, which are essentially variants or particular cases of the same formula,

finite Fourier series may take quite different forms and expressions. For instance, in engineering

sciences, one usually deals with the following 2m-points Fourier series

fm(r) =
am(0)

2
+

m−1

∑
l=1

(
am(l) cos

πrl

m
+ bm(l) sin

πrl

m

)
+ (−1)r am(m)

2

with r = 0, 1, 2, . . . , 2m − 1 and m ∈ N. Thanks to the orthogonality properties of circular functions,

one may determine the coefficients in this expansion:




am(k) =
1

m

2m−1

∑
r=1

fm(r) cos
πrk

m
, k = 0, 1, 2, . . . , m

bm(k) =
1

m

2m−1

∑
r=1

fm(r) sin
πrk

m
, k = 1, 2, 3, . . . , m − 1

as well as derive Parseval’s theorem

1

m

2m−1

∑
r=1

f 2
m(r) =

a2
m(0)

2
+

m−1

∑
l=1

(
a2

m(l) + b2
m(l)

)
+

a2
m(m)

2
,

see for more details [41, Chapter 6].

In contrast, in our researches, we encounter the following (m − 1)-points finite Fourier series

fm(r) = am(0) +
m−1

∑
l=1

(
am(l) cos

2πrl

m
+ bm(l) sin

2πrl

m

)
(B.1)

r = 1, 2, 3, . . . , m − 1, m ∈ N, for which inversion formulæ and Parseval’s theorem are quite different.

Let, first, derive the inversion formulæ for the coefficients of this series. Multiplying both sides by

cos(2πrk/m), where k = 1, 2, 3, . . . , m − 1, and summing over r ∈ [1, m − 1], gives

m−1

∑
r=1

fm(r) cos
2πrk

m
=

m−1

∑
r=1

[
am(0) +

m−1

∑
l=1

am(l) cos
2πrl

m
+

m−1

∑
l=1

bm(l) sin
2πrl

m

]
cos

2πrk

m

= am(0)
m−1

∑
r=1

cos
2πrk

m
︸ ︷︷ ︸

−1

+
m−1

∑
l=1

am(l)
m−1

∑
r=1

cos
2πrl

m
· cos

2πrk

m
︸ ︷︷ ︸

1
2 m(δl ,k+δl ,m−k)−1

+
m−1

∑
l=1

bm(l)
m−1

∑
r=1

sin
2πrl

m
· cos

2πrk

m
︸ ︷︷ ︸

0

= −am(0)−
m−1

∑
l=1

am(l) +
m

2

{
am(k) + am(m − k)

}

(B.2)
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Similarly, multiplying both sides of (B.1) by sin(2πrk/m), where k = 1, 2, 3, . . . , m − 1, and summing

over r ∈ [1, m − 1], yields

m−1

∑
r=1

fm(r) sin
2πrk

m
=

m−1

∑
r=1

[
am(0) +

m−1

∑
l=1

am(l) cos
2πrl

m
+

m−1

∑
l=1

bm(l) sin
2πrl

m

]
sin

2πrk

m

= am(0)
m−1

∑
r=1

sin
2πrk

m
︸ ︷︷ ︸

0

+
m−1

∑
l=1

am(l)
m−1

∑
r=1

cos
2πrl

m
· sin

2πrk

m
︸ ︷︷ ︸

0

+
m−1

∑
l=1

bm(l)
m−1

∑
r=1

sin
2πrl

m
· sin

2πrk

m
︸ ︷︷ ︸

1
2 m(δl ,k−δl ,m−k)

=
m

2

{
bm(k)− bm(m − k)

}

(B.3)

Finally, Parseval’s equality for the finite series (B.1) reads:

m−1

∑
r=1

f 2
m(r) =

m−1

∑
r=1

[
am(0) +

m−1

∑
l=1

am(l) cos
2πrl

m
+

m−1

∑
l=1

bm(l) sin
2πrl

m

]2

=

=
m−1

∑
r=1

a2
m(0) + 2am(0)

m−1

∑
l=1

am(l)
m−1

∑
r=1

cos
2πrl

m
︸ ︷︷ ︸

−1

+2am(0)
m−1

∑
l=1

bm(l)
m−1

∑
r=1

sin
2πrl

m
︸ ︷︷ ︸

0

+2
m−1

∑
l=1

m−1

∑
n=1

am(l)bm(n)
m−1

∑
r=1

cos
2πrl

m
· sin

2πrn

m
︸ ︷︷ ︸

0

+
m−1

∑
l=1

m−1

∑
n=1

am(l)am(n)
m−1

∑
r=1

cos
2πrl

m
· cos

2πrn

m
︸ ︷︷ ︸

1
2 m(δl ,n+δl ,m−n)−1

+
m−1

∑
l=1

m−1

∑
n=1

bm(l)bm(n)
m−1

∑
r=1

sin
2πrl

m
· sin

2πrn

m
︸ ︷︷ ︸

1
2 m(δl ,n−δl ,m−n)

= (m − 1)a2
m(0) − 2am(0)

m−1

∑
l=1

am(l)

−
[

m−1

∑
l=1

am(l)

]2

+
m

2

m−1

∑
l=1

[
a2

m(l) + am(l)am(m − l) + b2
m(l)− bm(l)bm(m − l)

]

(B.3b)

Appendix B.2. Some applications

The finite Fourier series may be successfully used for the finite-length summations in a variety

of problems and contexts. Consider, for example, the Gauss’ Digamma theorem, which is usually

written in one of three equivalent forms





Ψ

(
r

m

)
= −γ − ln 2m − π

2
ctg

πr

m
+ 2
⌊1

2 (m−1)⌋
∑
l=1

cos
2πrl

m
· ln sin

πl

m

Ψ

(
r

m

)
= −γ − ln 2m − π

2
ctg

πr

m
+

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m

Ψ

(
r

m

)
= −γ − ln 2πm − π

2
ctg

πr

m
− 2

m−1

∑
l=1

cos
2πrl

m
· ln Γ

(
l

m

)

(B.4a,b,c)
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r = 1, 2, . . . , m − 1, m ∈ N>2, first and second of which are due to Gauss41 [12, pp. 35–38], [7, vol. I,

p. 19, §1.7.3], while the third one is due to Malmsten [66, p. 57, Eq. (70)], [10, p. 37, Eq. (23)]. Remarking

that the cotangent may be represented by (54), two latter equations take the form






Ψ
( r

m

)
= −γ − ln 2m +

π

m

m−1

∑
l=1

sin
2πrl

m
· l +

m−1

∑
l=1

cos
2πrl

m
· ln sin

πl

m

Ψ
( r

m

)
= −γ − ln 2πm +

π

m

m−1

∑
l=1

sin
2πrl

m
· l − 2

m−1

∑
l=1

cos
2πrl

m
· ln Γ

(
l

m

) (B.5)

r = 1, 2, . . . , m − 1, m ∈ N>2, which represent complete finite Fourier series of the same type as (B.1).

Hence, the application of (B.2)–(B.3b) straightforwardly yields the following important summation

formulæ




m−1

∑
r=1

Ψ
( r

m

)
· cos

2πrk

m
= m ln

(
2 sin

kπ

m

)
+ γ, k = 1, 2, . . . , m − 1

m−1

∑
r=1

Ψ
( r

m

)
· sin

2πrk

m
=

π

2
(2k − m), k = 1, 2, . . . , m − 1

m−1

∑
r=1

Ψ2
( r

m

)
= (m − 1)γ2 + m(2γ + ln 4m) ln m − m(m − 1) ln2 2

+
π2(m2 − 3m + 2)

12
+ m

m−1

∑
l=1

ln2 sin
πl

m

(B.6)

where the last sum, due to the symmetry of ln sin(πl/m) about l = m/2, may be also written as

m−1

∑
l=1

ln2 sin
πl

m
= 2
⌊ 1

2 (m−1)⌋
∑
l=1

ln2 sin
πl

m

For the purpose of demonstration, we take Malmsten’s representation for the Ψ-function.42 Inserting

expressions for coefficients am(0) = −γ − ln 2πm, am(l) = −2 ln Γ(l/m) and bm(l) = πl/m into (B.2),

yields for the first sum:

m−1

∑
r=1

Ψ
( r

m

)
· cos

2πrk

m
= γ + ln 2πm − m

[
ln Γ

(
k

m

)
+ ln Γ

(
1 − k

m

)]

︸ ︷︷ ︸
ln π−ln sin(πk/m)

+ 2
m−1

∑
l=1

ln Γ

(
l

m

)
= γ + m ln

(
2 sin

kπ

m

)

where the final simplification is performed with the help of the reflection formula and Gauss’ mul-

tiplication theorem for the logarithm of the Γ-function (77). Analogously, using (B.3) yields for the

second sum:

m−1

∑
r=1

Ψ
( r

m

)
· sin

2πrk

m
=

m

2

[
πk

m
− π(m − k)

m

]
=

π

2
(2k − m)

41Strictly speaking, Gauss wrote them in a slightly different manner, see [34, p. 39].
42The reader may perform the same procedure with the more usual Gauss’ representation as an exercise.
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By taking advantage of this opportunity, we would like to remark that a formula of the similar nature

appears also in [12, p. 39] and [80, p. 19, Eq. (49)]. Sadly, the formula given in the former source

contains two errors; the correct variant of the formula is

m

∑
r=1

Ψ
( r

m

)
· exp

2πrki

m
= m ln

(
1 − exp

2πki

m

)
, k ∈ Z, m ∈ N, k 6= m.

Finally, by formula (B.3b), we derive Parseval’s theorem for the Ψ-function of a discrete argument

m−1

∑
r=1

Ψ2

(
r

m

)
= (m − 1)(γ + ln 2πm)2 − 4(γ + ln 2πm)

m−1

∑
l=1

ln Γ

(
l

m

)

︸ ︷︷ ︸
1
2 (m−1) ln2π− 1

2 ln m

− 4

[
m−1

∑
l=1

ln Γ

(
l

m

)]2

+2m
m−1

∑
l=1

ln Γ

(
l

m

)
·
[

ln Γ

(
l

m

)
+ ln Γ

(
1 − l

m

)]
+

π2

m
·
m−1

∑
l=1

l2 − π2

2
·
m−1

∑
l=1

l = (m − 1)γ2

+m(2γ + ln 4m) ln m − m(m − 1) ln22 +
π2(m2 − 3m + 2)

12
+ 2m

⌊1
2 (m−1)⌋

∑
l=1

ln2sin
πl

m

(B.7)

where the sum from the third line, thanks to the symmetry of ln sin(πl/m) about l = m/2 and to the

fact that ln sin(πl/m) = 0 for l = m/2, could be simplified as follows

m−1

∑
l=1

ln Γ

(
l

m

)
·
[

ln Γ

(
l

m

)
+ ln Γ

(
1 − l

m

)]
=

m−1

∑
l=1

ln Γ

(
l

m

)
·
[

ln π − ln sin
πl

m

]

=
ln π

2

[
(m − 1) ln 2π − ln m

]
−

m−1

∑
l=1

ln Γ

(
l

m

)
· ln sin

πl

m
=

ln π

2

[
(m − 1) ln 2π − ln m

]

−
⌊1

2 (m−1)⌋
∑
l=1

[
ln π − ln sin

πl

m

]
ln sin

πl

m
=

ln π

2

[
(m − 1) ln 2π − ln m

]
− ln π

⌊1
2 (m−1)⌋

∑
l=1

ln sin
πl

m

+
⌊1

2 (m−1)⌋
∑
l=1

ln2sin
πl

m
=

ln π

2

[
(m − 1) ln 4π − 2 ln m

]
+
⌊1

2 (m−1)⌋
∑
l=1

ln2sin
πl

m

(B.8)

because

⌊ 1
2 (m−1)⌋

∑
l=1

ln sin
πl

m
= ln

⌊ 1
2 (m−1)⌋
∏
l=1

sin
πl

m
=

1 − m

2
ln 2 +

1

2
ln m

and where

m−1

∑
l=1

l2 =
m(m − 1)(2m − 1)

6
and

m−1

∑
l=1

l =
m(m − 1)

2
(B.9)

respectively, which completes the evaluation of the third formula in (B.6).

In like manner, we may also derive similar summation formulæ for the Hurwitz ζ-function.

Rewriting Hurwitz’s functional equation (32) in the form analogous to (B.1)

ζ
(

a,
r

m

)
= ma−1ζ(a) +

2Γ(1 − a)

(2πm)1−a

[
sin

πa

2

m−1

∑
l=1

cos
2πrl

m
· ζ

(
1 − a,

l

m

)
+

+ cos
πa

2

m−1

∑
l=1

sin
2πrl

m
· ζ

(
1 − a,

l

m

)]
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yields

m−1

∑
r=1

ζ
(

a,
r

m

)
· cos

2πrk

m
=

mΓ(1 − a)

(2πm)1−a
sin

πa

2
·
{

ζ

(
1 − a,

k

m

)
+ ζ

(
1 − a, 1 − k

m

)}
− ζ(a)

m−1

∑
r=1

ζ
(

a,
r

m

)
· sin

2πrk

m
=

mΓ(1 − a)

(2πm)1−a
cos

πa

2
·
{

ζ

(
1 − a,

k

m

)
− ζ

(
1 − a, 1 − k

m

)}

m−1

∑
r=1

ζ2
(

a,
r

m

)
=
(
m2a−1 − 1

)
ζ2(a) +

2mΓ2(1 − a)

(2πm)2−2a
×

×
m−1

∑
l=1

{
ζ

(
1 − a,

l

m

)
− cos πa · ζ

(
1 − a, 1 − l

m

)}
· ζ

(
1 − a,

l

m

)

which hold for any r = 1, 2, 3, . . . , m − 1 and k = 1, 2, 3, . . . , m − 1, where m is positive integer.

By the way, there are many other functions which are orthogonal or semi-orthogonal over some

discrete interval. For instance, by considering another set of circular functions and their properties

m−1

∑
r=0

cos
(2r + 1)kπ

m
=

m−1

∑
r=0

sin
(2r + 1)kπ

m
= 0 , k = 1, 2, . . . , m − 1

m−1

∑
r=0

cos
(2r + 1)kπ

m
· sin

(2r + 1)lπ

m
= 0 , k, l = 1, 2, . . . , m − 1

m−1

∑
r=0

cos
(2r + 1)kπ

m
· cos

(2r + 1)lπ

m
=

n

2

(
δk,l − δk,m−l − δk,m+l + δk,2m−l

)

m−1

∑
r=0

sin
(2r + 1)kπ

m
· sin

(2r + 1)lπ

m
=

n

2

(
δk,l + δk,m−l − δk,m+l − δk,2m−l

)

(B.10)

where in last two formulæ k, l = 1, 2, . . . , 2m − 1, as well as (B.5), one may easily prove that





m−1

∑
r=0

Ψ

(
2r + 1

2m

)
· cos

(2r + 1)kπ

m
= m ln tg

πk

2m
, k = 1, 2, . . . , m − 1

m−1

∑
r=0

Ψ

(
2r + 1

2m

)
· sin

(2r + 1)kπ

m
= −πm

2
, k = 1, 2, . . . , m − 1

By a similar line of reasoning, we also derive

2m−1

∑
r=1

(−1)r · Ψ

(
r

2m

)
= 2m ln 2 + γ

2m−1

∑
r=0

(−1)r · Ψ

(
2r + 1

4m

)
= −πm

m−1

∑
r=1

ctg
πr

m
· Ψ

(
r

m

)
= −π(m − 1)(m − 2)

6

(B.11)
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m−1

∑
r=1

r

m
· Ψ

(
r

m

)
= −γ

2
(m − 1)− m

2
ln m − π

2

m−1

∑
r=1

r

m
· ctg

πr

m

m−1

∑
r=1

cos
(2l + 1)πr

m
· Ψ

(
r

m

)
= −π

m
·
m−1

∑
r=1

r · sin
2πr

m

cos
2πr

m
− cos

(2l + 1)π

m

m−1

∑
r=1

sin
(2l + 1)πr

m
· Ψ

(
r

m

)
= −(γ + ln 2m) ctg

(2l + 1)π

2m

+ sin
(2l + 1)π

m
·
m−1

∑
r=1

ln sin
πr

m

cos
2πr

m
− cos

(2l + 1)π

m

(B.11)

where the last two formulæ remain valid for any l ∈ Z.

Appendix C. An integral formula for the logarithm of the Γ-function at rational arguments

In this part, we evaluate integral (82) for p = k/n and show that it reduces to the logarithm of the

Γ-function at rational argument, Euler’s constant γ and elementary functions.

From a simple algebraic argument, it follows that

n−1

∑
r=1

sh rx · sin
2πrk

n
= −1

2
· sh nx · sin 2πk

n

ch x − cos 2πk
n

, x ∈ C, k ∈ Z.

Then, for p = k/n, where k and n are positive integers such that k does not exceed n, the denominator

of integrand (82) may be replaced by the above identity and hence

∞̂

0

e−nx · ln x

ch x − cos 2πk
n

dx = −4 csc
2πk

n

n−1

∑
r=1

sin
2πrk

n
·

∞̂

0

sh rx · ln x

e2nx − 1
dx (C.1)

The latter integral was already evaluated in our previous work, see [10, p. 73, no 25]. By setting in

exercise no 25-a b = n, m = r, and then by rewriting the result for 2n instead of n, we get

∞̂

0

sh rx · ln x

e2nx − 1
dx = − π

4n
ctg

rπ

2n
· ln 2π − γ + ln r

2r
+

π

2n

2n−1

∑
l=1

sin
πrl

n
· ln Γ

(
l

2n

)

(C.2)

By inserting the above formula into (C.1) and by recalling that for k = 1, 2, 3, . . . , n − 1 and l =

1, 2, 3, . . . , 2n − 1






n−1

∑
r=1

sin
2πrk

n
· ctg

πr

2n
= n − 2k

n−1

∑
r=1

sin
2πrk

n
· sin

πrl

n
=

n

2
{δ

k, l
2
− δ

k,n− l
2
}
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the expression for integral (82) at p = k/n takes its final form

∞̂

0

e−nx · ln x

ch x − cos 2πk
n

dx = 2

1
ˆ

0

xn ln ln 1
x

x2 − 2x cos 2πk
n + 1

dx = 2

∞̂

1

ln ln x

xn
(

x2 − 2x cos 2πk
n + 1

) dx

=

{
π(n − 2k) ln 2π

n
− 2π ln Γ

(
k

n

)
+ π ln π − π ln sin

πk

n
+ 2

n−1

∑
r=1

γ + ln r

r
· sin

2πrk

n

}
×

× csc
2πk

n

(C.3)

Whence

ln Γ

(
k

n

)
=

(n − 2k) ln 2π

2n
+

1

2

{
ln π − ln sin

πk

n

}
+

1

π

n−1

∑
r=1

γ + ln r

r
· sin

2πrk

n

− 1

2π
sin

2πk

n
·

∞̂

0

e−nx · ln x

ch x − cos 2πk
n

dx , k = 1, 2, 3, . . . , n − 1 , (C.4)

k 6= n/2. By the way, (C.3)–(C.4) may be proven by other methods as well. For instance, one may

directly employ (81) because a0 = 0 for p = k/n and all remaining integrals in the right-hand side are

known. Yet, (C.3)–(C.4) may be also obtained with the aid of previously derived results in exercises

no 60 and 58 in [10, Sect. 4], as well as Malmsten’s representation for the logarithm of the Γ-function

ln Γ(z) =
1

2
ln π − 1

2
ln sin πz − 2z − 1

2
ln 2π − sin 2πz

2π

∞̂

0

ln x

chx − cos 2πz
dx (C.5)

where 0 < Re z < 1, see exercises no 2, 29-h, 30 [10, Sect. 4].
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[12] R. Campbell, Les intégrales eulériennes et leurs applications, Dunod, Paris, 1966.

[13] B. Candelpergher and M.-A. Coppo, A new class of identities involving Cauchy numbers, harmonic

numbers and zeta values, The Ramanujan Journal, vol. 27, pp. 305–328 (2012).

[14] N. G. Chudakov, An introduction to the theory of Dirichlet L-functions [in Russian], OGIZ Goste-

hizdat, Leningrad, URSS, 1947.

[15] M. W. Coffey, New summation relations for the Stieltjes constants, Proceedings of the Royal Soci-

ety A, vol. 462, pp. 2563–2573 (2006).

[16] M. W. Coffey, Series representations for the Stieltjes constants, arXiv:0905.1111 (2009).

[17] M. W. Coffey, The Stieltjes constants, their relation to the ηj coefficients, and representation of the

Hurwitz zeta function, Analysis. International mathematical journal of analysis and its applica-

tions, vol. 30, no. 4, pp. 383–409 (2010).

45

http://arxiv.org/abs/0905.1111


[18] M. W. Coffey, On representations and differences of Stieltjes coefficients, and other relations,

Rocky Mountain Journal of Mathematics, vol. 41, no. 6, pp. 1815–1846 (2011).

[19] Collected papers of Srinivasa Ramanujan, Cambridge, 1927.

[20] L. Comtet, Advanced Combinatorics. The art of Finite and Infinite Expansions (revised and en-

larged edition), D. Reidel Publishing Company, Dordrecht, Holland, 1974.

[21] D. F. Connon, The difference between two Stieltjes constants, arXiv:0906.0277 (2009).

[22] D. F. Connon, Fourier series representations of the logarithms of the Euler gamma function and

the Barnes multiple gamma functions, arXiv:0903.4323 (2009).

[23] D. F. Connon, New proofs of the duplication and multiplication formulæ for the gamma and the

Barnes double gamma functions, arXiv:0903.4539 (2009).

[24] D. F. Connon, Some applications of the Stieltjes constants, arXiv:0901.2083 (2009).

[25] Correspondance d’Hermite et de Stieltjes. Vol. 1 and 2, Gauthier-Villars, Paris, 1905.

[26] H. T. Davis, The approximation of logarithmic numbers, American Mathematical Monthly,

vol. 64, no. 8, part II, pp. 11–18 (1957).

[27] P. J. Davis, Leonhard Euler’s integral: A historical profile of the Gamma function, American

Mathematical Monthly, vol. 66, pp. 849–869 (1959).

[28] H. B. Dwight, Tables of Integrals and Other Mathematical Data (3rd edition), The Macmillan

Company, 1957.

[29] O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function: Part I, The

Ramanujan Journal, vol. 6, pp. 150–188 (2002).

[30] L. Euler, Remarques sur un beau rapport entre les séries des puissances tant directes que

réciproques, Histoire de l’Académie Royale des Sciences et Belles–Lettres, année MDCCLXI,

Tome 17, pp. 83–106, A Berlin, chez Haude et Spener, Libraires de la Cour et de l’Académie

Royale, 1768 [read in 1749].

[31] L. Eulero, Introductio in analysin infinitorum. Volumes I and II, Apud Marcum–Michaelem Bous-

quet & Socios, Lausannæ, 1748.

[32] M. A. Evgrafov, Y. V. Sidorov, M. V. Fedoriuk, M. I. Shabunin and K. A. Bezhanov, A Collection of

Problems in the Theory of Analytic Functions [in Russian], Nauka, Moscow, USSR, 1969.

[33] J. Franel, Note no 245, L’Intermédiaire des mathématiciens, tome II, pp. 153–154 (1895).

[34] C. F. Gauss, Disquisitiones generales circa seriem infinitam 1 +
αβ

1 · γ
x +

α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
xx +

α(α + 1)(α + 2)β(β + 1)(β + 2)

1 · 2 · 3 · γ(γ + 1)(γ + 2)
x3 + etc, Commentationes Societatis Regiae Scientiarum Gottin-

gensis recentiores, Classis Mathematicæ, vol. II, pp. 3–46 [republished later in “Carl Friedrich

Gauss Werke”, vol. 3, pp. 265–327, Königliche Gesellschaft der Wissenschaften, Göttingen, 1866]

(1813).

46

http://arxiv.org/abs/0906.0277
http://arxiv.org/abs/0903.4323
http://arxiv.org/abs/0903.4539
http://arxiv.org/abs/0901.2083


[35] Gerst, Some series for Euler’s constant, The American Mathematical Monthly, vol. 76, pp. 273–

275 (1969).

[36] G. W. L. Glaisher, On Dr. Vacca’s series for γ, The Quarterly journal of pure and applied mathe-

matics, vol. 41, pp. 365–368 (1910).

[37] J. P. Gram, Note sur le calcul de la fonction ζ(s) de Riemann, Oversigt. K. Danske Vidensk. (Sel-

skab Forhandlingar), pp. 305–308 (1895).

[38] N. M. Gunther and R. O. Kuzmin, A Collection of Problems on Higher Mathematics. Vol. 2 (12th

edition) [in Russian], Gosudarstvennoe izdatel’stvo tehniko–teoreticheskoj literatury, Leningrad,

USSR, 1949.

[39] N. M. Gunther and R. O. Kuzmin, A Collection of Problems on Higher Mathematics. Vol. 3 (4th

edition) [in Russian], Gosudarstvennoe izdatel’stvo tehniko–teoreticheskoj literatury, Leningrad,

USSR, 1951.

[40] M. Gut, Die Zetafunktion, die Klassenzahl und die Kronecker’sche Grenzformel eines beliebigen

Kreiskörpers, Commentarii Mathematici Helvetici, vol. 1, no. 1, pp. 160–226 (1929).

[41] R. W. Hamming, Numerical methods for scientists and engineers, McGraw–Hill Book Company,

1962.

[42] G. H. Hardy, Note on Dr. Vacca’s series for γ, The Quarterly journal of pure and applied mathe-

matics, vol. 43, pp. 215–216 (1912).

[43] G. H. Hardy, Divergent series, Oxford at the Clarendan press, 1949.

[44] C. Hermite, Extrait de quelques lettres de M. Ch. Hermite à M. S. Pincherle, Annali di matematica

pura ed applicata, serie III, tomo V, pp. 57–72 (1901).

[45] A. Hurwitz, Einige Eigenschaften der Dirichlet’schen Functionen F(s) = ∑ (D
n) · 1

ns , die bei der
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gen, Germany, 2014.

[57] R. Kreminski, Newton–cotes integration for approximating Stieltjes (generalized Euler) constants,

Math. Comp., vol. 72, pp. 1379–1397 (2003).

[58] E. Lammel, Ein Beweis, dass die Rimannsche Zeta-funktion ζ(s) in |s − 1| 6 1 keine Nullstelle

besitzt, Univ. Nac. Tacuman Rev. Ser. A, vol. 16, pp. 209–217 (1966).

[59] E. Landau, Ueber die zu einem algebraischen Zahlkörper gehörige Zetafunction und die

Ausdehnung der Tschebyschefschen Primzahlentheorie auf das Problem der Vertheilung der

Primideale, Journal für die reine und angewandte Mathematik (Crelle’s Journal), vol. 125, pp. 64–

188 (1903).

[60] A. F. Lavrik, On the main term of the divisor’s problem and the power series of the Riemann’s

zeta function in a neighbourhood of its pole [in Russian], Trudy Mat. Inst. Akad. Nauk. SSSR,

vol. 142, pp. 165–173 (1976).
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