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nanosheet hierarchical microtubules based on a structural engineering and electronic state tuning, it has excellent performance for OER.

are fabricated using MoOs; nanorods
as sacrificial templates.

« X-ray-based spectroscopic tests
reveal that Mo (VI) with tetrahedral
coordination intercalate into the
interlayer of cobalt hydroxide.
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overpotential is 288 mV at a current
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Oxygen evolution reaction
evolution catalysts.
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activity of cobalt-based hydroxide, which provides a design idea for the development of efficient oxygen
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1. Introduction

The oxygen evolution reaction (OER) is an essential and critical
half-reaction in various renewable energy applications, such as
water splitting, renewable fuel cells, and metal-air batteries
[1-3]. However, the reaction kinetics of OER is sluggish, and there
is an urgent need to develop cheap OER catalysts to replace scarce
and expensive Ir, Ru-based materials [4-6]. In recent years, abun-
dant and inexpensive transition metal-based materials have
become the focus of OER catalyst research [7,8]. Among them,
cobalt-based hydroxide have received extensive attention due to
the presence of unsaturated CoOg_, octahedra with high catalytic
activity [9-12]. Its unique layered structure facilitates the expo-
sure of active sites and increases the electrochemical active area
[13]. However, during use, the inevitable stacking of nanosheets
reduces the exposure of active sites and limits the catalytic activity
[14]. To avoid the stacking of nanosheets, the researchers grew
nanosheet arrays on substrates such as nickel foam, copper foam,
and carbon cloth [15-19]. However, the catalytic activity of the
matrix itself is not good, and the mass proportion of the material
is relatively high, which reduces the mass activity of the material.
Constructing a self-assembled 3D structure of active nanosheets
can effectively support and separate the nanosheets, increase the
exposed area of the nanosheets, and improve the structural stabil-
ity [20,21]. The rational design of the material structure is expected
to obtain highly active cobalt-based catalysts.

Introducing other metal elements, using intermetallic interac-
tions to adjust the Co-3d orbital electronic structure, and optimiz-
ing the adsorption energy for OER reaction intermediates is a
common strategy to improve the activity of cobalt-based catalysts
[22,23]. Transition metals with the same period as Co, such as Fe,
Ni, etc., are widely used to develop cobalt-based catalysts [24-
27]. However, their similar structure limits the space for electronic
structure regulation. It has been reported that Co®*/3* transition
occurs in cobalt-based materials during the OER process, while
high-valent cobalt exhibits high activity [28]. Zhang et al. showed
that doping metals with high valence charges can tune 3d metals
and reduce the energy of valence-charge transitions, resulting in
better catalytic OER performance [29]. Due to the outstanding
electron-withdrawing ability of Mo, the electrons of the 3d metal
are transferred to Mo (VI) under the oxidation potential, which is
beneficial for the 3d metal to maintain its high valence state
[30,31]. Therefore, the preparation of molybdenum-doped cobalt
hydroxide is expected to yield high-performance OER catalysts.

Here, we successfully constructed a cobalt-molybdenum
nanosheet self-assembled hierarchical microtubule structure
(Mo/Co(OH), HMT) using molybdenum oxide nanorods as a sacri-
ficial template, which effectively improved the dispersion of the
nanosheets and increased the active area of the material. X-ray
based spectroscopic measurements show that Mo (VI) with tetra-
hedral coordination intercalated into the interlayer of cobalt
hydroxide, promoting interlayer separation. Meanwhile, Mo
induces Co charge transfer through oxygen bonds, increasing the
valence state of Co. In 1 M KOH, the OER overpotential required
for Mo/Co(OH), HMT to drive a current density of 10 mA cm2 is
only 288 mV, which is significantly better than that of Co(OH),
nanosheets (333 mV) and RuO, (349 mV). Through structural engi-
neering and electronic state regulation, the OER activity of cobalt-
based hydroxides has been significantly improved, providing a
research idea for the development of efficient OER catalysts.
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2. Experimental
2.1. Materials preparation and characterization

(NH4)6M070244H20 (AR), CO(N03)26H20 (AR), polyvmyl—
pyrrolidone (PVP, Mw 40000), MoOs; (<10 pm), N, N-
dimethylformamide (DMF, AR) and KOH (99.999%) were provided
by Aladdin Industrial Corporation. HNO3 (AR), Fe(NOs)3-9H,0
(AR), and Ni(NOs),;-6H,0 (AR) were purchased from Sinopharm
Chemical Reagent Co. Sodium borohydride (NaBH4, AR) was
bought from Jiuding Chemical Reagent Co. All materials used
directly without further purity. Deionized water (18.25 MQ-cm
resistivity) was obtained by using PSDK water purification system.

2.2. Synthesis of MoO3 nanorods (NRs)

1.05 g (NH4)sMo0,0,4-4H,0 was dissolved in a mixed solution of
25 mL H,0 and 5 mL HNOs;. After stirring for 30 min, the solution
was poured into a 50 mL autoclave and incubated at 200 °C for
20 h. After naturally cooling to room temperature, the product
was collected through centrifuging and washing with deionized
water and ethanol 3 times. Finally, the product was dried in a vac-
uum oven at 60 °C for 12 h.

2.3. Synthesis of Mo/Co(OH), hierarchical microtubes (HMTs)

0.1 g MoOs nanorods, a certain volume of cobalt nitrate aqueous
solution (0.1 M) (V =10, 15, 20, 30 mL) and the corresponding mass
of PVP (m = 0.1, 0.15, 0.2, 0.3 g) were dispersed in the aqueous
solution to ensure that the total volume of the solution was
60 mL. Then, under stirring conditions, 10 mL of the corresponding
concentration of sodium borohydride aqueous solution (0.01,
0.015, 0.02, 0.03 g/mL) was slowly added into above solution and
all drops within 1 h. The above solution was further stirred for
10 h to obtain Mo/Co(OH), HMT. The products were collected by
centrifugation, washed three times with water and ethanol, and
dried under vacuum at 60 °C for 12 h. According to the different
volume of cobalt nitrate solution, the samples are marked as Mo/
Co(OH),-10; Mo/Co(OH),-15; Mo/Co(OH),-20; Mo/Co(OH),-30.

2.4. Synthesis of Co(OH ), nanosheets (NSs)

0.2 g of PVP and 1 mmol of Co(NOs),-6H,0 were added to 60 mL
of deionized water, stirred and dispersed uniformly. With stirring,
10 mL of sodium borohydride aqueous solution (0.02 g/mL) was
added dropwise to the above solution. After continue stirring for
10 h, the product was collected by centrifugation and washed with
water and ethanol three times, and dried in vacuum at 60 °C for
12 h.

2.5. Synthesis of MoO3 NPs-Co(OH),

The preparation process of MoO3; NPs-Co(OH), is similar to Mo/
Co(OH),-20, except that MoOs nanorods are replaced with MoO3
nanoparticles. 0.1 g of commercial MoO3; nanoparticles in was dis-
persed in 40 mL water, and then 20 mL of cobalt nitrate aqueous
solution (0.1 M) and 0.2 g of PVP were added into above solution
under stirring. Next, 10 mL of sodium borohydride aqueous solu-
tion (0.02 g/mL) was added dropwise to the above solution. After
continue stirring for 10 h, the product was collected by centrifuga-
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tion, washed with water and ethanol three times, and dried in vac-
uum at 60 °C for 12 h.

2.6. Material characterizations

The morphologies of the samples were characterized by scan-
ning electron microscopy (SEM, Hitachi S-4800) and transmission
electron microscopy (TEM, Hitachi, HT-7700). The morphology
and high-angle annular dark field (HAADF) image of Mo/Co
(OH),-20 were tested by high-resolution transmission electron
microscope (HRTEM, FEI Tecnai F30). In order to study the element
distribution of Mo/Co(OH),-20 and the change of element distribu-
tion during the material preparation process, the element compo-
sition was tested (EDAX Genesis). X-ray powder diffraction (XRD,
Bruker AXS, D8 Advance) characterizations were carried out by
Cu Ko radiation. The content of Mo and Co in Mo/Co(OH),-20
was tested by inductively coupled plasma emission spectrometry
(ICP-OES, PerkinElmer, Optima 8000). The surface composition
and chemical valence of the samples were analyzed by X-ray pho-
toelectron spectroscopy (XPS, Thermo ESCALAB 250XI). The speci-
fic surface area and pore size distribution of samples were tested
by N, adsorption/desorption (Micromeritics ASAP 2020). The cat-
alytic performance of the samples was evaluated by electrochem-
ical workstation (CHI 760E, China).

2.7. X-ray absorption measurements

The X-ray absorption near edge structure (XANES) measure-
ments at the Mo L;.;-edges and at the Co K-edge were recorded
in fluorescence mode at the four-crystal monochromator (FCM)
beamline [32] of the Physikalisch-Technische Bundesanstalt (PTB)
at the BESSY II electron storage ring [33]. At this bending magnet
beamline four Si (111) crystals were used to monochromatize
the radiation and the design of the unit allows for a fixed beam
position [34]. The use of four monochromator crystals allows for
the provision of X-ray radiation with a high spectral resolving
power of 10* while the uncertainty of the energy scale of the
FCM is 0.5 eV.

The experiments were carried out using an in-house developed
ultrahigh vacuum chamber [34]. The samples were excited using
an incident angle of 45° and the X-ray fluorescence radiation was
detected using a calibrated silicon drift detector (SDD) positioned
at a detection angle of 45°. Thus, the SDD is oriented perpendicular
to the incident radiation and since it is positioned within the polar-
ization plane of the synchrotron radiation used, scattering contri-
butions in the detected spectra are minimized. For normalization
purposes, the incident photon energy dependent incident flux of
the beamline was measured beforehand using a thin photodiode
in transmission. The incident photon energy was varied in energy
steps of 0.3 eV from 2505 to 2565 eV for the measurements at
the Mo L3 ionization threshold and the detector lifetime was varied
between 5 s and 25 s, depending on the sample. For the measure-
ments around the Co K ionization threshold, 0.5 eV energy steps
were used in the vicinity of the ioniztation threshold (7700 eV to
7750 eV). Depending on the sample detection times between
10 s and 30 s were used. The measured spectra were deconvoluted
using the detector response functions for the different fluorescence
lines detected and other relevant background contributions in
order to derive the count rates of the Mo L3, and the Co K fluores-
cence lines, respectively [35].

2.8. Electrocatalytic measurements
Preparation of working electrode: 2 mg catalyst and 1 mg car-

bon black (Vulcan XC-72) were uniformly dispersed in 650 pL
deionized water, 330 puL DMF and 20 pL Nafion solution (5%).
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Ultrasonic dispersion for 30 min to obtain a uniform catalyst ink.
7 uL of ink was dropped on the surface of a glassy carbon electrode
(d = 3 mm) polished with alumina powder and dried naturally to
obtain a working electrode with a catalyst loading of 0.2 mg cm 2.
The electrochemical test was performed by using the CHI 760E
electrochemical workstation (Shanghai Chenhua, three-electrode
system). The catalyst-coated glassy carbon electrode was used as
the working electrode, and saturated Ag/AgCl electrode was the
reference electrode and a salt bridge was added. The graphite rod
was used as a counter electrode. Before the test, oxygen must be
injected for a period of time to ensure that the electrolyte is satu-
rated with oxygen. The potentials in this work were converted to
RHE according to Egug = Eagjagar + 0.197 + 0.059 x pH (1 M KOH,
pH ~ 13.8). The linear sweep voltammetry curve (LSV) of OER
activities were performed in O,-saturated 1 M KOH with a scan
rate of 10 mV s~! at room temperature. The cyclic voltammetry
(CV) curve was tested at different scanning speeds (20 to
120 mV s~ ') to obtain the double-layer capacitance (Cdl) of the cat-
alyst to compare the electrochemically surface area of the catalyst.
In order to test the stability of the material, at room temperature,
under the condition of 1 M KOH saturated with O,, test the
chronopotentiometry curve when the current density is
10 mA cm~2. In this study, all potentials were not compensated
for iR. The overpotential (#) is calculated according to the following
formula: 17 = Egyg — 1.23 V. Mass activity (jm,) calculation method:
Jjm = j/m, m is the catalyst loading on the working electrode (mg), j
is the current value (mA) measured at an overpotential () of
350 mV.

3. Results and discussion
3.1. Synthesis and materials characterization

We use PVP as a template agent and sodium borohydride as a
reducing agent, and gradually grow cobalt hydroxide nanosheets
through the reduction and reoxidation of cobalt ions [36]. How-
ever, the as-prepared nanosheets are curled and packed (Fig. S1),
which is not conducive to the exposure of active sites, limiting
the performance of the catalyst. To improve the dispersibility of
nanosheets, we introduced MoOs nanorods as sacrificial templates
to obtain hierarchical microtubular structures composed of
molybdenum-doped cobalt hydroxide nanosheets (Mo/Co(OH),
HMTs). Fig. 1a-h demonstrate gradual loading of nanosheets on
the microtubes by controlling the ratio of cobalt nitrate to molyb-
denum oxide. When the amount of cobalt nitrate solution
increased from 10 mL to 30 mL, the density of nanosheets on the
sample tube wall gradually increased, and the products were
marked as Mo/Co(OH),-10, Mo/Co(OH),-15, Mo/Co(OH),-20, Mo/
Co(OH),-30, respectively. In order to compare the surface area of
the sample, we tested the N, adsorption-desorption isotherm of
the sample (Fig. S4a). The isotherm of Mo/Co(OH), HMTs is type
IV, with H3 hysteresis loop [37]. As shown in Fig. S4a, the
Brunauer-Emmett-Teller surface area (Sger) of Mo/Co(OH), HMTs
is significantly larger than that of cobalt hydroxide nanosheets
and molybdenum oxide nanorods. This shows that the construc-
tion of the composite structure effectively increases the surface
area of the material. As the amount of cobalt nitrate increases,
the Sggr of the material first increases and then decreases. This
may be because increasing the loading of nanosheets helps to
increase the surface area of the material. However, too high load
will cause the nanosheets on the microtubes to overlap. When
the amount of cobalt nitrate solution was 20 mL, the specific sur-
face area of the material reached 277.5 m? g~!, which was the lar-
gest among the prepared samples. From the pore size distribution
diagram (Fig. S4b), Mo/Co(OH), HMTs significantly increased the



C. Wang, W. Li, AA. Kistanov et al.

volume of mesopores. The increase in pore volume is conducive to
electrolyte penetration and gas diffusion and is benefit for the pro-
gress of electrocatalytic reactions. Since Mo/Co(OH),-20 has the
highest surface area, we conducted further research on it.

As shown in Fig. 1i, an obvious tubular structure can be seen
in the high-magnification TEM image with a tube diameter of
about 350 nm. The partially enlarged TEM image (Fig. 1j) shows
that the nanosheets on the microtubes are very thin. The HRTEM
images and selected area electron diffraction (SAED) patterns of
Co(OH); NS and Mo/Co(OH),-20 are shown in Fig. 5S. It can be
found that both Co(OH), NS and Mo/Co(OH),-20 exhibit a certain
degree of crystallinity (Fig. S5b, S5e), and the difference of inter-
planar spacings is not obvious. However, the crystal planes after
doping with Mo are clearly more chaotic than before, indicating
that Mo doping has a certain influence on its structure. Fig. S5c¢
and S5f reveal that the diffraction rings of Co(OH), NS and Mo/
Co(OH),-20 are similar, indicating that the structure does not
change much, which is consistent with the lower doping amount.
In addition, there are diffraction spots in the diffraction ring of Co
(OH), NS, indicating that the grain size in Co(OH), NS is larger,
which is consistent with the HRTEM results. Element mappings
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show that the Mo, Co, and O in the sample are uniformly
distributed (Fig. 1k-n).

To explore the growth mechanism of Mo/Co(OH),, we selected
products from different reaction time stages for HAADF and ele-
mental mapping characterization. Fig. 2 shows the morphology
and composition evolution of the product starting from the addi-
tion of sodium borohydride. We found that the MoO3; nanorods
gradually thinned with increasing reaction time, which was the
result of the continuous decomposition of the nanorods due to
the reduction of molybdenum oxide by sodium borohydride.
Meanwhile, PVP induces cobalt ions to form Co(OH), nanosheets,
which grow around the nanorods and capture the molybdenum
released by the decomposition of the nanorods. The XRD diffrac-
tion peaks of MoOs after the reaction for 10 min and 30 min grad-
ually disappeared (Fig. S6), which proved the etching effect of
sodium borohydride on MoOs. After 65 min of reaction, the
MoO3; nanorods disappeared completely. Cobalt and molybdenum
are almost uniformly distributed in the nanorods. From 1.5 to
11 h, with the extension of the reaction time, the cobalt and
molybdenum are completely uniformly dispersed, the diameter
of the product tube becomes thicker, and the load of nanosheets

Fig. 1. Mo/Co(OH), HMTs with different loadings of nanosheets: SEM and TEM images of Mo/Co(OH),-10 (a, b), Mo/Co(OH),-15 (c, d), Mo/Co(OH),-20 (e, f), Mo/Co(OH),-30
(g, h), respectively. (i, j) High-magnification TEM images of Mo/Co(OH),-20. (k-n) The HAADF image and corresponding element mappings of Mo/Co(OH ),-20.
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increases. During the entire reaction, the nanoparticles appeared
and disappeared many times. This is because when there is more
sodium borohydride in the solution, a large amount of metal is
reduced to form nanoparticles.

We systematically performed investigations using different X-
ray based techniques to determine structural and electronic struc-
ture properties of materials. In the XRD patterns (Fig. 3a), com-
pared with Co(OH), NSs, the peak of Mo/Co(OH),-20 at about 20°
shifted to higher 20 direction, while the other peaks changed less.
This indicates that Mo doping leads to the structural change in the
cobalt hydroxide. Two possibilities of Mo doping in cobalt hydrox-
ide nanosheets have been speculated according to literature [38].
As shown in Fig. 3b, i) Mo can replace Co sites and exhibits similar
octahedra like CoOg in layered hydroxide and ii) Mo can intercalate
into cobalt hydroxide nanosheets.

The XPS spectrum uses the C 1s electron peak (BE = 284.8 eV) as
a reference for spectral calibration. Fig. S7 shows the XPS total
spectrum of Mo/Co(OH),-20, Co(OH), NSs and MoOs; NRs. The
XPS test result shows that the atomic ratio of Mo: Co in Mo/Co
(OH),-20 is 1:12. The ICP test shows that the Mo, Co content of
Mo/Co(OH),-20 is 6.8 wt% and 48.6 wt%. The strong peaks at
780.8 and 796.7 eV in the Co 2p spectrum of Co(OH), NSs corre-
spond to Co 2ps, and 2pyj; [39,40]. The binding energies of Co
2ps3p2 (781.3 eV) and 2pqj; (797.2 eV) increased by 0.5 eV after
Mo doping. This may be due to the higher electronegativity of
Mo than that of Co, resulting in a decrease in the electron cloud
density of Co and an increase in the binding energy. The high-
resolution XPS Mo 3d spectra (Fig. 3d) show that Mo 3ds;, and
3ds, in Mo/Co(OH),-20 are located at 232.4 eV and 235.5 eV,
respectively. The peak spacing of Mo 3d5,, and 3dsp is 3.1 eV,
which is consistent with that reported for Mo (VI) [41,42]. Com-
pared with MoOs; NRs, the binding energy of Mo 3d is reduced by
0.5 eV. The shift in binding energy of Mo 3d much lesser than
the required reported shift for Mo (IV) and Mo (V) [43,44], indicat-
ing the existence of Mo (VI) in Mo/Co(OH),-20 but subjected to
coordination changes. Observed binding energy shifts for Co and
Mo in XPS data indicate the charge transfer from Co to Mo.

X-ray absorption spectroscopy was performed to probe the
chemical environments of Co and Mo in Co(OH),, MoOs, Mo/Co
(OH),-20. In addition, in the preparation process of Mo/Co(OH),-
20, the products obtained 20 min and 65 min after the addition
of sodium borohydride were also tested. Fig. 3e and 3f show nor-
malized X-ray absorption near-edge structure (XANES) recorded
next to Co K- and Mo Ls- edges. The normalization was performed
by using the pre-edge and post-edge regions where atom-liked
transitions dominate. Three visible changes marked by P (pre-
edge), E (edge) and W (white line) in Co K-edge XANES spectra cor-
respond to structural polyhedral distortion, electron transfer and
electronic structure variation, respectively [45,46]. Pre-edge com-
monly assigns to the dipole-forbidden 1s — 3d transition and
strongly refers to the type of local coordination such as tetrahedral,
octahedral etc [47]. A finite peak intensity can arise either from the
Co 3d-4p hybridization or from Co 3d to ligand 2p mixing through
distortion. As shown in Fig. S8, the strength of the pre-edge feature
of Mo/Co(OH),-20 is slightly seems to be reduced compared with
Co(OH),. The slight shift in energy of Mo/Co(OH),-20 spectrum
with respect to Co(OH), indicate the possible charge transfer, a
result which is also matching with the XPS observation. In addi-
tion, the increase in the characteristic strength of the leading edge
of the reaction intermediates, especially the products reacted for
65 min, indicates that the coordination structure of Co changes sig-
nificantly during the material preparation. The white line feature
shows different electronic density of states in these samples [48].
Compared with Co(OH),, after doping with Mo, the white line fea-
ture is slightly elevated, indicating that Co has more unoccupied
density of states in the material.
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Fig. 3f shows the edge step normalized XANES spectrum of the
Mo Ls-edge. Mo Ls-edge XANES denotes transitions from 2p to
unoccupied d-typed states. The bimodal structure of features A
and B caused by crystal field splitting is clearly visible for all the
measured samples. In the case of octahedral Mo (VI) (such as
MoOg in MoO3), the first peak (A) has greater intensity, while in
the case of tetrahedral Mo (VI) (such as Mo0O3"), the second peak
(B) has greater intensity [49,50]. With the prolongation of the reac-
tion time, the peak A weakened and the peak B enhanced, indicat-
ing that the coordination structure of Mo ions in the material was
transformed from octahedral to tetrahedral. Furthermore, the split-
ting of Mo 4d in the octahedral environment is superior to that in
the tetrahedral environment. The splitting peak spacings of MoO3
and Mo/Co(OH),-20 are 2.8 eV and 2 eV, respectively. The narrow-
ing of the peak spacing also indicates the transformation of the Mo
coordination structure from octahedral to tetrahedral.

Based on X-ray studies, the possible charge transfer mechanism
in Mo/Co(OH),-20 is shown in Fig. 3g. Mo exists in the form of
tetrahedral-coordinated Mo (VI), which is connected to cobalt ions
through oxygen bonds. The Mo ion transitions from octahedral to
tetrahedral coordination, and the charge balance required for the
transition is provided by cobalt ions, resulting in an elevated
valence state of cobalt. Co ions in cobalt hydroxide exist in octahe-
dral coordination structure, while Mo ions in Mo/Co(OH),-20 are
tetrahedral coordination. This suggests that Mo ions intercalate
into the cobalt hydroxide interlayer instead of replacing the Co
sites. The intercalation of Mo ions promotes the separation
between layers.

3.2. Electrochemical performance

To explore the effect of Mo doping and material structure on the
catalytic performance, we tested the OER performance of the sam-
ples. Fig. S9 shows the optical pictures of the sample powder, cat-
alyst ink, working electrodes and the test setup, respectively. The
LSV curves in Fig. 4a show that that the MoO; nanorods have
almost no OER performance. After being interacted with the cobalt
hydroxide nanosheets, the catalytic performance is significantly
improved, and both exceed the pure cobalt hydroxide nanosheets.
Mo/Co(OH),-20 has the best catalytic performance. It only needs
288 mV overpotential (1) to drive 10 mA cm2, which is signifi-
cantly better than Co(OH), nanosheets (333 mV), and also better
than commercial RuO, (349 mV). Fig. 4b and Table S2 show the
overpotential and mass activity of the samples. The mass activity
of Mo/Co(OH),-20 is 3.2 times that of Co(OH),. The Tafel slope of
Mo/Co(OH),-20 has the smallest value of 69.7 mV/dec (Fig. 4c),
indicating that the material has a higher reaction rate. Since the
double-layer capacitance (Cdl) is proportional to the electrochem-
ically active area of the material, we compared the active area by
testing the CdlI of the materials [51,52]. The CV curves at different
scan rates are shown in Fig. S10. Capacitive current is plotted
against scan rate (Fig. 4d), with a slope twice that of Cdl. As shown
in Fig. 4e, the highest capacitance value of Mo/Co(OH),-20 indi-
cates that it has the largest electrochemical surface area. By com-
paring the electrochemical performance of the samples, it is not
difficult to see that Mo/Co(OH),-20 has the best catalytic perfor-
mance. In addition, the relationship between the capacitance of
the sample is consistent with the results of Sger and OER activity,
indicating that the activity of the catalyst are improved by struc-
tural design and increasing the surface area of the material. Stabil-
ity is also another important criterion for evaluating catalysts. The
LSV curves of Mo/Co(OH),-20 in Fig. 4f almost overlap after 1000
cycles. Moreover, after the chronopotentiometry test (the inset in
Fig. 4f), the potential did not increase significantly, indicating that
Mo/Co(OH),-20 has good stability. The SEM and TEM characteriza-
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Fig. 2. HAADF images and corresponding Co, Mo, O mappings of products with different reaction times during the preparation of Mo/Co(OH),-20. (The scales are all 1 um).

tions of the samples after the reaction showed that the structure of
the material remained stable (Fig. S11).

In addition, we also used MoOs nanoparticles instead of nanor-
ods, and other conditions were consistent with Mo/Co(OH),-20 to
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obtain MoO3 NPs-Co(OH),. Since MoO3; NPs have no regular mor-
phology (Fig. S12a), the nanosheets cannot be induced to grow
according to a certain rule, and the morphology of MoO3;NPs-Co
(OH), as stacked nanosheets (Fig. S12b-d). Energy dispersive spec-
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Fig. 3. (a) XRD patterns of Mo/Co(OH),-20 and Co(OH);, NSs along with MoOs nanorods and bulk o-Co(OH),. (b) Possible schematic mechanism of Mo doping in Co(OH), NSs.
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Mo L-edge (f) XANES spectra for samples. (g) Proposed charge transfer schematic based on XRD, XPS and XAFS analysis.

troscopy (EDS) analysis (Fig. S12e) shows that the Mo/Co atomic
ratio in the product is 1:11.6, which is close to the Mo/Co atomic
ratio of Mo/Co(OH),-20. The test results in Fig. S13a show that
the overpotential of MoOs; NPs-Co(OH), at a current density of
10 mA cm~2 is 320 mV, which is lower than that of Co(OH),
nanosheets, but higher than that of Mo/Co(OH),-20. This shows
that doping with Mo is beneficial to improve the performance of
Co(OH),. In addition, the optimization of the material structure
will further enhance the catalyst activity. The Cdl of MoO3; NPs-
Co(OH), is smaller than that of Mo/Co(OH),-20 (Fig. S13b and
S$13c), indicating that the electrochemical active area of the mate-
rial is smaller than that of Mo/Co(OH),-20. This may be the reason
for the poor performance of MoO3; NPs-Co(OH),. Further, density
functional theory (DFT, Fig. S14) proves that the Co(OH), is a pro-
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mising OER candidate. The insertion of molybdenum can improve
the Co(OH), activity through structure and electronic state
regulation.

4. Conclusion

In summary, we obtained Mo-doped cobalt hydroxide
nanosheet self-assembled hierarchical microtubules using MoO3
nanorods as sacrificial templates. In 1 M KOH, the OER overpoten-
tial of Mo/Co(OH), HMT at 10 mA cm 2 current density is only
288 mV, and its mass activity is 3.2 times higher than that of Co
(OH), nanosheets. Compared with previous studies, the introduc-
tion of molybdenum ions and the construction of nanosheet self-
assembled microtubules exhibit great potential to enhance the
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before and after CV cycles, the inset is the chronopotentiodynamic curve of Mo/Co(OH),-20 in 1.0 M KOH solution at a current density of 10 mA cm 2.

OER catalytic performance of cobalt-based hydroxides (Table S3)
[53-55, S1-S15] X-ray-based spectroscopic analysis determined
that Mo(VI) with tetrahedral coordination intercalated in the inter-
layer of cobalt hydroxide, promoting interlayer separation. Mean-
while, Mo is connected to Co through oxygen bond, which
promotes the transfer of Co charges to Mo and reduces the electron
cloud density of Co ions. In addition, the self-assembled micro-
tubule structure effectively separates the nanosheets and increases
the accessible active area of the material. These are the key factors
to improve the OER performance of materials. This study provides
a scheme for the facile and rapid construction of hierarchical
nanostructures for the synthesis of OER catalysts. In further work,
in situ detection methods are needed to reveal the charge transfer
process between Mo and Co ions and the formation and transition
of intermediate products during OER catalysis.
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