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Abstract

Let G be a non-compact locally compact group with a continuous submulti-
plicative weight function ω such that ω(e) = 1 and ω is diagonally bounded
with bound K ≥ 1. When G is σ-compact, we show that �K�+ 1 many points
in the spectrum of LUC (ω−1) are enough to determine the topological centre
of LUC (ω−1)∗ and that �K�+ 2 many points in the spectrum of L∞(ω−1) are
enough to determine the topological centre of L1(ω)∗∗ when G is in addition a
SIN-group. We deduce that the topological centre of LUC (ω−1)∗ is the weighted
measure algebra M(ω) and that of C0(ω

−1)⊥ is trivial for any locally compact
group. The topological centre of L1(ω)∗∗ is L1(ω) and that of of L∞

0 (ω)⊥ is triv-
ial for any non-compact locally compact SIN-group. The same techniques apply
and lead to similar results when G is a weakly cancellative right cancellative
discrete semigroup.

Keywords: Arens product, weighted algebra, topological centre, dtc set
2010 MSC: Primary 43A20; Secondary 22D15

1. Introduction

Investigations related to topological centres go back all the way to Richard
Arens [1, 2], who defined two products on the second dual of a Banach algebra (in
fact, even in a more general set up). He proved that the two products coincide
for the ring C(X) of continuous functions on a compact Hausdorff space X as
well as for �1 with the pointwise multiplication, but the two products do not
coincide for A = �1 with convolution as product. Note that the two products
coincide on the second dual of a commutative Banach algebra if and only if the
second dual itself is commutative under either product. The work of Arens was
followed by the seminal articles by Day [8] in 1957 and by Civin and Yood [4]
in 1961, where the second duals of group algebras of infinite locally compact
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abelian groups and of some amenable discrete infinite semigroups were shown
to be non-commutative. For a more detailed account, see the survey [12].

Grosser and Losert [14] proved that the centre of UC (G)∗ is the measure al-
gebra M(G) when G is abelian. A natural extension of this result is the theorem
of Lau [16] stating that for any locally compact group G, the topological centre
of LUC (G)∗ is M(G). Then Lau and Losert [17] proved that the topological
centre of L1(G)∗∗ is the group algebra L1(G). These results were followed by
numerous papers studying the topological centres of other algebras arising in
abstract harmonic analysis such as the second dual of the Fourier algebra A(G)
or algebras associated to discrete semigroups.

One of the points which has attracted attention more recently is the number
of points necessary to determine the topological centres. This was initiated in [7],
where Dales, Lau and Strauss proved that two points are sufficient to determine
the topological centre of LUC (G)∗. In [10], we also proved that two points are
enough to determine the topological centre of LUC (G)∗ when G is σ-compact.
In [5], Dales and Dedania considered the weighted semigroup algebra �1(ω) of a
discrete, countably infinite, cancellative semigroup S with a weight ω on S that
is weakly diagonally bounded on an infinite subset T of G with a bound K ≥ 1.
Dales and Dedania showed that there is a set V consisting of �K� + 1 points
such that V is determining for the topological centre of �∞(ω−1)∗, where �K�
denotes the integer part of K. More recently, Budak, Işık and Pym proved in
their exquisite paper [3] that continuity at one point is enough to determine the
topological centres of LUC(G)∗ and L1(G)∗∗.

In this paper, we carry on our investigation on topological centres of con-
volution algebras started in [10]. The method proposed in [10] combined with
elements from [7], [5] and [3] leads also to the topological centres in the weighted
cases, assuming the weight is diagonally bounded. Moreover, in the σ-compact
case, we find finite sets determining the topological centres (for the case of the
second dual L1(ω)∗∗ of the weighted group algebra L1(ω) we need that G is
SIN).

Throughout the paper the weight ω will be diagonally bounded on E ⊆ G
with bound K, where E has the same compact covering number as G (precise
definitions are given in Section 2). We shall consider the C*-algebras LUC (ω−1),
C0(ω

−1), L∞(ω−1) and L∞
0 (ω−1), defined as weighted function algebras. We

prove in Section 3 that if G is σ-compact, then �K� + 1 many points in the
spectrum Δ of LUC (ω−1) are enough to determine the topological centre of
LUC (ω−1)∗. In general, we show that the topological centre of LUC (ω−1)∗

is the weighted measure algebra M(ω). Similarly, the topological centre of
C0(ω

−1)⊥ is trivial for any locally compact group, and in the case of σ-compact
groups, it is enough to check continuity at �K�+ 1 many points.

The main technique behind the proofs is to use points x in the spectrum Δ
of LUC (ω−1) that satisfy the bi-Lipschitz property

‖μ‖
K

≤ ‖μ� x‖ ≤ ‖μ‖ (1)

and that can be separated by slowly oscillating functions. Right isometries and
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slowly oscillating functions were the main tools in [10]. The use of points with
the bi-Lipschitz property replaces the use of right isometries in the unweighted
case. The first inequality in (1) is special for these points: it is due to two crucial
facts, first, x is taken from the closure of a specially constructed set T giving
x a factorisation property, and second, the weight ω is diagonally bounded on
T. These techniques are then combined with methods from [7] and [5]. We
should note that right cancellation, factorisation and right isometries are the
three basic properties used by different authors to find the topological centres.
In [11], they are shown to be basically the same, under certain assumptions.

We continue in Section 4 with L1(ω)∗∗. With the help of an argument
based on [3], we prove that �K� + 2 many points are enough to determine the
topological centres of L1(ω)∗∗ and L∞

0 (ω−1)⊥ when G is a σ-compact SIN-group.
Our method shows also that the topological centre of L1(ω)∗∗ is L1(ω) and the
topological centre of L∞

0 (ω)⊥ is trivial for any non-compact locally compact
SIN-group.

Our method applies also to weakly cancellative, right cancellative discrete
semigroups, as presented in Section 6. We prove that �K� + 1 is again the
number of points enough to determine the centres of �1(ω)∗∗ and c0(ω

−1)⊥ when
S is countable; the result for �1(ω)∗∗ is thus similar to the result of Dales and
Dedania [5, Theorem 5.6] but our assumptions on the semigroup and the weight
are slightly different. Moreover, we also deduce that the topological centres of
�1(ω)∗∗ and c0(ω

−1)⊥ are respectively �1(ω) and {0}, without assuming that S
is countable.

2. Preliminaries

2.1. Function algebras

In this paper, a weight on a locally compact group G means a continuous
function ω : G → (0,∞) such that the value of ω at the identity e ∈ G is 1 and
ω is submultiplicative, that is,

ω(st) ≤ ω(s)ω(t) for every s, t ∈ G.

For any function space F (G), we let F (ω−1) denote the weighted analogue
defined by

F (ω−1) = { f : G → C; ω−1f ∈ F (G) }
with the norm that makes the map

f �→ ω−1f : F (ω−1) → F (G) (2)

an isometry. We shall apply this construction to the the C*-algebra C0(G) of
all continuous functions vanishing at infinity, to the C*-algebra LUC (G) of the
bounded left uniformly continuous functions on G, to the C*-algebra L∞(G) of
essentially bounded locally measurable functions on G and to the C*-algebra
L∞
0 (G). For f ∈ L∞(G), we put ‖f‖K = ess sup{ |f(x)|; x ∈ K }, and define

L∞
0 (G) = { f ∈ L∞(G); for K compact ‖f‖G\K → 0 as K → G }.
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The resulting weighted function spaces are C*-algebras under the weighted
pointwise product

f ·ω g(s) =
f(s)g(s)

ω(s)
,

and the map f �→ ω−1f : F (ω−1) → F (G) is a ∗-isomorphism.

2.2. Convolution algebras

The space M(ω) consists of all Radon measures μ on G such that the
weighted measure ωμ is bounded. This space is normed such that the map
μ �→ ωμ : M(ω) → M(G) is an isometry, where M(G) is the usual measure al-
gebra consisting of bounded Radon measures on G. The measure algebra M(G)
is the dual space of C0(G), and similarly M(ω) is the dual space of C0(ω

−1).
Since ω is submultiplicative, M(ω) is a Banach algebra under the convolution
product

〈μ ∗ ν, f〉 =
∫∫

f(st) dμ(s) dν(t) (μ, ν ∈ M(ω), f ∈ C0(ω
−1)).

Note that although M(ω) is isometric to M(G) their Banach algebra structures
may be very different, depending on ω.

Let L1(G) be the group algebra of G, consisting of those measures in M(G)
that are absolutely continuous with respect to the left Haar measure. The
weighted group algebra L1(ω) ⊆ M(ω) is defined via the isometry μ �→ ωμ.
Then L1(ω) is a closed two-sided ideal in M(ω), similarly as L1(G) is in M(G).
When ω ≥ 1, we have L1(ω) ⊆ L1(G) (with different norms); in this well-studied
case L1(ω) is called a Beurling algebra.

Let π : LUC (G)∗ → LUC (ω−1)∗ be the adjoint of the isometry given in (2)
for F (G) = LUC (G); that is,

〈π(μ), f〉 = 〈μ, ω−1f〉 (μ ∈ LUC (G)∗, f ∈ LUC (ω−1)).

Since f �→ ω−1f is a ∗-isomorphism, π maps the spectrum GLUC of LUC (G)
onto the spectrum Δ of LUC (ω−1). Define ε : G → Δ by

〈ε(s), f〉 = f(s)

ω(s)
(f ∈ LUC (ω−1)).

Then ε is a homeomorphism, and in fact

ε(s) = π(s),

where s in the right-hand side is considered as an element of GLUC (the point
evaluation at s). We shall always use the identification G ⊆ GLUC . We may
also identify G with its image in Δ (topologically), but keep writing ε(s) in the
weighted case to deter confusion.

Let A be a Banach algebra; in our interests A is either L1(ω) or �1(ω),
the latter being the weighted semigroup algebra of a discrete semigroup S (see
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Section 6 for more details). The first Arens product on the second dual of A is
defined by the following formulas:

〈fa, b〉 = 〈f, ab〉, a, b ∈ A, f ∈ A∗,
〈νf, a〉 = 〈ν, fa〉, ν ∈ A∗∗, (3)

〈μ� ν, f〉 = 〈μ, νf〉, μ ∈ A∗∗.

This makes A∗∗ a Banach algebra.
There is also the second Arens product on the second dual of any Banach

algebra A; this is defined by the following formulas:

〈af, b〉 = 〈f, ba〉, a, b ∈ A, f ∈ A∗,
〈fμ, a〉 = 〈μ, af〉, μ ∈ A∗∗, (4)

〈μ � ν, f〉 = 〈ν, fμ〉, ν ∈ A∗∗.

The product on LUC (ω−1)∗ is defined by

Lsf(t) = f(st) s, t ∈ G, f ∈ LUC (ω−1),

νf(s) = 〈ν, Lsf〉, ν ∈ LUC (ω−1)∗,

〈μ� ν, f〉 = 〈μ, νf〉, μ ∈ LUC (ω−1)∗.

Let C0(ω
−1)⊥ denote the functionals in LUC (ω−1)∗ that annihilate C0(ω

−1) ⊆
LUC (ω−1). It is easily seen that C0(ω

−1)⊥ is a weak*-closed ideal in LUC (ω−1)∗.
Moreover,

LUC (ω−1)∗ ∼= M(ω)⊕ C0(ω
−1)⊥

as an �1-direct sum.
Let Φ: L1(ω)∗∗ → LUC (ω−1)∗ denote the natural quotient map, i.e., the

adjoint of the inclusion LUC (ω−1) ↪→ L∞(ω−1). Then Φ is a weak*-continuous
homomorphism with respect to the first Arens product � on L1(ω)∗∗ and the
product � on LUC (ω−1)∗. Moreover, Φ maps L∞

0 (ω−1)∗ ontoM(ω), L∞
0 (ω−1)⊥

onto C0(ω
−1)⊥ and the spectrum Ω of L∞(ω−1) onto Δ (the last statement

follows from [21, Lemma 4.1.7] for example).
It is a consequence of Cohen’s factorisation theorem that LUC (ω−1) =

L∞(ω−1)L1(ω), where the action of L1(ω) on L∞(ω−1) defined by the first
formula of (3) (see for example [13], there is a small gap in the proof of [13,
Proposition 1.3], which is mended in [6, Proposition 7.15]). We therefore see
that the Banach algebra LUC (ω−1)∗ acts on L∞(ω−1) and on L1(ω)∗∗ by

〈x • f, φ〉 = 〈x, fφ〉 and 〈μ • x, f〉 = 〈μ, x • f〉, (5)

where μ ∈ L∞(ω−1)∗, x ∈ LUC (ω−1)∗, φ ∈ L1(ω) and f ∈ L∞(ω−1). This
leads immediately to the identity

μ� ν = μ • Φ(ν) (μ, ν ∈ L1(ω)∗∗), (6)
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which implies that the right shift by ν in L1(ω)∗∗ depends only on the restriction
of ν to LUC (ω−1). Moreover, note that x • f = xf if f ∈ LUC (ω−1) and
x ∈ LUC (ω−1)∗.

The right translations on (L1(ω)∗∗,�) and on LUC (ω−1)∗ are weak*-continuous,
but left translations need not be. On these algebras, the topological centre is
the collection of all μ such that the left translation by μ, i.e. ν �→ μ � ν, is
weak*-continuous.

It is not difficult to show that M(ω), L1(ω) and �1(ω) are contained in the
topological centres of LUC (ω−1)∗, L1(ω)∗∗ and �1(ω)∗∗, respectively.

2.3. More definitions

For E ⊆ G, let κ(E) denote the compact covering number of E, i.e., the
minimal cardinality of a covering of E by compact subsets of G. Then the
height of x ∈ Δ is defined to be

ρ(x) = min{κ(E); E ⊆ G, x ∈ ε(E) },
where overline denotes the closure in Δ. Finally, let UΔ denote the points in Δ
with height κ(G).

The weight ω is diagonally bounded on E ⊆ G with bound K > 0 if

sup
s∈E

ω(s)ω(s−1) ≤ K.

Necessarily, K ≥ 1 (assuming E �= ∅).
A function f : G → C is said to be slowly oscillating if for every ε > 0 and

s ∈ G there is A ⊆ G with κ(A) < κ(G) such that

|f(st)− f(t)| < ε and |f(ts)− f(t)| < ε for every t ∈ G \A.
Slowly oscillating functions were constructed in [10, Lemma 1]. If f ∈ LUC (G)
is slowly oscillating, then

〈y � s, f〉 = 〈y, f〉 = 〈x� y, f〉
whenever s ∈ G, x ∈ GLUC and the height of y ∈ GLUC is κ(G).

3. Sets determining topological centres

The notion of sets determining for the (left) topological centre (dtc) of A∗∗

was introduced by Dales, Lau, and Strauss [7]. A set V ⊂ A∗∗ is a dtc set if

μ� y = μ � y for every y ∈ V implies that μ ∈ A.

Note that since μ� a = μ � a for every a ∈ A, we have μ� y = μ � y if and only
if μ� y = limα μ� yα whenever (yα) is a net in A such that yα → y in A∗∗.

Recall that G is an SIN group if it has a neighbourhood base at the identity
consisting of symmetric, invariant neighbourhoods. When G is an SIN group,
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the left and right uniformities coincide and LUC (G) is the C*-algebra of all
bounded uniformly continuous functions. So in this case, a second product may
be defined on LUC (ω−1)∗ as follows:

Rsf(t) = f(ts), fν(s) = 〈ν,Rsf〉, 〈μ � ν, f〉 = 〈μ, fν〉,

where s, t ∈ G, f ∈ LUC (ω−1), and μ, ν ∈ LUC (ω−1)∗. In this case, we say
that a subset V of Δ is a dtc set of LUC (ω−1)∗ if μ ∈ M(ω) whenever

μ� x = μ � x for every x ∈ V. (7)

Equivalently, μ = 0 is the only element in C0(ω
−1)⊥ with property (7). We

remark at this point that when G is a SIN group, the map Φ: L1(ω)∗∗ →
LUC (ω−1)∗ is a homomorphism also with respect to the second products.

Lemma 1. Suppose that G is a locally compact SIN group. Let μ ∈ LUC (ω−1)∗

and x ∈ Δ. Then μ� x = μ � x if and only if μ� x = limα μ� ε(sα) whenever
(sα) is a net in G such that ε(sα) → x in Δ.

Proof. Let (sα) be a net in G such that ε(sα) → x in Δ. As μ� ε(s) = μ � ε(s)
for every s ∈ G, we have

lim
α

μ� ε(sα) = lim
α

μ � ε(sα) = μ � x.

The preceding lemma justifies the following definition which applies to all
locally compact groups. A subset V of Δ is determining for the topological
centre of LUC (ω−1)∗ (a dtc set) if μ ∈ M(ω) whenever

μ� x = lim
α

μ� ε(sα)

for every x ∈ V and for every net (sα) in G such that ε(sα) → x.
The approach in this paper shall lead to a subset Y of Δ of cardinality 2c

such that any �K�+1 points from Y form a dtc set for the algebra LUC (ω−1)∗

when G is σ-compact. Moreover, it will then be enough to check the continuity
of the left translations at �K�+ 1 points to deduce that the topological centre
of C0(ω

−1)⊥ is {0}.
When G is in addition an SIN group, we find a subset Y in the spectrum Ω

of cardinality 2c such that any �K� + 1 points from Y together with any right
identity in Ω form a dtc set for the algebra L1(ω)∗∗. It will also be enough then
to check the continuity of the left translations at �K�+2 points to deduce that
the topological centre of L∞

0 (ω−1)⊥ is {0}.
In the general case when G is not necessarily σ-compact, the methods still

lead to the topological centres of any of these algebras.
The dtc sets considered in [3] (in the unweighted case) are different than

the dtc sets defined above. Budak, Işık and Pym find one point x together
with a net (xα) both in the remainder GLUC \ G such that xα → x, and
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μ � xα → μ � x happens only for μ = 0 in C0(ω
−1)⊥. So their dtc set is a

singleton in GLUC \G but the whole net of points in GLUC \G is also needed in
the process, while our dtc set consists simply of two points in GLUC \G. In fact,
with our definition, 2 is the smallest cardinality dtc sets may have in general:
take G abelian, ω = 1, x ∈ GLUC \ G and (sα) any net in G converging to x.
Then x�x = limα sα�x = limα x� sα, and so a dtc set (even for GLUC ) must
have more than one point.

4. Dtc sets for LUC (ω−1)∗

This section forms the core of the paper. Throughout the section we as-
sume that ω is a weight on a non-compact locally compact group G, which is
diagonally bounded, with bound K ≥ 1, on a subset E ⊆ G with κ(E) = κ(G).

The proof of the following lemma builds upon elements from [10] and [5,
Theorem 5.6] (the latter of which is adapted from [7]).

Recall that UΔ denotes the set of uniform points in Δ, i.e., points with height
κ(G).

Lemma 2. There exist n = �K�+1 points x1, x2, . . . , xn in Δ such that μ = 0
is the only element in LUC (ω−1)∗ with suppμ ⊆ UΔ having the property that
limα μ � ε(sα) = μ � xk whenever k = 1, . . . , n and (sα) is a net in G with
limα ε(sα) = xk in Δ.

Proof. We start by constructing points x1, x2, . . . , xn in UΔ that can be sep-
arated by slowly oscillating functions and that have the following factorisation
property (obtained with the help of [20]): for any f ∈ LUC (ω−1) there is
g ∈ LUC (ω−1) such that f = xkg.

Let T ⊆ E be a set as constructed in Lemma 1 of [10]. Let f ∈ LUC (ω−1)
and ε > 0 be arbitrary. Since L1(ω) has a bounded approximate identity with
bound 1 (as ω(e) = 1), it follows from the Cohen factorisation theorem [15,
Theorem 32.22] that f = hϕ where h ∈ L∞(ω−1) and ϕ ∈ L1(ω) are such
that ‖h − f‖ω < ε and ‖ϕ‖ω ≤ 1. Comparing the construction of our set T
in Lemma 1 of [10] to the construction leading to Lemma 8 of [9], we see that
the set T satisfies the properties needed for the latter result. Therefore, any
x in the closure of ε(T ) with height κ(G) has the factorisation property that
any h ∈ L∞(ω−1) can be written as h = x • g′ for some g′ ∈ L∞(ω−1). (This
factorisation result goes back to Neufang [20].) Put g = g′ϕ ∈ LUC (ω−1) so
that

xg = x(g′ϕ) = (x • g′)ϕ = hϕ = f,

as required. Since ω is diagonally bounded on E with bound K, an inspection
of the argument in [9] shows that ‖g′‖ω ≤ K‖h‖ω and so

‖g‖ω ≤ ‖g′‖ω‖ϕ‖ω ≤ K‖h‖ω ≤ K(‖f‖ω + ε).

Therefore, for every μ ∈ LUC (ω−1)∗, f ∈ LUC (ω−1) and ε > 0, writing f = xg
as above, we have

|〈μ, f〉| = |〈μ� x, g〉| ≤ K‖μ� x‖(‖f‖ω + ε).

8



It follows that ‖μ‖
K

≤ ‖μ� x‖ (8)

for every μ in LUC (ω−1)∗.
Now let x1, x2, . . . , xn be n distinct points in ε(T ) with height κ(G), and

pick n distinct points y1, y2, . . . , yn in T ⊆ GLUC (necessarily with height κ(G))
such that xk = π(yk) for 1 ≤ k ≤ n. The construction in [10, Lemma 1] gives
slowly oscillating functions fj ∈ LUC (G), 1 ≤ j ≤ n, such that 0 ≤ fj ≤ 1,
〈yk, fj〉 = δk,j and the supports of fj ’s are disjoint (regarded as continuous
functions on GLUC ). For every 1 ≤ j ≤ n, let gj = ωfj and note that gj is in
the unit ball of LUC (ω−1) and 〈xk, gj〉 = δk,j .

Choose ε > 0 such that 1
K − ε ≥ 1

n . Let z ∈ UΔ and let h be an arbitrary
function in the unit ball of LUC (ω−1). Now for every 1 ≤ k ≤ n and s, t ∈ G,

(ε(s)(h ·ω gk))(t) = 〈ε(s), Lt(h ·ω gk)〉 = (h ·ω gk)(ts)

ω(s)
=

h(ts)gk(ts)

ω(s)ω(ts)
.

Then

|〈z � ε(s), h ·ω gk〉| = |〈z, ε(s)(h ·ω gk)〉| = lim
ε(t)→z

∣∣∣∣ h(ts)gk(ts)

ω(t)ω(s)ω(ts)

∣∣∣∣
≤ lim

ε(t)→z

∣∣∣∣gk(ts)ω(ts)

∣∣∣∣ = lim
t→π−1(z)

|fk(ts)|
(∗)
= lim

t→π−1(z)
|fk(t)| = |〈π−1(z), ω−1gk〉| = |〈z, gk〉|,

(9)

where the right slow oscillation of fk is used at (∗). Since the supports of the
functions gk (regarded as continuous functions on Δ) are disjoint, there is at
most one k such that 〈z, gk〉 is non-zero. It follows that if μ is a finite sum of
the form

∑
i∈I αizi such that zi ∈ UΔ and αi ∈ R with

∑
i∈I |αi| ≤ 1, then for

some 1 ≤ k ≤ n

|〈μ� ε(s), h ·ω gk〉| ≤ 1

n
≤ 1

K
− ε. (10)

Indeed, if Ik = { i ∈ I; 〈zi, gk〉 �= 0 }, then the sets Ik are disjoint, and by (9),

|〈μ� ε(s), h ·ω gk〉| ≤
∑
i∈I

|αi| |〈zi � ε(s), h ·ω gk〉| ≤
∑
i∈I

|αi| |〈zi, gk〉|

=
∑
i∈Ik

|αi| |〈zi, gk〉| ≤
∑
i∈Ik

|αi|.
(11)

Since
n∑

k=1

∑
i∈Ik

|αi| ≤ 1,

inquality (10) is clear.
By weak*-approximation, (10) holds for any μ in the unit ball of LUC (ω−1)∗

that is supported by UΔ (as a measure on Δ).
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Suppose that ‖μ‖ = 1. Now we show that for every 1 ≤ k ≤ n, we can find
hk in the unit ball of LUC (ω−1) such that

|〈μ� xk, hk ·ω gk〉| > 1

K
− ε. (12)

Since ‖μ� xk‖ ≥ ‖μ‖/K = 1/K by (8), we can already pick hk in the unit
ball of LUC (ω−1) such that

|〈μ� xk, hk〉| > 1

K
− ε. (13)

Next, for each 1 ≤ k ≤ n, we let

Fk = { z ∈ Δ; 〈z, gk〉 = 1 }

and show that supp(μ� xk) ⊆ Fk (recall that Δ is usually not closed under the
multiplication of LUC (ω−1)∗). We first claim that for every z ∈ Δ, the support
of z � xk is contained in Fk. For every s, t ∈ G,

ε(s)� ε(t) =
ω(st)

ω(s)ω(t)
ε(st).

Noting that ω(st)/ω(s)ω(t) is bounded by 1, and taking first ε(t) → xk then
ε(s) → z, the preceding identity leads to

z � xk = λu

where λ ∈ (0, 1] and u ∈ Δ. Since

〈λu, gk〉 = lim
ε(s)→z

lim
ε(t)→xk

ω(st)

ω(s)ω(t)

gk(st)

ω(st)

= lim
s→π−1(z)

lim
t→π−1(xk)

ω(st)

ω(s)ω(t)
fk(st)

(∗∗)
= λ〈xk, gk〉 = λ,

where as in (9), the left slow oscillation of fk is used at (∗∗). We have therefore
〈u, gk〉 = 1, and so supp(z � xk) = {u} ⊆ Fk. Taking linear combinations
of elements of the form z � xk, z ∈ Δ, and then weak*-limits, we see that
supp(μ � xk) ⊆ Fk (as Fk ⊆ Δ is closed). Now, since g̃k = 1 on Fk, it is easy
to check that hk ·ω gk = hk on Fk. Accordingly, inequality (12) follows from
inequality (13).

Suppose now that μ ∈ LUC (ω−1)∗ is supported by UΔ and has norm 1.
Since both (10) and (12) hold for μ, we see that

lim
α

μ� ε(sα) �= μ� xk

even if (sα) is a net in G such that limα ε(sα) = xk. This proves the claim.
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Theorem 3. Suppose that G is σ-compact. Then Δ contains a dtc set for
LUC (ω−1)∗ of cardinality �K�+1. In other words, there exist n = �K�+1 points
x1, x2, . . . , xn in Δ such that if μ ∈ LUC (ω−1)∗ and limα μ� ε(sα) = μ� xk

whenever k = 1, . . . , n and (sα) is a net in G with limα ε(sα) = xk in Δ, then
μ ∈ M(ω).

In particular, the topological centre of LUC (ω−1)∗ is M(ω).

Proof. Let x1, x2, . . . , xn be the points in ε(T ) as given by Lemma 2. Let μ ∈
LUC (ω−1)∗ and write it as μ = μ0 + μ1 where μ0 ∈ M(ω) and μ1 ∈ C0(ω

−1)⊥.
Suppose that μ has the property that limα μ� ε(sα) = μ� xk whenever k = 1,
. . . , n and (sα) is a net in G with limα ε(sα) = xk in Δ. Since M(ω) is contained
in the topological centre, it is clear that μ0 satisfies also the property, and so
does μ1. But as G is σ-compact, μ1 is supported by Δ \ ε(G) = UΔ. It then
follows from Lemma 2 that μ1 = 0.

Next we shall show that the topological centre of LUC (ω−1)∗ is M(ω) for
any locally compact group G. Let H be an open subgroup of G. Restricting ω
to H gives a weight on H and we denote the associated weighted LUC -space
by LUC (H,ω−1). For every f in LUC (H,ω−1), let f̂ denote extension of f to

G by 0 and note that f̂ ∈ LUC (ω−1). Then if μ ∈ LUC (ω−1)∗, let μ̌ denote
the functional in LUC (H,ω−1)∗ defined by

〈μ̌, f〉 = 〈μ, f̂〉 (f ∈ LUC (H,ω−1)).

Note that the spectrum Δ(H) of LUC (H,ω−1) may be identified with the clo-
sure of ε(H) in Δ. Moreover, denote the set of points in ε(H) ⊆ Δ with height
κ(H) by UΔ(H).

Lemma 4. Let H be an open subgroup of G. Let y ∈ ε(H) ∼= Δ(H) where the
closure is taken in Δ. If the map

Lμ : x �→ μ� x : Δ → LUC (ω−1)∗

is continuous at y, then also the map

Lμ̌ : x �→ μ̌� x : Δ(H) → LUC (H,ω−1)∗

is continuous at y.

Proof. We begin by checking that (xf)̂ = xf̂ whenever x ∈ ε(H) and f ∈
LUC (H,ω−1). For every s ∈ G,

xf̂(s) = 〈x, Lsf̂〉 = lim
ε(h)→x

f̂(sh)

ω(h)
=

{
xf(s) if s ∈ H

0 if s /∈ H,

and so (xf)̂ = xf̂ . Now if (yα) is a net in ε(H) converging to y, then

〈Lμ̌(yα), f〉 = 〈μ̌, yαf〉 = 〈μ, (yαf)̂〉 = 〈μ, yαf̂〉 → 〈μ� y, f̂〉 = 〈Lμ̌(y), f〉
because Lμ is continuous at y. Hence Lμ̌ is continuous at y.
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The following result is known from [20] and [6], but our methods are very
different.

Theorem 5. The topological centre of LUC (ω−1)∗ is M(ω).

Proof. Suppose that μ is in the topological centre of LUC (ω−1)∗. Since M(ω)
is contained in the topological centre, we may assume without loss of generality
that μ ∈ C0(ω

−1)⊥. Suppose that μ �= 0. Pick ξ from suppμ ⊆ Δ with
minimal height and construct an open subgroup H of G such that ξ ∈ UΔ(H)
and κ(E∩H) = κ(H) (this is obtained by taking first a subset A of G such that
ξ ∈ ε(A) and κ(A) equals the height of ξ, then any subset B of E with κ(B) =
κ(A) and a compact neighbourhood V of the identity, and finally defining H
as the subgroup generated by A ∪ B ∪ V ). Then μ̌ �= 0 and supp μ̌ ⊆ UΔ(H)
due to the minimality of the height of ξ. Since μ is in the topological centre of
LUC (ω−1)∗, the map

Lμ̌ : x �→ μ̌� x : Δ(H) → LUC (H,ω−1)∗

is continuous by Lemma 4. This contradicts Lemma 2 when applied to H.

Theorem 6. The topological centre of C0(ω
−1)⊥ is {0}. If G is σ-compact,

then it is enough to check the continuity of left translations at �K�+ 1 points.

Proof. The argument is similar to the proof of [10, Theorem 17]. For the first
statement, it is enough to show that any element μ in the topological centre of
C0(ω

−1)⊥ is in the topological centre of LUC (ω−1)∗. To this end, fix a right
cancellable point x in C0(ω

−1)⊥. For the definition of right cancellable, see sec-
tion 6. Any point in ε(T ), where T is the set used throughout the paper starting
from Lemma 2, is right cancellable, see [9, Theorem 10]. If (να) is a bounded
net in LUC (ω−1)∗ converging to ν in the weak*-topology of LUC (ω−1)∗, then
να�x → ν�x in C0(ω

−1)⊥ with respect to the relative weak*-topology. Hence
μ� να � x → μ� ν � x. On the other hand, the net (μ� να) clusters at some
η ∈ LUC (ω−1)∗ due to boundedness. But then η�x = μ� ν �x and since x is
right cancellable, we have η = μ�ν. Therefore μ�ν is the unique cluster point
of (μ� να), and so μ� να → μ� ν. This shows that the left translation by μ is
weak*-continuous on bounded sets of LUC (ω−1)∗. Since bounded nets (in fact
just nets from the group) were enough to deduce the topological centre in the
argument of Theorem 5, the left translation by μ is weak*-continuous on all of
LUC (ω−1)∗. (It should be mentioned that this passage from bounded nets to
general nets was wrongly argued in the proof of [10, Theorem 17].)

For the second statement, note that we only need to check the continuity of
the left translation by μ at the points x1 � x, . . . , xn � x, where x1, . . . , xn are
as in Theorem 3.

5. Dtc sets for L1(ω)∗∗

Again we assume that ω is a weight on a non-compact locally compact group
G and that ω is diagonally bounded, with bound K ≥ 1, on a subset E ⊆ G
with κ(E) = κ(G).
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Recall that L∞
0 (ω−1) is the closure of the compactly supported functions in

L∞(ω−1), and that L1(ω)∗∗ has an �1-direct sum decomposition

L1(ω)∗∗ = L∞
0 (ω−1)∗ ⊕ L∞

0 (ω−1)⊥ (14)

(see [9, 18]). Note that L∞
0 (ω−1)⊥ is a weak*-closed ideal in L1(ω)∗∗ consisting

of the functionals annihilating L∞
0 (ω−1).

The main part of the section is inspired by the work of Budak, Işık and Pym
[3]. We shall first show that if μ is in the topological centre of L1(ω)∗∗ and
μ = μ0 + μ1 is the decomposition of μ according to (14), then μ0 is in L1(ω).
To this end, we say that μ ∈ L1(ω)∗∗ is singular if for every f ∈ L1(ω) we
have μ ⊥ f as measures on Ω. Since L1(G) is a band in L1(G)∗∗ (by Lemma
3.5 of [3]) and the isometry L1(G)∗∗ → L1(ω)∗∗ is a lattice isomorphism, also
L1(ω) is a band in L1(ω)∗∗. Hence L∞

0 (ω−1)∗ has an orthogonal decomposition
L∞
0 (ω−1)∗ = L1(ω)⊕L∞

0 (ω−1)∗s where L∞
0 (ω−1)∗s denotes the singular elements

in L∞
0 (ω−1)∗ (as argued in [3]; for more details on Banach lattices, see [19], in

particular Theorem 1.2.9).
The following lemma is a weighted version of [3, Lemma 5.3]. The result can

be deduced from [3], because the proof there relies only on the lattice structure
of L1(G)∗∗, which is the same as that of L1(ω)∗∗. For completeness, here is
another proof directly for L1(ω)∗∗. For compact F ⊆ G, define

ω−1
F (s) =

{
ω(s)−1 if s ∈ F

0 otherwise,

and note that ω−1
F ∈ L1(ω).

For μ ∈ L∞(ω−1)∗ and compact set K ⊆ G, let μ|K denote the functional
defined by 〈μ|K , f〉 = 〈μ, 1Kf〉 for f ∈ L∞(ω−1) (note that 1Kf denotes the
pointwise product).

Lemma 7. Let μ ∈ L∞
0 (ω−1)∗. Suppose that {Kn} is a sequence of increasing

compact sets such that ‖μ|Kn‖ → ‖μ‖ as n → ∞ (such a sequence always exists).
Then there is a sequence of functions (fn) ⊆ L∞(ω−1) such that

1. ‖fn‖ω ≤ 1,

2. fn = 0 off Kn,

3. lim
n→∞〈φ, fn〉 = 0 whenever φ ∈ L1(ω),

4. lim
n→∞〈μ, fn〉 = ‖μs‖.

Proof. Write μ = μab + μs where μab ∈ L1(ω) and μs is singular. Fix a natural
number n. Identify elements of L1(ω)∗∗ with bounded Radon measures on
the spectrum Ω of L∞(ω−1); note that this identification preserves the lattice
structure, and so μs ⊥ ω−1

Kn
as measures on Ω. To simplify notation, write

νn = μs|Kn . Since νn ⊥ ω−1
Kn

, there exists a Borel measurable set A ⊆ Ω such

that |νn|(A) = ‖νn‖ and ω−1
Kn

(A) = 0. By regularity, there is g ∈ L∞(ω−1) with

0 ≤ g ≤ ω such that 〈|νn|, g〉 ≥ ‖νn‖ − 1/n and 〈ω−1
Kn

, g〉 ≤ 1/n. Choose h ∈
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L∞(ω−1) such that |h| ≤ g and 〈νn, h〉 ≥ 〈|νn|, g〉 − 1/n. Define fn ∈ L∞(ω−1)
by putting fn = h on Kn and fn = 0 off Kn. The first two statements are then
immediate.

To see that the third statement holds, note that for ψ ∈ Cc(G) (the com-
pactly supported continuous functions on G)∣∣∣∣∫

G

ψ(s)fn(s) ds

∣∣∣∣ = ∣∣∣∣∫
Kn

ψ(s)fn(s) ds

∣∣∣∣
≤ sup

s∈G
|ψ(s)ω(s)|

∫
Kn

ω−1(s)|fn(s)| ds

≤ sup
s∈G

|ψ(s)ω(s)| 〈ω−1
Kn

, g〉 ≤ sups∈G |ψ(s)ω(s)|
n

.

So
∫
G
ψ(s)fn(s) ds → 0 for every ψ ∈ Cc(G) and it follows that 〈φ, fn〉 → 0

whenever φ ∈ L1(ω).
As for the fourth statement, note that

|〈μ, fn〉| ≥ |〈νn, fn〉| − |〈μab, fn〉| ≥ ‖νn‖ − 2/n− |〈μab, fn〉| → ‖μs‖
as n → ∞.

Lemma 8. If μ ∈ L∞
0 (ω−1)∗ is in the topological centre of L1(ω)∗∗, then μ is

in L1(ω).

Proof. Let {Kn} be a sequence of increasing compact sets such that μ|Kn → μ
in norm, and let by Lemma 7, (fn) ⊆ L∞(ω−1) be the sequence of functions
obtained for μ and {Kn}. Then pick a sequence (yn) ⊆ E such that

Knyn ∩Kmym = ∅
whenever n �= m. Then the function

h =

∞∑
n=1

ω(yn)Ry−1
n

fn

is in L∞(ω−1). For every φ ∈ L1(ω) supported by Km, we have

〈φ, ε(ym) • h〉 = hφ(ym)

ω(ym)
=

∞∑
n=1

ω(yn)

ω(ym)

∫
fn(symy−1

n )φ(s) ds

= 〈φ, fm〉,
(15)

as φ is supported by Km and Knyn∩Kmym = ∅ for n �= m. It then follows that

〈μ|Kn , ε(ym) • h〉 = 〈μ|Kn , fm〉
for m ≥ n. Now

|〈μ, ε(ym) • h〉 − 〈μ, fm〉| ≤ 2‖μ− μ|Kn‖+ |〈μ|Kn , ε(ym) • h− fm〉|
= 2‖μ− μ|Kn‖
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for m ≥ n, and so

lim
m→∞〈μ, ε(ym) • h〉 = lim

m→∞〈μ, fm〉 = ‖μs‖ (16)

by Lemma 7.
Let y be a cluster point of the sequence (ε(yn))

∞
n=1 in Δ. Since μ is in the

topological centre of L1(ω)∗∗, it follows from (16) that

〈μ • y, h〉 = ‖μs‖. (17)

On the other hand, it follows from (15) and Lemma 7 that

〈φ • y, h〉 = lim
m→∞〈φ, fm〉 = 0

for every φ ∈ L1(ω) supported by any Kn. As μ|Kn → μ, we may take φ to μ
in the weak*-topology, and so

〈μ • y, h〉 = 0.

Combining this with (17) we see that μs = 0, and so μ ∈ L1(G).

Recall that Φ: L1(ω)∗∗ → LUC (ω−1)∗ is the natural quotient map, which
maps L∞

0 (ω−1)∗ onto M(ω) and L∞
0 (ω−1)⊥ onto C0(ω

−1)⊥.

Lemma 9. Suppose that G is a locally compact SIN group and that V is a dtc
set for LUC (ω−1)∗. For every y ∈ V , let ỹ ∈ L1(ω)∗∗ such that Φ(ỹ) = y. If
μ ∈ L1(ω)∗∗ and

μ� ỹ = μ � ỹ
for every y ∈ V , then Φ(μ) ∈ M(ω).

Proof. SinceG is SIN, there are two well-defined products� and � on LUC (ω−1)∗.
Suppose that

μ� ỹ = μ � ỹ
for every y ∈ V . Since Φ is a homomorphism with respect to the first products
� as well as the second products �, we have that

Φ(μ)� y = Φ(μ) � y

for every y ∈ V . Since V is a dtc set for LUC (ω−1)∗, we have that Φ(μ) ∈ M(ω)
(via Lemma 1).

The first part of the following result is known to be true for any locally
compact group; see [20] and [6].

Theorem 10. Suppose that G is a locally compact SIN group. The topological
centre of L1(ω)∗∗ is L1(ω). When G is also σ-compact, there exists a dtc set of
n = �K�+ 2 points in Ω.
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Proof. Let μ be in the topological centre of L1(ω)∗∗, and decompose μ as in (14)
with μ0 as the local component and μ1 as the component at infinity. It follows
from Lemma 9 that Φ(μ) ∈ M(ω). Since Φ(μ0) ∈ M(ω), we have Φ(μ1) ∈ M(ω).
But since μ1 ∈ L∞

0 (ω−1)⊥, we must have Φ(μ1) = 0. This means that μ1 = 0
on LUC (ω−1). Since G is SIN, there is a central bounded approximate identity
(eα) in L1(ω), with the supports contained in some common compact set. Note
that each eα is also in the algebraic centre of L1(ω)∗∗. In particular, for every
α and for every f ∈ L∞(ω−1),

〈μ1 � eα, f〉 = 〈eα � μ1, f〉 = 〈eα, μ1f〉 = 〈μ1, feα〉 = 0.

So, if ν is a weak* cluster point of (eα), then ν is a right identity in L1(ω)∗∗ and

μ = μ0 + μ1 = (μ0 + μ1)� ν = w*-lim
α

(μ0 + μ1)� eα

= w*-lim
α

(μ0 � eα + μ1 � eα) = w*-lim
α

μ0 � eα

= w*-lim
α

eα � μ0 = ν � μ0.

Now μ0 is the norm limit of a compactly supported functionals μ0,n in L∞
0 (ω−1)∗,

n = 1, 2, . . . For every n, there is a compact set Kn such that the support of
eα � μ0,n is contained in Kn for every α. Hence ν � μ0,n = w*-limα eα � μ0,n

is also supported by Kn. Therefore μ, as the norm limit of the sequence
(ν � μ0,n)

∞
n=1 ⊆ L∞

0 (ω−1)∗, is in L∞
0 (ω−1)∗, and so μ = μ0. Consequently,

μ0 is in the topological centre of L1(ω)∗∗, and by Lemma 8, μ = μ0 ∈ L1(ω), as
required.

Now suppose that G is also σ-compact. Let x1, x2, . . . , xn−1 be the points
in Δ given by Theorem 3. For every k = 1, 2, . . . , n − 1, pick yk ∈ Ω such
that Φ(yk) = xk (that this is possible, recall that Φ maps Ω onto Δ by [21,
Lemma 4.1.7]). If

μ� yk = μ � yk for every k = 1, 2, . . . , n− 1,

then by Lemma 9 Φ(μ) ∈ M(ω) and hence Φ(μ1) = 0. To deduce that μ1 = 0,
we need as above one right identity in Ω, taking the number of necessary points
to �K�+2. Note that any element in Φ−1(δe) is a right identity, and Φ−1(δe)∩Ω
is non-empty as δe ∈ Δ. Finally, to deduce that μ0 ∈ L1(ω), we need to apply
Lemma 8. This will not add to the number of necessary points as the element
y used in Lemma 8 can be one of the xk’s (so effectively yk).

The same argument, which gives Theorem 6 (using [9, Theorem 10]), proves
the following.

Theorem 11. Suppose that G is SIN. The topological centre of L∞
0 (ω−1)⊥ is

{0}. If G is also σ-compact, it is enough to check the continuity at �K� + 2
points.
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6. Dtc sets for �1(ω)∗∗

Let S be a discrete semigroup and consider the weighted semigroup algebra
�1(ω) where ω : S → (0,∞) is a submultiplicative weight function. We want to
show that the topological centre of �1(ω)∗∗ ∼= �∞(ω−1)∗ is �1(ω) under some
conditions on S and ω. This case is very similar to the case of LUC (ω−1)∗

considered in section 4.
The spaces �1(ω) and �∞(ω−1) are defined via isometries

f �→ ωf : �1(ω) → �1(S)

and
f �→ ω−1f : �∞(ω−1) → �∞(S).

Then �1(ω) is a Banach algebra with respect to the convolution product and
�∞(ω−1) is a C*-algebra with respect to the weighted pointwise product. We let
π : �1(S)∗∗ → �1(ω)∗∗ be the adjoint of the ∗-isomorphism f �→ w−1f . Similarly
to the previous case, we denote the spectrum of �∞(ω−1) by Δ, and let ε : S → Δ
be the map

〈ε(s), f〉 = f(s)

ω(s)
(f ∈ �∞(ω−1)).

Note that the spectrum of �∞(S) is the Stone–Čech compactification βS of S,
and so (e,Δ) is a realisation of the Stone–Čech compactification of S. We define
the height of points in Δ similarly as before, and denote by UΔ the set of points
with the maximal height |S|. We define also slowly oscillating functions as in
the group case.

We say that ω is diagonally bounded on E ⊆ S with bound K > 0 if

ω(s)ω(t) ≤ Kω(st) for every s in S and t in E.

(In the case when S is a group this is equivalent to the previous definition.)
We say that an element s in a semigroup S is right cancellable if t1s = t2s

implies t1 = t2 whenever t1, t2 ∈ S; left cancellable elements are defined analo-
gously. A semigroup S is right cancellative if every element in S is right can-
cellable, and S is weakly left cancellative if for every fixed s, u ∈ S, the equation
st = u has finitely many solutions t ∈ S. A weakly cancellative semigroup is
both weakly left and weakly right cancellative.

Throughout this last section, S is an infinite discrete, right cancellative,
weakly cancellative semigroup and ω is a weight on S that is diagonally bounded,
with bound K, on E ⊆ S with |E| = |S|.
Lemma 12. There is a subset T ⊆ E, with |T | = |E|, such that

1. the points in T ⊆ βS can be separated by slowly oscillating functions;

2. for every x ∈ ε(T ) ∩ UΔ and ν ∈ �1(ω)∗∗

‖μ‖
K

≤ ‖μ� x‖.
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Proof. Let {Sα}α<|S| be an increasing cover of S as constructed in [10, Lemma 7];
in particular, |Sα| is finite when |α| is finite and |Sα| = |α| otherwise. We
may assume without loss of generality that S has an identity element e and
e ∈ S0. By transfinite induction, there is a subset T = {tα}α<|S| of E such that
SαtαSα∩SβtβSβ = ∅ when α �= β (note that weak cancellation is needed at this
point). Then the points in the closure of T in βS can be separated by slowly
oscillating functions, as constructed in [10, Lemma 7], so the first statement
holds.

To prove the second statement, it suffices in fact that the set T satisfies that
Sαtα ∩ Sβtβ = ∅ whenever α �= β. We show that each function f ∈ �∞(ω−1)

factorises as f = xg, where x ∈ ε(T )∩UΔ and g ∈ �∞(ω−1). To see this, consider
for a given f ∈ �∞(ω−1), the function

g(s) =
∑
α

ω(tα)1Sαtα(s)fα(s) (s ∈ S)

where 1Sαtα is the characteristic function of Sαtα and

fα(s) =

{
f(u) if s = utα

0 otherwise.

Note that fα is well defined since S is right cancellative and so is g since {Sαtα}
is a disjoint family. Since ω is diagonally bounded on T with bound K, we have
ω(tα)ω(utα)

−1 ≤ Kω(u)−1 and so

|g(s)ω(s)−1| ≤ K
∑
α

1Sαtα(s)‖f‖ω ≤ K‖f‖ω (18)

for every s ∈ S.
Let now x be any point in ε(T )∩UΔ and let ε(tαγ ) → x. Let s ∈ S and pick

β such that s ∈ Sβ . We may suppose that αγ ≥ β for every γ. Then

xg(s) = 〈x, Lsg〉 = lim
γ

ω(tαγ )
−1g(stαγ )

= lim
γ

∑
α

ω(tαγ )
−1ω(tα)1Sαtα(stαγ )fα(stαγ ).

Note that 1Sαtα(stαγ ) = 0 if α �= αγ and that fα(stαγ ) = f(s) if α = αγ . It
follows that xg(s) = f(s), and so we have our wanted factorisation.

If now μ ∈ �∞(ω−1)∗ is non-zero and ε > 0 is given, pick f from the unit
ball of �∞(ω−1) such that |〈μ, f〉| > ‖μ‖ − ε. If g is as above, then

|〈μ� x, g〉| = |〈μ, f〉| ≥ ‖μ‖ − ε.

As ‖g‖ω ≤ K by (18), we have

‖μ� x‖ ≥ ‖μ‖
K

.
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After choosing T as in the preceding lemma, repeating the proof of Lemma 2
gives the following result.

Lemma 13. There exist n = �K� + 1 points x1, x2, . . . , xn in Δ such that
μ = 0 is the only element in �1(ω)∗∗ with suppμ ⊆ UΔ having the property that
limα μ � ε(sα) = μ � xk whenever k = 1, . . . , n and (sα) is a net in S with
limα ε(sα) = xk in Δ.

The next result follows immediately from the preceding lemma. Note that
Dales and Dedania [5, Theorem 5.6] proved a similar result under the assump-
tions that S is both left and right cancellative, countable semigroup and that
the weight ω is weakly diagonally bounded on an infinite E ⊆ S.

Theorem 14. Suppose in addition that S is countable. Then Δ contains a dtc
set for �1(ω)∗∗ of cardinality �K�+ 1. In other words, there exist n = �K�+ 1
points x1, x2, . . . , xn in Δ such that if μ ∈ �1(ω)∗∗ and limα μ� ε(sα) = μ�xk

whenever k = 1, . . . , n and (sα) is a net in S with limα ε(sα) = xk in Δ, then
μ ∈ �1(ω).

Theorem 15. The topological centre of �1(ω)∗∗ is �1(ω).

Proof. Let μ be in the topological centre of �1(ω)∗∗. Suppose that μ ∈ c0(ω
−1)⊥

so that it is enough to show that μ = 0. Assume towards contradiction that
μ �= 0 and pick an element ξ from the support of μ in Δ such that the height of
ξ is minimal (but note that the height of ξ is infinite). There is a subtlety in the
construction of a subsemigroup S0 such that an analogue of Lemma 4 holds for
S0. Let A ⊆ S such that |A| = |A∩E| is equal to the height of ξ and ξ is in the
closure of ε(A). Put A0 = A and define inductively An+1 = An ∪ A2

n ∪ AnA
−1
n

(where AnA
−1
n denotes those t ∈ S such that ts ∈ An for some s ∈ An).

Since S is right cancellative, |An| = |A| for every n and so S0 :=
⋃∞

n=0 An is
a subsemigroup of S with |S0| equal to the height of ξ. Moreover, Lemma 4

applies when G and H are replaced by S and S0, respectively (that xf̂ = (xf)̂
requires that S0S

−1
0 ⊆ S0, which is guaranteed by the construction of S0).

Identifying the closure of ε(S0) in Δ with the spectrum of �∞(S0, ω
−1), we have

ξ ∈ UΔ(S0) and ω is diagonally bounded on the set E0 := E ∩ S0 of cardinality
|S0|. Therefore we may apply Lemma 13 to see that the restriction of μ to ε(S0)
is 0. This contradicts the fact that ξ ∈ suppμ.

The following result is proved similarly as Theorem 6.

Theorem 16. The topological centre of c0(ω
−1)⊥ is trivial. If S is in addition

countable, then it is enough to check the continuity at �K�+ 1 points.

Remark 17. In Theorems 3 and 14, the dtc sets are picked from ε(T ) ∩ UΔ.
Since T is right uniformly discrete and countably infinite, this set has the same
cardinality as the set of points in T \ T (the closure in GLUC ) and T may
be identified with the Stone–Čech compactification βT of T . Thus ε(T ) ∩ UΔ

has cardinality 2c. Any �K� + 1 points from this set form a dtc set in the
above-mentioned results. In Theorem 10, we further need one right identity.
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