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Rationale—The liver-specific natural killer (NK) cell population is critical for local innate 

immune responses, but the mechanisms that lead to their selective homing and the definition of 

their functionally relevance remain enigmatic.

Objectives—We took advantage of the availability of healthy human liver to rigorously define 

the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that 

distinguish liver-resident NK (lr-NK) cells from circulating counterparts.

Findings—Nearly 50% of the entire liver NK cell population is composed of functionally 

relevant CD56bright lr-NK cells that localize within hepatic sinusoids. Further, CD56bright lr-NK 

cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is 

functionally critical as it determines selective migration in response to the chemotactic stimuli 

exerted by CCL3, CCL5 and CXCL16. In addition, hepatic sinusoids express CCL3pos Kupffer 

cells, CXCL16pos endothelial cells and CCL5pos T and NK lymphocytes. The selective presence 

of these chemokines in sinusoidal spaces creates a tissue niche for lr-CD56bright NK cells that 

constitutively express CCR5 and CXCR6. CD56bright lr-NK cells co-exist with CD56dim 

conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar 

to their peripheral circulating counterparts. Indeed, CD56dim c-NK cells lack expression of CD69, 

CCR5, and CXCR6 but express selectins, integrins and CX3CR1.

Conclusion—Our findings disclosing the phenotypic and functional differences between lr-Nk 

cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any 

therapeutic attempts at modifying the large population of CD56bright lr-NK cells will require 

modification of hepatic CCR5 and CXCR6.
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Introduction

Natural killer (NK) cells are important effectors of the innate immune system that can lyse 

tumor-transformed or virus-infected cells in the absence of prior antigen sensitization. NK 

cells are also endowed with immune-regulatory functions at tissue sites of inflammation 

through the establishment of cellular interactions and the production of pro-inflammatory 

cytokines including IFN-γ, TNF-α, CCL3 (Mip1-α, CCL4 (Mip1-α and CCL5 (RANTES) 

[1, 2]. Human peripheral blood NK (PB-NK) cells are divided into two functionally distinct 

subsets characterized by a different distribution of CD56 and CD16 surface markers. 

CD56bright/CD16neg-low (CD56bright) NK cells account for 5–15% of all PB-NK cells and, 

while poorly cytotoxic, can produce large amounts of cytokines. CD56dim/CD16pos 

(CD56dim) NK cells represent the majority of PB-NK cells (up to 95%) and serve primarily 

as cytotoxic effectors [3]. In order to spare autologous cells from cytotoxicity and ensure 

tolerance to self, NK cells receive inhibitory signals from a large family of inhibitory NK 

cell receptors (iNKRs), that include Killer cell immunoglobulin-like receptors (KIRs) and C-

type lectins recognizing specific alleles of self MHC-class-I molecules (MHC-I). NK cell 

effector-functions are generally induced by the engagement of another family of activating 

NK cell receptors (aNKRs) that binds their ligands expressed on stressed, infected or tumor-
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transformed target cells that either lack or have a decreased expression of self-MHC-I [1, 4–

6].

NK cells can account up to 50% of the total lymphocyte population in the human liver, 

which is in contrast to their lower frequency in blood (5–15%) or other peripheral tissues 

such as lymph nodes. Hence, great efforts have been placed over the recent years to 

understand the role of hepatic NK cells in the pathogenesis of liver disorders including 

fibrosis, viral infections, tumors and autoimmune diseases [7–9]. In this regard, a distinct 

subset of hepatic NK cells endowed with adaptive immune properties and exhibiting 

antigen-specific recall responses to viruses and haptens has been recently described in mice 

[10, 11]. This memory-like response is exerted by a unique subset of CD49apos/DX5neg 

liver-resident NK (lr-NK) cells that are phenotypically and functionally distinct from 

peripheral blood CD49aneg/DX5pos conventional NK (c-NK) cells circulating throughout 

spleen and liver. Likewise, it has been reported that NK cells in human liver are different 

from their circulating counterparts [7, 12–16], thus suggesting that a unique lr-NK cell 

subset also exists in the human liver under homeostatic conditions. However, the overall 

frequency and the precise phenotype of human lr-NK cells are still being debated, while the 

distribution and the homing mechanisms regulating their retention in the liver are unknown. 

The present study characterizes CD56bright lr-NK cells selectively located within hepatic 

sinusoids and accounting for half of the entire hepatic NK cell population. We demonstrate 

that CD56bright lr-NK cells are phenotypically and transcriptionally distinct from PB-

CD56bright NK cells and constitutively express high levels of markers associated with tissue 

residency including CD69, CCR5 and CXCR6. This unique phenotype is functionally 

relevant as CD56bright lr-NK cells migrate in response to CCL3, CCL5 and CXCL16, the 

CCR5 and CXCR6 ligands highly expressed within liver sinusoids on Kupffer cells, T and 

NK lymphocytes as well as endothelial cells.

Material and Methods

Human Donors

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats of 

healthy donors obtained in accordance with clinical protocols approved by the Institutional 

Review Board of Desio Hospital, Milan, Italy. Liver specimens were obtained from patients 

undergoing liver resection to remove liver metastases of colorectal carcinoma. Fragments of 

hepatic tissues used for our experiments were macroscopically and microscopically free of 

any diseases and considered healthy, as assessed by the Unit of Pathology of the Humanitas 

Research Hospital, Milan, Italy (Supplemental Figure 1). Specimens not meeting these 

criteria were excluded from our study. Liver specimens were obtained in accordance with 

clinical protocols approved by the Institutional Review Board (IRB) of Istituto Clinico 

Humanitas, Milan, Italy. Liver perfusates were obtained from Singapore Institute for 

Clinical Sciences as a part of the scientific collaboration with Dr. Antonio Bertoletti. The 

Gleneagles Hospital Ethics Committee, Singapore, Singapore approved the study and each 

patient gave written informed consent.
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Cell preparation

PBMCs were obtained by Ficoll-Hypaque density gradient centrifugation (GE Healthcare 

Biosciences), as previously described [17, 18]. Liver mononuclear cells (LMNCs) were 

isolated by digestion of fresh liver samples using 2mg/ml of collagenese D (Roche) in 

HEPES Buffered Saline for 45 minutes followed by a brief mechanical digestion using the 

GentleMACS Dissociator (Miltenyi). Cells were layered over a 70%/30% discontinuous 

Percoll (GE-Healthcare) gradient. Cells between the 70%/30% layer contained LMNCs. 

Perfusate mononuclear cells from were isolated from healthy healthy liver before transplant 

using Ficoll-Paque PREMIUM (GE-Healthcare), as previously described [19].

Flow cytometry and in vitro functional assays

For multicolor flow cytofluorimetric analysis, PBMCs, LMNCs and PMNCs were stained 

with the following conjugated mAb as previously described: CD56-PE-Cy5 and NKp46-PE 

(Beckman Coulter, clone BAB281), CD16-PE-Cy7, CD19-APCH7, IFN-γ-PE, DNAM-1 

PE, CD49e-PE, CD11c-PE, CCR5-PE, CD69-PE, CCR4-PE and CXCR3-PE (BD-

Pharmigen), CD45-PB, CD62L-PE-Cy7, CCL5-AF647, CD161-PerCpCy5.5, CCR3-PE, 

CXCR2-PE and CXCR4-PerCpCy5.5 (Biolegend), CCR7-FITC and CXCR6-PE (R&D 

System), CX3CR1 PE (MBL). Aqua LIVE/DEAD (Life Technologies) was used to 

eliminate dead cells from the analysis. Intracellular staining was performed using Cytofix/

Cytoperm (Beckton Dickinson), according to the manufacturers instructions. The gating 

strategy used to select NK cells from both PBMC and LMNC is depicted in Supplemental 

Figure 1. For measurement of IFN-γ production, whole PBMC and LMNC were stimulated 

with 18 hours with 20ng/ml rhIL-12 (R&D Systems) and 200U/ml rhIL-2 (Peprotech). For 

the final 4 hours, GolgiStop was added (Beckton Dickenson). Flow cytometry data was 

acquired using an LSR Fortessa (Beckton Dickinson) and data was analyzed using FlowJo 

Software (Tree Star).

Immunohistochemistry

Paraffin-embedded liver specimens were assessed for chemokine expression using the 

following mAbs: Anti-CCL3 (Mip1-α anti-CCL4 (Mip1-α (R&D) and anti-CCL5 

(RANTES) (Abeam). Antigen retrieval was performed for 5 minutes at 125°C and for 3 

minutes at 90°C in a pressure cooker using Diva Decloaker antigen retrieval solution 

(Biocare Medical). Endogenous peroxidase activity was blocked with Peroxidased I 

(Biocare Medical) for 5 minutes and non-specific proteins were blocked for 15 min with 

Background Sniper (Biocare Medical). The primary antibody was incubated for 1 hour at 

room temperature. For CCL5, MACH 4 HRP Polymer was used as the secondary antibody 

(Biocare Medical). For CCL3 and CCL4, Goat-on-Rodent HRP Polymer (Biocare Medical) 

was used as the secondary antibody. For identification of NK cells, a mAb anti-NKp46 

(R&D Systems) was used. Samples were prepared by flash-freezing pieces of fresh liver in 

isopentane-cooled dry ice in OCT (Tissue-Tek). Sections were fixed in freshly prepared 4% 

paraformaldehyde and incubated with H202 in methanol. Blocking of non-specific proteins 

was performed using 0.04% horse serum followed by overnight incubation with the primary 

antibody at 4C. MACH 4 HRP Polymer was used as the secondary antibody. (Biocare 

Medical). All antigen detection was performed using 3,3-diaminobenzidine (DAB 
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chromogen) and counterstaining of nuclei was performed using hemotoxylin. Images were 

obtained using optical microscopy (Olympus BX53).

Immunofluorescence

For visualization of CCR5pos NK cells in liver sinusoids, samples of fresh liver were fixed 

with fresh 2% PFA for 2 hours, washed in PBS for 4 hours and then embedded in 30% 

sucrose overnight. Samples were then frozen in OCT. Sections were incubated with primary 

mAbs against NKp46 (R&D Systems), CCR5 (BD) and Lyve-1 (Abcam) to mark hepatic 

sinusoids for 1 hour at room temperature, washed and then incubated with the following 

secondary antibodies raised in donkey for 30 minutes: anti-mouse 488, anti-goat 647, anti-

rabbit 594 (Life Technologies). Nuclei were counterstained with DAPI at a concentration of 

1:50000 in distilled water. For visualization of CCL3pos/CD68pos cells, slides of paraffin-

embedded healthy liver were exposed to ultraviolet light for 48 hours to remove background 

staining. Staining was performed as described above for immunohistochemical staining 

using anti-CCL3. For identification of Kupffer cells, anti CD68 (Dako) was used. After 

incubation with primary antibodies, the following secondary antibodies raised in donkey for 

30 minutes: anti-mouse 488 and anti-goat 647 (Life Technologies). Nuclei were 

counterstained with DAPI at a concentration of 1:50000 in distilled water. Imaging was 

obtained by confocal microscopy (Olympus, Tokyo, Japan).

Chemotaxis assay

CD56pos cells were isolated from LMNC using CD56 positive selection kit (Stem Cell), and 

serum starved for 2 hours. Cells were then placed in serum-free medium in the upper well of 

transwell chambers (Costar, 5 µm insert, 24 well plate). Recombinant chemokines CCL3, 

CCL4, CCL5, CXCL16 and fractalkine (R&D Systems) were placed in the lower chamber. 

After 2 hours of migration at 37°C, the cells in the lower compartment were harvested, 

stained using antibodies specific for NK cells and analyzed by flow cytometry. Due to low 

recovery of purified NK cells from the liver, optimal concentrations of chemokines were 

determined by performing a titration of 4 concentrations on peripheral blood NK cells. From 

these data, 2 concentrations (1nM and 100nM) were selected based on the percentage of NK 

cells migrated. Each assay using hepatic NK cells was performed using these two 

concentrations and data displayed represents the chemokine concentration that gave the best 

results. The optimal concentrations for each chemokine were the following: 1nM for CCL3, 

CLL4, CCL5 and CXCL16, 100nM for fractalkine. The frequency of migration of hepatic 

NK cell subsets was determined as previously described [20]. Briefly, the percentage of 

hepatic NK cell populations was determined by dividing the number of cells migrated by the 

total number of cells in the input control well. The number of cells migrated was calculated 

by subtracting the background (from negative control) from the number of cells migrated to 

chemokine. Cells placed in the lower portion of the trans-well chamber only were defined as 

input control. Negative control is defined as the frequency of cells present in upper portion 

of the chamber in the absence of chemotactic stimulus in the lower portion of the chamber. 

Each chemokine concentration was performed in duplicate while the input control and 

negative control were performed in 4 different wells each. Each chemokine concentration 

was performed in duplicate while the input control and negative control were performed in 4 

different wells each.
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Gene expression

NK cells from liver perfusates and peripheral blood were FACS-sorted on the basis of their 

expression of CD56 and CD16 into the two subsets of CD56bright/CD16neg and CD56dim/

CD16pos NK cell subsets (FACS Aria III, BD). All cells were sorted using a BD FACS Aria. 

Lysates from a minimum of 10,000 cells were analyzed using the preassembled nCounter 

GX Human Immunology Kit and the nCounter system (NanoString Technologies, Seattle, 

WA), a cut-off of 2 times the mean of the negative controls supplied in the kit was used to 

discriminate against nonspecific probe binding (noise). Samples were then normalized based 

on the geometric means of both the supplied positive controls and the panel of housekeeping 

genes, as recommended by the manufacturer. All data analyses were performed in R 

(version 3.0.2) using Bioconductor libraries (BioC 2.13) and R statistical packages on log2 

expression values. Global unsupervised clustering was performed using the function hclust 

of R stats package with Pearson correlation as distance metric and average agglomeration 

method. Gene expression heatmaps were generated using the software dChip (http://

www.hsph.harvard.edu/cli/complab/dchip/) after row-wise standardization of the expression 

values. To assess cluster-specific reproducibility, we calculated p-values for sample clusters 

via the multiscale bootstrap resampling method coded in the R pvclust package [21]. Then, 

p-values were computed for all clusters of the original data as the frequency that any cluster 

appears in the bootstrap replicates (Bootstrap Probability).

Statistical analysis

Statistical calculations were performed using the Student’s t test. Details of each calculation 

appear in the figure legends.

Results

CD56bright hepatic NK cells are enriched at high frequencies in the healthy human liver

Similar to their circulating counterparts, human hepatic NK cells can be distinguished into 

two CD56pos/CD16neg and CD56pos/CD16pos cell subsets under homeostatic conditions [3, 

19]. However, the frequency of CD56pos/CD16neg hepatic NK cells is significantly higher 

compared to that of CD56pos/CD16neg PB-NK cells in matched donors [7, 22] (Figures 1 A 

and 1C). CD56pos/CD16neg PB-NK cells are conventionally defined as CD56bright NK cells 

due to the higher mean fluorescence intensity (MFI) of CD56 compared to that of CD56pos/

CD16pos PB-NK lymphocytes. Indeed, this latter population is defined as CD56dim NK 

cells. In freshly purified liver mononuclear cells (LMNCs) the MFI of CD56 on CD16neg 

NK cells is significantly lower compared to that of their circulating counterparts and is 

similar to that of CD16pos NK cells from both peripheral blood mononuclear cells (PBMCs) 

and LMNCs (Figures 1A, 1B and 1D). In this regard, it has been demonstrated that 

collagenase, the enzyme conventionally used to disrupt liver tissue for isolating LMNCs, 

induces a decrease in the surface expression of CD56 on NK cells [23]. To assess whether 

the lower MFI of CD56 on CD56pos/CD16neg hepatic NK is indeed an artifact associated 

with the use of collagenase, we analyzed the degree of CD56 expression on NK cells from 

liver perfusate (perf-NK cells). This biological specimen is conventionally obtained by 

flushing the donor’s healthy organ before transplantation with the cold University of 

Wisconsin solution, which lacks enzymes capable of cleaving or lowering the cellular 
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expression of surface molecules [24]. We found that the subset distribution of perf-NK cells 

within perfusate mononuclear cells (PMNCs) recapitulates the one observed in LMNCs, as 

the frequency of CD56pos/CD16neg NK cells was similar in both specimens (Figures 1A and 

1E). These results are line with previous data showing that PMNCs flushed out from hepatic 

sinusoids share with LMNCs a similar lymphocyte distribution [24, 25]. Moreover, we 

observed that the MFI of CD56 on CD56pos/CD16neg perf-NK cells is significantly higher 

compared to that of their LMNC counterparts and similar to that of CD56bright PB-NK cells 

(Figures 1B and 1D). Taken together, these results reveal that the degree of CD56 

expression on CD56pos/CD16neg hepatic NK cells is indeed lowered by the enzymatic 

process of liver digestion. Therefore and in line with the nomenclature used for their 

circulating counterparts, CD56pos/CD16neg hepatic NK cells will be referred to as 

CD56bright NK cells henceforth.

CD56bright hepatic NK cells display unique transcriptional and phenotypic profiles

We then analyzed the gene expression profile of sorted PB- and perf-NK cell subsets by 

using the Nanostring technology. As mentioned previously, perf-NK cells were analyzed as 

a surrogate of hepatic NK cells since PMNCs recapitulate the overall lymphocyte 

distribution present in LMNCs under homeostatic conditions [24, 25]. An unsupervised 

cluster analysis performed on the entire dataset revealed striking differences between 

CD56bright PB- and perf-NK cell subsets that display different transcriptional profiles and 

separate into two main clades, thus suggesting that they represent two distinct NK cell 

populations. In contrast, the genetic profiles of CD56dim PB- and perf-NK cell subsets 

clustered together into a single clade, hence indicating a high similarity between these two 

populations (Figure 2A).

A more in-depth analysis of the 441 genes contained in the Nanostring dataset identified 50 

genes as being significantly differentially regulated between CD56bright PB- and perf-NK 

cells (Supplemental tables 1 and 2). Among these genes, ccr7 and sell mRNA copies were 

decreased by respectively 32 and 10.85 fold in CD56bright perf-NK cells compared to their 

circulating counterparts. These two mRNAs encode for the surface receptors CCR7 and L-

selectin, two important homing receptors known to be constitutively present on CD56bright 

PB-NK cells and regulating their migration to secondary lymphoid tissues (SLT) [26]. In 

line with their gene expression, we observed by flow cytometry that CD56bright hepatic NK 

cells lack the expression of CCR7 and L-selectin which, in contrast, are constitutively 

present at high levels on CD56bright PB-NK cells from matching donors (Figures 2B and 

2C). Moreover, we found significantly lower levels of the mRNAs encoding for α5 (itga5) 

and αx (itgax) integrins on CD56bright perf-NK cells compared to CD56bright PB-NK cells. 

The same distribution pattern of these two integrins was also confirmed by flow cytometry 

on the surface of CD56bright hepatic and PB-NK cells from the same donors. Finally, we 

found that both the transcript level and surface expression of CD161 (klrb1) is significantly 

higher on CD56bright hepatic NK cells compared to CD56bright PB-NK cells (Figures 2B and 

2C). These findings are in line with the reported high frequency of CD161-expressing 

lymphocytes in the human liver [19]. The phenotypic differences between CD56bright 

hepatic and PB-NK cells were not induced by the use of collagenase, as the phenotype of 
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CD56bright perf-NK cells is identical to that of CD56bright hepatic NK cells (Supplemental 

Figure 2).

In contrast, perf- and PB-NK CD56dim cells were found to share a similar transcriptional 

profile (Supplemental Table 3). This homology in gene expression is corroborated by the 

identical surface expression of CCR7, L-selectin, α5 and αx integrins on CD56dim NK cell 

subsets from both LMNCs and PBMCs (data not shown). Instead, we found that these 

homing receptors are differently expressed on CD56bright hepatic NK cells compared to 

CD56bright PB-NK cells (Figures 2B and 2C). Among all aNKRs and iNKRs regulating the 

effector-functions of NK cells, we observed that only the expression of DNAM-1 was 

significantly decreased on CD56bright hepatic NK cells compared to their circulating 

counterparts (Figures 2B and C), while the repertoire of all remaining NKRs was nearly 

identical on both CD56bright and CD56dim hepatic NK cell subsets compared to their 

circulating counterparts (data not shown). We also measured the expression of Tumor 

necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) that is constitutively 

expressed on a subset of murine hepatic NK cells [27]. In line with previous reports with 

human hepatic NK cells [7, 13], we did not find any detectable levels of TRAIL on both 

CD56bright and CD56dim H hepatic NK cell subsets (data not shown).

CD56bright and CD56dim hepatic NK cells express a different repertoire of chemokine 
receptors and markers associated with tissue-residency

We then assessed whether CD56bright NK cells in liver also display a distinct homing pattern 

by analyzing on both hepatic and PB-NK cells from matching donors the expression of an 

extensive panel of chemokine receptors known to regulate the migration of circulating 

lymphocytes to peripheral tissues [26, 28]. First, we found that low transcript levels and 

surface expressions of CCR4, CCR5, CCR7, CXCR3 and CXCR6 characterize CD56dim 

hepatic and PB-NK cells. Moreover, both these subsets express similar high constitutive 

amounts of CCR3, CXCR2 and CX3CR1 that, in contrast, were found not to be present in 

CD56bright hepatic and PB-NK cells (Figure 3 and Supplemental Table 1). Interestingly, it 

has been previously reported that freshly purified PB-CD56dim NK cells are characterized 

by the high expression of CX3CR1 [3, 26], thus indicating that CX3CR1pos/CD56dim hepatic 

NK cells likely derives from their circulating counterparts flowing in liver parenchyma.

While CD56dim hepatic and PB- NK cells share a similar repertoire of chemokine receptors, 

CD56bright hepatic NK cells possess a unique pattern of homing receptors that differs from 

that of CD56bright PB-NK cells (Figure 3 and Supplemental Table 1). Indeed, CXCR6 is 

highly expressed only on the surface of hepatic CD56bright NK cells. This was also 

confirmed at transcriptional level as CD56bright perf-NK cells showed a nearly 18-fold 

increase of mRNA encoding for CXCR6 compared to CD56bright PB-NK cells. We also 

found that CD56bright hepatic NK cells, but not their circulating counterparts, express high 

surface levels of CCR5, a chemokine receptor present on lymphocytes in non-lymphoid 

tissues under homeostatic conditions [29, 30]. These latter results were not confirmed at the 

mRNA level, likely indicating the presence of a post-transcriptional mechanism associated 

with the high levels of CCR5 selectively on CD56bright hepatic NK cells.
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The high amounts of chemokine receptors associated with tissue residency and the lack of 

adhesion molecules as well as chemokine receptors involved in the homing of circulating 

immune cells to peripheral tissues prompted us to postulate that CD56bright hepatic NK cells 

might represent a subset of liver-resident lymphocytes in humans. To confirm this 

hypothesis, we analyzed the surface expression of CD69, a molecule known to characterize 

tissue-resident lymphocytes [31]. We found that almost all CD56bright hepatic NK cells 

constitutively express CD69, while CD56bright PB-NK as well as CD56dim hepatic NK cells 

and CD56dim PB-NK cells lack the expression of this tissue-residency marker (Figure 3). 

We also analyzed on CD56dim hepatic NK cells the repertoire of KIRs, which are known to 

distinguish CD56dim from CD56bright PB-NK cells [3]. We observed that both transcript 

levels and surface expressions of KIRs on CD56dim hepatic NK cells are nearly identical to 

those of their circulating counterpart (Supplemental Table 1 and data not shown), thus 

further indicating that CD69neg/CD56dim hepatic NK cells are not tissue-resident but retain 

the homing features and phenotype of CD56dim PB-NK. Indeed, CD56dim perf- and PB-NK 

cell subsets share a highly similar transcriptional profile as assessed by the Nanostring 

dataset showing that only 7 out of 441 genes are differentially expressed between these two 

populations (Supplemental Table 3).

CD56bright hepatic NK cells are functional and migrate to CCR5 and CXCR6 ligands

Similar to CD56bright PB-NK cells [3], we found that CD56bright hepatic NK cells are able to 

produce large quantities of IFN-γ following stimulation with IL-2 and IL-12. This is in 

contrast with what we observed for CD56dim hepatic NK cells, as their degree of IFN-γ 

production was significantly lower compared to that of CD56bright hepatic NK and 

equivalent to that of CD56dim PB-NK (Figure 4A). These results indicate that CD56bright 

and CD56dim hepatic NK cell subsets mirror the same dichotomy in immune-regulatory 

functions compared to their circulating counterparts.

We then proceeded to determine if the constitutive expression of CXCR6 and CCR5 on 

CD56bright hepatic NK cells is associated with the ability of this subset to migrate to their 

natural ligands (Figure 4B). By using an in vitro chemotaxis assay, we found that CCL3 and 

CCL5, but not CCL4, induced a significantly higher migration of CCR5pos/CD56bright 

hepatic NK cells compared to that of CCR5neg/CD56dim hepatic NK cells that, as expected, 

did not respond to CCR5 ligands. Similarly, CXCL16 was able to induce the migration of 

CXCR6pos/CD56bright but not CXCR6neg/CD56dim hepatic NK cells. We then measured the 

chemotactic function of CX3CR1, the chemokine receptor constitutively expressed on 

CD56dim but not on CD56bright hepatic NK cells. As expected, its ligand fractalkine induced 

the chemotaxis of CX3CR1pos/CD56dim hepatic NK cells but not of CX3CR1neg/CD56bright 

hepatic NK cells. Hence, the different repertoires of chemokine receptors on CD56bright and 

CD56dim hepatic NK cell subsets are functionally relevant and also associated with distinct 

migratory patterns of these two populations.

CCL3, CCL5 and CXCL16 are highly expressed in the sinusoids of the healthy liver

We then assessed by immunohistochemistry the expression and distribution of CCR5 and 

CXCR6 ligands in healthy human liver. We found that CCL3 is expressed within hepatic 

sinusoids on the surface of cells characterized by an amoeboid shape and adherent to 
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neighboring cells. These irregular morphologic features are known to characterize Kupffer 

cells, which are the liver macrophages residing within the hepatic sinusoids [32]. To confirm 

that these CCL3pos cells are indeed Kupffer cells, we labeled by confocal microscopy CD68, 

a marker constitutively expressed on liver-resident macrophages [33, 34]. Our data showed 

that CCL3 co-localizes with CD68 on irregular shaped cells within hepatic sinusoids, 

thereby confirming that they are indeed Kupffer cells (Figure 5A and 5B).

Regarding the other two CCR5 ligands, we found that the frequency of CCL4pos cells in the 

liver is very low and significantly smaller compared to that of CCL3pos cells. In contrast, 

CCL5pos appeared to also be localized on cells within hepatic sinusoids at a frequency 

similar to that of CCL3pos Kupffer cells. However, CCL5pos cells were small in size, 

circular in shape and displayed a large nucleus surrounded by little cytoplasm. These 

features resemble the morphology of a lymphocyte rather than a macrophage. To confirm 

this and to identify the lymphocyte subset expressing CCL5, we performed flow cytometry 

on freshly purified LMNCs. Our results showed that CCL5 is indeed expressed on CD3pos 

hepatic T cells and CD3neg/CD56pos hepatic NK cells, but not on CD19pos hepatic B cells 

(Figures 5C, 5D and 5E). We also found a similar constitutive expression and distribution of 

CCL5 in liver perfusates (data not shown), thus confirming that this chemokine is located 

within hepatic sinusoids.

As for CXCL16, it has been previously reported that liver sinusoidal endothelial cells 

constitutively express this chemokine under homeostatic conditions [35].

CD56bright hepatic NK cells are localized within the hepatic sinusoids

We then analyzed whether the high frequency of CCL3, CCL5 and CXCL16 in hepatic 

sinusoids is associated with the retention of CD56bright hepatic NK cells expressing both 

CCR5 and CXCR6 in liver sinusoidal spaces. Given that NKp46 is constitutively present on 

both CD56bright and CD56dim hepatic NK cell subsets and is also widely used to identify NK 

cells in tissues [36], we determined by immunohistochemistry the expression of this natural 

cytotocixity receptor (NCR) in sections of healthy liver. Our results showed that NKp46pos 

NK cells are preferentially localized within liver sinusoids, while their frequency is very low 

in portal spaces (Figures 6A, 6B and 6C).

To assess if NKp46pos hepatic NK cells found in hepatic sinusoids under homeostatic 

conditions belong to the CD56bright hepatic NK cell subset, we performed confocal 

microscopy on frozen sections of healthy liver using an anti-CCR5 monoclonal antibody 

(mAb) in combination with another mAb specific for Lyve-1, a marker specific for liver 

sinusoidal endothelial cells delineating sinusoidal spaces [37]. We found that the co-

localization of NKp46 with CCR5 on hepatic NK cells is confined within the areas defined 

by Lyve-1, thus demonstrating that the subset of CCR5pos/CD56bright hepatic NK cells is 

contained within sinusoidal spaces (Figure 6D).

Finally, we analyzed by flow cytometry the expression of chemokine receptors on perf-NK 

cells. Our results showed that, similar to what we observed in liver specimens, liver 

perfusates contain both CCR5pos/CD56bright and CX3CR1pos/CD56dim NK cells 

(Supplemental Figure 3), thus further confirming that that CD56bright NK cells expressing 
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markers associated with tissue residency are present in the healthy liver and are located in 

the hepatic sinusoids.

Discussion

The present study characterizes a novel subset of CD56bright lr-NK cells, whose 

transcriptional and phenotypic profiles differ from those of its circulating counterparts. We 

show that CD56bright lr-NK cells constitutively express markers of tissue-residency 

including CD69, CCR5 and CXCR6. The unique repertoire of chemokine receptors on 

CD56bright lr-NK cells is functionally relevant as this subset selectively migrates in response 

to the chemotactic stimuli given by CCR5 (i.e. CCL3 and CCL5) and CXCR6 (i.e. 

CXCL16) ligands. Under homeostatic conditions, CD56bright lr-NK cells are preferentially 

located within hepatic sinusoids containing CCL3pos Kupffer cells as well as CCL5pos T and 

NK lymphocytes. Moreover, it has been reported that hepatic sinusoidal endothelial cells 

also express high constitutive levels of CXCL16 [35]. Hence, the abundance of these 

chemokines in liver sinusoidal spaces creates a unique tissue niche hosting CD56bright lr-NK 

cells constitutively expressing CCR5 and CXCR6.

The key roles of these two chemokine receptors in regulating the homeostasis of CD56bright 

lr-NK cells are further supported by previous studies performed in murine models. Indeed, 

CCR5-deficient mice have a drastic reduction of NK cell frequency [38], while CXCR6 

regulates the survival, the trafficking and the effector-function of murine hepatic NK cells 

[11]. Our experimental evidence demonstrates, for the first time, that the engagement of 

these two chemokine receptors is required to ensure the constitutive presence of a large 

subset of lr-NK cells in human hepatic sinusoids.

CD56bright lr-NK cells coexist with another subset of CD56dim c-NK cells that, instead, are 

transcriptionally and phenotypically similar to their circulating counterparts. In particular, 

CD56dim c-NK cells are characterized by a CD69neg/CCR5neg/CXCR6neg phenotype and 

express adhesion molecules as well as functionally relevant chemokine receptors such as 

CX3CR1 associated with the homing of circulating immune cells to peripheral tissues. These 

results indicate that CD56dim c-NK cells are capable of circulating throughout the liver 

without being retained in hepatic sinusoids. Notably, it has been reported that, similar to 

human CD56dim c-NK cells, CX3CR1 is also expressed on murine NK cells able to circulate 

in the periphery but not on liver-resident NK cells [10]. In line with previous studies [39, 

40], we also observed that fractalkine is not present within hepatic sinusoids but is 

preferentially expressed by bile ducts under homeostatic conditions (data not shown). 

Nevertheless, we found very few NK cells in the portal areas surrounding the bile ducts of 

healthy liver. In this regard, it has been reported that the frequency of NK cells increases 

during the course of autoimmune hepatic disorders such as primary biliary sclerosis. This 

phenomenon is associated with the establishment of a pathologic inflammatory milieu at 

injured liver sites inducing a higher expression of fractalkine and several adhesion 

molecules such as ICAM-1 and VCAM-1 on biliary epithelial cells [40, 41]. We also show 

that CD56dim c-NK cells constitutively express CCR3, CXCR2, and CXCR4, but the 

potential binding of these chemokine receptors with their ligands in a redundant chemokine 

network does not appear be relevant in the homing of this subset in liver sinusoids under 
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homeostatic conditions. Indeed, many studies have shown the lack of expression of the 

ligands to CXCR4 (CXCL12), CXCR2 (CXCL1 and CXCL8) and CCR3 (CCL7, CCL15, 

CCL28) in hepatic sinusoids of healthy human liver [15, 22, 42–45].

A unique subset of lr-NK cells expressing markers of tissue-residency and located within 

hepatic sinusoids has recently been reported in mice [10, 11, 46]. These NK cells are 

characterized by a CD49apos/DX5neg phenotype and are endowed with memory-like features 

in contrast to CD49aneg/DX5pos c-NK cells found in liver, blood, bone marrow and spleen. 

The direct translation of this knowledge gained in mice into the human setting is precluded 

by the fact that DX5 is not conserved in humans and CD56 does not define murine NK cells. 

Nonetheless, a population of human CD56pos/CD49apos hepatic NK cells displaying some 

similarities with the murine CD49apos/DX5neg lr-NK cells has been recently described [16]. 

In this study, human CD56pos/CD49apos hepatic NK cells were detected at low frequencies 

(mean of 2.3 % of the entire hepatic NK cell population) in the healthy liver of only a 

fraction (41 %) of all donors tested. Our experimental evidence indicates that this subset of 

CD49apos/DX5neg hepatic NK cells represents only a small fraction of the large human 

subset of lr-NK cells. In fact, we show here that human CD69pos/CD56bright lr-NK cells 

expressing constitutively high levels of CXCR6 and CCR5 (means 48,5 % and 56,5%, 

respectively) account for half of the entire hepatic NK cell population (mean of 47.8 %) and 

are consistently found in all donors tested. Furthermore, we show here that the frequencies 

of both CD56bright and CD56dim NK cells in liver perfusates differ from those normally 

detected in peripheral blood PBMCs [3], but are similar to those observed in liver [7, 47]. 

Indeed, draining immune cells from liver before transplantation flushes out from hepatic 

sinusoids high frequencies of CD69pos/CD56bright lr-NK normally retained within this 

anatomic compartment and not circulating in the blood. On the other side, CD69neg/

CD56bright PB-NK cells do not express CCR5 and CXCR6 but were positive for CCR7 and 

L-selectin, a phenotype classically associated with the homing of circulating NK cells to 

secondary lymphoid tissues [26]. These data demonstrate that CD56bright NK cells in blood 

and liver represent two distinct populations present in different anatomic compartments. The 

fact that the liver harbors a large population of tissue-resident CD56bright NK cell is not 

unique to this organ, as high frequencies of unique CD56bright NK cell subsets have been 

found in lymph nodes, decidua and intestinal mucosa [3, 48, 49]. These NK cells generally 

display a phenotype and function specific to the organ of occupancy, while they are either 

absent or present at very low frequencies in peripheral blood [50–52]. Similar to their 

counterparts in other tissues, the existence of lr-NK cells certainly plays a key role in the 

immune-surveillance against tumor transformation and pathogens. Moreover, it is 

conceivable to hypothesize an important contribution exerted by CD56bright lr-NK in setting 

a threshold for immunologic tolerance in the liver given the large numbers of foreign 

antigens drained daily from the gut. Indeed, NK cell dysfunctions have been reported to be 

greatly involved in the pathogenesis of autoimmune liver disease [7].

Our data showing the enrichment of CD56bright lr-NK cells in the hepatic sinusoids 

alongside the abundant Kupffer cell population reveals that the sinusoidal spaces represent 

an important tissue niche where macrophages and NK cells interact. Indeed, many lines of 

evidence clearly demonstrated over the past decade that NK cells are able to engage bi-

directional interplays with other members of innate immunity, such as dendritic cells (DCs), 
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macrophages and neutrophils. The final outcome of these synergic interactions mediated by 

both cell-to-cell contacts and soluble mediators is the coordination and optimization of both 

innate and adaptive immune responses [2, 53–63]. In particular, the NK cell-macrophage 

cross-talk is highly relevant in the context of host-pathogen interactions and tumor biology 

as both these innate immune cells are deeply involved in the pathogenesis of microbial 

infection and cancer. Disclosing the mechanisms regulating the homing and the synergic 

interactions between hepatic NK and Kupffer cells under homeostatic conditions is key to 

better understand the physiopathology of liver diseases, including viral infections, 

autoimmune diseases and tumor.

The characterization of lr-NK cells has also prompted immunologists to hypothesize that 

certain tissues may replace the bone marrow as a site for NK cell development and/or 

differentiation in order to generate organ-specific NK cells [10, 64]. This idea is supported 

by data showing that CD56bright NK cells can develop not only from CD34pos hematopoietic 

stem cell (HSC) precursors present in the bone marrow, but also from HSCs found in the 

SLT, thymus, fetal liver, uterus and intestine [65–71]. Moreover, all five NK cell 

developmental intermediates (NKDIs) have been identified in the adult liver and it has been 

also reported that differentiation stages 1–3 can give rise to CD56bright NK cells in vitro, 

similar to what was shown for SLT [72]. Preliminary data developed in our laboratory have 

confirmed that healthy human liver contains all NKDIs (data not shown). Additional studies 

are required to determine if these NKDIs can give rise in vitro to the unique subset of human 

CD56bright lr-NK cells we have identified and characterized in the present study. Finally, we 

are delighted that this manuscript will be part of an issue, which recognizes the enormous 

contributions of Diego and Giorgina Vergani in autoimmunity. It is part of the special series 

of the Journal of Autoimmunity that devotes topics and issues to important figures and 

critical events that we believe will greatly advance improved care of patients [73–75].
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LMNCs liver mononuclear cells
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MFI mean fluorescence intensity

SLT secondary lymphoid tissues
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Highlights

1. Characterization of the mechanisms regulating the homing of NK cells to liver 

and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells 

from circulating counterparts (c.NK cells).

2. Nearly 50% of the entire liver NK cell population is composed of functionally 

relevant CD56bright lr-NK cells that localize within hepatic sinusoids.

3. CD56bright lr-NK cells express CD69, CCR5 and CXCR6 and this unique 

repertoire of chemokine receptors is functionally for their migration to hepatic 

sinusoids expressing their putative ligands.

4. The selective presence of these chemokines in sinusoidal spaces creates a tissue 

niche for lr-CD56bright NK cells that constitutively express CCR5 and CXCR6.

5. This study releases the phenotypic and functional differences that distinguish lr-

Nk cells from c-NK cells.
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Figure 1. Distribution of NK cell subsets in peripheral blood, liver tissues and liver perfusates
(A,B) Flow cytometric contour plots (A) and histogram (B) graphs from a representative 

example showing the phenotypic distribution of CD56 and CD16 (A) and the mean 

fluorescence intensity (MFI) of CD56 (B) on CD56pos/CD16neg (black line) and CD56pos/

CD16pos (dashed gray line) NK cell subsets freshly purified from peripheral blood (left), 

healthy liver tissue (middle) and healthy liver perfusates (right). (C) Summary graphs of 

statistical dot plots with p values and means showing the relative frequencies of CD56pos/

CD16neg NK cell subset within total NK cell populations purified from peripheral blood and 

healthy liver tissue of matching donors. Data are presented as percentages and are 

representative of 20 donors. (D) Summary graphs of statistical histogram bars with p values 

and SD showing the MFI of CD56 on CD56pos/CD16neg NK cells freshly purified from 

peripheral blood (left), healthy liver tissues (middle) and healthy liver perfusates (right). 

Data are representative of 3 donors. (E) Summary graphs of statistical histogram bars with p 

values and SD showing the relative frequencies of CD56pos/CD16neg NK cell subset within 

total NK cell populations purified from healthy liver tissues (left) and healthy liver 

perfusates (right). Data are presented as percentages and are representative of 3 donors.

* = p < 0,05 – ** = p < 0,01 – *** = p < 0,001
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Figure 2. Transcriptional and phenotypic profiles of CD56bright hepatic NK cells
(A) Heat map showing the unsupervised clustering of 441 genes differently expressed in the 

Nanostring dataset on CD56bright NK cell subset freshly purified from perfusates (Perf.) of 

healthy liver compared to that of CD56bright NK cell from peripheral blood (PB) and to 

CD56dim Perf- and PB-NK cells. (B) Flow cytometric contour plots from a representative 

example showing the percentages of L-selectin, CCR7, α5 integrin, αx integrin, DNAM-1 

and CD161 on CD56bright NK cells from peripheral blood (PB-NK cells in the upper line) 

and healthy liver (H-NK cells in the lower line) of the same donor. (C) Summary graphs of 

statistical histogram bars with p values and SD showing the surface expression of L-selectin, 

CCR7, α5 integrin, αx integrin, DNAM-1 and CD161 on CD56bright NK cells from 

peripheral blood (black bars) and healthy livers (white bars) of matching donors. Data are 

presented as percentages and are representative of 5 human donors.

** = p < 0,01 – *** = p < 0,001
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Figure 3. Repertoire of chemokine receptors and CD69 expression on hepatic NK cell subsets 
compared to their circulating counterparts
(A) Flow cytometric contour plots graphs showing the surface expression of the chemokine 

receptors CXCR6, CCR5 and CD69 on CD56bright (first column) and CD56dim (second 

column) purified from liver (upper line) and peripheral blood (lower line) of matching 

donors. (B) Summary graphs of statistical histogram bars with p values and SD showing the 

surface expression of CCR3, CCR4, CCR5, CCR7, CXCR2, CXCR3, CXCR4, CXCR6, 

CX3CR1 and CD69 on CD56bright and CD56dim NK cells from healthy livers (white bars) 

and peripheral blood (black bars) of matching donors. Data are presented as percentages and 

are representative of 5 donors.

* = p < 0,05 – ** = p < 0,01 – *** = p< 0,001
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Figure 4. Functional relevance and migration patterns of hepatic NK cell subsets
(A) Flow cytometric contour plots graphs from the same representative donor showing the 

percentages of IFN-γpos/CD56bright (left column) and IFN-γpos/CD56dim (right column) NK 

cells purified from liver (upper line) and peripheral blood (lower line)

(B) Summary graphs of statistical histogram bars with p values and SD from matching 

donors showing the percentages of IFN-γpos/CD56bright and IFN-γpos/CD56dim NK cells 

purified from healthy livers (white bars) and peripheral blood (black bars). Data are 

presented as percentages and are representative of 6 human donors.

(C) Summary graphs of statistical histogram bars with p values and SD showing the 

percentages of CD56bright (black bars) and CD56dim (white bars) H-NK cells from matching 

donors migrating in response to CCL3, CCL4, CCL5, CXCL16 and fractalkine. Data are 

representative of 5 human donors.

* = p < 0,05 – ** = p < 0,01 – *** = p < 0,001

Hudspeth et al. Page 23

J Autoimmun. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Distribution of CCR5 ligands in healthy human liver
(A) Representative immunohistochemistry image (magnification of 20X) showing-CCL3pos 

(brown indicated with arrows) cells in healthy liver. The hepatic sinusoids are indicated with 

S. (B) Representative fluorescence microscopic image showing the expression of CCL3 

(purple on the left) and CD68 (green in the middle) alone or co-localized on the same cells 

(right). DAPI in blue labels cell nuclei. The hepatic sinusoids are indicated with S (C) 
Summary graphs of statistical histogram bars with p values and SD showing the mean 

number for field of CCL3pos, CCL4pos and CCL5pos cell in the in parenchyma of healthy 

liver determined by immunohistochemistry experiments. Cells were counted at 20X 

magnification and a least 10 fields per specimen were analyzed. Data are representative of 5 

donors. (D) Representative immunohistochemistry image showing the CCL5pos (brown 

indicated with arrows) cells in parenchyma of healthy liver. The hepatic sinusoids are 

indicated with S. (e) Summary graphs of statistical histogram bars with p values and SD 

showing the percentage of CCL5pos/CD3pos T cells, CCL5pos/CD3neg/CD56pos NK cells and 

CCL5pos/CD19pos B cells freshly purified from healthy liver and analyzed by flow 

cytometry. Data are representative of 5 donors.

** = p < 0,01 – *** = p < 0,001
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Figure 6. CD56bright NK cells are preferentially located in hepatic sinusoids
(A) Summary graphs of statistical histogram bars with p values and SD showing the 

percentage of expression of NKp46 on CD56bright and CD56dim H-NK cells from healthy 

liver and analyzed by flow cytometry. Data are representative of 5 donors. (B) 
Representative immunohistochemistry image showing NKp46pos H-NK cells (brown 

indicated with arrows) cells in sections of parenchyma (left) and portal spaces (right) of 

healthy liver. The hepatic sinusoids are indicated with S, bile ducts with BD, hepatic arteries 

with HA and hepatic veins with HV. (C) Summary graphs of statistical dot plots with means 

and P value showing the mean number for field of NKp46pos H-NK cells in the in 

parenchyma of healthy liver determined in immunohistochemistry experiments. Cells were 

counted at 40X magnification and a least 10 fields per specimen were analyzed. Data are 

representative of 3 donors. (D) Representative fluorescence microscopic image showing the 

expression of CCR5 (green on the left) and NKp46 (green in the middle) alone or co-

localized on the same cells (right) within hepatic sinusoids labeled with Lyve-1 (red). DAPI 

in blue labels cell nuclei.
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