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Abstract

Objectives—We determined the performance of a sensor array (an electronic nose) made of 8 

metalloporphyrins coated quartz microbalances sensors for the diagnosis and prognosis of 

pulmonary tuberculosis (TB) using exhaled breath samples.
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Methods—TB cases and healthy controls were prospectively enrolled. Signals from volatile 

organic compounds (VOCs) in breath samples were measured at days 0, 2, 7, 14, and 30 of TB 

therapy and correlated with clinical and microbiological measurements.

Results—51 pulmonary TB cases and 20 healthy HIV-uninfected controls were enrolled in the 

study. 31 (61%) of the 51 pulmonary TB cases were coinfected with HIV. At day 0 (before TB 

treatment initiation) the sensitivity of our device was estimated at 94.1% (95% confidence interval 

[CI], 83.8-98.8%) and specificity was 90.0% (95% CI, 68.3-98.8%) for distinguishing TB cases 

from controls. Time-dependent changes in the breath signals were identified as time on TB 

treatment progressed. Time-dependent signal changes were more pronounced among HIV-

uninfected patients.

Conclusion—The identification of VOCs signals in breath samples using a sensor array achieved 

high sensitivity and specificity for the diagnosis of TB and allowed following signal changes 

during TB treatment.
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INTRODUCTION

The natural course of tuberculosis (TB) disease is the result of highly dynamic changes at 

the human- and mycobacterial-level. Quantitative and qualitative variations of metabolites 

produced by host and pathogen could provide important information on the disease and its 

prognosis. Since many metabolic products are small molecules, volatile organic compounds 

(VOCs) analysis has the potential for providing a direct reflection of the physiological status 

of host-pathogen interactions (1).

Although VOCs could be detected in any clinical sample, analysis of VOCs in exhaled 

breath is particularly appealing for the diagnosis of pulmonary TB. The exhaled-breath test 

is painless and noninvasive, and therefore an ideal sample for children and critically ill 

patients (2). Breath samples are simple to collect and analyze, allowing for frequent 

measurements over time aimed at determining clinical progression or treatment response. 

Further, available sensor technology also allows exhaled-breath analysis at the point-of-care 

circumventing the need for high? infrastructure and expensive programs in low-income 

countries (3).

Broadly speaking, the analyses of VOCs for diagnostic or prognostic purposes could use two 

complementary, not mutually exclusive approaches. On one hand, one could target the 

identification and quantification of specific VOCs produced by the host or the mycobacteria. 

The identification of individual VOCs in a gas mixture is achieved through gas 

chromatography or mass spectroscopy (GC-MS) techniques. To date, most studies aimed at 

establishing the relationship between VOCs and infections, including Mycobacterium 
tuberculosis (Mtb) infection, have been carried out using this approach (4-14). GC–MS 

techniques are sensitive and reproducible and are currently recognized as the gold standard 

in breath VOC tests. However, such approaches are limited by technical complexity, high 
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costs, and the need for pre-processing of the samples before testing. In spite of recent 

advances in miniaturization, GC–MS technology is still not mobile and cannot perform real-

time measurements, making it not suitable for point-of-care use (15). Alternatively, VOC 

analysis could be aimed at identifying the composite, unique signal resulting from the 

exposure of a complex mixture of VOCs to arrays of sensors (also called “electronic noses”) 

(16, 17). After exposure to a complex VOC mixture, the physical or chemical properties of 

the sensors change. Those changes are then quantified into in a unique breath signal (or 

“breathprint”). Pattern recognition algorithms may then sort the data into classes 

discriminating those pertaining to specific microorganisms or diseases (18). In principle, 

identification of breath signals does not require identification of individual molecular 

constituents.

Very few studies have looked into the performance of electronic noses for TB diagnosis and 

prognosis. Fend et al showed that a conducting polymer array could be used for detecting 

Mtb in sputum samples and cultures (19). Other studies have successfully used sensors made 

of organically-capped gold nanoparticles for the diagnosis of Mycobacterium bovis in cattle 

and, more recently, for the diagnosis of pulmonary TB in humans (20). Those studies 

support the use of sensors for TB diagnostics and highlight the need for determining the 

most suitable sensor technology for the application.

In this study we exploited the sensing properties of metalloporphyrin-based sensors. Given 

their critical role in a wide variety of biological processes, metalloporphyhrins are among 

the most suitable molecular platform for sensor arrays to capture the VOCs profiles 

produced by host and pathogens (21-23). Metalloporphyrins-based sensor arrays have been 

demonstrated to be sufficiently stable, sensitive and selective to diagnose different 

pathologies, such as lung cancer (23-25). We hypothesized that patients with active 

pulmonary TB will have different VOC signatures in breath samples compared with healthy 

controls. To test this hypothesis we first determined the diagnostic performance of our 

electronic nose comprised by an array of metalloporphyrins coated quartz microbalances for 

pulmonary TB. Then, we determined its performance monitoring TB treatment response.

METHODS

Study design

Patients with a new diagnosis of pulmonary TB (cases) and healthy controls were enrolled in 

the study. VOCs were measured on the patient’s breath on days 0, 2, 7, 14, and 30 of 

therapy. The diagnostic performance of the device was assessed using data obtained at 

baseline (day 0, before TB treatment initiation). Follow up measurements were used to 

determine time-dependent changes in the breath signals after TB treatment initiation.

Participants

Participants were recruited prospectively at the Princess Marina Hospital in Gaborone, 

Botswana between May and October 2015. Following the World Health Organization 

recommendations for the development of diagnostic tests for TB, this study was conducted 

as an early proof-of-principle evaluation to demonstrate that our device can distinguish 
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patients with symptomatic, microbiologically confirmed pulmonary TB from healthy 

controls with reliable reproducibility (26). Accordingly, all pulmonary TB cases were adults 

(21 years of age or older) with: 1) symptoms and signs suggestive of active pulmonary 

disease; 2) an abnormal chest radiograph with findings consistent with pulmonary TB; and, 

3) acid fast staining bacilli (AFB) seen on microscopy of sputa. To decrease the confounding 

effect of smoking over VOC signatures, self-reported smokers were not eligible for 

enrolment (27, 28). All cases were started on first-line anti-TB treatment (rifampin, 

isoniazid, ethambutol and pyrazinamide) on the day of enrolment, in accordance to 

Botswana national TB guidelines (29). HIV testing was performed on all cases without 

known HIV infection. Cases with new diagnosis of HIV infection and those with known 

HIV co-infection who were not on antiretroviral (ARV) therapy were started on ARV 

treatment within the first 2 weeks after TB treatment initiation according to Botswana 

national guidelines (30). Healthy controls were enrolled if they had no known history of 

respiratory disease, were asymptomatic at the time of assessment, were not taking 

medications and were non-smokers by self-report. All participants were tested for HIV test 

at the time of enrolment and only those who were HIV-uninfected were eligible as healthy 

controls for this study. Treatment success was defined as resolution of symptoms and 

negative sputum cultures at 2 months of TB treatment initiation.

Sputum samples and M. tuberculosis cultures

Induced sputum samples were obtained from all participants within 1 hour of obtaining 

consent (day 0, baseline) and at early hours of the morning during follow up appointments 

(days 2, 7, 14 and 30). Sputum samples were cultured in mycobacterial growth indicator 

tubes (MGIT). Routine antimicrobial susceptibility to the four primary TB drugs was carried 

out on all positive cultures. All clinical microbiology studies were performed at our TB 

research laboratory in Gaborone, Botswana.

Breath sampling and processing

Breath samples were obtained at the same time and under the same conditions for induced 

sputum samples. No food or drinks were allowed at least 2 h prior to collection of exhaled 

breath. Breath samples were collected by forced expiration of five breaths into a 2 L gas-

sampling bulb (Supelco, Bellefonte, PA, USA). A three-way valve (QuinTron Instruments, 

Milwaukee, Wisc., USA), was used to separate the air expected to come from dead space 

from alveolar air (24). On each breath the first part (approx. 0.5 L) of the exhaled breath was 

discharged, while the remaining part of the breath was collected in the tedlar bag. Some rest 

was allowed between breaths but all breath samples were collected within 2 min. Collection 

bulbs were taken to our research laboratory within 1 hour after collection. Our procedures 

allowed all breath samples to be processed within 2 hours after collection. Each breath 

sample was analyzed 3 consecutive times and the average of those measurements was 

considered as the measure of the day for that patient.

The sensor array (electronic nose)

Given the pilot nature of this study, we designed a “general purpose” electronic nose for the 

diagnosis of TB using quartz microbalance (QMB) gas sensors. QMBs are mass sensors, 

which mean that slight changes of the mass of the sensitive film (?m) on the quartz surface 
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results in changes of frequency (?f) of the electrical output signal (31, 32). The QMBs had a 

fundamental frequency of 20MHz which corresponds to a mass resolution of the order of a 

few nanograms. The free base of the 5,10,15,20-tetrakis-(4-butyloxyphenyl) porphyrin 

(TBPPH2) and corresponding metal complexes (TBPPCu, TBPPCo, TBPPZn, TBPPMg, 

TBPPMnCl, TBPPFeCl, TBPPSnCl2) were used to functionalize the QMBs composing the 

array. The coordinated metal ions were purposely selected to cover a wide spectrum of 

VOCs and those molecules were prepared following previously reported methods (33). Thin 

films of sensing materials were deposited by a spray-coating on both sides of the quartz 

disks. The sensors were housed in a stainless steel measurement chamber having a volume 

of 10 mL. Each sensor was connected to an individual oscillator circuit. Frequencies were 

measured by means of an integrated frequency counter and then stored on a computer. 

Sensors were calibrated measuring their response to a series of compounds representative of 

different chemical families including propionic acid, ethanol, triethylamine, hexane, toluene, 

and dimethysulfide (31). During each measurement session, the sensors were continually 

kept under a constant flow of reference air. The sensor response was evaluated as the 

frequency shift between the signal frequency measured immediately before the exposure and 

at the end of the exposure. The relative change of frequency for each of the 8 sensors was 

captured as raw data, which was subsequently used in the data analysis. We purposely 

performed VOCs analyses of individuals on the same day, at different points during follow 

up (e.g. participants on days 0 of follow up were assessed on the same days as participants 

on day 0, 2, 7, 14, or 30 of follow up) to decrease potential bias due to sensors drift.

Statistical analysis

Wilcoxon–Mann–Whitney U two-sample test and the Kruskal-Wallis test were used to 

compare the medians of 2 or more independent groups, as appropriate. Significance was 

defined as a value of p < 0.05. Principal component analyses (PCA) and pattern recognition 

analysis was employed to study the relationship between the sensors data and the pulmonary 

TB diagnosis (18). First, an exploratory evaluation using PCA was performed to investigate 

data structure and similarities between subjects and between. Then, a k-Nearest Neighbours 

(k-NN) classification model was calculated. k-NN is a simple algorithm that classifies new 

cases based on a similarity measure of k nearest neighbours selected among a pool of 

training examples. Confidence intervals (CI) were determined generating 10,000 random 

permutations of class labels and evaluating the statistical distribution of the classification 

rate obtained in each permutation. The classification model was internally validated using a 

permutation analysis and tested on the treatment data. A binary classifier was assessed, then 

the results of the model are either TB or control, the decision is taken according to the 

similarity of sensors signals to each class template. Results are coherent with the expected 

behavior of treatment. Namely, as the time progresses, the sensor signals are less similar to 

TB and more similar to controls.

Masking procedures

Clinicians and microbiologists who collected and cultured sputum samples had no 

knowledge of the breath test results. Breath samples were analysed in the laboratory without 

knowledge of the sputum smears or culture results.
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Human subjects

This study was approved by the Institutional Review Boards of the University of 

Pennsylvania and the University of Botswana and by the Human Research and Development 

Committee of the Botswana Ministry of Health. All participants provided written informed 

consent for their participation.

RESULTS

Demographic and clinical characteristics of the participants

During the study period, 51 cases with microbiologically confirmed pulmonary TB and 20 

healthy controls were enrolled (Table 1). 31 (60.8%) pulmonary TB cases were known to be 

co-infected with HIV. Of them, 17 (54.8%) were already on ARV treatment and were 

virologically suppressed at the time of enrolment. ARVs were initiated within the first 14 

days after TB treatment on all remaining HIV-coinfected patients. CD4 cell counts ranged 

from 15 to 596 cells/mm3 with a median of 301.2 (interquartile range [IQR], 121.5 – 457.5) 

cells/mm3. All pulmonary TB cases were eventually confirmed to have culture-positive 

infections and all isolates were drug sensitive.

Assessment of the diagnostic performance of the sensor array

All sensors included in the array captured the baseline difference in breath VOCs between 

cases and controls. Figure 1 shows the distribution of the sensors signals from each of the 8 

sensors included in the array at day 0. The signals produced by cases and controls were 

statistically different and with similar effect sizes in all sensors. However, there was some 

level of overlap between the distribution of such signals, suggesting that no individual sensor 

would be enough to fully differentiate cases and controls. The differentiation between the 

sensor responses produced by cases and controls on individual sensors remained significant 

even after aggregating all data points obtained during the course of TB treatment of cases 

(days 0, 2, 7, 14 and 30; Supplementary Figure 1). Within cases, the overall distribution of 

signals at baseline was not significantly different when stratified by HIV status.

Figure 2 shows the plot of baseline data projected in the plane of the first two principal 

components (PCs) where a near complete separation is achieved. The performance of the 

classification model based on k-NN is shown in Table 2. An optimal model limited to 8 

neighbors was selected as a result of a leave-one-out cross validation procedure (15). 

Sensitivity was estimated at 94.1% (95% confidence interval [CI], 83.8-98.8%) and 

specificity was 90.0% (95% CI, 68.3-98.8%).

Assessment of the effect of TB treatment

All 51 pulmonary TB cases showed treatment success according to the study definitions. 

Same as what we observed at baseline, each sensor significantly contributed to determining 

time-dependent variations in the signals during the course of TB treatment. We observed a 

progressive decrease in the intensity of the signals produced by each sensor as the time from 

initiation of TB treatment increased (Figure 3A). In other words, as time on TB treatment 

progressed the signals produced by each individual sensor change following the treatment 

process. Although we found no statistical differences in the signals produced by HIV-
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infected and uninfected cases at baseline, the negative trend in the signals produced by both 

individual sensors and the array were more pronounced among HIV-uninfected (Figures 3B 

and 3C).

Figure 4 shows the plot of the first two PCs of the complete set of data. The figure shows 

signals progress towards thoset of controls as the time in TB treatment increases. As 

expected, the largest separation between cases and controls occurred at baseline (day 0). 

Interestingly, while the signals obtained on day 30 of TB therapy have significant overlap 

with controls, the overlap is not complete indicating that differences in VOC patterns remain 

existent. The classification model was then tested on the TB cases measured from day 2 

onwards. The percentage of TB prediction decreased as time on treatment increased 

indicating that measurements over time were sensitive to the effect of TB therapy 

(Supplementary Figure 2). The decay was different for HIV positive and HIV negative 

participants, suggesting a correlation between HIV infection and the evolution of TB signals 

under therapy.

DISCUSSION

Breath analyses has the potential to revolutionize TB diagnostics by providing cheap, 

sensitive and specific point-of-care technologies that provide real-time information on both 

metabolic activity of the mycobacterium and immune response produced by the host. In this 

study, we confirmed that VOC analysis in breath samples offers great potential as a 

diagnostic and prognostic approach for pulmonary TB. We first demonstrated that our sensor 

array has high sensitivity and specificity differentiating patients with pulmonary TB from 

healthy controls, indicating its potential as a diagnostic tool. Then, we demonstrated that our 

sensor array can identify longitudinal changes occurring during TB treatment, indicating its 

potential to monitor response to treatment.

The overall diagnostic performance of a sensor array depends on the sensing properties of 

the individual sensors receptors included in the array (13, 16). Individual sensors in the array 

can cross-react with more than one group of VOCs. Therefore, each composite breath signal 

captures spectra of partially overlapping VOCs. As a consequence, sensor arrays could be 

tailored to capture either large or narrow ranges of chemicals, allowing the optimization of 

the array for specific applications. In the case of pulmonary TB, the selection of sensors for 

any given array will determine the balance between several desirable characteristics of a 

diagnostic device and its diagnostic performance. “General purpose” devices for the initial 

screening and differentiation of pulmonary diseases into broad categories such as cancers, 

infections and inflammatory conditions will likely require a different array of sensors than 

devices designed for confirmation of a specific disease or even metabolically different stages 

of a given disease. Consistently, development of an electronic nose for the diagnosis of TB is 

particularly challenging given that different stages of disease (initial infection, latency and 

active disease) are determined by dynamic metabolic changes within pathogen and host, as 

well as interactions between them. Therefore, a sensor array for TB diagnosis should be able 

to react with VOCs produced by both the pathogen and the host and identify signal changes 

as the TB disease transitions from one stage to another (34).
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Prior studies have identified specific VOCs associated with Mtb such as methyl-nicotinate, 

methyl-p-anisate, methyl phenylacetate, o-phenylanisole and nicotinic acid(12-14). Metal 

ions in metalloporphyrins strongly determine the response of porphyrin-based chemicals 

sensors (23). Theoretical chemistry have shown that the affinity between those Mtb-related 

VOCs and metal ions of different valency (particular Zn2+, Cu2+, and Co2+) can be used 

for TB diagnosis (35).We used this knowledge to guide the selection of the sensors used in 

this study. While an in-depth characterization of specific Mtb- or human-related VOCs 

producing the sensor signals was out of the scopes of this study, the behavior of our sensors 

was fully consistent with the theoretical behavior of metal ions complexed in an organic 

framework. Besides, the metal ion is only one of the sensitive part of the porphyrin ring and 

then additional response might be expected.

In this early stage study, we also demonstrated that VOC analysis is a promising approach 

for following the response to TB treatment. In our study, sequential measurements during 

the course of TB treatment show a progressive departure from the signals produced at 

baseline, moving towards those produced by healthy controls. This observed trend suggests 

that the mixture of VOCs present in breath changes as TB treatment progresses, and could 

be used as a marker to follow treatment response. Interestingly, our longitudinal 

measurements suggests that the signals produced by HIV-infected and uninfected patients 

may proceed at a different pace, even in the setting of adequate TB and HIV treatments (36, 

37). Even if not quantitatively expressed, our findings are consistent with prior observations 

that demonstrate not only different inflammatory responses to Mtb between HIV-infected 

and uninfected patients but also, different pace of resolution of immune responses even in 

the setting of appropriate treatment (38). Given that the VOC mixture in breath reflects host-

pathogen interactions as they occur in real-time, we believe that VOC analyses also offers 

potential as a prognostic tool by allowing the identification of patients with VOC patters 

consistent with either decreased or exaggerated immune responses to Mtb infections and 

their changes while on treatment.

Our results need to be interpreted in the context of the limitations of our study design. First, 

our study should be considered an early-phase evaluation of the performance and reliability 

of our electronic nose for pulmonary TB diagnosis and prognosis as recommended by New 

Diagnostics Working Group of the Stop TB Partnership (26). The diagnostic performance of 

our device was determined using populations representing two extremes of the clinical 

spectrum of the natural history of TB disease: healthy, asymptomatic controls and 

symptomatic, smear positive pulmonary TB cases before treatment initiation and, thus, our 

study sample fails to represent the full spectrum of TB disease. Therefore, our results cannot 

be generalized to other populations or stages of disease. Failure to include cases representing 

the entire spectrum of disease may have also introduced “spectrum bias” into our study, 

which frequently leads to overly optimistic results (39). Late evaluation studies aimed at 

measuring our device’s performance in real-life populations and settings are required.

It is important to remark that sensors capture a combination of quantitative and qualitative 

information about the composition of the sample. As a consequence, different breath 

compositions may result in similar signals. Similarly, our study design cannot determine 

causality between pulmonary TB and the VOC patterns identified by our device both for 
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diagnosis and prognostic purposes (31). However, we found a strong association between 

signals and TB disease, as well as resolution of breath signals associated with TB treatment 

response, increasing our confidence that such signals are related to metabolic events 

occurring within TB disease and TB treatment. In a prior study, we have also shown that the 

same sensor array can successfully differentiate a wide variety of bacteria and fungi in-vitro 

(34). Future studies should aim to determine the performance of our sensor array for 

differentiating patients with pulmonary TB from those with other pulmonary infections, as 

well as the identification of those patients co-infected with pulmonary TB and bacterial 

pneumonia (34).

The sample size of our study allowed the determination of significant differences between 

cases and controls with regard to VOC signals at baseline. However, given the limited size of 

our study it is possible that we were not able to identify differences between subgroups of 

TB patients included as cases. Particularly important is the relative overrepresentation of 

HIV-coinfected TB cases in our sample. Our analysis did not show any differences in VOC 

signals between HIV-infected and uninfected TB cases at baseline, suggesting that the 

diagnostic performance of our device for untreated HIV-infected and uninfected TB cases 

could be similar. However, we also showed that longitudinal changes and trends in VOC 

signals during TB treatment among HIV-infected and HIV-uninfected TB cases were 

different. While it is possible that our device performs differently as a diagnostic tool as 

opposed to as a tool destined to follow treatment response, it is equally possible that the lack 

of differences between HIV-infected and uninfected cases at baseline were due to 

insufficient power. Along the same lines, the effect of ARV treatment and time-to-ARV 

treatment initiation over our results is unknown and may have introduced further bias.

Since patients entered in the test at different time, the experimental design avoided the 

influence of any sensors drift. Finally, our study focuses on the recognition of “breathprints” 

or patterns of VOCs without caring for the specific compounds that produce those patterns. 

More precise determination of the specific VOCs leading to different signals at different 

points in the disease may allow for further optimization of the sensors to be included in the 

array. Consequently, specific arrays for specific purposes or for the diagnosis of specific 

stages of disease could be developed and, potentially, combined to achieve better diagnostic 

and prognostic performance.

In summary, our study demonstrates that breath VOC analyses using an array of partially 

selective sensors has good diagnostic accuracy for pulmonary TB in HIV-infected and HIV-

uninfected patients. Data from studies aimed at better understanding of underlying 

pathophysiological pathways should be used for optimizing the selection of sensors to target 

the group of VOCs that provides the highest diagnostic and prognostic information for PTB, 

while allowing discrimination and diagnosis of co-existing infections and medical 

conditions. Late stage, independent validation of our classification models in different 

populations and different stages of the disease needs to be performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Analysis of volatile organic compounds (VOCs) in breath samples using 

sensor technology (electronic nose) is a promising non-invasive approach for 

the diagnosis and prognosis of pulmonary tuberculosis (TB)

• In this proof-of-concept study, our electronic nose showed high performance 

differentiating cases with pulmonary TB from healthy controls

• Serial measurements of VOCs also allowed for determining VOC signals 

change during TB treatment among patients with pulmonary TB

• The sensors used in our study proved to be stable enough to allow for longer, 

larger-scale studies of different designs looking into the diagnostic and 

prognostic value of VOC analysis for the diagnosis and prognosis of 

pulmonary TB during different stages of disease and within different 

populations
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Figure 1. 
Distribution of sensors signals among controls and cases with pulmonary tuberculosis at 

baseline (day 0, before treatment initiation).

Legend: * p values are reported in the header of each plot
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Figure 2. 
Plot of the first two principal components of cases with pulmonary tuberculosis and controls 

at baseline (before treatment initiation)

Legend: * p values are reported in the header of each plot

Zetola et al. Page 15

J Infect. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3A. 
Distribution of sensors signals among cases with pulmonary tuberculosis at baseline and 

days 2, 7, 14 and 30 after tuberculosis treatment initiation
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Figure 3B. 
Distribution of sensors signals among HIV-infected cases with pulmonary tuberculosis at 

baseline and days 2, 7, 14 and 30 after tuberculosis treatment initiation.
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Figure 3C. 
Distribution of sensors signals among HIV-uninfected cases with pulmonary tuberculosis at 

baseline and days 2, 7, 14 and 30 after tuberculosis treatment initiation.

Legend: * p-value of null hypothesis is reported in the header of each plot.
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Figure 4. 
Plot of the first two principal components of controls and pulmonary tuberculosis cases. 

With respect to Fig. 2 here samples collected from day 2 to day 30 from the start of therapy 

have been included in the data set.
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Table 1

Demographic, clinical and microbiological characteristics of the participants

Pulmonary tuberculosis cases
Healthy
controls
(n=20)

All
(n=51)

HIV infected
(n=31)

HIV-
uninfected

(n=20)

Age (mean ± SD), years 36.1 (±9.8) 28.7 (±7.2) 39 (±9.3) 33 (±11)

Sex (%)

Male 30 (57.7%) 13 (41.9%) 16 (81.0%) 7 (40%)

Semi-quantitative AFB in
sputum

Scanty 9 (17.7%) 7 (22.6%) 2 (10.0%)

1+ 6 (11.7%) 3 (9.7%) 3 (15.0%)

2+ 12 (23.5%) 6 (19.4%) 6 (30.0%)

3+ 24 (47.1%) 15 (48.4%) 9 (45.0%)

CD4 cells/mm3 (median,
IQR)

301.2 (121.5 –
457.5)

On HIV antiretroviral
treatment at the time of TB
diagnosis (n, %)

17 (55%)
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Table 2

Confusion matrix of the k-Nearest Neighborhood classifier in training.

Classification according to the
volatile compound analysis (at day
0)

Total

Negative Positive

Disease
status

Healthy controls* 18 2 20

Pulmonary
tuberculosis 3 48 51

Total 21 50

*
20 healthy controls were enrolled and 3 measurements per control are included in the analysis. Sensitivity was estimated at 94.1% (95% 

confidence interval [CI], 83.8-98.8%) and specificity was 90.0% (95% CI, 68.3-98.8%).
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