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Prediction of Freshwater Production in Seawater Greenhouses Using Hybrid Models of

Artificial Neural Network

Abstract

Freshwater production plays a critical role in the era of water shortage and persistent droughts.
One of the methods of freshwater production is the use of seawater greenhouse (SSGH), which
desalinates saline water using solar energy and is an effective method for meeting agricultural
irrigation demands. This study predicted the freshwater production in an SSGH in Oman using
the artificial neural network (ANN) model. Freshwater production was predicted using
greenhouse length and width, roof transparency coefficient, and height of front evaporator. The
ANN model was trained using ant-lion optimization (ALO) algorithm, particle swarm
optimization (PSO) algorithm, and bat algorithm (BA). Examination of input parameters
revealed that the width of the greenhouse was the most critical parameter among the input
parameters. Comparison of models showed that the ANN-ALO model had the highest accuracy.
Root mean square error (RMSE), mean absolute error (MAE), Percent bias (PBIAS), and Nash
Sutcliffe efficiency (NSE) indices were evaluated for each model. Results showed that the
RMSE value of the ANN-ALO model was 0.545 m*/ day. The lowest RMSE was attained by the
ANN-ALO in the training and testing phases among the other models. The RMSE value of the
ANN-ALO model was 17%, 36%, and 40% lower than ANN-BA, ANN-PSO, and ANN models,
respectively. Outputs of the training phase revealed that the ANN-ALO model had the lowest
MAE value. Also, the study performed an uncertainty analysis, considering the uncertainty of
predictive models for two scenarios: (1) the uncertainty of inputs and (2) uncertainty of model

parameters. The uncertainty of ANN-ALO was lower than those of other models in both
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scenarios. The investigation of the effect of varying parameters on freshwater production showed
that the increase in the width of the greenhouse with an evaporator height of 2 m and a
transparency coefficient of 0.4 at a fixed length of 50 m led to an increase in freshwater
production. Furthermore, the greenhouse freshwater production with an evaporator height of 2 m
and a transparency coefficient 0.4 increased with an increase in width along the length of 100 m.
The outputs of models showed that the ANN-ALO model was capable of predicting the amount
of fresh water.

Keywords: ANN, optimization algorithm, seawater greenhouse, water production

Introduction

Nowadays, the world is facing a water supply crisis because of population growth, frequent
droughts, and lack of enough water resources. Optimal management and utilization of water
resources can augment water supplies.

Food security depends on agricultural production, which needs enough water for irrigation.
Desalination is one of the useful methods for producing freshwater (Zarei et al., 2018). Although
membrane and reverse osmosis technologies are widely used to desalinate brackish water, they
entail very high energy cost. Another convenient and low-cost method of producing freshwater
for agriculture and irrigation is the use of SSGH, which involves low installation and operating
costs (Zarei and Behyad, 2019). SSGH produces freshwater using renewable energies. SSGH is a
kind of desalination plant that uses solar energy with high energy savings and seawater (SW) to
humidify the air inside the greenhouse and produce freshwater (Essa et al., 2020). Since it uses
fewer mechanical parts and has lower maintenance costs, it is more cost-effective than other
desalination plants (Essa et al., 2020). Also, it can be used for producing water in hot and dry

areas. An SSGH has two cooling evaporators (EV), a condenser, a fan, seawater (SW) pipes,
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distilled water, and crops between EVs. In the first step, the incoming warm air enters the
greenhouse by fans. Then, the incoming warm air moves through the first evaporator (Zarei and
Behyad, 2019). Because of the heat exchange with SW in the first evaporator, the inlet hot air
temperature decreases and the relative humidity increases. Cool and humid air (HA) enters the
greenhouse in the next stage. The greenhouse space is heated by sunlight. In the greenhouse, the
solar radiation warms the air inside the greenhouse. The seawater leaves the first evaporator to
fall on the second evaporator (Figure 1).

Solar absorbing tubes placed on the roof of the greenhouse are used as an energy source
for desalination (Zarei et al., 2018). As the air inside the greenhouse has low humidity, it is
impossible to separate water. Thus, the air passes through the second evaporator to reduce its
temperature and increase its humidity. Then, the air enters a condenser that produces freshwater
Part of the water is used to meet the water needs of greenhouse produce, and the other part is
used for drinking.

Goosen et al. (2003) experimentally evaluated the effect of various SSGH parameters on
freshwater production and showed that greenhouse dimensions significantly affected freshwater
production and energy consumption. Tahri et al. (2009) proposed a mathematical model for
estimation of mass condensation rate of the SSGH in Oman. This model used the heat balance of
all heat sources to estimate mass condensation rate. It was concluded that solar radiation was the
most important parameter that affected the performance of the SSGH. Mahmoudi et al. (2010)
investigated the effect of the passive condenser on SSGH to produce freshwater. They found that
using a passive condenser increased the production of freshwater compared to using a pump-
driven system. Al-Khalidi et al. (2010) conducted a study to test the performance of a plate-

channel condenser (PCC) and a vibrating-surface condenser (VSS) in the SSGH. They found
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that the freshwater production of the PCC was more that of the VSS. Yetilmezsoy et al. (2014)
used an experimental model to estimate the mass condensate flux in SSGH. Without
computational complexities, they calculated the mass flux values for various inputs like wet air
inlet temperature, moist air, relative humidity, dry inlet air, inlet seawater temperature, and wet
air mass flow. Tahri et al. (2016) proposed a multiple linear regression (MLR) model to estimate
the dehumidification rate of the condenser. It was observed that the MLR was more accurate
compared to the other models. Al-Ismaili et al. (2019) developed the ANN and MLR models for
estimation of freshwater production. It was observed that the ANN outperformed the other

models.

The key parameter in an SSGH is the freshwater production, which is a function of different
parameters like climatic parameters and geometric characteristics of the greenhouse. Despite the
advantages of the hydrodynamic and mathematical models in predicting freshwater production,
they had disadvantages. Implementing complex boundary conditions and preparing a large
number of data are the disadvantages of these models (Zarei and Behyad, 2019). These models
mainly suffer from high computational time and computational complexity. Thus, it is necessary
to develop new models as alternatives to thermodynamic and mathematical models. Recently,
soft computing models have been successfully used in various fields. Soft computing models can
accurately predict target variables using training data with various training algorithms. These
models can detect nonlinear and complex relationships between target variables and inputs for a

variable number of inputs.

The application of soft computing models is not limited to a special filed. For example,
soft computing models are widely used for the estimation of solar radiation in renewable energy

applications. Notton et al. (2018) used the ANN model for estimation of Global horizontal

4
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irradiation. For the developed ANN model, the normalized RMSE varied from 22.57% to
34.85%. Jahani and Mohammadi et al. (2018) coupled the ANN model with the genetic
algorithm to estimate daily global solar radiation in Iran. The results indicated that the coupled
ANN model performed better than the ANN model. Ghimre et al. (2019) compared the accuracy
of the ANN, support vector machine (SVM), genetic programming (GP), and Gaussian process
machine learning (GPML) to estimate daily solar radiation. They found that the accuracy of the
ANN model was better than those of the other models. Also, soft computing models are widely
used for modelling hydrological variables. Sharghi et al. (2018) used the wavelet emotional
ANN for one-time-ahead rainfall-runoff modeling. It was concluded that the WANN performed
better than the emotional ANN. Kumar et al. (2019) conducted a study for rainfall-runoff
modelling that compared two types of the ANN model. The results indicated that the emotional
ANN outperformed the ANN model. Qasem et al. (2019) compared the accuracy of the ANN,
SVM, wavelet SVM, and wavelet ANN to estimate evaporation. The results of the study
indicated that the ANN and wavelet ANN outperformed the SVM and wavelet SVM model.
Singh et al. (2019) used ANN and multiple linear regression to predict evaporation. Based on the
comparison, the ANN model was superior to the multiple linear regression. Samantaray et al.
(2020) compared the performance of the ANN, adaptive neuro-fuzzy interface system (ANFIS),
and SVM to estimate rainfall. The results indicated that the accuracy of the SVM model was
better than those of the other models. Malik et al. (2020) developed a study based on multi-gene
genetic programming (MGGP), SVM, and some types of ANN to predict monthly evaporation.
The results indicated that the ANN and MGGP gave accurate results. Several studies used soft
computing models for prediction of different variables in SSGHs._Zarei et al. (2018) applied the

support vector machine (SVM) model to predict the freshwater produced in an SSGH in Oman.



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

They indicated that SVR had a high capability for predicting freshwater production using data
training and various kernel functions.

Al-Ismaili et al. (2018) used a multiple linear regression model to estimate the rate of
condenser dehumidification in an SSGH in Oman. Using the mass flow rate, inlet humid air
temperature (IMAT), inlet humidity ratio (HR), and solar radiation as input data, they showed
that the proposed model was accurate in estimating the dehumidification rate. Zarei and Behyad
(2019) used ANN to predict freshwater production in an SSGH in Oman. ANN was found
accurate in simulating the water produced in the greenhouse. Using solar radiation, IMAT, HR,
and mass flow rate as inputs, Al-Ismaili et al. (2019) used ANN and multiple-regression to
predict freshwater production in SSGH, and showed that ANN more accurately estimated the
freshwater production than did multiple-regression. Essa et al. (2020) used the random vector
functional link model (RVFL) and optimization algorithms to predict the freshwater production
and energy consumption in SSGH and showed that combination of RVFL model and
optimization algorithms better predicted the water produced as well as the energy consumed.
Successful experience of using soft computing models shows that they are reliable for predicting
different variables.

ANN models are one of the most successful models of soft computing models. ANN can
estimate target variables using computational multilayers and neurons. They can predict various
variables with high accuracy. Although the ANN model can predict different variables, it has
some weaknesses. One of the weaknesses is finding model parameters (Shargi et al., 2019).
Model parameters like weight connections and bias must be calculated accurately. Although the
model uses various training algorithms to find parameters, these algorithms may fall in local

optimization trap or have a low convergence rate (Shargi et al., 2019). One way to modify the
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ANN model is to connect the model to optimization algorithms. Given robust operators, high
convergence speed and high accuracy, optimization algorithms can find the exact value of ANN
model parameters. ALO is one of the new optimization algorithms. ALO is widely used in
various fields of optimization, as shown in Table 1. Given its high convergence speed, advanced
operators to get out of local optima, high accuracy in finding the global optimal solution
response, and high flexibility to connect to soft computing models (Mirjalili, 2015). Thus, the
study used the ANN-ALO model to estimate the production of freshwater in an SSGH in Oman.
Moreover, two other optimization algorithms, called bat and PSO algorithms, were used to train
the ANN model in assessing the potential of the ANN-ALO model. While a number of the
previous researches uses the mathematical and thermodynamic models for predicting freshwater
production, the present study develops soft computing models without using climatic parameters
to predict freshwater production.

Investigating the effect of different sources of uncertainty on the accuracy of the models
is another innovation of the current paper. Also, new hybrid models of the present study can be
used to predict other hydrological variables in the next researches. Thus, the second part of the
study describes the ANN model and optimization algorithms. The third part describes a case
study and details of SSGH. Part four describes the output. Finally, part five states the conclusion.
In addition to using ANN hybrid models to predict freshwater production, the study examined
the effect of different parameters on the production of freshwater.

2. Materials and methods
2.1. ANN Model
ANN is inspired by the neural network of the human brain. Each ANN model has computational

units called neurons which are seen in different ANN layers (Mirarabi et al., 2019). Each ANN
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model has three layers. The first layer is the input data receiving layer, the second layer is known
as the hidden layer, and the last layer is the output layer (Jahani and Mohammadi, 2019). The
neurons of the first layer are equal to the number of input data (Yadav et al., 2020). The layers
connected to the previous and next layers through weighted connections. The number of output
layer neurons is equal to the number of ANN model outputs.

The number of hidden layer neurons can be calculated by trial and error. The output of
each layer is the input of the next layer. Figure 2 shows the structure of the ANN model. The
input values per neuron are multiplied by a weight and enter into the activation function after
being summed with a constant value as bias.

One of the most effective training methods of ANN is the backpropagation algorithm
(BPA). In BPA, the first level is the feedforward phase (Moghaddam et al., 2019). The weight is
multiplied by the input of each neuron and added to bias to estimate the total output. Then, the
error between observed and estimated outputs is measured. In the second step, the backward
level starts to correct the weight values in the various connections so that the error between the
estimated value and the observation is minimized (Moghaddam et al., 2019). Although BPA or
other training methods of ANN are widely used, these training algorithms may fall into the trap
of local optima or have slow convergence speed. Hence, the present study used optimization
algorithms for training models to determine the weight and bias values.

2.2. ALO structure
ALO was inspired by the behaviour of ant lions in nature. Ant lions try to hunt ants. Therefore,
they try to trap ants by creating pits (Mirjalili, 2015). The ant lions hide in the pits to hunt the

ants trapped inside the pit. Ants move randomly in the search space based on equation (1):

x(t) = [O, cumsum(Zr(l‘1 ) —l) , CUMSUMCUINSUIN (2r(l2 ) - 1),..,cumsum (2r(tn ) —1)] (1)
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where cumsum: the cumulative sum, n: the maximum number of iterations, r: the random

number, and x(t): the random walk of ants.

The r value is calculated using equation (2):

r(t)z[leif(mnd)>0.5} )

0« if(rand < 0.5)

Equation (3) is used to make sure that ants do not move beyond the boundaries of the search

space by a random step:

t_ _ ot
gt >

where g, : the minimum of random walk (RW) of the ith variable, b, : the maximum of RW of the
ith variable, ¢/ : the minimum of ith variable at ith iteration, and d,: the maximum of ith variable

at ith iteration

The ants use the roulette wheel in the next step. This cycle enables ALO to select ants
with a better objective function. In the next step, the ant lions try to trap the ants by digging a pit.
When the ants fall in a pit, the antlions prevent the ants from moving by throwing sand at the
ants. Hence, the ant range of motion is reduced. Equations (4) and (5) simulate this behavior

(Mirjalili, 2015).

“

d =% (5)
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where ¢': the minimum of all variables at tth iteration, d’: the maximim of all variables at t th

iteration, and I: a ration.

The random walk of ants is affected by antlions’ traps. Thus, the position of the ant in the search
space changes toward the antlion position. The parameters ¢ and d are used to define the random

walk of ants around the chosen antlion:
c; = Antlion’, +¢' (6)
d; = Antlion’, +d' (7)
where Antlion; : the location of chosen jth antlion at the tth iteration.

If the ants are fitter than its corresponding antlion, the antlion hunt ants. Thus, the antlions
change their position according to the location of the hunted ant. Hence, the position of the ant

lion is updated as follows (Mirjalili, 2015).
Antlion', = Ant! (if)( 1 (4nt)> f(Anﬂion;.)) (8)
where Ant; : the location of ith ant at the tth iteration, and f: the objective function.

The ALO uses the chosen antlion by the roulette wheel (ROW) and by the elite antlion to

navigate the random walk of the ants. Figure 3 shows the steps of ALO optimization:

t t
Ant' = # )

where R’ : the RW around the antlion chosen by the roulette wheel at the tth iteration, R} : the

RW around the elite antlion, and Ant; : the location of the ith ant at the #h iteration.

2.3. Structure of bat algorithm
Bat Algorithm (BA) is considered as one of the optimization algorithms used in different fields,

as shown in Table 1b. The bats use the echolocation ability to distinguish between obstacle and

10
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food. To echolocate, the bats produce loud sounds. An echo is produced when sound hits the
surroundings. Bats process the echo that comes back from obstacles. Each bat updates its sound

frequency, position, and speed according to the following equations (Wang et al., 2019):

1= Frain + (Jrnax = Sroin) X9 (10)
vl(t)=(Z,(t)—z*)xfl_+v,(t—l) (11)
z()=z,(t-1)+v,(¢) (12)

where f,: the frequency, f,__: the maximum frequency, f, . : the minimum frequency, 9: the

random parameters, z,(t): the position of bats at iteration t, z,: the best position of bats,

\Z (t - 1) : the velocity at iteration t-1, and z, (t - 1): the position of bats at iteration t-1.

Bats use a random step operator to perform a local search. Moreover, the bats update their

loudness and pulsation rate at each stage. Figure 4 shows the optimization steps based on BA:
z(t)=z(r-1)+e4(r) (13)

Al-t+l =aAit

14
r =1 [1-exp(-y1)] (19

where « : the constant value, y: the constant value, r': the pulsation rate at iteration t, r°: the

initial value of pulsation rate, A: the loudness at iteration t, and 4/*': the loudness at iteration

1

t+1.

2.4. PSO

PSO algorithm is one of the most widely used algorithms for optimization in various fields, as
shown in Table lc. PSO is based on the social behavior of particles and the interaction of
particles with each other. Each particle of PSO is considered as a candidate solution. Particles in

PSO share their experiences. Each particle updates its speed and position based on the following

11
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equation. First, the initial location of the particles is initialized. The value of fitness function for

each particle is then determined. Finally, the speed and position of the particle are changed as

follows
1 t ¢ t
Vi - WVI- + clrl ('xbest _xi )+ c1r2 (xgbest _xi ) (15)
Lt t+1
X=X 4 (16)

where x,,,: the best particle position, x,,,,: the best group position, ¢, and cz: the acceleration
coefficients, w: the inertia weight, x!"': the position of particle at iteration t+1, v/*': the velocity

of particle 1 at iteration t+1, r1, and r2: the random number.

3. Case study

The study predicts freshwater production in an Oman SSGH . The data were collected from
Goosen et al. (2003). Goosen et al. (2003) focused on freshwater production and the effect of
various parameters on the freshwater production. They predicted freshwater in the SSGH using a
thermodynamic software based on mass transfer and heat transfer. The used software
simultaneously required climate data, the length of the greenhouse, the width of the greenhouse,
and other details to estimate the freshwater discharge.

As the available mathematical models need high computational time as well as a significant
amount of data and details such as climate data, the current study used soft computing models to
predict freshwater production, where 60 data were used as input data to the model. Input data to
models were the height of the front evaporator, the length of the greenhouse, the width of the
greenhouse, and roof transparency coefficient. To that end, 70% of the input data were used in

the training phase and 30% in the testing phase. The produced freshwater was compared with the

12



267  actual values obtained from Goosen et al. (2003). Therefore, the soft computing models used in
268  the study predicted freshwater production without using climatic data as well as solving complex
269  mass-heat transfer equations. Table 2 shows the details of the input data used. The width of the
270  greenhouse varied from 50 to 200 meters and the length of the greenhouse from 50 to 200
271  meters, an the transparency coefficient varied from 0.4 and 0.6 with the average transparency
272 coefticient being 0.5 (table 3). Goosen et al. (2003) used 1995 meteorological data. Climatic data
273 files included wind speed, relative humidity, wind direction, and temperature. In this study, the

274  error indexes were used to evaluate the ability of models:

N (WT —WT. )
Z( ac ea)

275 RMSE ={| = (17)
n
276 MAE = (18)
i=1
{ (W, —WTQS)Z}

277 PBIAS =100* =~ (19)

2T,

i=1

[Z(WT ~WT,) }

278 NSE =1~ (20)

S (7w |

i=1
279  where RMSE': the root mean square error, MAE : the mean absolute error, PBIAS : the percent

280  bias, NSE': the Nash-Sutcliff efficiency, WT, : the actual value of produced freshwater, W7, :

281  the estimated value of produced freshwater, and n: the number of data.

282  3.1. ANN hybrid models

13
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The process of hybridizing ANN model starts with defining the training and testing data. Then
the training phase data was applied to determine the output of the training phase. If the
convergence criterion was satisfied, the models went to the test stage; otherwise, the ANN model
was connected to the optimization algorithm. First, at this step, the initial population of an
optimization algorithm was defined. Weight and bias were defined according to the initial
position of the bats, particles, and ant lions in the problem-solving space. The objective function
was then computed for each agent. The study used RMSE as the objective function. Operators of
various algorithms were then used to update the position of particles, bats, and ant lions.
Updating position means updating the initial values of weight and bias. Then, the used weight
and bias values were re-entered into the ANN model to run the model again for the training
phase. The study used the following indices to evaluate and correlate the models. Optimal
models had low RMSE, MAE, and PBIAS values with their NSE values high. Figure 5 shows
the time series of 60 data.

3.2. Uncertainty analysis of models

The model parameters and model inputs are considered as the sources of uncertainties. Thus, it
was essential to compute the uncertainty of models because of the uncertainty of model
parameters and model inputs. One of the most widely used methods to determine uncertainty is
the GLUE method which has been used to estimate the uncertainty of various hydraulic and
hydrological parameters (Ragab et al., 2020). The GLUE method was used based on the
following steps ( Liu et al., 2020; Xu et al., 2020):

1- Prior probability parameter distribution (PPPD) was determined for each parameter. Two
scenarios were used in the study. The first scenario examined the uncertainty of the models due

to input data. The second scenario examined the uncertainty of models due to model parameters

14
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like weight and bias that were obtained using optimization algorithms. The uncertainty of each
scenario was separately calculated. Commonly, the normal distribution was chosen to calculate
the PPPD of parameters. Although the normal or continuous distribution is used to obtain the
prior distortion of the input data, these distributions, these distributions cannot be used for model
parameters because the nature of the model parameters is not necessarily compatible with the
normal or continuous distribution. However, the variability of the parameters during the training
period can represent the properties of parameters. In this study, the calibrated 3000 ANN models
were used to identify prior distributions of model parameters. The calibrated 3000 ANN models
were enough because the parameter values were constant between 1000 to 3000 calibrated ANN

models.
2. The Monte Carlo method was used to provide N samples of parameter sets from PPPD

3- ANN model was executed in each step, and the target outputs were calculated
4- The likelihood function was estimated according to the output values, and the actual output

values. NSE was used as the objective function to calculate the likelihood function:

):1_ =l » 21

where p(Y |8,): the likelihood function, O,, : the mean observed value, O, : the observed

value, and O,, : the estimated value.

5- A threshold was defined, so that those parameters that had a likelihood value below the
threshold were not acceptable.

6- The posterior distribution density function was generated according to the following equation:

15
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P(6,)*P(C8)
;1’(0\9,-)

P(010)-

(22)

Where P(6,|O): the posterior probability density, P(6,)the prior distribution, P(O|6,):

Likelihood function

7- The mean value and standard variance of the estimated parameters were calculated as follows:

u(6)=3P(6,10)+9 23)
o (0)=3 P(6,10)%(6,u) (24)

n=1

where ,u(@): the mean of the posterior distribution, 0'(6?): the variance of the posterior

distribution, and @, : the ith set parameter. In this study, the following indexes were used to

measure the uncertainty of the models:
p— factor = %MOO (25)

n

>(a6L,-GL,)

r— Factor == (26)
No

o

Where, p-— factor: 95% prediction uncertainty band (95PPU), NO,: the number of
observations enveloped by 95PPU, GL, ,: the upper bound of variable, GL,,: the lower bound of

variable, o, : the standard deviation of the observed, r: width of band and N: the number of

observed data. The highest value of p and the lowest value of r show the best models.

4. Discussion and results

4.1. Sensitivity analysis of random parameters of optimization algorithms

16
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Algorithms had random parameters whose exact value affected the accuracy and output of the
algorithms. Thus, it was mandatory to determine the random parameters of optimization
algorithms accurately. A sensitivity analysis means how different values of the random
parameters affect the value of the objective function. Sensitivity analysis is used to study the
effects of changes in the parameter of interest on the values of the objective function. While the
parameter of interest is changed, the value of the other parameters is fixed. The optimal value of
the parameter of interest minimizes the value of the objective function. For instance, Table 4
shows that ALO population size varied from 100 to 400. The best values of random parameters
were obtained when the objective function reached its minimum value. In other words, when the
error value reached its lowest value based on the objective function, the random parameter had
the best value. Thus, the best value for ALO population size was 200 as the objective function
was 0.545, which was the lowest value compared to other population sizes. Moreover, the best
value for the maximum number of iterations of ALO was 100 as the lowest value of the objective
function occurred at the maximum number of iterations of 100. Likewise, Table 4 shows the
values of the random parameters of other algorithms.

4.2. Examining the effect of deleting various parameters on the accuracy of ANN-ALO
model

Table 5 shows the effect of removing different parameters on the accuracy of ANN-ALO model.
Results showed that the value of RMSE index when all input parameters were used was equal to
0.545 m?®/ day. The RMSE was increased from 0.545 m® / day to 0.964 m* by removing width
from the input data. The highest decrease in NSE index occurred when the greenhouse width
parameter was removed. Moreover, the highest increase in MAE and PBIAS indices occurred

when the parameter width of the greenhouse was removed. A review of results showed that the
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length of the greenhouse parameter was another key parameter in predicting freshwater
production. The RMSE index was increased from 0.545 m® / day to 0.812 m* / day by removing
the parameter of the length of the greenhouse. The study results showed that the parameters of
the width and length of the greenhouse were the key parameters. Additionally, using four input
combinations simultaneously dramatically increased the accuracy of models.

4.3. Comparing the performances of various models to predict freshwater production

Table 6 compares the performances of models in the training and testing phases. Results
indicated that the RMSE value of ANN-ALO model was 0.545 m? / day, which was the lowest
RMSE value in the training phase among the models. The RMSE value of ANN-ALO model was
17%, 36% and 40% lower than those of ANN-BA, ANN-PSO, and ANN models. Results also
revealed that ANN-ALO model had the lowest MAE value.

Comparison of the performances of hybrid and ANN models indicated that the performance of
the ANN model in the training stage was worse than those of other models. For instance, the
ANN model PBIAS value in the training stage was 0.20, whereas the value of PBIAS index of
ANN-BA, ANN-PSO, and ANN-ALO models was 0.14, 0.16, and 0.12, respectively.
Comparison of models based on the NSE index showed that ANN-PSO model was weaker than
other hybrid models like ANN-BA and ANN-ALO. Comparison of performances of the models
in the test phase showed that the RMSE value of the ANN-ALO model was 18%, 33% and 39%
lower than those of ANN-BA, ANN-PSO and ANN models. Furthermore, ANN-ALO model had
the lowest MAE value among the models. The ANN model with 0.87 NSE value had the weakest
performance among models. The ANN model had the highest PBIAS value among other models.
Figure 6 shows the scatterplots for various models. All data were used as input data to extract R?

coefficients. Outputs showed that the ANN-ALO model had the highest R? coefficient among
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models. Furthermore, results showed that ANN model had the lowest R? coefficient. Figure 7
shows a box plot for different models. Results showed that the output of ANN-ALO model was
more compatible with the actual outputs than other models. Figures 8 and 9 indicate the
uncertainty of models used in the first and second scenarios. As can be seen in figure 8, the
ANN-ALO provided the lowest uncertainty with p: 0.97 and r: 0.21 in the first scenario. The
highest uncertainty was obtained for the ANN model with p:0.90 and r:0.27. However, the
results show that the integration of models and optimization algorithms decreased uncertainty.
As can be seen in figure 9, the ANN-ALO provided the lowest p (p:0.94) and the highest r
(0.23). The results indicated that the standalone ANN model had higher uncertainty than those of
the hybrid ANN models.

Moreover, comparison of the uncertainty of models in both scenarios indicated that the
uncertainty of models was higher in the second scenario, showing that the model parameters
caused more uncertainty in comparison to the input parameters. Taylor diagram shows the model
with the best performance according to the correlation coefficient, standard deviation and RMSE
index. Figure 10 shows the Taylor diagram. The Taylor diagram is based on the total input data.

Simulated patterns that match well with measured data will place nearest the reference point on the x-

axis. The results showed that ANN-ALO had better performance compared to other models.
Nonetheless, the results indicated that the ANN model had weaker performance compared to
other models.

4.4. Examining the effect of various input parameters on freshwater production

This section examines the effect of changing the values of input parameters on the freshwater
production. Figure 11 shows the effect of changing the width of the greenhouse at various
lengths on freshwater production. The height of evaporator for all cases of Figure 11 was 2

meters, and the transparency coefficient was 0.4. Results indicated that the freshwater production
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increased with an increase in the width at the fixed length of 50 meters. With an increase in
width from 50 meters to 200 meters, the value of produced freshwater increased from 5m?® / day
to 90m> / day at the length of 50 meters. With an increase in width from 50 meters to 200 meters,
the produced freshwater increased from 32m? / day to 138m? / day at the length of 100 meters.
The value of produced freshwater decreased at a constant length of 200 meters when the
greenhouse width increased from 150 to 200. Larger greenhouse widths increase the contact area
between air and saltwater in the evaporator. Thus, the width of the greenhouse is a key parameter
for producing fresh water production

Figure 12 shows the change in greenhouse width at different lengths of the greenhouse for a roof
transparency coefficient of 0.4 and an evaporator height of 3 m. The freshwater produced during
the first 200 meters had a downward trend and then had an upward trend. The lowest value of
freshwater produced occurred within 200 m length at 100 m width. Additionally, the freshwater
produced during the first 150 meters had a downward trend and then had an upward trend.
Likewise, the freshwater produced in lengths of 100 and 50 meters for different widths first had a
downward trend and then had an upward one. Zarei and Behyad (2019) reported that the
freshwater produced for the case study of the present study increased at an evaporator height of 2
m and a roof transparency coefficient of 0.4 with increasing width at all lengths except 200 m.
Additionally, they stated that the water produced for a height of 3 meters first had a downward
trend and then an upward one. Thus, their findings confirm the results of the present study.
Figure 13 shows the effect of height change at various widths on the value of freshwater
produced. The length of the greenhouse was equal to 200 meters, and the transparency
coefficient was 0.4 for all cases. Results revealed that the height of 2 meters produced the highest

freshwater for various widths except for 200 meters. The lowest value of the water produced for

20



437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

different widths occurred at a height of 3 m. However, the increase in the height of the
evaporator did not increase the production of freshwater, as the air distribution did not happen

well at higher heights.

5. Conclusion

Freshwater production is of great significance given the increase in demand, particularly in the
agricultural irrigation sector. The study examined the prediction of freshwater production in an
SSGH using ANN hybrid models. The greenhouse length, width, roof transparency coefficient
and front evaporator height were used as model input. Examining the input parameters revealed
that the greenhouse width was the most critical parameter among all input parameters. Moreover,
using 4 input parameters simultaneously increased the accuracy of models. Comparison of
performance of models showed that the ANN-ALO model had the lowest RMSE value at the
training and testing levels. The outputs of models showed that the RMSE value of the ANN-
ALO model was 0.545 m3 / day. The MAE values of ANN-BA, ANN-PSO, and ANN models in
the testing phase were 0.612m3 / day, 0.823m> / day, and 0.901m? / day, respectively. Results
indicated that the lowest value of NSE index and the highest value of PBIAS index in training
and testing were obtained by ANN. Also, the uncertainty of predictive models was considered
for two scenarios: (1) uncertainty of input and (2) uncertainty of model parameters. The
performance of models revealed that the uncertainty of ANN-ALO was lower than those of the
other models in both scenarios. Further, the uncertainty of hybrid and standalone ANN models
was higher in the second scenario, showing that the model parameters caused more uncertainty
than did the input parameters. The effect of varying parameters on freshwater production was
also evaluated. Results indicated that freshwater production in the greenhouse with an evaporator

height of 2 m and a roof transparency coefficient of 0.4 increased with the increase in width at a
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fixed length of 50 m. Additionally, the freshwater production increased with the increase in
width along 100 meters. However, future researches can examine the effect of other inputs such
as climatic parameters on the freshwater production. Also, to ensure the performance of soft
calculation methods, freshwater production can be predicted for greenhouses located in different

climates using climatic data.
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Table 1. Literature review of applications of a: ALO, b: BA, and c¢: PSO

(a)

Author

Van et al. (2020)

Tiwari et al. (2020)

Oliva et al. (2018)

Filed

Optimal non-smooth economic load dispatch.

Optimal Power Flow Solution

Context based image segmentation
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Deotti et al. Parameter extraction of Dhal and Das (2020)  Image enhancement
(2020) photovoltaic models domain

Wang et al. Numerical optimization Bento et al. (2019) Optimization of
(2019) neural network

Sangaiah et al. Energy consumption in Apornak et al. (2020)  Optimizing human
(2019) point-coverage wireless resource cost of an

sensor networks emergency hospital
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Zeng et al. Dynamic community Chen et al. (2020) Power economic
(2019) detection dispatch problem

Chen et al. Feature selection Sadeghi et al. (2020)  Optimal sizing of
(2019) hybrid renewable

energy systems

Tian et al. (2019) Numerical function Li et al. (2020) Improving wind
optimization turbine blade
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Initialize the first population of ants and antlions randomly

Calculate the fitness of ants and antlions

Find the best ant lions and assume it as the elite (determined optimum)
‘While the end criterion is not satisfied

For every ant

Select an ant lion using Roulette wheel

Update ¢ and d using equations Egs. (4) and (5)

Create a random walk and normalize it using Eqs. (1) And

[€)

Update the position of ant using (9)

End for

Calculate the fitness of all ants

Replace an ant lion with its corresponding ant it if becomes

Fitter (Eq. (8))

Update elite if an ant lion becomes fitter than the elite

End while

Return elite
689
690 Figure 3. The pseudo code of ALO
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693 Figure 4. Flowchart of BA
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Table 2. Ranges of parameters in the seawater greenhouse

Parameter Ranges of changes Mean value of the Standard deviation
parameter
Width 50-200 (m) 110.114 45.97
Length 50-200 (m) 110.114 45.97
Height of the front 2-4 (m) 3m 0.81
evaporator
Roof transparency 0.40-0.60 (m) 0.50 0.10

Table 3. Values of constant parameters in the seawater greenhouse

Parameter Ranges of changes
Height of the planting area 4m
Height of the rear evaporator 2m
Height of the condenser 2m
Greenhouse orientation 40° N
Flow rate 0.1m%/s
Fin spacing 0.0025m
Air flow changes 0.15 /min
140
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Figure 5. The time series of produced water

60

Table 4. Sensitivity Analysis for random parameters for a: ALO, b: PSO, and c: BA
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703

Population size

Objective Function

Maximum number of

Objective Function

Iterations
100 0.654 50 0.698
200 0.545 100 0.544
300 0.712 150 0.712
400 0.823 200 0.802
704
705 b
Population ~ Objective =~ Maximum  Objective ci=cc  Objective =~ w  Objective
size Function number of Function Function Function
Iterations
100 0.923 50 0.967 1.60 0.989 0.30 0.989
200 0.845 100 0.912 1.80 0.895 0.50 0.845
300 0.934 150 0.845 2.0 0.845 0.70 0.897
400 1.02 200 0.898 2.2 0.899 0.90 0.934
706
707
708 C (OF: objective function, MIF: minimum frequency, MIL: minimum loudness, MAL:
709 maximum loudness, and MAF: maximum frequency)
Population OF MAF OF MIF OF MAL OF MIL OF Maximum OF
size number of
Iterations
100 0.712 3 0.724 1 0.684 03 0.712 0.10 0.714 50 0.699
200 0.655 5 0.689 2 0.655 0.50 0.655 0.20 0.712 100 0.655
300 0.689 7 0.655 3 0.698 0.70 0.724 0.30 0.655 150 0.712
400 0.912 9 0.845 4 0.712 090 0.872 0.40 0.698 200 0.745
710
711
712
713
714
715
716
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717

718

719

720

721

722

Table 5. Effect of elimination of different parameters on the accuracy of ANN-ALO

Inputs

RMSE

MAE

NSE

PBIAS

Length of greenhouse, width
of greenhouse, height of the
front evaporator, roof
transparency

Length of greenhouse, roof
transparency

,and height of the front
evaporator

width of greenhouse, Length
of greenhouse, roof
transparency

Length of greenhouse,
height of the front
evaporator, width of
greenhouse

width of greenhouse, height
of the front and, roof
transparency

0.545

0. 964

0.723

0.729

0.812

0.456

0.868

0.689

0.694

0.745

0.96

0.90

0.94

0.92

0.91

0.12

0.29

0.15

0.16

0.22

Table 6. Comparison of performances of different models based on statistical indexes

Model RMSE MAE NSE PBIAS
ANN-ALO 0.545 0.456 0.96 0.12
ANN-BA 0.655 0.567 0.95 0.14
ANN-PSO 0.846 0.672 0.92 0.16

ANN 0.912 0.714 0.90 0.20
ANN-ALO 0.612 0.545 0.94 0.16
ANN-BA 0.745 0.612 0.90 0.18
ANN-PSO 0.912 0.823 0.89 0.20

ANN 0.998 0.901 0.87 0.22
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729 Figure 7. Boxplot of different models
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