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DOUBLE PHASE IMAGE RESTORATION

PETTERI HARJULEHTO AND PETER HÄSTÖ

ABSTRACT. In this paper we explore the potential of the double phase functional in an image
processing context. To this end, we study minimizers of the double phase energy for func-
tions with bounded variation and show that this energy can be obtained by Γ-convergence or
relaxation of regularized functionals. A central tool is a capped fractional maximal function
of the derivative of BV functions.

1. INTRODUCTION

The double phase functional was introduced in the 1980s by Zhikov [46], but has only
recently become the focus of intense research, starting in 2015 with Baroni, Colombo and
Mingione [5, 6, 15, 17]. Subsequently, many other researchers studied double phase prob-
lems as well, see, e.g., [9, 18, 20, 22, 39, 40] for regularity theory, [10, 21, 43] for Calderón–
Zygmund estimates and [27, 36, 37] for some other topics. Generalizations of the double
phase functional have been studies, e.g. in [7, 25, 26, 28, 33, 34, 38, 45].

Zhikov’s original motivation for his functionals with non-standard growth was modelling
physical phenomena. Another of his models, the variable exponent functional, was later ap-
plied also to the context of image processing, see [1, 14, 31, 35]. In this article, we demon-
strate the potential also of the double phase functional in the image processing domain. This
is to the best of our knowledge the first paper to consider the double phase functional in the
space BV of functions of bounded variation.

In mathematical image processing, we interpret a function u : Ω → R as the gray-scale
intensity at each location. If the function is discretized, we obtain an array of pixels common
in computer implementations. Typically, Ω is a rectangle and the image contains different
objects whose edges correspond to discontinuities of u. The presence of discontinuities
makes this field challenging to approach with tools of analysis, but the BV space has proven
useful. We refer to the book [4] by Aubert and Kornprobst for an overview of PDE-based
image processing.

The classical ROF-model [41] for image restoration calls for minimizing the energy

inf
u

ˆ

Ω

|∇u|+ |u− f |2 dx,

where f is the given, corrupted input image that is to be restored. Here |u− f |2 is a fidelity
term which forces u to be close to f on average, whereas the regularizing term |∇u| limits the
variation of u. This model is known to be prone to a stair-casing or banding effect whereby
piecewise constant minimizers are often produced [13]. On the other hand, replacing |∇u|
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by |∇u|2 leads to a heat-equation type problem, and solutions which are C∞. This is not
usually desirable in the image processing context, as edges become blurred.

The energy of the double phase functional combines growth with two different powers. It
is given by the expression

ˆ

Ω

|∇u|p + a(x)|∇u|q dx.

Here a > 0 is a bounded function and p < q. All the previously mentioned double-phase
references concern super-linear growth (usually p > 1, but see also [22]). However, for
image processing, the case p = 1 and q = 2 is especially interesting (see above and the
discussion in [14]). Then the first term corresponds to the ROF-model, whereas the second
term introduces a smoothing effect when a > 0. The parameter a is chosen such that a = 0
at the edges in the image and a > 0 elsewhere. Usually, the location of the edges is not
known, so in applications a is estimated from the initial data f . Then this adaptive model
can avoid the stair-casing effect of the ROF-model.

In the case p = 1, the double phase energy must naturally be studied in a space of BV -
type. It is not difficult to prove existence of the minimizer even in this case (cf. Proposi-
tion 2.4). However, the BV -space is quite ill-behaved, so it is useful for practical implemen-
tations to approximate the energy by more regular functionals (see, e.g., [44, Section 6] in
the image processing context). The notion of Γ-convergence is often employed in this situa-
tion [8, 19], and this article is no exception: our main result (Theorems 4.1 and 4.2) shows
that the BV double phase functional (with fidelity term)

|Du|(Ω) +

ˆ

Ω

(a(x)|∇u|)2 + |u− f |2 dx

can be approximated in the sense of Γ-convergence by both
ˆ

Ω

|∇u|1+ε+ (a(x)|∇u|)2+ |u− f |2 dx and

ˆ

Ω

|∇u|+ (ε+ a(x)2)|∇u|2+ |u− f |2 dx.

Finally, in Corollary 4.3, we show that the BV double phase functional can be understood
as the relaxation of the W 1,1 double phase functional.

Note that we use a inside the power-function, (a(x)t)2. This is of course equivalent to hav-
ing another function outside, but it turns out that the condition on a can be more conveniently
expressed with this formulation (see Remark 3.3).

2. NOTATION AND EXISTENCE OF MINIMIZERS OF BOUNDED VARIATION

We consider subsets of the Euclidean space R
n, n > 2. The most interesting case for

image processing is n = 2, but we can include higher dimensions without extra complication.
By Ω ⊂ R

n we denote a bounded domain, i.e. an open and connected set. The notation
f . g means that there exists a constant C > 0 such that f 6 Cg. By c we denote a generic
constant whose value may change between appearances. Let a ∈ L∞(Ω) be non-negative.
By Lp

a(Ω) we denote the weighted Lebesgue space with weight a, given by the norm

‖u‖Lp
a(Ω) := ‖a u‖Lp(Ω) =

(

ˆ

Ω

(a(x)|u|)p dx
)

1

p

.

W 1,p
a (Ω) is the corresponding Sobolev space. Note that we use the “weight as multiplier”

formulation, so the corresponding weighted measure is dµ = ap dx, not dµ = a dx. By
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Hk we denote the k-dimensional Hausdorff measure. By |µ| we denote the total variation
measure of a vector measure µ, defined as

|µ|(A) = sup
{

∑

i∈N

|µ(Ai)|
∣

∣

∣

⋃

i∈N

Ai = A, Ai disjoint and measurable
}

.

By Mu we denote the Hardy–Littlewood maximal function of u.
A function u ∈ L1(Ω) has bounded variation, denoted u ∈ BV (Ω), if

|Du|(Ω) := sup

{
ˆ

Ω

u divϕdx
∣

∣

∣
ϕ ∈ C1

0(Ω;R
n), |ϕ| 6 1

}

< ∞.

Note that this quantity is sometimes denoted by ‖Du‖(Ω). We follow the notation of [3],
which is convenient since it turns out that |Du| is the total variation of a vector measure Du.
Furthermore, Du can be decomposed as

(2.1) Du = ∇uHn + (u+ − u−)νuH
n−1|Ju + Cu,

where ∇u is the absolutely continuous part of the derivative, u+ − u− is the essential point-
wise jump of the function, νu is the normal of the level-set, Ju is a set of Hausdorff dimension
at most n − 1 [2, Theorem 2.3] and the Cantor part Cu has the property that Cu(A) = 0 if
Hn−1(A) < ∞ [3, Proposition 3.92]. The space BV has the following precompactness
property [3, Proposition 3.13]: if supi

(

|Dui|(Ω) + ‖ui‖L1(Ω)

)

< ∞, then there exists a
subsequence, denoted again by (ui), and u ∈ BV (Ω) such that

(2.2) ui → u in L1(Ω) and |Du|(Ω) 6 lim inf |Dui|(Ω).

The derivative of the convolution of a BV -function can be calculated as expected using either
the derivative-measure or the function [3, Proposition 3.2 and equation (2.2)]:

(2.3) ∇(u ∗ ηδ)(x) =

ˆ

Rn

ηδ(x− y) dDu(y) =

ˆ

Rn

u(y)∇ηδ(x− y) dy.

We refer to [2, 3, 8] for more information about BV spaces.
We abbreviate BV 1,2

a (Ω) := BV (Ω)∩W 1,2
a (Ω)∩L2(Ω) and define for u ∈ BV 1,2

a (Ω) and
initial data f ∈ L2(Ω) the BV double phase functional

I(u,A) := |Du|(A) +

ˆ

A

(a(x)|∇u|)2 + |u− f |2 dx

for measurable A ⊂ Ω. We can easily show the existence of a minimizer for this functional
using the direct method of calculus of variations:

Proposition 2.4. There exists a unique minimizer u ∈ BV 1,2
a (Ω), i.e.

I(u,Ω) = inf
v∈BV 1,2

a (Ω)
I(v,Ω).

Proof. Let ui be a minimizing sequence, that is ui ∈ BV 1,2
a (Ω) with

lim
i→∞

I(ui,Ω) = inf
v∈BV 1,2

a (Ω)
I(v,Ω).

By BV -precompactness (2.2) there exists a subsequence, denoted again by (ui), such that
ui → u in L1(Ω) and |Du|(Ω) 6 lim inf |Dui|(Ω). The space W 1,2

a (Ω) is reflexive [29, The-
orem 3.6.8], so we can find a weakly convergent subsequence (ui). By [24, Theorem 2.2.8],
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the modular in W 1,2
a (Ω) is weakly lower semicontinuous, so that
ˆ

Ω

(a(x)|∇u|)2 dx 6 lim inf

ˆ

Ω

(a(x)|∇ui|)
2 dx.

The inequality for the term |u− f |2 follows analogously. Hence u is a minimizer.
Finally, we note that the BV and W 1,2

a parts are convex and the |u − f |2 part is strictly
convex, so the usual argument yields uniqueness, namely, if u and v are distinct minimizers,
then we obtain a contradiction from I(u+v

2
,Ω) < 1

2
(I(u,Ω) + I(v,Ω)). �

3. LOWER ESTIMATES FOR THE BV DOUBLE PHASE FUNCTIONAL

To be able to construct the minimizers of I with some numerical scheme, we must show
that the BV double phase functional can be approximated by some more regular variants.
We regularize the functional by adding ε either to the exponent of the first term (so that the
problem is in W 1,1+ε(Ω)) or to the weight a (in which case the problem is in W 1,2(Ω)). For
brevity, we present the proof only for one case which includes both these regularizations:

Iε(u,A) :=

ˆ

A

|∇u|1+ε + (ε+ a(x)2)|∇u|2 + |u− f |2 dx.

We start with a lower bound for I , which is the more difficult part.

Lemma 3.1. Let F ⊂ Ω be closed and a ∈ C0,1(Ω). For εi → 0+ and u ∈ BV 1,2
a (Ω), there

exist ui ∈ W 1,2(U) in a neighborhood U of F such that

lim sup
i→∞

Iεi(ui, F ) 6 I(u, F ).

Proof. Let uδ := u ∗ ηδ be the convolution with the standard mollifier and assume that
δ < dist(F, ∂Ω). By [30, Lemma 4.5] and classical L2-results

lim sup
δ→0

[

|Duδ|(F ) +

ˆ

F

|uδ − f |2 dx
]

6 |Du|(F ) +

ˆ

F

|u− f |2 dx.

For the term with the weight a, we consider two cases and use the different expressions
from (2.3). If 0 < a(x) 6 2a(y) for all y ∈ B(x, δ), then

a(x)|∇uδ| 6 2

ˆ

Rn

a(y)|∇u(y)| ηδ(x− y) dy . M(a|∇u|)(x);

note that the condition 0 < a(y) with u ∈ W 1,2
a (Ω) ensures that Du = ∇u is absolutely

continuous in B(x, δ) and note also that the last inequality follows from elementary estimates
(e.g. [24, Lemma 4.6.3]). Furthermore, since a|∇u| ∈ L2(Ω) and the maximal operator is
bounded on L2(Ω), we see that the function on the right-hand side is in L2(Ω), as well.
If a(x) = 0, then the estimate trivially holds. Suppose then that a(x) > 2a(y) for some
y ∈ B(x, δ). Since a ∈ C0,1(Ω), we obtain the inequality

a(x)− c |x− y| 6 a(y) 6 1
2
a(x),

so that a(x) . |x− y| 6 δ. Therefore

(3.2) a(x)|∇uδ| .

ˆ

Rn

δ |u(y)∇ηδ(x− y)| dy .
1

|B(x, δ)|

ˆ

B(x,δ)

|u(y)| dy 6 Mu(x),
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where we used that |δ∇ηδ| . δ−nχB(x,δ) for the middle step. Again, since u ∈ L2(Ω), we
obtain an upper bound independent of δ in the space L2(Ω). In the set {a > 0} we have
∇uδ → ∇u almost everywhere. Thus it follows by dominated convergence in L2(Ω) that

lim
δ→0

ˆ

F

(a(x)|∇uδ|)
2dx =

ˆ

F

(a(x)|∇u|)2dx.

We have so far shown that

lim sup
δ→0

I(uδ, F ) 6 I(u, F ).

It remains to change the first functional from I to Iεi . Equation (2.3) implies |∇uδ| 6
c
δn

,
where c depends on |Du|(Ω). Therefore
ˆ

F

|∇uδ|
1+ε + (ε+ a(x)2)|∇uδ|

2 dx 6 ( c
δn
)ε|Duδ|(F ) +

ˆ

F

(a(x)|∇uδ|)
2 dx+ ε( c

δn
)2|F |.

We choose δi := ε
1/(3n)
i so that ( c

δni
)εi → 1 and εi(

c
δni
)2 → 0 and set ui := uδi . Then

lim sup
i→∞

Iεi(ui, F )

6 lim sup
i→∞

[

( c
δni
)εi|Dui|(F ) +

ˆ

F

(a(x)|∇ui|)
2 + |ui − f |2 dx+ εi(

c
δni
)2|F |

]

= lim sup
i→∞

[

|Dui|(F ) +

ˆ

F

(a(x)|∇ui|)
2 + |ui − f |2 dx

]

6 I(u, F ). �

Remark 3.3. From the previous proof we can see that the exact condition used for a is not
C0,1(Ω), but rather the inequality

a(x) . max{|x− y|, a(y)} for all x, y ∈ Ω.

This means that we could replace a(x)2 in the double phase functional with a(x)q for a ∈
C0,α(Ω) as long as qα > 2. This kind of condition was first identified for the double phase
functional in [29, Section 7.2].

With the method of the previous proof, one can obtain from (3.2) that a(x)|∇uδ| is
bounded by Mα(Du) when a ∈ C0,α(Ω) and Mα denotes the fractional maximal opera-
tor (cf. Lemma 3.5). This will allow us to prove the result for bounded functions u with
a larger class of weights a. A number of recent studies, e.g. [11, 12], deal with the ques-
tion of the Sobolev regularity of the maximal function Mαu of a Sobolev or BV function u.
However, we have not found any results on the maximal function of the derivative of a BV

function. Therefore, the following result may be of independent interest.

Proposition 3.4. Let µ be a vector Borel measure in Ω with finite total variation |µ|(Ω) < ∞,

σ ∈ (0, n) and α ∈ (0, n− σ). Then the capped fractional maximal function

Mσ
αµ(x) := sup

r6diamΩ

min{|µ|(B(x, r)), rσ}

|B(x, r)|1−
α
n

belongs to Lp(Ω) if p < 1 + α
n−σ−α

.

Furthermore, the bound is sharp since the claim does not hold for p > 1 + α
n−σ−α

.

Proof. We consider dyadic cubes intersecting Ω with side-length at most diamΩ. Specifi-
cally, we assume that the cubes are of the form [a1, b1)× · · ·× [an, bn) and denote by Dk the
set of such cubes with side-length 2k. Let Dx

k ∈ Dk be the cube which contains x and 3Dx
k
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be its threefold dilate. We define µk(A) := min{|µ|(A ∩ Ω), 2σk}. If 2k−1 6 r < 2k, then
B(x, r) ⊂ 3Dx

k . Thus

Mσ
αµ(x) . sup

k∈K0

µk(3D
x
k)

2(n−α)k
,

where K0 := {−∞, . . . , k0} and k0 is the smallest integer with 2k0 > diamΩ. We raise this
to the power p and estimate the supremum by a sum:

Mσ
αµ(x)

p . sup
k∈K0

(µk(3D
x
k)

2(n−α)k

)p

6
∑

k∈K0

(µk(3D
x
k)

2(n−α)k

)p

.

Next we integrate over Ω and use that µk(3D
x
k) can be estimated by the sum of 3n terms of

the form µk(Dk) with Dk ∈ Dk. Thus we obtain that
ˆ

Ω

Mσ
αµ(x)

p dx .
∑

k∈K0

2−(n−α)pk

ˆ

Ω

µk(D
x
k)

p dx

6
∑

k∈K0

2−(n−α)pk
∑

D∈Dk

µk(D)p|D|.

Let us maximize the sum
∑

D∈Dk
µk(D)p separately for each k. Since Dk ∩ Ω is a partition

of Ω, we can write this optimization problem as

Sk := sup

{

∑

i

a
p
i

∣

∣

∣

∑

i

ai 6 |µ|(Ω), ai ∈
[

0, 2σk
]

}

where ai = µk(Di) for Di ∈ Dk; the last restriction holds since µk(Ω) 6 2σk by the
definition of µk. We consider what values of the ai’s leads to a maximally large sum. If
0 < ai < aj < 2σk, then

a
p
i + a

p
j < (ai − t)p + (aj + t)p

for 0 < t < min{ai, 2
σk − aj}. Therefore the sum is maximized subject to the constraints

when ai = 2σk for as many indices as possible and zero for the rest. There are no more than
⌈2−σk|µ|(Ω)⌉ such maximal indices. Thus

Sk ≈ 2−σk |µ|(Ω) 2σkp ≈ 2(p−1)σk.

We use this estimate in our previous inequality, and conclude that
ˆ

Ω

Mσ
αµ(x)

p dx .
∑

k∈K0

2−(n−α)pk2(p−1)σk2nk =
∑

k∈K0

2[−(n−α)p+(p−1)σ+n]k.

The last sum is finite if −(n− α)p+ (p− 1)σ + n > 0, which is equivalent to the condition
in the proposition.

It remains to prove sharpness. For simplicity we consider only the case when σ is an
integer. We let E be a σ-dimensional plane and define µ(A) := Hσ(E ∩A). Denote d(x) :=
dist(x, E). Then

Mσ
αµ(x) &

µ(B(x, 2d(x)))

|B(x, 2d(x))|1−
α
n

≈ d(x)σ−n+α.

We raise this to the power p and integrate over x:
ˆ

Ω

Mσ
αµ(x)

p dx &

ˆ

Ω

d(x)(σ−n+α)pdx ≈

ˆ 1

0

r(σ−n+α)prn−σ−1dr.
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This integral diverges if (σ− n+α)p+ n− σ 6 0, which gives the claimed bound for p. In
the case of non-integer σ, we instead choose our set as the Cartesian product of a plane and
a Cantor set, and estimate as before. �

With the fractional maximal operator we can extend Lemma 3.1 in the case of bounded
functions. Bounded functions are very natural in the context of image processing, since
the grey-scale values are usually taken in some compact interval such as [0, 255] or [0, 1].
Note that to use the previous proposition, we cannot directly move to the total variation
measure |Du|, since this is not in general going to satisfy the appropriate decay rn−1 when
u is bounded. Rather, we have to first estimate the absolute value of the measure of a ball,
|Du(B(x, r))|, and only afterward move to |Du|. In the next result we therefore work with
the vector measure Du rather than its total variation, which makes the estimates slightly
more difficult.

Lemma 3.5. Let F ⊂ Ω be closed and a ∈ C0,α(Ω) for some α > 1
2
. For εi → 0+ and

u ∈ BV 1,2
a (Ω) ∩L∞(Ω), there exist ui ∈ W 1,2(U) ∩L∞(Ω) in a neighborhood U of F such

that

lim sup
i→∞

Iεi(ui, F ) 6 I(u, F ).

Proof. The proof is identical to that of Lemma 3.1, except for the estimate of a(x)|∇uδ| in
the second case, a(x) < 1

2
a(y). Let us show that we can use Proposition 3.4 to handle this

case. By the construction of the measure Du,
ˆ

B(x,r)

ϕ · dDu = −

ˆ

B(x,r)

u divϕdy

for all ϕ ∈ C1
0(B(x, r);Rn), cf. [3, Proposition 3.6]. We choose ϕ(y) = bξ(|x − y|) where

b ∈ B(0, 1) and ξ ∈ C1([0,∞)) with ξ|[0,r−ε−ε2] = 1, ξ|[r−ε2,∞) = 0 and |ξ′| 6 2
ε
. Then

| divϕ| 6 2
ε
χB(x,r−ε2)\B(x,r−ε−ε2) and so

∣

∣

∣

ˆ

B(x,r)

u divϕdy
∣

∣

∣
6 ‖u‖∞

2
ε

∣

∣B(x, r − ε2) \B(x, r − ε− ε2)
∣

∣ ≈ rn−1

since u is bounded. It follows by monotone convergence as ε → 0+ that

|Du(B(x, r))| = sup
|b|=1

b ·Du(B(x, r)) . rn−1.

Therefore, |Du(B(x, r))| . min{|Du|(B(x, r)), rn−1} and so

|Du(B(x, r))| . Mn−1
α (Du)(x)rn−α.

On the other hand, we can estimate for the derivative of the convolution using (2.3), the
distribution function of Du [42, Theorem 8.16] and the estimate | d

dr
ηδ(re1)| . δ−n−1. For a

unit vector e1, it follows that

|∇uδ| 6
∣

∣

∣

ˆ

Rn

ηδ(x− y) dDu(y)
∣

∣

∣
=

∣

∣

∣

ˆ δ

0

d
dr
ηδ(re1)Du(B(x, r)) dr

∣

∣

∣

6

ˆ δ

0

∣

∣

d
dr
ηδ(re1)

∣

∣Mn−1
α (Du)(x)rn−α dr

. Mn−1
α (Du)(x)δ−n−1

ˆ δ

0

rn−α dr ≈ δ−αMn−1
α (Du)(x).
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As in Lemma 3.1, we conclude now from a ∈ C0,α(Ω) in the second case that a(x) 6 δα.
Thus a(x)|∇uδ| . Mn−1

α (Du)(x). By Proposition 3.4, the right-hand side is in L2(Ω)
provided 2 < 1 + α

n−(n−1)−α
= 1

1−α
, which holds since α > 1

2
. Thus we can use this as the

bound for dominated convergence. The rest of the proof is as before. �

Remark 3.6. If we consider a double phase functional tp+a(x)tq in “normal” form, then the
condition from the previous results can be written q < p + α. This condition has proved to
be of central importance when considering bounded solutions, cf. [6, 16, 32]. In this sense,
the assumption in Lemma 3.5 is probably essentially sharp.

However, more precise research has established that one may even take q 6 p + α for
bounded minimizers [6, 33] (see also [21, 34] for the borderline case with unbounded mini-
mizers). The borderline is handled using additional Hölder continuity obtained via De Giorgi
technique, which in this case implies that u ∈ C0,γ(Ω) for some γ > 0. Indeed, from the
previous proof we can see that a ∈ C0,1/2(Ω) would suffice if we had u ∈ C0,γ(Ω) for some
positive γ > 0 (as one has when p, q > 1) instead of u ∈ L∞(Ω). However, for BV prob-
lems, such higher regularity of the function cannot be expected. Therefore, the borderline
q = p+ α remains a problem for future research.

Let us also note that Ok [40] has considered double phase functionals under additional
a priori integrability assumptions other than L∞(Ω). If one could prove decay estimates
|Du(B(x, r))| . rσ for σ ∈ (n− 1, n) when u ∈ Ls(Ω), we could cover also this case. We
do not know about such of results, so this, likewise, remains for a topic for another study.

4. UPPER ESTIMATES FOR THE BV DOUBLE PHASE FUNCTIONAL

The concept of Γ-convergence, introduced by De Giorgi and Franzoni [23], has been sys-
tematically presented in [8, 19]. A family of functionals Iε : X → R is said to Γ-converge

(in topology τ ) to I : X → R if the following hold for every positive sequence (εi) converg-
ing to zero:

(a) I(u) 6 lim inf
i→∞

Iεi(ui) for every u ∈ X and every (ui) ⊂ X τ -converging to u;

(b) I(u) > lim sup
i→∞

Iεi(ui) for every u ∈ X and some (ui) ⊂ X τ -converging to u.

Let us remark that the somewhat strange assumption Hn−1({a = 0} ∩ ∂Ω) = 0 in the
next theorem is actually quite natural: since {a = 0} is the set where the image edges occur,
we cannot identify the edge if it coincides with the image boundary ∂Ω. On the other hand,
we also have no need for the jump in the function at this location, since the other part of the
jump will be outside the image, and thus cannot be seen.

Theorem 4.1. Suppose that Ω is a rectangular cuboid, a ∈ C0,1(Ω), and assume that a > 0
Hn−1-a.e. on the boundary ∂Ω. Then Iε Γ-converges to I in L1(Ω) topology with X :=
BV 1,2

a (Ω).

Proof. Let us start with condition (a) in the definition of Γ-convergence. Let (εi) be a positive
sequence converging to zero. Let u ∈ BV 1,2

a (Ω) and let (ui) ⊂ BV 1,2
a (Ω) be a sequence

converging to u in L1(Ω). If lim inf i→∞ Iεi(ui) = ∞, then there is nothing to prove, so we
assume that K := lim inf i→∞ Iεi(ui) < ∞. We restrict our attention to a subsequence with
limi→∞ Iεi(ui) = K and ui ∈ W 1,2(Ω). Then (ui) is a bounded sequence in BV 1,2

a (Ω). By
precompactness of BV there exists a limit function for a subsequence such that |Dub|(Ω) 6
lim inf |Dui|(Ω); by reflexivity of W 1,2

a (Ω) and L2(Ω), we obtain subsequences with ∇ui ⇀
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∇uw, ui ⇀ uw in L2
a(Ω) and ui − f ⇀ ul − f in L2(Ω). By ui → u in L1(Ω) and the

uniqueness of the limit, we conclude that ub = uw = ul = u.
The weak lower semi-continuity of the Lebesgue integral yields that

ˆ

Ω

|u− f |2 dx 6 lim inf
i→∞

ˆ

Ω

|ui − f |2 dx

and, since εi > 0,
ˆ

Ω

(a(x)|∇u|)2 dx 6 lim inf
i→∞

ˆ

Ω

(a(x)|∇ui|)
2 dx 6 lim inf

i→∞

ˆ

Ω

(εi + a(x)2)|∇ui|
2 dx.

Finally, for the BV part we use the estimate from the previous paragraph, Young’s inequality
and ( 1

1+εi
)1/εi → 1

e
:

|Du|(Ω) 6 lim inf
i→∞

|Dui|(Ω) = lim inf
i→∞

ˆ

Ω

|∇ui| dx

6 lim inf
i→∞

ˆ

Ω

|∇ui|
1+εi +

( 1

1 + εi

)
1

εi εi

1− εi
dx = lim inf

i→∞

ˆ

Ω

|∇ui|
1+εi dx.

By combining the above inequalities we obtain condition (a). Note that for this part we do
not need the assumptions on Ω and a.

Let us then move to condition (b). Since Ω is a rectangular cuboid, we can extend both the
function u and the weight a by reflections to the rectangular cuboid with the same center but
3 times the side-lengths. Then we use Lemma 3.1 with F := Ω to conclude that there exist
ui ∈ W 1,2(U) such that

lim sup
i→∞

Iεi(ui,Ω) 6 I(u,Ω).

We need this inequality with Ω instead of Ω. Since |∂Ω| = 0 and ui is a Sobolev function,
Iεi(ui,Ω) = Iεi(ui,Ω). On the right-hand side, the same reason implies that

ˆ

Ω

(a(x)|∇u|)2 + |u− f |2 dx =

ˆ

Ω

(a(x)|∇u|)2 + |u− f |2 dx.

The singular set of Du is contained in {a = 0} because u ∈ W 1,2
a (U). Since {a = 0} ∩ ∂Ω

has Hausdorff (n − 1)-measure zero by assumption, it follows by the decomposition (2.1)
that |Du|(∂Ω) = 0 and so |Du|(Ω) = |Du|(Ω). Thus we have established condition (b) of
Γ-convergence. �

In the previous theorem we could consider a Lipschitz domain instead of a rectangular
cuboid. In this case, the extension of both u and a would be done by flattening the boundary
with the Lipschitz map. If we use Lemma 3.5 instead of Lemma 3.1, we obtain the following
variant.

Theorem 4.2. Suppose that Ω is a bounded Lipschitz domain, a ∈ C0,α(Ω) for some α > 1
2
,

and assume that a > 0 Hn−1-a.e. on the boundary ∂Ω. Then Iε Γ-converges to I in L1(Ω)
topology with X := BV 1,2

a (Ω) ∩ L∞(Ω).

We use the following formulation for relaxation, which emphasizes the connection with
Γ-convergence. A functional J : X → R is the relaxation of J : X → R in topology τ if

(a) J (u) 6 lim inf
i→∞

J (ui) for every u ∈ X and every (ui) ⊂ X τ -converging to u;

(b) J (u) > lim sup
i→∞

J (ui) for every u ∈ X and some (ui) ⊂ X τ -converging to u.
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The relaxation is the greatest lower-semicontinuous minorant of J . See [8, Proposition 1.31,
p. 33]. Let us write for u ∈ BV (Ω) that

J (u) :=

{

´

Ω
|∇u|+ (a(x)|∇u|)2 + |u− f |2 dx, if u ∈ W 1,1(Ω)

∞, if u ∈ BV (Ω) \W 1,1(Ω).

We show that the relaxation J of this functional equals I . The proof is identical to Theo-
rem 4.1, we simply take Iε = J for every ε > 0 and I = J . Naturally, we could also prove
an analogue to Theorem 4.2.

Corollary 4.3. Suppose that Ω is a rectangular cuboid, a ∈ C0,1(Ω), and assume that a > 0
Hn−1-a.e. on the boundary ∂Ω. Then J = I in L1(Ω) topology.
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