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An automatic method for recognizing natively disordered regions from
amino acid sequence is described and benchmarked against predictors
that were assessed at the latest critical assessment of techniques for
protein structure prediction (CASP) experiment. The method attains a
Wilcoxon score of 90.0, which represents a statistically significant
improvement on the methods evaluated on the same targets at CASP.
The classifier, DISOPRED2, was used to estimate the frequency of native
disorder in several representative genomes from the three kingdoms of
life. Putative, long (.30 residue) disordered segments are found to occur
in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins.
The function of proteins with long predicted regions of disorder was
investigated using the gene ontology annotations supplied with the
Saccharomyces genome database. The analysis of the yeast proteome
suggests that proteins containing disorder are often located in the cell
nucleus and are involved in the regulation of transcription and cell signal-
ling. The results also indicate that native disorder is associated with the
molecular functions of kinase activity and nucleic acid binding.
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Introduction

One of the central tenets of structural biology is
that the function of a protein is determined by its
three-dimensional structure. As a result, predicting
protein structure has often been at the forefront of
efforts to infer function. However, it appears that
a large proportion of protein sequences do not
form complete globular structures. The natively
disordered regions within these proteins may
adopt an ensemble of structural states with
transitions between the states leading to dynamic
flexibility of the protein structure1 or have non-
globular structures that are extended in the
solvent.2

It has been shown experimentally that disor-
dered regions are involved in DNA-binding3 and
several other types of molecular recognition. One

of the advantages of disordered binding sites is
that their multiple metastable conformations allow
them to recognize several targets with high
specificity and low affinity.4 Transitions between
the native unfolded state and a globular structure,
induced by phosphorylation or some other type of
interaction, may also provide thermodynamic
regulation of binding. The prediction of disordered
regions would therefore provide a first step in
methods for identifying functionally relevant
disordered regions and the flexible segments that
hinder successful crystallization of the protein.

It has been shown in a series of papers5 – 8

that there are clear patterns that characterize
disordered regions such as low sequence com-
plexity, amino acid compositional bias (e.g.
towards aromatic residues) and high flexibility,
and that disorder can be predicted successfully
from amino acid sequence. We describe here the
development of a new method for predicting
native disorder. The classifier, DISOPRED2, is
benchmarked on targets from the last critical
assessment of structure prediction (CASP) experi-
ment, which included an evaluation of the latest
disorder prediction methods.9

The new method is also used to investigate
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disorder in several archaea, eubacteria and eukary-
ote genomes. Previous genome-wide analyses of
disordered regions have been based on classifiers
with high false positive rates (16% for disordered
segments longer than 40 residues).10,11 Although
the results presented here cannot be interpreted as
a lower bound on the proportion of proteins that
contain disorder, they are intended to be very con-
servative with false positive rates estimated to be
lower than 0.5% on long disordered segments.

The functions of potentially disordered proteins
are also investigated using the gene ontology (GO)
annotations12 for the budding yeast Saccharomyces
cerevisiae. The aim of the analysis was to investigate
which processes rely directly on dynamic flexibility
of the protein structure. This was achieved by
mapping each long disordered segment to the GO
annotations attached to its parent protein. The
frequency with which each GO term occurred was
then compared to its frequency of occurrence in
random simulations. The random model corre-
sponds to a null hypothesis whereby each protein’s
probability of containing a long disordered seg-
ment is proportional to its length. The replicates
were then used to provide confidence estimates,
under the null model, for GO terms that were
over- or under-represented in the set of disorder
predictions.

Results

Estimating error rates

The false positive rate for DISOPRED2 was
established by classifying a set of 7169 ordered pro-
teins with less than 95% sequence similarity to
each other. (All residues for the protein set have

atomic co-ordinates recorded in the Protein Data
Bank (PDB).13) This threshold allows inclusion of a
large proportion of the PDB but removes multiple
models of the same structure or very close homo-
logues. Although DISOPRED2 was developed
with the aim of optimizing per residue accuracy, it
is important to distinguish between long con-
tiguous regions of disorder and short disordered
segments, which are less likely to be functionally
relevant. The per residue false positive rate was
found to be 3.2% on the set of proteins from the
PDB with a large fraction arising from short
predictions of disorder that typically occur at the
C and N termini.

Only 37 (0.5%) of the ordered structures were
predicted to contain long (.30 residue) regions of
disorder. This value is likely to overestimate the
false positive rate on this set, as many of the chains
were crystallized as part of structural complexes
and may be disordered prior to the formation of
quaternary structure (see Figure 1). Some of the

Figure 1. ATPase inhibitor (1gmj). The disordered
predictions are highlighted by the surface map structure.

Figure 2. Nuclear cap-binding protein (1h2u). The
region of the protein that is predicted to be disordered
is colored yellow with the second chain colored in blue.
The molecule in contact with the protein is the
nucleotide GDP.

Table 1. The number of ordered crystal structures with
predicted regions of disorder longer than 30 residues

Bound to ligand 6
Bound to protein 14
Bound to DNA 5
No secondary structure 4
Ribosome 1
Domain linker 5
Surface of protein 5
Total 37

The results come from a set of 7169 proteins that are non-
redundant at 95% sequence identity. In all cases where the
protein is described as bound, the predicted disordered region
is in contact with the ligand, DNA or other chain. The models
with no secondary structure were determined using NMR and
contained almost no visible helical or strand elements.
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proteins, such as the nuclear cap-binding protein
shown in Figure 2, undergo induced folding in the
presence of a ligand14 and others are stabilized by
binding to DNA as shown in Figure 3. Other long
predictions of disorder occur in domain linker
regions, which may be unstructured in solution to
allow structural uncoupling of two or more globu-
lar domains.15 It therefore appears that only the
five (0.07%) false positives that occur on the
protein surface are certain, as shown in Table 1.

Disorder frequencies in complete genomes

Table 2 shows the estimated disorder frequencies
for six archaean, 13 bacterial and five eukaryotic
genomes, in addition to overall totals for each king-
dom and predictions from a non-redundant set of
resolved crystal structures in the PDB. An average
of 2.0% of archaean, 4.2% of eubacteria and 33.0%
of eukaryotic proteins are predicted to contain
long regions of disorder.

Functional roles of disorder in S. cerevisiae

Table 2 shows a clear disparity between the pre-
dicted disorder rates in eukaryotic and prokaryotic
genomes. The functional relevance of putative long
regions of disorder was investigated in the bud-
ding yeast S. cerevisiae using the GO annotations16

supplied with the Saccharomyces genome database
(SGD).17

The proteins in the subset containing long

Figure 3. Transcription factor (1gt0) bound to DNA
with predicted disordered regions colored in yellow.
The protein structure is taken from a single chain
with the apparent discontinuity caused by missing
co-ordinates in the electron density map.

Table 2. Estimated disorder frequencies

Kingdom organism Number of sequences Disorder frequency Length .30 Length .50

Archaea Aeropyrum pernix 1841 4.7 2.1 0.5
Archaea Archaeoglobus fulgidis 2409 2.8 0.9 0.2
Archaea Halobacterium sp. 2442 6.2 5.0 1.9
Archaea Methanococcus jannaschi 1784 2.8 1.0 0.3
Archaea Pyrococcus abyssi 1769 3.0 1.4 0.7
Archaea Thermoplasma volcanium 1497 3.2 1.0 0.3
Bacteria Agrobacterium tumefaciens C58 5288 6.4 5.7 2.0
Bacteria Aquifex aeolicus VF5 1557 3.3 1.9 0.4
Bacteria Chlamydophila pneumoniae AR39 1111 6.2 4.8 2.3
Bacteria Chlorobium tepidum TLS 2248 5.1 3.3 0.5
Bacteria Escherichia coli K12 4247 4.6 2.8 0.8
Bacteria Haemophilus influenzae Rd 1650 4.4 3.8 1.3
Bacteria Mycobacterium tuberculosis H37Rv 3890 9.1 7.0 3.3
Bacteria Neisseria meningitides MC58 2020 5.7 4.5 1.7
Bacteria Salmonella typhi 4714 4.9 2.7 0.9
Bacteria Staphylococcus aureus 2632 6.2 4.5 2.2
Bacteria Synechocystis species PCC 6803 3140 5.4 4.7 1.8
Bacteria Thermotoga maritima 1857 3.3 1.8 0.6
Bacteria Treponema pallidum 1035 6.1 6.4 2.6
Eukaryota Arabidopsis thaliana 21,482 16.8 33.8 19.0
Eukaryota Caenorhabditis elegans 20,506 15.9 27.5 15.6
Eukaryota Drosophila melanogaster 13,913 21.6 36.6 22.1
Eukaryota Homo sapiens 26,385 21.6 35.2 21.9
Eukaryota S. cerevisiae 6245 17.0 31.2 19.3
Archaea 11,742 3.8 2.0 0.7
Bacteria 35,389 5.7 4.2 1.6
Eukaryota 88,531 18.9 33.0 19.6
PDB (non-redundant at 95% sequence identity) 7169 3.2 0.5 0.1

The columns show the number of sequences, the percentage of residues predicted as being disordered and the percentage of chains
with contiguous disordered segments of length greater than 30 and 50 residues, respectively.
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regions of predicted disorder were longer on
average than the population (704.6 compared with
497.1 residues). This arises because large multi-
domain proteins have more linker regions and a
higher probability of incorporating a disordered
domain if these are distributed uniformly across
the proteome. The sampling method accounts for
this by constructing a null model where the dis-
ordered segments with lengths greater than 30
residues are distributed randomly across the
length of the proteome (see System and Methods
for further details).

Selected GO terms that obtained a p-value lower
than 0.2 and that describe more than 50 protein
annotations† are listed in Figures 4–6. The Figures
divide the results into the three separate ontologies
representing molecular function, biological process
and cellular component.

Discussion

The difficulty in investigating dynamically
flexible polypeptide sequences is the main reason

for the relative paucity of experimental data on
native disorder compared with globular structures.
This difficulty also extends to the identification of
disordered regions for the purposes of pattern
recognition. The definition of native disorder is
also fairly heterogeneous as it applies to global
structures such as collapsed molten globule
proteins and extended random coil-like proteins,
and to the localized disorder that can exist in
flexible domain linkers and ligand binding sites.

In the training of DISOPRED2, residues with
missing atomic co-ordinates are defined as dis-
ordered. Although this definition was also used in
the CASP experiment, it is imperfect as missing
residues can also arise as an artifact of the crystal-
lization process such as rigid body wobble or
crystal contacts. It is also possible that false predic-
tion of order can be caused by the crystallized
fragment being part of a structural complex in
vitro or that tags added or regions removed from
the sequence can alter the stability of the structure.
However, this appears to be the most effective
means of identifying disordered regions in the
absence of further experimental characterization of
the protein structure.

The development of DISOPRED2 has
demonstrated that information from homologous
sequences leads to a slight improvement in the
prediction of native disorder. However, the

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

 
 

 

 
 

Figure 4. GO terms from the molecular function ontology that are significantly over- or under-represented in the set
of proteins predicted to contain long regions of disorder. Each term is followed by the number of proteins in the yeast
proteome that have been assigned this annotation. The terms are ordered by the normalized differences between the
terms’ frequency of occurrence in the random samples and the set of disordered predictions.

† A p-value of 0.2 corresponds to fewer than 100 out of
the 10,000 resamplings receiving a more extreme Z-score.
Full results can be found at http://bioinf.cs.ucl.ac.uk/
disopred/suppInfo.html
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improvement is not as great as that observed in
predicting the secondary structure of globular
proteins.18 It is believed that patterns of conserva-
tion improve the secondary structure prediction
by implicitly encoding global constraints on the
local structure.19 This improvement is likely to be
less effective in the prediction of natively dis-
ordered regions as, by definition, they are not
constrained by the protein’s tertiary structure.

There are likely to be several other reasons for
the improved accuracy of DISOPRED2 compared
with the other algorithms described in System and
Methods. The main difference is that DISOPRED2
is trained directly on protein sequence rather than
measures of amino acid composition, sequence
complexity7,10 or biophysical properties such as
mean hydrophobicity.20 This may allow the
classifier to recognize sequence motifs that have
been shown to be associated with disorder such as
Pro-X-Pro-X-Pro or Lys-X-X-Lys-X-Lys. (S. Lise &
D.T.J., unpublished results). The cascaded classifier
also improves accuracy by increasing the confi-
dence in long predicted segments of disorder at
the expense of shorter predictions. Another factor
may be the training set, which is taken exclusively
from crystal structures and does not restrict the
definition of disorder to long continuous regions.

The genomic analysis was designed to provide

quantitative estimates for the abundance of native
disorder, though this is complicated by the
difficulty in establishing the true error rates for
DISOPRED2. Most of the structures in the PDB
come from proteins that have been successfully
crystallized and it does not constitute a random
sample. The subset used to estimate error rates
does not therefore contain members of structural
families in the same proportions as those in the
population and there is also bias towards smaller,
single domain proteins. However, the estimates
are likely to be conservative because of the very
low false positive rate and the likelihood of there
being a significant number of disordered regions
that are falsely predicted as ordered. It is possible,
for example, that the under-representation of
“unknown” annotations in the disordered set
could be caused by DISOPRED2 failing to recog-
nize other types of disorder that exist in the
hypothetical proteins.

Although the most striking feature of Table 2 is
the discrepancy between eukaryotes and pro-
karyotes, smaller differences are also observed
between the archaea and the eubacteria. The
scarcity of disordered regions in the thermophiles
is perhaps caused by the strong evolutionary
constraint on protein melting point in these
organisms. Indeed, the only reference archaean

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

Figure 5. GO terms from the biological process ontology that are significantly over- or under- represented in the set
of disordered predictions. The abbreviations used are: organization (o), biogenesis (b), establishment (e), maintenance
(m) and assembly (a). Terms describing various types of metabolic and biosynthetic processes are omitted in the inter-
ests of space (native disorder is under-represented in these categories).
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organism with an optimum growth temperature
below 60 8C is Halobacterium species, which is
predicted to have a far larger proportion of long
disordered segments. Amongst the eubacteria, the
anomalously high disorder in Mycobacterium
tuberculosis may be a result of its high G-C content
and a raised propensity towards the amino acids
Ala, Gly, Pro, Arg and Trp.21

Previous studies10,11 have found disorder to be
ubiquitous in all three kingdoms of life with
around 60% of eukaryote, 28% of eubacteria and
36% of archaea proteins predicted to possess dis-
ordered regions longer than 40 residues. Here, the
comparatively low over-prediction rates (0.5% cf
17%) mean that large systematic differences in the
error rates between organisms are less likely.
Table 2 therefore provides convincing evidence for
disorder being common in eukaryotes but less so
in prokaryotes. This confirms much of the experi-
mental evidence to date, which has shown that
dynamic flexibility of the protein structure is more
often associated with eukaryotic protein function.2

The results from the analysis of Saccharomyces also
show that many of the functions associated with
disordered regions are unique to eukaryotes such
as the organization and biogenesis of the
cytoskeleton.

There are several explanations for the lower
occurrence of disorder in prokaryotes. Prokaryotes
are subject to strong selective pressure on bio-

chemical efficiency and do not have highly-
regulated degradation pathways such as ubiquiti-
nation, so the cost of short protein lifetimes is likely
to be far greater. The absence of cell compartments
also reduces the ability of prokaryotic cells to
physically protect unfolded structures from degra-
dation. This is confirmed by Figure 6, which
shows that the majority of putative disorder-con-
taining proteins are located in cellular components
that provide some protection from proteolysis
such as the cell cortex and nucleus. The low levels
of disorder in the mitochondrial proteins are likely
to be a result of the organelle’s propinquity to
prokaryotes.

Many of the terms associated with disorder in
Figures 4–6, such as DNA and cytoskeleton-bind-
ing, have been indicated by previous theoretical
approaches8,22 and numerous experiments.2,20 The
predominant molecular functions of long dis-
ordered segments appear to involve molecular
recognition and, in particular, binding of DNA to
facilitate processes such as transcription, trans-
position, packaging, repair and replication. The
other processes that are linked to disorder include
signalling, cell cycle, development and
endocytosis.

Other results suggest that disorder is involved
in signal transduction via the small GTPases and
cell surface receptors, in addition to the protein
kinases. These pathways also facilitate responses

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 
 

 
 

Figure 6. GO terms from the cellular component ontology that are significantly over- or under-represented in the set
of disorder predictions.

640 Prediction of Native Disorder



to external stimuli, stress and the phases of cell
cycle. It has been suggested that transformations
from order to disorder allow the cell to rapidly
and irreversibly reduce the concentration of
signalling proteins in response to external or intra-
cellular conditions.23,24 The uniform proportion of
disordered proteins across eukaryote proteomes
also suggests that native disorder is involved in
the multicellularity. An obvious candidate in
higher organisms is the cell differentiation where
disorder is likely to be present in proteins that
modify the cytoskeleton and control gene
expression.

Native disorder has been implicated in cancer-
associated proteins present in the human genome.22

Figure 5 provides further detail on the causal mech-
anisms of cancer that may involve disorder such as
gene silencing, epigenetic regulation of expression25

and DNA repair.26 The presence of disorder in Ty
transposable element proteins also suggests that it is
a feature of retroviruses, because of Ty elements’
origin as a retroviral infection that has been fixed in
the yeast genome. It is likely that the use of disorder
for reversible binding of DNA, and possibly trans-
port through a small orifice,1 is advantageous to
retroviral infectivity in eukaryote cells.

The low occurrence of disorder in functions such
as biosynthesis and metabolism has also been
indicated.22 This suggests that the rigid body
model of molecular recognition applies fairly gen-
erally to the interactions between catalytic proteins
and their substrates, and may also explain the pre-
ponderance of enzymes in the PDB.27 Protein
kinases do not conform to this general trend as
they are strongly associated with disorder and are
not readily crystallized. However, this is consistent
with other functions that utilize disorder, since
kinases are involved in regulatory processes, and
are required to simultaneously bind a nucleotide
(ATP) and the protein phosphorylation site.

In summary, native disorder is involved in some
of the most important regulatory processes in
eukaryotes; cell damage that renders some of
these processes inactive is known to contribute to
the development of cancer in humans. The abundant
disorder in eukaryotes indicates that the folding of a
water-soluble protein into compact structure is often
incomplete in the absence of stabilizing proteins,
ligands or DNA. This represents a limitation on the
scope of structural genomics projects, and has impli-
cations for our understanding of structural biology
and protein–protein interactions. The analysis using
the GO also suggests that the presence of long dis-
ordered regions is linked to several locations,
functions and processes, and may be of use in
annotating protein function.

System and Methods

Recognition of native disorder

The training set for DISOPRED2 was the same

as that used to train the original version of
DISOPRED28 and was composed of non-redundant
chains with X-ray structures in the PDB13 and less
than 25% pair-wise sequence identity. Only struc-
tures with resolutions better than 2.0 Å were used
to ensure that missing regions were not caused by
poor model quality. Disordered residues were
identified by aligning the sequence of the protein
chain in the SEQRES records with the sequence as
specified by the ATOM records (alpha-carbon coor-
dinates). Residues, which were found in the
SEQRES records but not in the ATOM records
were classed as disordered. The final training set
comprised of 715 protein chains, in which a total
of 176,550 residues were classed as ordered and
4590 residues as disordered.

Discriminating between ordered and disordered
regions is a binary classification problem that can
be solved using a support vector machine (SVM).
SVMs may improve generalization by controlling
the classifier’s capacity and the associated
potential for overfitting. This is achieved by
ensuring that the decision boundary separating
two classes does so with a large margin.29 In this
case, the SVM also has the advantage that it can
be trained more efficiently than back-propagation
networks.

The SVMlight support vector machine package
was used to train the classifiers.30 The linear kernel
was used, corresponding to a hyperplane in the
input space, and the learning parameters were
found by fourfold cross-validation. Unbalanced
class frequencies can result in classifiers that out-
put the majority class exclusively, since this
optimizes overall accuracy. This behaviour is pre-
vented in a formulation of the SVM that places
asymmetric costs on points that violate the
geometric margin.31 This allows a greater cost to
be placed on margin breaches by points from the
minority (disordered) class than examples from
the majority (ordered) class. Correctly setting the
asymmetric cost parameter results in informative
classifier outputs.

For each protein in the training set, a sequence
profile was generated using three iterations of a
PSI-BLAST32 search against a non-redundant
sequence database. Figure 7 shows receiver
operating characteristic (ROC) curves for several
classifiers trained using various combinations of
binary-encoded amino acid sequence, secondary
structure predictions from PSIPRED33 and PSI-
BLAST profiles for symmetric windows of 15
positions. The N and C termini were treated
separately as it has been demonstrated that there
are different patterns in disordered sequences at
the terminal positions.6

The area under the ROC curve has similar
properties to the non-parametric Wilcoxon statistic
with a score of 50% representing random and
100% perfect classification. Table 3 shows estimates
of the area under each ROC curve in addition to
the results from a second smoothing classifier
trained on the outputs of the profile SVM. The
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Wilcoxon test statistics can be used to indicate
whether the difference between two methods is
statistically significant.34 In this case, all the
differences apart from the two profile-based
classifiers are significant at the 95% level.35

Classifiers trained on PSI-BLAST profiles out-
perform those trained on single sequences across
the range of error rate thresholds, indicating that
evolutionary information improves prediction of
disorder. Secondary structure predictions improve
the accuracy of the sequence classifiers because
they implicitly contain information from the
position-specific scoring matrix but do not improve

the profile classifiers. This contradicts the results
from the first version of DISOPRED,28 where
structure predictions were used to improve
accuracy.

The difference may be attributable to the
different learning algorithms used in the two
cases. Here, we use a linear SVM with a relatively
low capacity29 (i.e. will avoid overfitting the data)
and a capacity-controlling maximal margin learn-
ing algorithm. On the other hand, the two-layer
neural network used to train the original classifier
had a relatively large number of hidden units and
may have been prone to overfitting. It is possible
that the improved generalization of the SVM pre-
vents prediction of disorder in regions that are
likely to form helical or strand elements in the
core of a globular protein.

Further improvements in accuracy can be
achieved by inputting the first set of predictions
into a second smoothing network, which extends
the effective length of the input window from 15
to 29 residues and increases prediction accuracies
of longer (.15 residue) disordered segments. The
cascaded classifier therefore has the familiar two-
layer neural network topology with 15 hidden
units but without full connectivity in the first
layer of adaptive weights. DISOPRED2 is com-
prised of this cascaded classifier, trained on the
full set of proteins.

Table 3. Cross-validated performance measures for
several disorder classifiers

C Q2 Wilcoxon SE

Profiles þ structure 0.26 93.74 82.70 0.34
Profiles 0.27 93.79 83.02 0.36
Sequence þ structure 0.25 93.69 79.84 0.38
Sequence 0.24 93.63 76.16 0.46
Cascaded classifier 0.35 94.05 86.75 0.30

Columns show Matthews correlation coefficient (C) and two-
state accuracy (Q2) for a false hit rate of 0.05 and the Wilcoxon
statistic with its standard error. The area under the ROC curves
(Wilcoxon statistic) was calculated using trapezium rule
numerical integration.

Figure 7. Receiver operator characteristic curves for linear SVM classifiers generated using fourfold cross-validation
on the non-redundant set of proteins. The ROC curves were generated by varying the decision threshold of each SVM
classifier.
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Benchmarking

An objective comparison was carried out
between DISOPRED2 and several other disorder
prediction methods evaluated on targets from the
last CASP experiment. The PSI-BLAST search data-
base and the training set for DISOPRED2 were
compiled before the start of CASP so the test can
be considered fair. Figure 8 and Table 4 show
results from DISOPRED2 along with those from
the Obradovic (VL3) and Dunker (VLXT) groups
submitted in the model 1 category and the VL2
method from the Dunker group, which achieved
highest accuracy according to their own
assessment.36

The Obradovic & Dunker groups have estab-
lished several disordered prediction methods in
collaboration.36 During the CASP experiment, the

two groups submitted predictions independently.
The predictions from VL2 and VLXT come from
ensembles of neural networks trained on combi-
nations of amino acid composition, flexibility and
sequence complexity. The VL3 predictor was
trained using ordinary least squares regression
with partitioning of the training set to cluster
various “flavors” of disorder.10 The FoldIndex
program† is based on the calculations developed
by Uversky, Gillespie & Fink,20 and predicts
whether a sequence will fold by computing its
mean net charge and hydrophobicity. The window
parameter for the FoldIndex classifier was set to
31 residues as this value achieved highest accuracy
on a validation set.

The DISOPRED2 predictor achieves higher
accuracy than the other methods across the range
of decision thresholds apart from a slight
deficiency over VL3 at very low false positive
rates (,1.27%). This is likely to be a result of VL3
being trained on only long regions of disorder,
which can be predicted more accurately than
shorter regions. Applying a simple rule to the
outputs of DISOPRED2 that removes predictions
for short disordered segments yields even higher
accuracies at the low thresholds. The differences
in the Wilcoxon scores between DISOPRED2 and

Figure 8. Receiver operator characteristic curves comparing the outputs of DISOPRED2 to four other methods eval-
uated on the CASP targets.

Table 4. Matthews correlation coefficient and two-state
accuracy (Q2) for a false hit rate of 0.05 and the Wilcoxon
statistic for CASP targets

C Q2 Wilcoxon SE

DISOPRED2 0.51 93.1 90.0 0.64
Dunker VLXT 0.31 91.41 80.94 0.80
Dunker VL2 0.36 91.76 78.62 0.99
Obradovic VL3 0.38 92.05 80.07 0.91
FoldIndex 0.26 91.0 73.8 0.92

† http://bioportal.weizmann.ac.il/fldbin/findex
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the other three methods are all statistically signifi-
cant at the 99% level.

Predicting disorder in complete genomes

The protein sequences for six archaea, 13
eubacteria and five eukaryote genomes were
downloaded from the NCBI ftp server. These
sequences were first filtered using the sequence
masking program pfilt to remove coiled-coil and
transmembrane regions.37 The low sequence com-
plexity and compositional bias filters were not
used as these regions are often disordered. The
PSI-BLAST jobs, used to calculate the inputs to
DISOPRED2, were distributed across a Linux
beowulf cluster of Intel Pentium and AMD Athlon
processors and two associated SunFire 880 servers
running Solaris. Sequences were submitted to the
Sun Grid Engine scheduler using servlet
technology.

The analysis of the annotations associated with
predicted disorder was carried out using the July
2003 release of the SGD. The database contains
2337 unique GO terms attached to 5889 proteins in
the set of translated open reading frames. The
electronic annotations were excluded from the
analysis to ensure reliability. The SGD annotates
each protein with the most specific terms available
in the GO. However, the hierarchical structure of
GO means that all ancestral terms also provide a
valid description in a more general sense. For
example, the term “cell cycle” is part of “cell pro-
liferation”, which is a process of “cell growth and
maintenance”. Including the ancestral nodes in
GO’s directed, acyclic graph hierarchy expands
the number of unique terms to 3299.

A diagram of the sampling method used to
determine the functional significance of disorder
is shown in Figure 9. Each disordered segment
was mapped to the GO annotations for the protein
in which it occurred. The number of times each
GO term occurred was then counted across the
entire set of disordered predictions. In each
random simulation, segments with identical
lengths to the disordered predictions were
randomly distributed across the yeast proteome
with the constraint that segments could not cross
the boundaries separating each protein. The
number of times each GO term occurred in 10,000

simulations was used to obtain p-values for the
disorder predictions under the null model.
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