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I. Introduction

One reason for the increasing popularity in economics of regression discontinuity applications is the percep-

tion that the identifying assumptions are quite weak. However, while some applications of the design can

be highly persuasive, many are subject to the criticism that public knowledge of the treatment assignment

rule may invalidate the continuity assumptions at the heart of identification.

Consider a hypothetical example. A doctor plans to randomly assign heart patients to a statin and a

placebo to study the effect of the statin on heart attack within ten years. The doctor randomly assigns

patients to two different waiting rooms, A and B, and plans to give those in A the statin and those in B the

placebo. If some of the patients learn of the planned treatment assignment mechanism, we would expect

them to proceed to waiting room A. If the doctor fails to divine the patients’ contrivance and follows the

original protocol, random assignment of patients to separate waiting rooms may be undone by patient

sorting after random assignment. In the regression discontinuity context, an analogous evaluation problem

may occur in the common case where the treatment assignment rule is public knowledge (cf., Lee 2007).

In this paper, I propose a formal test for sorting of this type. The test is based on the intuition that,

in the example above, we would expect for waiting room A to become crowded. In the regression discon-

tinuity context, this is analogous to expecting the running variable to be discontinuous at the cutoff, with

surprisingly many individuals just barely qualifying for a desirable treatment assignment and surprisingly

few failing to quality. This test will be informative when manipulation of the running variable is monotonic,

in a sense to be made specific below.

The proposed test is based on an estimator for the discontinuity at the cutoff in the density function of

the running variable. The test is implemented as a Wald test of the null hypothesis that the discontinuity

is zero. The estimator, which is a simple extension of the local linear density estimator (Cheng, Fan and

Marron 1997), proceeds in two steps. In the first step, one obtains a finely-gridded histogram. In the

second step, one smooths the histogram using local linear regression, separately on either side of the cutoff.

To efficiently convey sensitivity of the discontinuity estimate to smoothing assumptions, one may augment

a graphical presentation of the second-step smoother with the first-step histogram, analogous to presenting

local averages along with an estimated conditional expectation.

This test complements existing specification checks in regression discontinuity applications. Authors

routinely report on the smoothness of pre-determined characteristics around the cutoff (e.g., DiNardo and

Lee 2004). If the particular pre-determined characteristics the researcher has at disposal are relevant to the

problem, this method should be informative about any sorting around the discontinuity. However, in some
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applications pre-determined characteristics are either not available, or those which are available are not

relevant to the outcome under study. By way of contrast, the density test may always be conducted, since

data on the running variable is required for any analysis. The method is also useful in applications where

a discontinuous density function is itself the object of interest. For example, Saez (1999, 2002) measures

tax avoidance using the discontinuity in the density of income reported to the Internal Revenue Service.

To show how the estimator works in practice, I apply the methodology to two distinct settings. The first

setting is popular elections to the United States House of Representatives, considered in Lee’s (2001, 2007)

incumbency study. In this context, it is natural to assume that the density function of the Democratic

voteshare is continuous at 50 percent. The data do not reject this prediction.1 The second setting is

roll call votes in the House. In this context, the vote tally for a given bill is expected to be subject to

manipulation. Although the number of representatives would seem to make coordination between members

difficult, these problems are overcome by a combination of the repeated game aspect of roll call votes and

the fact that a representative’s actual vote becomes public knowledge, enabling credible commitments and

vote contracting. In this setting, the density test provides strong evidence of manipulation.

The remainder of the paper is organized as follows. Section II defines manipulation and distinguishes

between partial and complete manipulation. Section III describes the estimator and discusses smoothing

parameter methods and inference procedures. Section IV motivates the manipulation problem with a

hypothetical job training program. Section V presents the results of a small simulation study. Section VI

presents the empirical analysis, and Section VII concludes. Appendix I gives a proof of the proposition of

Section III, and Appendix II describes the data.

II. Identification under Partial and Complete Manipulation

Let Yi denote an outcome and Di a binary treatment. The outcome depends on treatment according to

Yi = αi + βiDi = α + βDi + εi (1)

where αi and βi are random variables with means α and β, respectively, and εi = αi − α + (βi − β)Di

(cf., Card’s (1999) appendices). In counterfactual notation, αi = Yi0 and βi = Yi1 − Yi0, where Yi0 is

the outcome that would obtain, were Di = 0, and Yi1 is the outcome that would obtain, were Di = 1.

Equation (1) is viewed as a structural equation, in the sense that the manner in which i is induced into
1However, see Snyder (2005).
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participation in the program does not affect (Yi0, Yi1) under exogeneity.2 As noted by Hahn, Todd and

van der Klaauw (2001, hereinafter HTV), and following Imbens and Angrist (1994), the average βi for a

specific subpopulation is identifiable under continuity of the conditional expectations of αi and βi, given

an underlying index. This index is here termed the “running variable” and denoted Ri.

Underlying Ri is an unobservable index Ri0 that is the running variable that would obtain, were there

no program. This may be different from Ri. The running variable is manipulated when Ri 6= Ri0. Although

Ri0 is not observed, it is well-defined conceptually. For example, van der Klaauw (2002) studies the impact

of scholarships on students’ enrollment decisions, where scholarships are assigned discontinuously on the

basis of a linear combination of SAT and high school grade point average (GPA). It is straightforward

to conceptualize of the linear combination of the ith student’s SAT and GPA that would obtain, if the

university in question did not run such a scholarship program.

I interpret the identification results of HTV as holding under continuity assumptions pertaining to the

unobservable index Ri0. Formally, throughout the paper I assume that

E[αi|Ri0 = r], E[βi|Ri0 = r], and fRi0(r) are continuous in r (A0)

where fRi0(r) is the density of Ri0. Although this assumption is very weak, it is sufficient for a regression

discontinuity estimator based on the index Ri0 to identify a local average treatment effect.3 The conditional

expectation restrictions in (A0) are HTV’s identification assumptions, but (A0) is stronger than their

assumptions because of the additional restriction that the density function be continuous. For most settings

in which continuity of the conditional expectations is plausible, continuity of the density will be plausible.

If there is no manipulation, then (A0) holds with Ri replacing Ri0, and identification of meaningful

parameters can be obtained. Sufficient conditions for lack of manipulation include timing, such as when

the program is announced simultaneously with implementation, and lack of agent interest in obtaining

any particular training assignment, for example. However, when individuals know of the selection rule for

treatment, are interested in being treated, and have time to adjust their behavior accordingly, manipulation

can be important. In Section IV, below, I give an example of a job training program where manipulation is

expected and show how manipulation leads to erroneous inferences. The density test detects manipulation

easily in this setting. In the example, the identification problem arises because the incentives of the program
2This is Heckman’s (2005, p. 11) assumption (A-2). In the statistics literature, this is subsumed under the stable unit

treatment value assumption (SUTVA). See Rubin (1980, 1986). I also abstract from general equilibrium effects.
3For discussion of the local average treatment effect parameter, see Angrist, Imbens and Rubin (1996) and Heckman, Urzua

and Vytlacil (2006), for example.
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lead to sorting on the running variable. Generally, manipulation can lead E[αi|Ri = r] and E[βi|Ri = r]

to be discontinuous at the cutoff, despite continuity of E[αi|Ri0 = r] and E[βi|Ri0 = r].

Only some varieties of manipulation lead to identification problems. I draw a distinction between

partial and complete manipulation. Partial manipulation occurs when the running variable is under the

agent’s control, but also has an idiosyncratic element. Typically, partial manipulation of the running

variable does not lead to identification problems. Examples of regression discontinuity settings where

partial manipulation is arguably plausible include van der Klaauw (2002) and DiNardo and Lee (2004), for

example.4 Complete manipulation occurs when the running variable is entirely under the agent’s control.

Typically, complete manipulation of the running variable does lead to identification problems. Examples

of regression discontinuity settings in which complete manipulation is a potential threat to validity include

Hahn, Todd and van der Klaauw (1999) and Jacob and Lefgren (2004), for example.5

Propositions 2 and 3 of Lee (2007) establish that, under mild regularity conditions, identification of

meaningful parameters can be obtained under partial manipulation. As Lee notes, the critical assumption

underlying both propositions is that the conditional density function fR|W (r|w) be continuous in r, where

W represents potential confounders (“types”). This is an intuitive identifying assumption: if the running

variable has a continuous density conditional on type, then for every type of person the chance of a running

variable draw just above the cutoff is equal to the chance of a running variable draw just below the cutoff.

The assumption is not directly testable, since types are unobserved. However, Lee stresses the important

idea that this assumption implies continuity of the conditional expectation of any baseline characteristic

in the running variable. It is thus easy to test the identifying assumption using standard estimators for

conditional expectations, such as local linear regression or global polynomial regression. Such tests are

already commonly reported in applications.

This paper develops a complementary testing procedure. The idea of the test is that continuity in r of
4van der Klaauw (2002) studies the effect of scholarships on enrollment for a college that assigns scholarships discontinuously

using an index that is a linear combination of SAT score and high school grade point average (p. 1255). van der Klaauw
does not state whether students could have had prior knowledge of the formula used, but it seems plausible that even if they
had, it would be difficult to control precisely the value of such an index. Similarly, it might be difficult to control one’s grade
point average perfectly. DiNardo and Lee (2004) study the impact of unionization on establishment outcomes. Firms become
unionized based on a majority vote of the employees. While firms and unions certainly attempt to manipulate the vote tally,
it would be difficult for either to do so perfectly, particularly since union certification elections are secret ballot.

5Hahn et al. (1999) study the impact of equal employment opportunity laws on employment of racial minorities, taking
advantage of the fact that the 1964 Civil Rights Act, as amended, covers only those firms with 15 or more employees.
Employers presumably maintain perfect control over labor inputs. This raises the possibility that a firm owner with a taste
for discrimination, who would otherwise find it profit-maximizing to employ 15, 16, or 17 employees, for example, would
elect to employ 14 employees to preclude the possibility of litigation alleging violations of the Civil Rights Act (cf., Becker
1957). Jacob and Lefgren (2004) study the impact of summer school and grade retention on test scores, where the treatments
depend discontinuously on separate pre-tests. In that context, because the treatment assignment rule is public knowledge, it
is possible that those grading the pre-test would be motivated to influence a student’s treatment assignment by strategically
mismeasuring the student’s actual score (see authors’ discussion, p. 231).
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the conditional density fR|W (r|w) implies continuity of fR(r), the density of the running variable. Thus, a

natural specification test in applications is a test of the continuity of the running variable density function.

The density test may not be informative unless the existence of the program induces agents to adjust

the running variable in one direction only. Manipulation is monotonic if either Ri ≥ Ri0 for all i or

Ri ≤ Ri0 for all i. Consider a hypothetical example based on the Jacob and Lefgren (2004) study, in which

the probability of summer school is a discontinuous function of test scores, and teachers are in charge of

grading examinations for summer school. Assume students attend summer school if and only if assigned

to attend, so that in the absence of manipulation, the local average treatment effect equals the average

treatment effect (ATE). Let the ATE be zero, but assume students have heterogeneous treatment effects

of summer school; summer school helps half and harms half. Teachers discern these treatment effects, and

manipulate the scores of those who would be helped and who just barely passed, so that they fail and have

to go to summer school. Similarly, teachers manipulate the scores of those who would be harmed and who

just barely failed, so that they pass and avoid going to summer school. Estimated treatment effects of the

program would be positive, because of teacher manipulation of scores. However, because the manipulation

is non-monotonic, and because those whose scores are adjusted up are equally numerous as those whose

scores are adjusted down, the density test will fail to detect manipulation.

The density test could also fail, even when there is no failure of identification. Assume teachers give

bonus points to some of those who just barely fail the exam (perhaps to reduce the size of summer

school classes), and substract points from no student. Then the density test would suggest a failure of

identification. However, if teachers select at random which students receive bonus points, then an ATE

would be identified. These examples clarify that a running variable with a continuous density is neither

necessary nor sufficient for identification except under auxiliary assumptions.6

III. Estimation and Inference Procedures

To estimate potentially discontinuous density functions, economists have used either traditional histogram

techniques (DiNardo and Lee 2004, Saez 2002), or kernel density estimates which smooth over the point of

potential discontinuity (DiNardo, Fortin and Lemieux 1996, Saez 1999, Jacob and Lefgren 2004). Neither

procedure allows for point estimation or inference. One could estimate a kernel density function separately

for points to the left and right of the point of discontinuity, but at boundaries a kernel density estimator

is badly biased, as is well-known (e.g., Marron and Ruppert 1994).
6I thank the editors for their emphasis of this important point.
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One method that corrects for boundary bias is the local linear density estimator developed by Cheng,

Fan and Marron (1993) and Cheng (1994).7,8 The grounds for focusing on the local linear density estimator

are theoretical and practical. Theoretically, the estimator weakly dominates other proposed methods.

Cheng et al. (1997) show that for a boundary point the local linear method is 100 percent efficient among

linear estimators in a minimax sense.9 Practically, the first-step histogram is of interest in its own right,

because it provides an analogue to the local averages typically accompanying conditional expectation

estimates in regression discontinuity applications. Moreover, among nonparametric methods showing good

performance at boundaries, local linear density estimation is simplest.

A. Estimation

Implementing the local linear density estimator involves two steps. The first step is a very under-

smoothed histogram. The bins for the histogram are defined carefully enough that no one histogram bin

includes points both to the left and right of the point of discontinuity. The second step is local linear

smoothing of the histogram. The midpoints of the histogram bins are treated as a regressor, and the

normalized counts of the number of observations falling into the bins are treated as an outcome variable.

To accomodate the potential discontinuity in the density, local linear smoothing is conducted separately

for the bins to the right and left of the point of potential discontinuity, here denoted c.

The first-step histogram is based on the frequency table of a discretized version of the running variable,

g(Ri) =
⌊

Ri − c

b

⌋
b +

b

2
+ c ∈

{
. . . , c− 5

b

2
, c− 3

b

2
, c− b

2
, c +

b

2
, c + 3

b

2
, c + 5

b

2
, . . .

}
(2)

where bac is the greatest integer in a.10,11 Define an equi-spaced grid X1, X2, . . . , XJ of width b covering the
7Published papers describing the local linear density approach include Fan and Gijbels (1996), Cheng (1997a,b), and Cheng

et al. (1997). The general idea of “pre-binning” the data before density estimation, and the conclusion that estimators based
on pre-binned data do not suffer in terms of practical performance despite theoretical loss of information, are both much older
than the idea of local linear density estimation; see, for example, Jones (1989) and references therein.

8Competing estimators for estimating a density function at a boundary are also available. Estimators from the statistics
literature include modified kernel methods (see, e.g., Chu and Cheng 1996, Cline and Hart 1991) and wavelet methods (for
references, see Hall, McKay and Turlach 1996). Among the better-known methods, one with good properties is Rice (1984).
Boundary folding methods are also used (see, for example, Schuster 1985), but their properties are not favorable. Marron
and Ruppert (1994) give a three-step transformation method. An older method with favorable properties is the smoothed
histogram approach developed by Gawronski and Stadtmüller (1980, 1981) and recently explored by Bouezmarni and Scaillet
(2005). These last authors also discuss the use of asymmetric kernels for circumventing the boundary bias of kernel estimators.
Bouezmarni and Scaillet appear to be the first authors in economics to estimate a density function at a boundary using a
nonparametric method, but they do not discuss local linear density estimation. Parametric models involving discontinuous
density functions have been studied extensively in economics; see Aigner, Amemiya and Poirier (1976) for an early paper and
Chernozhukov and Hong (2004) for references.

9Fan and Gijbels (1996) give a good discussion of this result and discuss further results regarding deeper senses of efficiency.
10The greatest integer in a is the unique integer k such that k ≤ a < k+1 (“round to the left”). In software, this is typically

known as the floor function, which is not the same as the int function, because negatives are handled differently.
11Equation (2) will result in observations with Ri = c being assigned to the bin c + b

2
, which is valid if ties are assigned to
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support of g(Ri) and define the (normalized) cellsize for the jth bin, Yj = 1
nb

∑n
i=1 1(g(Ri) = Xj).12,13 The

first-step histogram is the scatterplot (Xj , Yj). The second step smooths the histogram using local linear

regression. Formally, the density estimate at r is given by f̂(r) = φ̂1, where (φ̂1, φ̂2) minimize L(φ1, φ2, r) =
∑J

j=1 {Yj − φ1 − φ2(Xj − r)}2 K ((Xj − r)/h) {1(Xj > c)1(r ≥ c) + 1(Xj < c)1(r < c)}, K(·) is a kernel

function, here chosen as the triangle kernel K(t) = max{0, 1− |t|}, and h is the bandwidth, or the window

width defining which observations are included in the regression.14 In words, the second step smooths the

histogram by estimating a weighted regression using the bin midpoints to explain the height of the bins,

giving most weight to the bins nearest where one is trying to estimate the density. It is straightforward to

estimate the entire density function, f(r), by looping over evaluation points r.

Define the parameter of interest to be the log difference in height, or

θ = ln lim
r↓c

f(r)− ln lim
r↑c

f(r) ≡ ln f+ − ln f− (3)

While one can estimate f+ and f− using f̂(r) for r just above and below c, respectively, it is easier and

more accurate to estimate two separate local linear regressions, one on either side of c, with Xj − c as

regressor. The log difference of the coefficients on the intercepts then estimates θ. Formally,

θ̂ ≡ ln f̂+ − ln f̂− (4)

= ln





∑

Xj>c

K

(
Xj − c

h

)
S+

n,2 − S+
n,1(Xj − c)

S+
n,2S

+
n,0 − (S+

n,1)2
Yj



− ln





∑

Xj<c

K

(
Xj − c

h

)
S−n,2 − S−n,1(Xj − c)

S−n,2S
−
n,0 − (S−n,1)2

Yj





where S+
n,k =

∑
Xj>c K ((Xj − c)/h) (Xj−c)k and S−n,k =

∑
Xj<c K ((Xj − c)/h) (Xj−c)k. Under standard

nonparametric regularity conditions, θ̂ is consistent and asymptotically normal.

Proposition. Let f(·) be a density function which, everywhere except at c, has three continuous and

bounded derivatives. Let K(t) = max{0, 1− |t|} be the triangle kernel, and suppose that h → 0, nh →∞,

treatment. If ties are assigned to control, re-define g(Ri) = dRi−c
b
eb− b

2
+ c, where dae is 1 plus the greatest integer in a.

12Defining a grid covering the support of g(Ri) is necessary to account for “zero count” bins.
13Note that these values of Xj are deterministic in the sense that c and b are treated as constants. The endpoint X1

(XJ) may always be chosen arbitrarily small (large) so that it is well beyond the support of g(Ri) with no consequences for
estimation of the overall density anywhere within [R + h, R−h], where [R, R] is the support of the original Ri. Thus, without
loss of generality, we may also define Xj = l+(j−1)b, where l = b(Rmin− c)/bcb+(b/2)+ c, and J = b(Rmax−Rmin)/bc+2.
However, if global polynomial fitting is used, as in the automatic bandwidth selector discussed in Section III.B, below, then
the grid should fall strictly in the range [R, R]. This is not necessary if modeling a density with unbounded support.

14Given its generally minimal role in performance, the kernel function may be chosen on the basis of convenience. However,
the triangle kernel is boundary optimal (Cheng et al. 1997). At interior points, where the Epanechnikov kernel K(t) =
max{0, 0.75(1 − t2)} is optimal, the local linear density estimator is primarily used for graphical purposes and informal
inference. Hence there is little cost to using the triangle kernel everywhere, and this is the convention I adopt for Sections IV,
V, and VI, below.
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b/h → 0, and h2
√

nh −→ H ∈ [0,∞). Then if R1, R2, . . . , Rn is a random sample with density f(r),
√

nh
(
θ̂ − θ

)
d−→ N

(
B,

24
5

(
1

f+
+

1
f−

))
, where B =

H

20

(
−f+′′

f+
− −f−′′

f−

)
.

The proof, given in Appendix I, builds on an unpublished proof of Cheng (1994).

The proposition implies an approximate standard error for θ̂ of

σ̂θ =

√
1

nh

24
5

(
1

f̂+
+

1

f̂−

)
(5)

As shown in the simulation study in Section V, below, t-tests constructed using this standard error are

very nearly normally distributed under the null hypothesis.

However, the normal distribution in question is not quite centered at zero if the bandwidth is of order

n−1/5, the rate which minimizes the asymptotic mean squared error. This is typical of a nonparametric

setting; a tuning parameter that is good for estimation purposes is not necessarily good for testing purposes

(Pagan and Ullah 1999). Practically, this means that a confidence region for θ̂ constructed using the

standard error above will give good coverage accuracy for the probability limit of θ̂, as opposed to good

coverage accuracy for θ. Two approaches are taken in the literature to circumvent this problem. First,

relative to a bandwidth which is believed to minimize the mean squared error, one can choose a bandwidth

smaller than that. The hope is that the bias is thereby sufficiently reduced that it may be ignored. Second,

one can estimate the bias.15 This bells the cat in that it requires choosing another bandwidth. Following

Horowitz (2001) and Hall (1992), I focus on undersmoothing. A simple undersmoothing method is to take

a reference bandwidth and to divide it by 2 (Hall 1992). Section V presents simulation evidence on the

success of this strategy in connection with the reference bandwidth described in the next subsection.

B . Binsize and Bandwidth Selection

For a fixed bandwidth, the estimator described above is robust to different choices of binsize provided

that h/b > 10, say. To understand this robustness, decompose f̂+ as

√
nh(f̂+ − f+) =

1√
h/b

∑

Xj>c

K

(
Xj − c

h

)
χ2 − χ1(Xj − c)

χ2χ0 − (χ1)2
√

nb(Yj − 1
b
pj) (6)

+
1

h/b

∑

Xj>c

K

(
Xj − c

h

)
χ2 − χ1(Xj − c)

χ2χ0 − (χ1)2
√

nh

(
1
b
pj − f+

)
≡ An + E[f̂+ − f+]

15In their survey, Härdle and Linton (1994) discuss only undersmoothing. Pagan and Ullah (1999) discuss a variety of
procedures, but do not provide recommendations. In the related context of local linear regression, Fan and Gijbels (1996)
recommend estimating the bias using a two-step procedure; a pilot bandwidth is required for this procedure. Davison and
Hinkley (1997) suggest the use of the bootstrap to estimate the bias of the kernel density estimator, but Hall (1992) shows
that this method performs badly.

8



where χk = 1
h/b

∑
Xj>c K((Xj − c)/h)(Xj − c)k, k = 0, 1, 2 and 1

bpj =
∫ 1/2
−1/2 f(Xj + bu)du.16 As shown

formally in Appendix I, An tends towards a normal distribution. The quality of the normal approximation

does not turn on the magnitude of b. Intuitively, the second step smoother averages over the Yj , which are

themselves averages. If b is small, then the Yj are not particularly normal, but the second step smoothing

compensates. If b is large, then the Yj are very nearly normal, and not much averaging needs to happen in

the second step. The second sum in this decomposition gives the finite-sample bias of the estimator. Two

Taylor approximations and the algebra of regressions show that

E[f̂+ − f+] =
∑

Xj>c

b

h
K (tj)

χ2 − χ1htj
χ2χ0 − (χ1)2

√
nh

{
h2t2jf

′′+ + O(h3) + O(b2)
}

(7)

where tj = (Xj − c)/h. Since the tj sequence is b/h apart, this is a Riemann approximation to the area

under a curve. The height of the curve in question is dominated by the h2 term since h > b. The analysis

for
√

nh(f̂− − f−) is symmetric. Thus, good performance of θ̂ does not appear to require a careful choice

of binsize. This point is substantiated in the simulation study in Section V, below.

Good performance of θ̂ does require a good choice of bandwidth, however. Probably the best method of

bandwidth selection is visual inspection of the first-step histogram and the second-step local linear density

function estimate, under a variety of choices for b and h. With software, it is easy to inspect both functions

within a few seconds.17 One of the practical advantages of the two-step estimation method described

here is visual. Suppose that as part of a pilot investigation, one has estimated the first-step histogram

using binsize b and the second-step local linear smoother using bandwidth h. Graphically, superimposing

the local linear smoother on the scatterplot (Xj , Yj) reveals rapidly the likely consequences of choosing a

different bandwidth. The effectiveness of subjective bandwidth choice has been noted in related contexts

by Pagan and Ullah (1999) and Deaton (1997), for example.

Less subjective methods include cross-validation (Stone 1974, 1977) and plug-in estimators. Cheng

(1997a) proposes a plug-in bandwidth selector tailored to local linear density estimation, analogous to the

Sheather and Jones (1991) selector that is popular in standard density estimation settings. Her method

requires estimating the integral of the squared second derivative,
∫

(f (2)(r))2dr. As is standard in the

literature, she uses a bandwidth other than h to estimate
∫

(f (2)(r))2dr; to find the optimal bandwidth

for this ancillary task requires approximating
∫

f (2)(r)f (4)(r)dr, and we are back where we started. Cheng
16An analogous decomposition can be used to motivate an estimator that replaces takes the log of the histogram counts before

smoothing. Due to the covariance structure of the Yj and the nonlinearity of ln(·), a rigorous demonstration of asymptotic
normality does not appear straightforward unless one fixes b and redefines the parameter of interest. Nonetheless, such an
estimator is consistent whenever bθ is, and has the same asymptotic variance as bθ, provided nb →∞.

17Software (STATA version 9) is available from the author for a period of 3 years from the date of publication.
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(1994, Section 4.5.2) notes that the method fares poorly in the boundary setting, where the integrals are

(particularly) hard to estimate with any accuracy, and suggests further modifications.

To be practical, bandwidth selection rules need to be easy to implement. My own view is that the

best method is subjective choice, guided by an automatic procedure, particularly if the researcher agrees

to report how much the chosen bandwidth deviates from the recommendations of the automatic selector.

Here is a simple automatic bandwidth selection procedure that may be used as a guide:

1. Compute the first-step histogram using the binsize b̂ = 2σ̂n−1/2, where σ̂ is the sample standard
deviation of the running variable.

2. Using the first-step histogram, estimate a global 4th order polynomial separately on either side of

the cutoff. For each side, compute κ
[
σ̆2(b− a)

/∑
f̆ ′′(Xj)2

]1/5
, and set ĥ equal to the average of

the these two quantities, where κ
.= 3.348, σ̆2 is the mean-squared error of the regression, b − a

equals XJ − c for the right-hand regression and c − X1 for the left-hand regression, and f̆ ′′(Xj) is
the estimated second derivative implied by the global polynomial model.18

The second step of this algorithm is based on the rule-of-thumb bandwidth selector of Fan and Gijbels

(1996, Section 4.2). After implementing this selector, displaying the first-step histogram based on b̂ and

the curve f̂(r) based on ĥ provides a very detailed sense of the distribution of the running variable, upon

which subjective methods can be based. The selection method outlined in the above algorithm is used in

the simulation study in Section V, below, where an automatic method is needed. In the empirical work in

Section VI, where subjective methods are feasible, this selection method is used as a guide.

IV. Theoretical Example

To motivate the potential for identification problems caused by manipulation, consider a simple labor

supply model. Agents strive to maximize the present discounted value of utility from income over two

periods. Each agent chooses to work full- or part-time in each period. Part-time work requires supplying

a fraction fi of full-time labor supply and receiving a fraction fi of full-time income. Each worker has

a different fraction fi, which is determined unilaterally by the employer prior to period 1 on the basis

of production technology. Earnings in period 1 are given by Ri = αiHi, where Hi = 1 if the individual

works full-time and Hi = fi if the individual works part-time. Between periods 1 and 2, a job training

program takes place. Agents are eligible for participation if they pass a means test based on period 1

income: program participation is indicated by Di = 1(Ri ≤ c), where c is the earnings threshold. Earnings
18The constant κ is based on various integrals of the kernel used in the second step. The standard formula (see equation (4.3)

of Fan and Gijbels 1996) does not apply to the boundary case (see equations (3.20) and (3.22) of Fan and Gijbels). The constant
cited is specific to the triangle kernel in the boundary case.
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in period 2 are given by Yi = αi + βiDi, as in equation (1).

If the program did not exist, agents would supply full labor in both periods. In the notation of Section II,

above, this means that Ri0 = αi. However, the existence of the program raises the possibility that agents

will manipulate the running variable, withholding labor supply to meet the means test and gain access to

job training. Schematically, the decision problem can be represented as

Figure 1. The Agent’s Problem

©©©©©©©©©©©©©

HHHHHHHHHHHHH

Part-Time Work (Hi = fi)

©©©©©©©

HHHHHHH

Ri = fiαi ≤ c, obtain

u(fiαi) + δu(αi + βi)

Ri = fiαi > c, obtain

u(fiαi) + δu(αi)

Full-Time Work (Hi = 1)

©©©©©©©

HHHHHHH

Ri = αi ≤ c, obtain

u(αi) + δu(αi + βi)

Ri = αi > c, obtain

u(αi) + δu(αi)

where δ is the discount factor. For well-paid agents with αi > c/fi, the model predicts Hi = 1; for such

an agent, reducing labor supply is never worth it, because even under part-time work, the agent will not

satisfy the means test. For poorly-paid agents with αi ≤ c, the model similarly predicts Hi = 1, but for

a different reason: such an agent satisfies the means test for the program, even if working full-time. The

remaining agents, those with latent wages satisfying c < αi ≤ c/fi, may find it worthwhile to reduce labor

supply, because otherwise they will fail the means test. These agents reduce labor supply in response to

the program if and only if u(fiαi) + δu(αi + βi) > u(αi) + δu(αi). There will always exist a value βi large

enough to induce an agent to select Hi = fi. If βi and αi are correlated, as would be expected in the general

case, then this leads the conditional expectation of counterfactual outcomes in Ri to be discontinuous. A

necessary condition for the utility inequality above to hold is βi > 0. Under concave utility a sufficient

condition is βi > (u(αi) − u(fiαi))
/
δu′(αi). Under linear utility, this condition is also necessary, and we

may characterize those who reduce their labor supply as those with c < αi ≤ c/fi and βi > αi(1− fi)
/
δ.

Figure 2 shows the implications of these behavioral effects using a simulated data set on 50,000 agents

with linear utility. The simulation takes (αi, βi) to be distributed as independent normals, with E[αi] = 12,

V [αi] = 9, E[βi] = 0, and V [βi] = 1, and the fi distribution to be uniform on [0, 1] and independent of

(αi, βi). The earnings threshold is set at c = 14.
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This data generating process is consistent with (A0). If the program did not exist, then period 1

earnings would be Ri0 = αi. The conditional expectation of αi given Ri0 is thus just the 45 degree line,

which is continuous; the conditional expectation of βi given Ri0 is flat, which is likewise continuous; and

the density of Ri0 is the normal density, hence continuous. Panel A of Figure 2 is a local linear regression

estimate of the conditional expectation of βi given Ri0. The smoothness of the conditional expectation

indicates the validity of (A0).

However, even though (A0) is satisfied, agents’ endogenous labor supply creates an identification prob-

lem. The actual running variable is not Ri0, but Ri, which is manipulated by those agents who find it

worthwhile to do so. Panel B gives a local linear regression estimate of the conditional expectation of βi

given Ri. This panel highlights the identification problem. The estimated curve is strongly discontinuous

near the earnings threshold—those agents who stand to gain from the program self-select to supply less

labor and hence are displaced from just to the right of the earnings threshold to just to the left, leading to

sample selection effects which operate discontinuously at the earnings threshold.

In empirical work, it is not possible to estimate conditional expectations such as those in panels A

and B, because βi = Yi1 − Yi0 is unobservable. However, it is possible carry out a density test. Panel

C presents an estimate of the density function of Ri0, estimated using the local linear density estimation

technique described in Section III, above. The density function is estimated and plotted for evaluation

points r = X1, X2, . . . , XJ . The bandwidth and binsize were chosen subjectively following inspection of

the automatic choices delivered by the algorithm outlined in Section III.B, above.19 The density estimate

is consistent with continuity at the earnings threshold, as expected.

Panel D instead gives the density function of Ri.20 In contrast with panel C, the estimated curve is

strongly discontinuous at the earnings threshold. The graph furnishes evidence of the economic behavior

described by the model above: agents self-select into the job training program by manipulating the value

of the running variable that will determine treatment assignment. This leads there to be slightly too few

agents just above the means test threshold, and slightly too many agents just below.

V. Simulation Evidence

Table 1 presents the results of a small simulation study on the performance of θ̂ as an estimator and

as part of a testing procedure. In the table, “Design I” corresponds to the data generating process

underlying Panel C from Figure 2—50,000 independent draws from the N(12, 3) distribution. There are
19The recommended binsize and bandwidth were b = 0.03 and h = 1.5, and I chose b = 0.05 and h = 0.9.
20In the interest of maintaining comparability, the binsize and bandwidth are kept the same in panels C and D.
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1,000 replication data sets used. For each data set, I calculate θ̂ using the binsize and bandwidth produced

by the algorithm specified in Section III.B (“A. Basic, Basic”). In addition to the “basic” implementation

of the algorithm, I consider a modified rule that undersmooths the bandwidth, setting it equal to half the

size of the basic bandwidth (“B. Basic, Half”). This allows assessment of the bias reduction that comes

with undersmoothing. Finally, I consider two non-basic binsizes, corresponding to half the basic binsize

width (“C. Half, Basic”) and twice the basic binsize width (“D. Twice, Basic”). This is to assess the

robustness of the estimator to binsize choices.

The simulation corroborates the good performance suggested by the theoretical work of Section III.

The estimator has generally small bias which declines as the bandwidth shrinks. As well, the standard

error suggested by the proposition represents well the approximate underlying standard deviation of the

estimator. Importantly, t-tests using the proposition have size of roughly 6 percent.

Approximating the distribution of
√

nh(θ̂ − θ) with a normal distribution is highly accurate. Figure 3

presents the normal Q-Q plot for the t-test of the (true) null hypothesis of continuity, where the t-tests

stem from the 1,000 replications reported in rows A and B of Table 1. Panel A (B) corresponds to row A

(B). It is clear from the figure that the quality of the fit is quite good, even far out into the tails where it

is most relevant for testing. Comparing panels A and B in the figure, we see that undersmoothing nearly

eliminates the estimator’s bias.

Perhaps surprisingly, these happy results carry over to much smaller samples. Design II reports results

for 1,000 replications of data sets with only 1,000 observations from the same data generating process as

Design I. The bias of the estimator remains manageable, and the accuracy of the variance estimates is

striking. The size of tests using the estimation scheme proposed, even with such small sample sizes, is

roughly 4 to 7 percent. Space precludes the presentation of any further normal Q-Q plots, but these are

similar to those shown in Figure 3, in that neither skewness nor fat tails is indicated.

Finally, these results also carry over to much more challenging density functions with multiple modes.

Design III reports results for 1,000 replications of data sets with 10,000 observations from a 75-25 mixture

of normals with mean 0 and variance 1 and mean 4 and variance 1. The cutoff point was taken to be at

2. This is a challenging point for local linear density estimation in this setting, because it is just to the

left of a local minimum of the true density, where the density function is strongly quadratic. However, the

estimator continues to enjoy bias of small magnitude, and t-tests using the estimator and its estimated

standard error lead to size of 5 to 7 percent.
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VI. Empirical Example

One of the better examples of the regression discontinuity design is the incumbency study of Lee (2001).

Political scientists have postulated that there is an incumbency advantage for both parties and individual

candidates, whereby having won the election once makes it easier to win the election subsequently. Credibly

establishing the magnitude of any incumbency advantage is challenging because of strong selection effects.

Lee notes that in a two-party system with majority rule, incumbency is assigned discontinuously at 50

percent on the basis of the popular vote and uses the regression discontinuity design to assess the party

incumbency effect for popular elections to the United States House of Representatives.

The complete manipulation phenomena described in Section II seems unlikely to occur in this instance,

because voters are unlikely to be able to coordinate to manipulate the vote tally, and because democratic

safeguards are presumably sufficient to prevent vote fraud.21 Thus, a natural expectation is for the density

function of the vote share to be smooth. I test this notion formally using the techniques outlined above.

Specifically, using data on the votes cast for each candidate in contested elections to the U.S. House

of Representatives involving a Democratic candidate, 1900-1990, I estimate the density function of the

“Democratic margin”, defined as the fraction of all votes (vote share) received by the Democratic candidate,

less the largest vote share received by any other candidate in the election.22 Defined in this way, the

Democratic candidate wins the election if and only if the Democratic margin is positive.23

Figure 4 gives an estimate of the density function of the Democratic margin. The curve was estimated

using the estimator outlined in Section III, with evaluation points r = X1, X2, . . . , XJ . The binsize and

bandwidth were chosen subjectively after using the automatic procedure outlined in Section III.B as a

pilot estimate. The automatic procedure in this case seems to oversmooth at the mode in this setting.24

The estimated curve gives little indication of strong discontinuity near zero. Indeed, the density appears

generally quite smooth. Importantly, the first-step histogram reveals that this is not the result of over-

smoothing. The estimated parameter θ̂ is presented in Table 2, along with the proposition standard error.

As expected, a t-test of the null hypothesis of continuity fails to reject.

The complete manipulation problem described in Section II is unlikely to occur in a fair popular election,
21Democratic safeguards may not always be sufficient. Greenberg (2000) discusses the famously contested 1960 presidential

election between Richard Nixon and John F. Kennedy. See also Snyder (2005), who uses the estimator described here to
analyze close elections to the United States House involving an incumbent.

221,591 elections during this period involve a single candidate. Of the contested elections, 95.3 percent involve a Democratic
candidate, and 92.5 percent involve a Republican candidate.

23This definition of the running variable is slightly different from that in Lee (2007), but differs little as a practical matter,
particularly for the post-1948 period pertaining to Lee’s study.

24I use a binsize of b = 0.004 and a bandwidth of h = 0.02. The automatic procedure would select b = 0.004 and h = 0.13.
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because coordination of voters is difficult and there is little discretion in measuring the vote tally. However,

in other election contexts, coordination is feasible and complete manipulation may be a concern.

A leading example of this type of coordination is roll call voting in the House of Representatives.

Coordination is expected in this context. First, the volume of bills before the House and the long tenure

of most representatives conspire to create a repeated game. Second, a representative’s vote is public

knowledge, allowing for credible commitments to contracts over voting. In such a context, side payments

for a representative’s vote do not have to involve (illegal) monetary compensation, but may pertain simply

to votes on future bills. Riker’s (1962) size principle then implies that the most likely bills to be put to

vote on the House floor are those expected to narrowly pass.

Figure 5 presents an estimated density function for the percent voting “yeay” on all roll call votes in

the House from 1857–2004.25,26 The curve was estimated using the estimator outlined in Section III, with

evaluation points r = X1, X2, . . . , XJ . The binsize and bandwidth were again chosen subjectively after

using the automatic procedure. Much more so than the vote share density, the roll call density exhibits

very specific features near the cutoff point that are hard for any automatic procedure to identify.27

The figure strongly suggests that the underlying density function is discontinuous at 50 percent. Out-

comes within a handful of votes of the cutoff are much more likely to be won than lost; the first-step

histogram indicates that the passage of a roll call vote by 1 to 2 votes is 2.6 times more likely than the

failure of a roll call vote by 1 to 2 votes. Although the magnitude of the effect is not as extreme, the

second-step smoother corroborates the suggestion of the first-step histogram. Table 2 presents the esti-

mated log discontinuity in the discontinuity, which is a large 52 percent. The effect is precisely estimated,

with a t-ratio of 6.6.

These empirical results are consistent with a manipulation hypothesis. In particular, the results suggest

that it would be a mistake to view the majority vote election procedure in the U.S. House of Representatives

as generating quasi-random assignment of policy decisions emerging from the House.
25Stratifying the votes into before and after 1900 subperiods results in highly similar estimates with less precision.
26The density estimator is allowed to be discontinuous at 50 percent but nowhere else, despite the existence of bills which

require a supermajority vote for passage (e.g., two-thirds approval for constitutional amendments and veto overrides), so 50
percent is not the cutoff for passage for all bills. However, bills requiring a supermajority for passage are rare, and the data
do not allow me to determine the cutoff for the given bill. Consequently, I focus on the potential discontinuity at 50 percent,
viewing this as being slightly attenuated due to the unobserved supermajority bills.

27I use a binsize of b = 0.003 and a bandwidth of h = 0.03. The automatic procedure would select b = 0.0025 and h = 0.114.
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VII. Conclusion

This paper describes identification problems encountered in the regression discontinuity design pertaining

to manipulation of the running variable and describes a simple test for manipulation. The test involves

estimation of the discontinuity in the density function of the running variable at the cutoff. Consistency and

asymptotic normality of the log discontinuity in the density at the cutoff was demonstrated theoretically,

and inference procedures discussed. The methodology was applied to two distinct settings, one in which

manipulation is unexpected and is not detected, and another in which manipulation is expected and

demonstrated.

The context of most regression discontinuity applications is such that the treatment assignment rule is

public knowledge. I have argued that this will often make it plausible that the agents under study engage

in manipulation of the running variable in order to obtain desirable treatment assignments, and I have

emphasized that manipulation will often lead to violations of the assumptions necessary for identification.

The standard specification test used currently in regression discontinuity applications is a test for conti-

nuity of the conditional expectation of pre-determined characteristics in the running variable at the cutoff.

Such tests are a natural and powerful way to assess the plausibility of the identifying assumptions. The

density test proposed here complements these methods and is expected to be powerful when manipulation

is monotonic, as discussed above. The density test may be particularly important for applications where

pre-determined characteristics are not available, or are not relevant to the substantive topic studied.

Appendix I. Proof of Proposition

Because of the linearity of Yj = 1
nb

∑n
i=1 1(g(Ri) = Xj), we have
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where tj = (Xj − c)/h, S+
n,k ≡ hk

∑J
j=1 K(tj)1(tj > 0)tkj , and T+

n,k ≡ hk
∑J

j=1 K(tj)1(tj > 0)tkj Yj ,

and analogously for f̂−. The proof proceeds by calculating E[f̂+] and V [f̂+] and verifying the skewness
condition of the Lyapunov central limit theorem (Rao 1965, p. 107), which applies since Zin is independent
of Zi′n for i′ 6= i. Independence follows since Zin is just a transformation of Ri and since X1, X2, . . . , XJ

are constants (see footnote 13). By Riemann approximation (see Cheng 1994, Lemma 4, for example), we
have S+

n,k = (hk+1/b)S+
k + O(hk−1b), where S+

k =
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0 tkK(t)dt, k = 0, 1, 2, . . . For the triangle kernel with

k = 0, 1, 2, S+
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2 , 1
6 , and 1

12 , respectively. We have
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(A.2)
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Using Taylor and Riemann approximation we have
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since E[Yj ] = f(Xj) + O(b2), where the only terms from the double summation which matter are those for
which j = k since the histogram bins are mutually exclusive. For the Lyapunov condition, calculate
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Combining the expression for the variance with the skewness bound, we have
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so that the Lyapunov condition is satisfied since nh →∞. Thus, and by symmetry,
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where B+ = −H 1
20f+′′ and B− = −H 1

20f−′′. To strengthen this result to joint asymptotic normality,
define Uin = λ+Z+

in + λ−Z−in, where the Zin from above is redefined to be Z+
in and Z−in denotes the

analogous quantity to the left of c. Observe that Uin is independent of Ui′n for all i′ 6= i. Then we have
E[Uin] = λ+f+ + λ−f− + O(h2) and V [Uin] = (24/5)(λ+)2(f+/h) + (24/5)(λ−)2(f−/h) + o(1/h), where
the latter follows since C[Z+

in, Z−in] = −E[Z+
in]E[Z−in] = −f+f− + O(h2). Using the results from above,

we have E[|Uin − E[Uin]|3] ≤ 8E[|Uin|3] ≤ 8|λ+|3E[|Z+
in|3] + 8|λ−|3E[|Z−in|3] = O(1/h2) and it is then

straightforward to verify the Lyapunov condition as above. Since this holds for every vector (λ+, λ−), the
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Cramér-Wold device (White 2001, p. 114) implies joint asymptotic normality with a diagonal asymptotic

variance matrix. Define τ(f+, f−) = ln f+ − ln f− = θ, note that ∇τ =
(

1
f+ , −1

f−

)′
, and apply the delta

method to conclude
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1
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(A.8)

where B = B+

f+ − B−
f− . ¥

Appendix II. Data

Data on popular elections to the U.S. House of Representatives are taken from ICPSR Study # 7757.
These are the same data used by Lee (2001, 2007), but I have engaged in neither the data augmentation
nor the cleaning procedures he conducted. Data on roll call votes are taken from
http://www.voteview.com/partycount.htm, a website maintained by Keith T. Poole of the University of
California, San Diego. This same website is the basis for the data on DW-Nominate scores. Finally, data on
party control of the House are taken from http://arts.bev.net/roperldavid/politics/congress.htm,
a website maintained by L. David Roper of the Virginia Polytechnic Institute and State University.

All data and programs are available from the author for a period of 3 years from the date of publication.
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Figure 2. Hypothetical Example: 
Gaming the System with an Income-Tested Job Training Program 
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B. Conditional Expectation of Returns to Treatment 
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C. Density of Income 

with No Pre-Announcement and No Manipulation
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D. Density of Income 
with Pre-Announcement and Manipulation
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Figure 3. Quality of Normal Approximation 
A.  t -test Based on Proposition Standard Error, 
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B.  t -test Based on Proposition Standard Error, 

Undersmoothing
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Figure 4. Democratic Vote Share Relative to Cutoff:
Popular Elections to the House of Representatives, 1900-1990
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Figure 5. Percent Voting Yeay:
Roll Call Votes, U.S. House of Representatives, 1857-2004
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Table 1. Simulation Results

Rule for Binsize, Range of Range of Estimator Proposition Standard Error
Design Bandwidth Binsizes (b ) Bandwidths (h ) Bias Std. Dev. Mean Size, t-test

I A. Basic, Basic [0.027, 0.027] [1.45, 1.56] -0.0064 0.0353 0.0345 0.0630

B. Basic, Half [0.027, 0.027] [0.73, 0.78] -0.0018 0.0513 0.0489 0.0600

C. Half, Basic [0.013, 0.013] [1.45, 1.54] -0.0063 0.0354 0.0346 0.0640

D. Twice, Basic [0.053, 0.054] [1.46, 1.61] -0.0066 0.0351 0.0343 0.0600

II A. Basic, Basic [0.182, 0.196] [2.44, 3.45] -0.0420 0.1800 0.1763 0.0580

B. Basic, Half [0.183, 0.196] [1.22, 1.72] -0.0059 0.2564 0.2532 0.0430

C. Half, Basic [0.091, 0.098] [2.46, 3.44] -0.0424 0.1793 0.1757 0.0670

D. Twice, Basic [0.366, 0.393] [2.35, 3.46] -0.0423 0.1809 0.1775 0.0670

III A. Basic, Basic [0.040, 0.040] [0.851, 1.01] 0.0252 0.1598 0.1484 0.0650

B. Basic, Half [0.040, 0.040] [0.426, 0.506] 0.0011 0.2079 0.2010 0.0560

C. Half, Basic [0.020, 0.020] [0.812, 0.950] 0.0222 0.1608 0.1516 0.0610

D. Twice, Basic [0.080, 0.081] [0.912, 1.11] 0.0307 0.1575 0.1440 0.0690

Notes: Table presents simulation results for 3 different data generating processes and 4 different binsize and bandwidth 
selection rules. See text for details.



Table 2. Log Discontinuity Estimates

Popular 
Elections Roll Call Votes

-0.060 0.521 
(0.108) (0.079)

N 16,917 35,052

Note: Standard errors in parentheses.  See text for details.




