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Abstract  15 

Flood risk mapping and modeling is important to prevent urban flood damage. In this study, a 16 

flood risk map was produced with limited hydrological and hydraulic data using two state-of-the-17 

art machine learning models: Genetic Algorithm Rule-Set Production (GARP) and Quick 18 

Unbiased Efficient Statistical Tree (QUEST). The flood conditioning factors used in modeling 19 

were: precipitation, slope, curve number, distance to river, distance to channel, depth to 20 

groundwater, land use, and elevation. Based on available reports and field surveys for Sari city 21 

(Iran), 113 points were identified as flooded areas (with each flooded zone assigned a value of 1). 22 

Different conditioning factors, including urban density, quality of buildings, age of buildings, 23 

population density, and socio-economic conditions, were taken into account to analyze flood 24 
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vulnerability. In addition, the weight of these conditioning factors was determined based on expert 25 

knowledge and Fuzzy Analytical Network Process (FANP). An urban flood risk map was then 26 

produced using flood hazard and flood vulnerability maps. The area under the receiver-operator 27 

characteristic curve (AUC-ROC) and Kappa statistic were applied to evaluate model performance. 28 

The results demonstrated that the GARP model (AUC-ROC=93.5%, Kappa=0.86) had higher 29 

performance accuracy than the QUEST model (AUC-ROC=89.2%, Kappa=0.79). The results also 30 

indicated that distance to channel, land use, and elevation played major roles in flood hazard 31 

determination, whereas population density, quality of buildings, and urban density were the most 32 

important factors in terms of vulnerability. These findings demonstrate that machine learning 33 

models can help in flood risk mapping, especially in areas where detailed hydraulic and 34 

hydrological data are not available.  35 

Keywords: Urban planning, Flood risk management, GIS, FANP, Data-mining.  36 

 37 

1. Introduction  38 

Urban areas can flood due to intense precipitation events, rapid snowmelt, and rises in sea, lake, 39 

river, and groundwater levels. Major reasons for urban flooding are poor drainage systems, lack 40 

of maintenance, and poorly controlled growth of urban areas, especially in developing countries. 41 

Low capacity for infiltration or storage during high-intensity rainfall also triggers floods, 42 

especially in urban areas. Urban flooding risks will increase with future climate and land use 43 

changes (Stocker, 2013), a factor that must be considered in flood management (Fernández and 44 

Lutz, 2010). Flood impacts can be mitigated by improved prediction, awareness (early warning), 45 

and mapping. Predicting the location of flood-prone areas using flood hazard maps is critical for 46 

improved city planning (Büchele et al., 2006). However, due to the complexities of urban 47 
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environments, urban flood modeling and prediction of flood-prone areas face many challenges 48 

(Chen et al., 2009). Previous studies have used different types of models to assess flood risks in 49 

urban areas. These models include Hydrological Simulation Program-FORTRAN (HSPF) 50 

(Bicknell et al., 1993), Illinois Urban Drainage Area Simulator (ILLUDAS) (Terstriep and Stall, 51 

1974), Technical Release 55 (TR-55) (USDA, 1986), Hydrologic Engineering Center-River 52 

Analysis System (HEC-RAS) (Wiles and Levine, 2002), Storm Water Management Model 53 

(SWMM) (Cole and Shutt, 1976), and Urban Flood Cell Model (MODCEL) (Gomes Miguez et 54 

al., 2017). Additionally, GIS-based multi-criteria decision analysis tools, such as Analytic 55 

Hierarchy Process (Fernández and Lutz, 2010), have been extensively used.  56 

A challenge associated with several urban flood models is that they rely on detailed hydrological 57 

and hydraulic data. Therefore, they cannot be used directly in data-scarce environments, such as 58 

in developing countries where data availability is still a major challenge. The aim of the present 59 

study was to develop new approaches based on Genetic Algorithm Rule-Set Production (GARP) 60 

and Quick Unbiased Efficient Statistical Tree (QUEST) to model and map urban flood risk. The 61 

GARP modeling tool analyzes the relationship between spatial data and environmental parameters 62 

by a training and testing process. The advantages of this model over other models are the genetic 63 

algorithm rules set and the stochastic approach, allowing different outputs to be run to reach an 64 

optimum result (Stockwell, 1999). The QUEST algorithm has many advantages over other models 65 

as it is a quick, impartial, and efficient statistical tree, it employs a linear or unbiased variable 66 

selection model, and it uses imputation instead of substitute splits to deal with missing values (Sut 67 

and Simsek, 2011). In this study, we adapted the association rules between machine learning 68 

techniques with some conditioning hydrological factors, in order to identify flood-prone areas in 69 

the urban environment.  70 
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We developed a new machine learning technique for analysis of occurrence of flooded areas in 71 

urban environments. Specific objectives of the study were to: i) assess the role of different factors 72 

resulting in floods in the urban area of Sari city, Iran; ii) predict and validate the flood hazard map 73 

by two models, GARP and QUEST; and iii) produce a flooding vulnerability map using Fuzzy 74 

Analytical Network Process (FANP), by considering the interconnections among criteria through 75 

Fuzzy Decision Making Trial and Evaluation Laboratory (Fuzzy DEMATEL). The novel 76 

component of the work lies in applying the GARP and QUEST models together with hydrological 77 

variables to predict occurrence of flooded areas, by learning and computing the relationship 78 

between all (flood) events. These models are the first automated tools for predicting flooded areas 79 

in urban environments. 80 

2. Material and methods 81 

2.1. Study area 82 

Sari city (35°58′39′′-36°50′12′′N; 52°56′42′′-53°59′32′′E) is one of the largest cities in northern 83 

Iran, and is located at an altitude of between 9 and 82 m above sea level (asl) (Fig. 1). The city has 84 

a population of 296,417, making it the second largest city on the southern coast of the Caspian Sea 85 

(Zali et al., 2016). It covers an area about 42 km2 and is located at the outlet of the Tajan river 86 

watershed (about 4352 km2 in area), with the Tajan river passing through the east of Sari and then 87 

discharging into the Caspian Sea. The residential areas of the city are surrounded mainly by 88 

agricultural land, orchards, and high mountains (the Alborz range) covered by forest. The climate 89 

type in the region is dry semi-humid (aridity index 0.73; Sahin, 2012; Choubin et al., 2018), with 90 

734 mm annual precipitation and 1004 mm potential evapotranspiration. For the purposes of the 91 

present study, rainfall data (for the period 1986-2016) recorded at Sari weather station were 92 

obtained from the Iranian Meteorological Organization (IRIMO). 93 
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 94 

Fig. 1. SOMEWHERE HERE 95 

 96 

2.2. Materials 97 

2.2.1. Conditioning factors of urban flood hazard 98 

There are no universal guidelines for selecting flood conditioning factors in urban areas. In the 99 

present study, eight different factors were selected, based on the literature, to evaluate flood hazard. 100 

These were: rainfall, land use/land cover (LULC), elevation, slope percent, curve number (CN), 101 

distance to river, distance to channel, and depth to groundwater (Thieken et al., 2005; Chen et al., 102 

2009; Fernández et al., 2010; Ouma and Tateishi, 2014; Choubin et al., 2019).  103 

- Rainfall: Daily rainfall data were obtained from the IRIMO to prepare the rainfall amount map. 104 

The recorded amount varies from 722 mm in the east of the study area to 745 mm in the west (Fig. 105 

2a).  106 

- Land use/land cover: Runoff conditions vary considerably under different LULC patterns. A 107 

LULC map for 2015 was obtained from Sari city authority (Fig. 2b) and, based on this map, the 108 

study area was subdivided into three main group types: open spaces (including orchard, parks, and 109 

agricultural area), urban districts (residential buildings, commercial, business, and industrial 110 

buildings), and water body (river).  111 

- Elevation: A Digital Elevation Model (DEM) with resolution 5 m was obtained from Sari city 112 

authority (Fig. 2c). It confirmed that the elevation of the study area ranges from 9 to 82 m asl. 113 

- Slope percent: The slope percent factor plays a major role in flooding, as it affects the water 114 

velocity. In addition, flatlands or lowlands have gentle slopes that reflect a constant threat of 115 

flooding (Wang et al., 2015; Rahmati et al., 2016; Pirnia et al., 2018; Torabi Haghighi et al., 2018). 116 

The slope map was extracted from the DEM of the study area in ArcGIS 10.3 to quantify 117 
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topographic controls on hydrological processes. The slope varies from more than 6% in the south 118 

to less than 1% in the center and north of the study area (Fig. 2d).  119 

- Curve Number (CN): Curve number (CN), a parameter developed by the United State Soil 120 

Conservation Service (USCS), is a function of land use treatments and hydrological condition, 121 

antecedent soil moisture, and soil type. Land use and Hydrologic Soil Group (HSG) maps were 122 

used here to estimate the contribution of rainfall to runoff. The CN map for the study area (Fig. 123 

2e) was extracted based on the land use map, the HSG map, and a lumped CN value, using the 124 

ArcCN-runoff tool in ArcGIS software (Zhan & Huang, 2004; Darabi et al., 2014; Menberu et al., 125 

2014). As shown in Fig. 2e, different CN class were given corresponding codes, with larger values 126 

indicating stronger runoff generation capability. 127 

- Distance to river: The banks of the Tajan River are major flood-prone areas in Sari city. Hence, 128 

distance to the river plays an important role in urban flood mapping in this city. The Euclidean 129 

distance to the river was calculated using Euclidian Distance module in ArcGIS 10.3 (Fig. 2f). 130 

- Distance to channel: Channels or drainage systems in the urban environments collect surface 131 

water. The map of ‘distance to channel’ was also prepared using the Euclidian Distance module in 132 

ArcGIS 10.3 (Fig. 2).  133 

- Depth to groundwater level: Infiltration capacity generally depends on soil moisture and depth 134 

to groundwater, which directly affects the surface runoff volume during high-intensity 135 

precipitation (Fernández and Lutz, 2010). Some studies have documented that depth to 136 

groundwater level is an influential factor in initial storage capacity of a basin (Yin and Li, 2001; 137 

Fernández and Lutz, 2010). The groundwater level data used in this study were obtained from 138 

Iranian Water Resources Management Company (IWRMC). As can be seen in Fig. 2h, the depth 139 

to groundwater ranges from 1.9 m (in the north of the study area) to  20.8 m (in the south). 140 
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Among the eight conditioning factors on urban flood inundation hazard, elevation, slope, depth to 141 

groundwater, distance to channel, distance to river, and rainfall are continuous factors, while land 142 

use and curve number are categorical factors.  143 

 144 

Fig. 2. SOMEWHERE HERE 145 

 146 

2.2.2. Flood inventory map  147 

Mapping the flood locations in an area is vital in explaining the correlation between flooding and 148 

the conditioning factors. In this study, a flood inventory map was prepared based on both multiple 149 

field surveys and available documents (flood historical database) obtained from Sari city authority 150 

during 2015 to 2017. The location of flooded sites was recorded using a Global Positioning System 151 

(GPS) device. In this geographical region, floods occur in the rainy period (December-May). Fig. 152 

1 shows the severity of the flooding that occurred in 2015-2017. In order to develop the urban 153 

flood hazard map, flooded and non-flooded areas were assigned a code of 1 and 0, respectively. In 154 

this step, the historical records on flood occurrence and inspection provided essential information 155 

(Fig. 1). Based on field surveys in urban Sari, a total of 113 points were identified as flooded areas, 156 

while 76 non-flooded points were randomly chosen in non-flooded zones. In flood hazard analysis, 157 

the flooded locations were randomly divided into two groups, comprising 70% (79 locations) and 158 

30% (34 locations), for the purpose of training and validation, respectively. The non-flooded 159 

locations were also randomly split into two groups, for training (70% of locations) and validation 160 

(30% of locations). 161 

 162 

2.2.3. Vulnerability factors 163 
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Vulnerability has been defined as “the conditions determined by physical, social, economic and 164 

environmental factors or processes, which increase susceptibility to the impact of hazards” 165 

(UNDP, 2004). Ouma and Tateishi (2014) describe flood vulnerability assessment as the process 166 

of determining the degree of susceptibility of a given location to flooding if information on its 167 

exposure to floods is known. There are various socio-environmental factors that influence 168 

vulnerability in urban areas and their inclusion may depend on available data (Dayal et al., 2018). 169 

In the present study, the factors urban density, quality of buildings, age of buildings, population 170 

density, and socio-economic conditions were taken into account. 171 

 The urban density of Sari was divided into four classes (high, medium, low, very low), according 172 

to suggestions by Güneralp et al. (2017) (Fig. 3a). Quality and age of buildings have significant 173 

impacts on the damage caused by urban floods. Quality of buildings was divided into five classes 174 

(very high, high, medium, low, very low), which reflect building condition. There are also areas 175 

without buildings, which were included in the quality of buildings map (Fig. 3b). Low quality 176 

buildings are unsafe for residents and are more vulnerable to natural hazards, especially 177 

earthquakes and floods (Schubert and Sanders, 2012, Gerl et al., 2014). As regards age of 178 

buildings, the current architectural structure of Sari city reflects its historical development. 179 

Densely built-up old and modern buildings with administrative and commercial functions are 180 

located in Sari city center. In surrounding districts, settlement areas with multi-age residential 181 

buildings and open spaces are abundant. Buildings were divided into five classes based on their 182 

age (very old, old, medium, new, newest), and there were also some areas with no buildings (Fig. 183 

3c). Data on the age and quality of buildings in the study area in 2015 were obtained from Sari city 184 

authority. Population density and socio-economic conditions for residents are key issues in 185 

preparing a flood vulnerability map. Population density refers to the number of people inhabiting 186 
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a given urban area, and high levels of population density are usually associated with good 187 

economic conditions and higher productivity, but also higher susceptibility to natural hazards such 188 

as earthquakes and floods (Güneralp et al., 2017). In this study, population density was divided 189 

into four classes (high, medium, low, very low) (Fig. 3d). Socioeconomic data contain in-depth 190 

information on the inherent properties and behavior of humans and society within a specific 191 

geographical region. These types of information are valuable when considering indirect and 192 

intangible impacts of natural hazards such as flooding (Kaspersen and Halsnæs, 2017). In the 193 

present study, socio-economic conditions were divided into five classes (A, B, C, D, E, reflecting 194 

very good, good, moderate, weak, and very weak socio-economic conditions respectively) (Fig. 195 

3e). There are also natural areas surrounding Sari city, which were not considered residential areas. 196 

Underlying data on population density and socio-economic conditions in Sari in 2015 were 197 

obtained from Sari city authority. The classification of all five variables was carried out by Sari 198 

city authority.  199 

 200 

Fig. 3. SOMEWHERE HERE 201 

 202 

2.3. Risk prediction 203 

Risk is a function of hazard and vulnerability. Therefore, the urban flood risk map for Sari was 204 

produced through flood hazard and vulnerability maps, using equation 1 (Dewan, 2013): 205 

𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦                                (1) 206 

 207 

The models used for predicting the flood hazard, model performance, the process of preparing the 208 

vulnerability map based on FANP, and extraction of the flood risk map are described below.  209 
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 210 

2.3.1. Flood hazard prediction 211 

Two state-of-the-art machine learning models, GARP and QUEST, were applied to produce the 212 

flood hazard map. 213 

 214 

2.3.1.1. Genetic Algorithm for Rule-set Prediction (GARP)  215 

GARP is a machine learning algorithm that has shown excellent predictive capability in different 216 

fields such ecological modeling (Stockwell, 1999; Peterson et al., 2002a). The GARP algorithm 217 

was selected to predict flood inundation hazard in the study area. It is inspired by models of genetic 218 

evolution as a presence-only modeling tool that analyzes the relationship between flood inundation 219 

dataset and topo-hydrological variables through an iterative process and conditional rules for 220 

model building (Zhu et al., 2007; Sánchez-Flores, 2007; Boeckmann and Joyner, 2014; Qin et al., 221 

2015). The GARP algorithm (Boeckmann and Joyner, 2014) produces a number of flood 222 

inundation predictions for urban areas through an iterative process to improve the stability of 223 

model output. Performing multiple runs to obtain different outputs of model and using the best-224 

subset method are important in selecting the best output with optimum parameters. The set of 225 

models that achieves harmony between omission (sensitivity) and commission (specificity) error 226 

thresholds is defined by the user (Anderson, 2003; Boeckmann and Joyner, 2014). The GARP 227 

output is a collection of grids of the study area, which can be used in a GIS environment to identify 228 

flood-prone areas (Boeckmann and Joyner, 2014). In this study, the GARP model was run using 229 

DesktopGARP software. Based on optimum combinations of error components, the 10 best-subset 230 

models were chosen out of the 100 repeats (Anderson, 2003; Sobek-Swant et al., 2012). In 231 

addition, the importance of conditioning factors (ICF) (precipitation, slope, curve number, distance 232 
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to river, distance to channels, depth to groundwater, land use, and elevation) for urban flood hazard 233 

was analyzed using the GARP model. A complete mathematical and technical description of 234 

GARP model can be found in Peterson et al. (2002b) and Fitzpatrick et al. (2007). 235 

 236 

2.3.1.2. Quick, unbiased, and efficient statistical tree (QUEST) 237 

QUEST (Loh and Shih, 1997) is a popular data-mining model which produces subsets of the data 238 

that are as homogeneous as possible with respect to the response variable (Rattray et al., 2009; 239 

Ture et al., 2009). QUEST is a tree-structured classification algorithm that yields a growing binary-240 

split decision tree (Lee and Park, 2013). It employs a sequential tree growing method, which 241 

utilizes a linear discriminate analysis method in splitting tree nodes. This has many advantages 242 

over recursive tree construction methods such as classification and regression tree (CART) 243 

(Ierodiaconou et al., 2011). In addition, it is unbiased in choosing splitting rules and does not use 244 

an exhaustive variable search routine (Sut and Simsek, 2011). 245 

The QUEST algorithm was selected as the second model to predict flood inundation. Moreover, 246 

the QUEST algorithm applies imputation instead of surrogate splitting to deal with missing values. 247 

According to Ture et al. (2005), QUEST has a negligible bias because it uses an unbiased variable 248 

selection technique in modeling. Therefore, QUEST can easily handle categorical and continuous 249 

factors (Chou, 2012; Lee and Park, 2013; Lee and Lee, 2015). 250 

 251 

2.3.2. Evaluating the predictive performance of models 252 

The receiver-operator characteristic (ROC) was used to evaluate of the performance of models 253 

(Gorsevski, 2006; Jiménez‐Valverde et al., 2012). The area under the curve (AUC-ROC) has been 254 

widely used for evaluating model accuracy (Frattini et al., 2010). The AUC-ROC value is the 255 
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probability that a test record is accurately differentiated from a random point in the predetermined 256 

context of the study area (Phillips and Dudík, 2008; Kornejady et al., 2017). Area under the curve 257 

values range from 0 to 1; at an AUC-ROC range of 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, and 0.9-1, 258 

models are classified as weak, average, good, very good, and excellent, respectively (Yesilnacar, 259 

2005). The AUC-ROC is one of the most popular evaluation criterion to assess the performance 260 

of different models that produce success and prediction rates (Tehrany et al., 2015).  261 

The Kappa statistic was also applied to evaluate model performance in this study. It uses model 262 

classification probabilities to calculate the likelihood of agreement by chance based on null 263 

hypothesis investigation (Monserud and Leemans, 1992). According to Monserud and Leemans 264 

(1992), the Kappa statistic can be classified into five classes of performance: k<0.4, 0.4<k<0.55, 265 

0.55<k<0.85, 0.85<k<0.99, and 0.99<k<1.00, corresponding to poor, moderate, good, excellent, 266 

and perfect, respectively. All performance analyses were carried out in R software.  267 

 268 

2.3.3. Urban flood vulnerability map  269 

Urban density, quality and age of buildings, population density, and socio-economic conditions 270 

(Fig. 4) were used to determine vulnerable areas to flood inundation events. The relative weights 271 

of these factors were determined using FANP, which is one of many decision-making techniques 272 

that incorporate the Analytical Network Process (ANP) with Fuzzy set theory. FANP is conducted 273 

in five steps (Buyukozkan and Cifci, 2012; Sajedi-Hosseini et al., 2018a): i) Transformation of the 274 

problem to a network structure. This first step was done using Fuzzy DEMATEL to design a 275 

network structure from factors influencing vulnerability to floods. Fuzzy DEMATEL has been 276 

widely used to solve the structure of complex problems through a visual structural model and to 277 

assess the causal relationship between factors (Wu and Lee, 2007). In Fuzzy DEMATEL, the 278 
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directed influential degrees between pair-wise criteria are expressed as Fuzzy interval numbers 279 

(Table 1). For more details of Fuzzy DEMATEL, see Chang et al. (2011), Dalalah et al. (2011), 280 

and Sajedi-Hosseini et al. (2018a). ii) Pairwise comparisons of criteria based on their importance, 281 

using Fuzzy extent analysis as described in Chang et al. (2011). Triangular Fuzzy numbers to 282 

pairwise comparisons are presented in Table 1. iii) Calculation of the initial super-matrix based on 283 

the weights obtained from the previous step. iv) Computation of the weighted super-matrix through 284 

multiplying the initial super-matrix by cluster weights. v) Conversion of the weighted super-matrix 285 

into a limit super-matrix and determination of priorities and the importance of factors. The FANP 286 

and Fuzzy DEMATEL methods were used in the Super Decision and MATLAB software, 287 

respectively, and then output layers were overlaid in the GIS environment.  288 

 289 

Table 1: SOMEWHERE HERE  290 

  291 

3. Results  292 

3.1. Performance of models 293 

The efficiency and precision of the GARP and QUEST models were assessed using AUC-ROC 294 

and Kappa evaluation criteria (Fig. 4 and Table 2). According to the validation results (Fig. 4 and 295 

Table 2), GARP and QUEST achieved 93.50% and 89.20% prediction rates, respectively. 296 

Therefore, the efficiency of the GARP model was somewhat better than that of QUEST. The 297 

Kappa value was 0.86 (excellent) for GARP and 0.79 (good) for QUEST (Table 2).  298 

 299 

Fig. 4. SOMEWHERE HERE 300 

Table 2. SOMEWHERE HERE 301 
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 302 

3.2. Urban flood hazard mapping 303 

The urban flood maps produced by the GARP and QUEST models (Fig. 5a and 5b) illustrated the 304 

flood inundation probability over the study area. Both models demonstrated that zones with high 305 

hazard probability are mostly located in the north and center of Sari city (along the Tajan River). 306 

As Fig. 5 shows, both modeling approaches were similar in terms of flood inundation prediction. 307 

Both models provided valuable information for mapping flood hazard, even though there were no 308 

detailed hydrological and hydraulic data available.  309 

 310 

Fig. 5. SOMEWHERE HERE 311 

 312 

3.3. Contribution analysis of predictive factors 313 

The results of the GARP model indicated that distance to channel (ICF=1.00), land use (ICF=0.96), 314 

and elevation (ICF=0.89) were the most important factors, followed by curve number (ICF=0.83), 315 

distance to river (ICF=0.74), depth to groundwater (ICF=0.57), rainfall (ICF=0.38), and slope 316 

(ICF=0.22) (Fig. 6). Therefore, all thematic layers made a significant contribution in flood 317 

inundation modeling, and hence all were used as independent variables in the GARP and QUEST 318 

models to generate the urban flood hazard map.  319 

 320 

Fig. 6 SOMEWHERE HERE 321 

 322 

Probability curves created by the GARP model for each of the continuous factors are presented in 323 

Fig. 7. As Fig. 7a shows, with altitude up to 30 m asl, the probability of flood inundation hazard 324 

increased, while above an altitude of 30 m asl it decreased. Altitudes above 50 m asl were 325 
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designated as the most favorable class from a flood hazard point of view. As can be seen in Fig. 326 

7b, with increasing slope up to 1.4%, flood inundation hazard increased, while with slope >1.4% 327 

the probability of flood inundation hazard decreased. Also, when the depth to groundwater 328 

increased, the flood inundation hazard significantly decreased. In this study, the average 329 

probability of flood inundation hazard decreases by 0.02 with increasing depth of groundwater for 330 

every 2 meters  (Fig. 7c). As can be seen from Figs. 7d and 7e, flooding inundation hazard 331 

increased with decreasing distance to river and distance to channel, and these two variables showed 332 

similar responses to the probability of flood inundation occurrence. Increasing the distance from 333 

the river and channels for every 200 meters, the average probability of flood inundation hazard 334 

decreases by 0.045 and 0.025, respectively. Furthermore, as shown in Fig. 7f, the probability of 335 

flood inundation occurrence increased as rainfall increased. By increasing the rainfall for every 2 336 

millimeters, the average probability of flood inundation hazard decreases by 0.017.  337 

 338 

Fig. 7. SOMEWHERE HERE 339 

 340 

3.4. Vulnerability map 341 

Based on the FANP results on the relative importance of urban flood vulnerability factors, 342 

population density (0.370), quality of buildings (0.185), and urban density (0.148) were the most 343 

important factors, followed by age of buildings (0.148) and socio-economic conditions (0.147). 344 

The weights assigned to each class of the urban density, quality of buildings, age of buildings, 345 

population density, and socio-economic factors (based on the expert knowledge and the FANP 346 

method) are summarized in Table 3.  347 

 348 

Table 3: SOMEWHERE HERE  349 
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 350 

The urban flood vulnerability value for each part of the city obtained using the FANP method is 351 

shown in Fig. 8a. The results showed that the most vulnerable flooding zones are located in the 352 

center of Sari city. For better visual interpretation of urban flood vulnerability, the vulnerability 353 

map was classified into five classes (Fig. 8b): very low, low, moderate, high, and very high, 354 

occupying 35.49%, 15.25%, 13.52%, 22.61%, and 13.10% of the study area, respectively.  355 

 356 

Fig. 8. SOMEWHERE HERE 357 

 358 

3.5. Risk map 359 

In the flood risk index map, the risk value ranged from 0.05 to 0.76 (Fig. 9a). The flood risk map 360 

was classified into five classes using the natural break method: very low, low, moderate, high, and 361 

very high, occupying 32.90%, 21.71%, 21.98%, 7.70%, and 15.69% of the study area, respectively 362 

(Fig. 9b). The flood risk map indicated that central and northern sites in Sari city are most exposed 363 

to flood risk.  364 

 365 

Fig. 9. SOMEWHERE HERE 366 

3.6. Data scarcity and flood risk modelling 367 

Although there are several hydrologic/hydraulic models to analyze flood hazard, robust flood 368 

hazard maps are still lacking in data-scarce regions (Gigović et al., 2017; Rahmati and 369 

Pourghasemi, 2017; Samela et al., 2017). As discussed by Fernández and Lutz (2010) and Ouma 370 

and Tateishi (2014), flood risk assessment in data scarce regions, especially urban environments, 371 

using hydraulic models still remains challenging. In this study, urban flood hazard was 372 



17 
 

quantitatively predicted using GARP and QUEST models which have simple requirements in 373 

terms of input data, computational time, and costs.  374 

 375 

5. Conclusions 376 

Accurate flood risk assessment is vital for effective urban water management and sustainable urban 377 

development. Urban floods are influenced by different factors, which in developing countries are 378 

often related to unplanned urban development along lowlands and river banks (e.g., river floods), 379 

poor maintenance, and clogging of urban drains. In this study, two models (GARP and QUEST) 380 

were applied for the first time to produce urban flood risk maps. The results confirm that machine 381 

learning techniques can be applied to urban flood zoning. The hazard and vulnerability map 382 

revealed that distance to channel and population density are important factor in risk mapping. Data 383 

mining methods were applied here for flood risk assessment using GARP and QUEST, 384 

demonstrating that reliable results can be obtained without expensive field surveys or complex 385 

hydrodynamic modelling. The approach presented is particularly useful in regions with little data, 386 

to quickly define and expose flood hazards. Hazard and vulnerability mapping can also serve as a 387 

first step in developing flood risk reduction strategies and in allocating resources for flood defenses 388 

and forecasting and warning systems. Our analysis showed that proper design and maintenance of 389 

drainage systems is essential for sustainable urban management, and that planning to distribute 390 

urban residents equally in all areas can be important in reducing flood risks. 391 

 392 
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 635 

Table 1 Linguistic scale and corresponding Fuzzy values (Sajedi-Hosseini et al., 2018) 636 

Fuzzy DEMATEL FANP 

Linguistic term TFN Linguistic term TFN Reciprocal of TFN 

No effect  (0,0,0.25) Equally important (EI) (1, 1, 1) (1, 1, 1) 

Very low effect (0,0.25,0.5) Weekly Important (WI) (1, 3, 5) (1/5, 1/3, 1) 

Low effect (0.25,0.5,0.75) Strongly Important (SI) (3, 5, 7) (1/7, 1/5, 1/3) 

High effect (0.5,0.75,1) Very important (VI) (5, 7, 9) (1/9, 1/7, 1/5) 

Very high effect (0.75,1,1) Absolutely important (AI) (7, 9, 9) (1/9, 1/9, 1/7) 

 TFN: Triangular fuzzy number 637 

 638 

 639 
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Table 2 Model performance based on area under the receiver-operator characteristic curve (AUC-640 
ROC) and the Kappa statistic 641 

Models AUC-ROC Kappa 

GARP 0.935 (93.5%) 0.864 

QUEST 0.892 (89.2%) 0.793 

Difference between areas 0.0436 (4.36%) - 

z statistic 1.390 - 

 642 

 643 

Table 3 Limit super-matrix of conditioning factors of urban flood vulnerability 644 

Criteria Class Weights Criteria Class Weights 

Socio-economic 

conditions 

A 0.0147 

Quality of buildings 

Very high 0.0271 

B 0.0234 High 0.0298 

C 0.0291 Medium 0.0321 

D 0.0350 Low 0.0347 

E 0.0392 Very low 0.0364 

Natural 0.0068 No building 0.0252 

Population density 

High 0.1343 

Age of buildings 

Very old 0.0470 

Medium 0.1089 old 0.0394 

Low 0.0741 Medium 0.0350 

Very low 0.0530 New 0.0224 

Urban density 

High 0.0482 Newest 0.0022 

Medium 0.0414 No building 0.0021 

Low 0.0321    

Very low 0.0265    

 645 
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 646 
Fig. 1. Location of Sari city in Iran, and map of the city showing points with a history of flooding. A, B, C 647 

and D show previous flooding in the Jame Jam, Dokhaniat, Danesh, and Modarres districts, respectively.  648 
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 649 

Fig. 2. Conditioning factors of urban flood hazard: a) Rainfall, b) land use, c) elevation, d) slope, e) curve 650 

number (CN), f) distance to river, g) distance to channel, and h) depth to groundwater.  651 

 652 
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 653 

Fig. 3. Conditioning factors of urban flood vulnerability: a) Urban density, b) quality of buildings, c) age 654 
of buildings, d) population density, and e) socio-economic conditions. 655 

 656 
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 657 

Fig. 4. Validation of the GARP and QUEST models using the area under the receiver-operator 658 

characteristic curve (AUC-ROC) method. 659 

 660 

 661 

 662 

 663 

Fig. 5. Importance of conditioning factors (ICF) in urban flood hazard, based on the GARP model. 664 
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 665 

Fig. 6. Probability maps of urban flood hazard obtained using: a) the GARP model and b) the QUEST 666 

model. 667 

 668 
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 669 

Fig. 7. Probability charts of flood hazard related to conditioning factors: a) elevation, b) slope, c) depth to 670 

groundwater, d) distance to channel, d) distance to river, and e) rainfall.  ▬ P(1): probability of occurrence, 671 

▬ P(0): probability of non-occurrence.  672 
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 680 

 681 

Fig. 8. Urban flood vulnerability maps. a) Flood vulnerability values and b) flood vulnerability zones. 682 
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 683 

Fig. 9. Urban flood risk maps. a) Urban flood risk index and b) urban flood risk zones. 684 
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