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Abstract

Context: Large project overruns and overtime work have been reported in

the software industry, resulting in additional expense for companies and per-

sonal issues for developers. Experiments and case studies have investigated the

relationship between time pressure and software quality and productivity. Ob-

jective: The present work aims to provide an overview of studies related to

time pressure in software engineering; specifically, existing definitions, possible

causes, and metrics relevant to time pressure were collected, and a mapping of

the studies to software processes and approaches was performed. Moreover, we

synthesize results of existing quantitative studies on the effects of time pres-

sure on software development, and offer practical takeaways for practitioners

and researchers, based on empirical evidence. Method: Our search strategy

examined 5,414 sources, found through repository searches and snowballing.

Applying inclusion and exclusion criteria resulted in the selection of 102 pa-

pers, which made relevant contributions related to time pressure in software

engineering. Results: The majority of high quality studies report increased

productivity and decreased quality under time pressure. The most frequent

categories of studies focus on quality assurance, cost estimation, and process

simulation. It appears that time pressure is usually caused by errors in cost

estimation. The effect of time pressure is most often identified during software

quality assurance. Conclusions: The majority of empirical studies report in-
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creased productivity under time pressure, while the most cost estimation and

process simulation models assume that compressing the schedule increases the

total needed hours. We also find evidence of the mediating effect of knowledge

on the effects of time pressure, and that tight deadlines impact tasks with an

algorithmic nature more severely. Future research should better contextualize

quantitative studies to account for the existing conflicting results and to pro-

vide an understanding of situations when time pressure is either beneficial or

harmful.

1. Introduction

Interest in scheduling and time-related issues in software engineering has

been expressed for decades. In the 1970s, in the widely influential The Mythical

Man-Month: Essays on Software Engineering, Frederick Brooks coined the idea

known as Brooks’ law: “adding manpower to a late software project makes it

later” [20]. Similarly, textbooks from the ’80s and ’90s for software developers

and managers, have dedicated chapters and subchapters for “deadline pressure”

and “beating schedule pressure” [41, 85]. More recently, it has been shown that

60-80% of software projects are late (encounter overruns) [87]; because being

late is an antecedent of time pressure, we can assume the latter is fairly common

in the software industry.

In psychological literature, time pressure refers to situations where time is

a limited resource [84]. There are several well-validated theories related to

time pressure and its effects on stress, decision making, and motivation, such

as the Yerkes-Dodson law [145], the job demands-resources model [10], and the

speed-accuracy trade-off [46]. These theories, which we discuss in more detail in

Section 2, are relevant to time pressure in software engineering, despite having

been developed in other fields.

Project overruns and overtime work in the software engineering industry are

reported as common by both academic [87] and practitioner [40, 121] sources.

Yet, we argue that a systematic review of the current understanding of time
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pressure and its effects on productivity in software engineering is needed, in

order to provide a more solid basis for future research. For example, by compil-

ing together previously used metrics of time pressure, our work enables future

studies to conduct well-informed measurements of time pressure in software

engineering.

This review heavily extends our previous work [63], in which clustering on

Scopus data was performed to identify in literature more specific topics on time

pressure in software engineering and related disciplines. We partly use that work

to establish a “seed” set of papers, which we complement with novel, relevant

articles, with Google Scholar searches. The papers are expanded using Wohlin’s

snowballing guidelines [142]. Our goal is to provide an overview of the existing

literature related to time pressure in software engineering and map it to different

process phases, as well as to synthesize the gathered information in a way that

provides new information. The latter is accomplished by seeking answers to the

following research questions:

RQ1-Definitions What definitions of time pressure are used?

RQ2-Metrics What metrics are used to measure time pressure?

RQ3-Process Phases What process phases or approaches are studied with

respect to time pressure?

RQ4-Causes What causes of time pressure are reported?

RQ5-Effects and Outcomes What are the effects of time pressure on soft-

ware development?

The goals of a systematic mapping study are to provide an overview of a

research topic, identify relevant quantities and type of research [105], while the

goal of a systematic literature review aims to summarize and examine to what

extent does empirical evidence support or contradict the considered hypothe-

ses [60]. Hence, the first four research questions are more related to systematic

mapping studies, while RQ5-Effects and Outcomes is applicable to systematic
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literature reviews. Although our paper combines elements of both, we title our

work a systematic review, for convenience. The remainder of this article is struc-

tured as follows. In Section 2, we outline background information on theories

and concepts related to time pressure. In Section 3, we introduce the methodol-

ogy used in this study. In Section 4, we present the definitions of time pressure,

discuss the different metrics that have been used, and elaborate on previous the-

oretical work. In Subsections 4.1 and 4.2, research questions RQ1-Definitions

and RQ2-Metrics are answered, respectively. In Section 5.2, we map a number

of different studies to processes and approaches, to answer RQ3-Process Phases.

Section 6 contains an overview of the existing literature and summarizes the

empirical descriptives provided by several studies. In Sections 6.1 and 6.4.5,

research questions RQ4-Causes and RQ5-Effects and Outcomes are answered,

respectively. Last, in Section 8, we conclude the paper by outlining our contri-

butions and providing a series of takeaways for practitioners and researchers.

2. Related Work

In occupational and social psychology, time is considered to be a resource.

The scarcity of resources, such as time and money, and the effects of scarcity

on mindset and human perception have been a subject of popular science [89].

Mullainathan and Sharif [89] make the case that scarcity of time introduces

both tunneling and focus mindsets. Tunneling, in this context, means valuing

short-term over long-term goals that are related to the scarcity of a resource.

An example could be when time-scarce software engineers prefer a solution that

is quick to implement, regardless of its impact on the longevity of the software.

However, a scarcity mindset can also make individuals focus when spending a

limited resource. In our example, scarcity of time would make software engineers

avoid gold plating, i.e. working on a task beyond what is reasonably expected.

In many studies, time pressure is defined as the perception that time is scarce

in relation to the demands of the task [13, 59, 28].

Another view on time pressure comes from the Yerkes-Dodson law, which

dates back to the start of the 20th century [145], and states that arousal, caused
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by (time) pressure, and performance have an inverted U-shaped relationship.

This is depicted in Figure 1. In other words, arousal increases performance, but

only up to a certain point, from where performance starts decreasing. In this

view, time pressure is seen to increase the activation level and urgency (arousal).

Figure 1: The Yerkes-Dodson law

The speed-accuracy trade-off [46] offers another lens for viewing time pres-

sure: it is observed that the decision speed negatively correlates with the quality

of the decision. In fact, the phenomenon is ubiquitously observed, with species

such as ants or bumblebees [46]. The speed-accuracy trade-off is commonly used

as a benchmark for decision processes across task-domains, as simply examin-

ing either reaction speed or quality alone is not a sufficient benchmark. The

speed-accuracy trade-off has also been, in part, the subject of human computer-

interaction studies [73].

In occupational psychology, the well-known job demands-resources model [10]
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is used to explain employee well-being. Generally, the model assumes every job

to have both demands and resources, and well-being to be the result of their

balance. Resources in the model refer to skills, autonomy, feedback, and oth-

ers, while demands can include role ambiguity, performance, and emotional

demands. Hence, time pressure can be seen as a demand, with too much of it

leading to worse well-being outcomes, exhaustion, and even burnout [31].

Evidence has also shown teams may work exceptionally well under extreme

time pressure, such as the Apollo 13 ground crew [25]. Thus, in a work by Chong

et al. [25], a challenge-hindrance framework [69] for time pressure was deemed

appropriate. In this view, time pressure is defined as having either positive

(challenge) or negative (hindrance) effects on goal achievement. LePine et al.

[69] pointed out that challenges could be viewed as good stress, while hindrances

as bad stress. Thus, not only the amount, but also the type of time pressure

matters. Examples from Chong et al. [25] of hindrance (bad) time pressure

are “amount of constant switching between tasks” or “impossibility to fulfill

the project schedule,” while challenge (good) time pressure item examples are

“importance of completing this project on time” or “urgent need for successful

completion of the work the team is doing.” As recognized by Chong et al. [25],

the boundaries between challenge and hindrance are not always clear, and Chong

et al. [25]’s survey had several items that did not clearly fall in either category.

In software engineering, the challenge-hindrance time pressure definition has

been used by Lohan et al. [72].

As demonstrated by the clustering performed in our previous work [63], time

pressure has been studied across different occupations and fields, e.g., account-

ing, medicine, construction work, and vessel operating pilots. The mediating

role of knowledge under time pressure haven been previously suggested: for ex-

ample, accounting professionals (considered a high-knowledge group) improved

their performance under time pressure, whereas the performance of students

(low-knowledge group) decreased [127]. Similarly, industry-specific auditors

have been reported to experience less time pressure than non-specialized au-

ditors [49]. In nursing, time pressure has been linked to worse patient safety,
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but only together with high levels of burnout [132]. Another context where time

pressure has been studied is related to risky choice behaviour, the majority of

the studies indicating higher risk taking under time pressure [74].

3. Methodology

In this section, we present the methodology used in this study. Subsec-

tion 3.1 introduces the inclusion and exclusion criteria we used to grade the

found literature. In Subsection 3.2, we present the database search strings and

approaches. In Subsection 3.3, we explain the snowballing procedure in detail.

Last, in Subsection 3.4, we explain the data extraction in detail. The entire

research methodology is shown in Figure 2.

3.1. Selection criteria and selection process

As previously stated, our goal is to provide an overview of time pressure in

the software engineering context, that overviews the definitions, metrics, process

phases, causes and effects found in the literature. This goal leads to our first

inclusion rule (I1).

The second inclusion rule (I2) is about studies that include time pressure

variables and provide empirical evidence, but whose main focus might lie else-

where. For example, integration failures [24]. The second inclusion rule gives

this paper a broad scope and highlights less well-known papers related to time

pressure in software engineering that are not as easily found. In practice, we

excluded papers with brief mentions of deadlines or time pressure, which were

not derived based on a systematic effort to gather information, as anecdotal

level evidence. For example, sources where time pressure is used to explain

unexpected results ex post facto as a possible contributing factor. We define

empirical evidence as either quantitative studies conducted with data includ-

ing variables related time pressure, or qualitative studies which study and have

practical takeaways in time pressure and time usage related issues. Hence our

inclusion criteria takes into account quality of evidence.

We used the following inclusion criteria:
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I1 The main focus is time pressure in software engineering.

I2 The paper presents empirical evidence of time pressure in software engineer-

ing.

We formed the first and second exclusion rules (E1 and E2) at the beginning

of the search to quickly exclude sources that we could not reliably interpret,

or which were not published in scientific venues. The exclusion rules E3 was

formed iteratively throughout the literature search process when we encountered

studies that were clearly related to time pressure and computers, but that did

not relate directly to software development, such as studies on the end users of

information systems. We used the following exclusion criteria:

E1 The paper was written in language other than English.

E2 Not a scientific source.

E3 The task studied is not a software development task.

Only one of the inclusion criteria had to be present in a paper for it to be

included. In practice, this meant that papers without empirical evidence had

less chance to be included, as their focus had to be time pressure to be included

with inclusion rule I1. One such example is the agency model by Austin [7],

which only satisfies the inclusion rule I1. However, multiple papers we included

fulfill both rules of the inclusion criterion.

The use of exclusion criteria differed based on the rule. Rules E1 and E2

excluded a paper as soon as we observed the paper was written in a language

other than English or that it was not published in a scientific venue. However,

when we discovered papers with elements of exclusion criterion E3, we examined

them so that we could come to a verdict. In other words, if the papers made

contributions related to I2, but all these contributions were covered by exclusion

criteria E3, the paper was excluded. However, if the paper made some contri-

butions related to inclusion criteria I2, for which exclusion criterion E3 was not

related, we included the paper.

8



Figure 2: Flow chart of our research methodology.
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The selection process for each paper started with the first author reading

the title and the abstract of the paper. In cases where no definitive decision

could be made based on these elements, the first author read the conclusions

and other relevant sections of the paper until we could make a decision based on

the selection criteria. The first author was advised to default to caution when

unclear cases were found, as we did not want to miss any potential papers. This

made the selection process more laborious, but reading just the abstract would

not have uncovered papers making significant and relevant contributions such

as Cataldo and Herbsleb [24].

Unclear or borderline cases were marked down and discussed by the first

two authors until a decision for inclusion or exclusion could be made. We used

two person review only for borderline papers. We settled upon this approach as

we had very large set of papers to cover and as most of the exclusion decisions

were simple, as can be seen in Table 2. This meant that we could afford careful

pondering on the borderline cases. For transparency, also all borderline cases are

marked in our replication package1. A total of 129 papers were marked unclear

and discussed by the two first authors. Of these 129 papers, we included 23

1https://figshare.com/s/0662c66e0705ebf8dca7
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Table 1: Search strings, total results and included papers from the database search
Search Engine Search String Results Included
Scopus Title or keyword: “time pressure”, “schedule pressure”

“time budget pressure”, “deadline pressure”
“pressure of time”, “pressure of schedule”
“pressure of time budget”, “pressure of deadline”
“speed accuracy tradeoff”
And not title, abstract, or keyword:
“long rise-time”, “intracranial”, “drill”, “space-time” 1270 12

Scopus “schedule compression” AND “software engineering” 91 4
Google Scholar “time pressure” AND “software engineering” 100 13
Google Scholar “schedule pressure” AND “software engineering” 100 16
Google Scholar “time budget pressure” AND “software engineering” 100 3
Google Scholar “deadline pressure” AND “software engineering” 100 11
Google Scholar “pressure of time” AND “software engineering” 100 0
Google Scholar “pressure of schedule” AND “software engineering” 19 0
Google Scholar “pressure of time budget” AND “software engineering” 4 0
Google Scholar “pressure of deadline” AND “software engineering” 17 1
Google Scholar “speed-accuracy tradeoff” AND “software engineering” 100 0
Google Scholar “schedule compression” AND “software engineering” 100 1

in the literature review. Occasionally, the unclear cases led to clarification of

the interpretation of the inclusion and exclusion rules. For example, we did not

anticipate that there would be papers from non-software engineering forums

that gave in-depth narrative descriptions of software companies with extensive

time pressure and its consequences, such as Borg [19], who observed an ICT

company and the problems arising from time pressure. The first author went

through all the sources found with database searches twice. This was to ensure

our interpretation of the rules were consistently enforced, additionally we had

not explicitly recorded the reasons for inclusion and exclusion during the first

round.

3.2. Database search methodology

Part of the initial database search was based on our previous work [63],

in which we used the Scopus database search with Latent Dirichlet Allocation

(LDA) clustering to get an overview of where time pressure has been studied.

As advocated by Kitchenham and Charters [60], we used multiple trial searches

to establish keywords and synonyms for time pressure, all of which can be found

in Table 1. We used Scopus and Google Scholar for the primary literature search

from databases. All used search strings can be found in Table 1, together with
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the number of total results and the number of primary sources we included

for our review. Because Google Scholar also searches in the article full-text,

while Scopus searches only for title, abstract, and keywords, we used the tool

Publish or perish 5 2 to complement the search from Scopus with Google Scholar

searches. For the complementary Google Scholar search, we took only the first

100 results for each search. Additionally, we performed some ad hoc searches,

and they resulted in six additional papers. Altogether, we included 61 sources

from the 2,100 found with repository searches. In the flowchart described in

Figure 2, the initial search can be found in the activity ”Initial search,” and

the additional papers found with ad hoc searches are added to the final set of

papers as ”+7.”

3.3. Snowballing

Wohlin’s snowballing guidelines [142] were used to construct a set of seed

papers and snowball through them. The set of papers used for snowballing

contained papers we found with repository searches (Section 3.2). We included

11 papers, with broad range of authors and publication fields and venues. One

round of snowballing was performed forward and backward for these papers.

Additionally, all publications published by the authors included in the seed pa-

per set were examined with the selection criteria. We used only Google Scholar

to identify papers needed for the snowballing. Indeed, we had determined that

effort was better spent on reviewing more papers on the snowballing phase

rather than double checking two search engines (Scopus and Google Scholar)

for a smaller number of additional papers.

In the snowballing phase, 3,314 papers were evaluated based on the selection

criteria, and it resulted in the inclusion of 34 additional papers. The snowballing

phase had an inclusion rate of 1.03%.

Before we started hierarchical coding, two of the authors went through all

the included papers together and discussed their relevance for the topic. Based

2https://harzing.com/resources/publish-or-perish
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Table 2: Verdicts
Verdict Scopus Scholar Snowballing %
The main focus is time pressure in
software engineering (I1) 10 5 11 0.5%
The paper presents empirical evidence of
time pressure in software engineering (I2) 6 40 23 1.3%
Already Included, duplicate 4 35 81 2.2%
No empirical evidence on time pressure,
not focused on time pressure (I1 & I2) 73 523 1366 36.2%
Not a software development paper (E3) 1246 109 1491 52.6%
Not a scientific source (E2) 15 10 19 0.8%
Not available 7 17 194 4%
In language other than English (E1) 1 128 2.4%

on these discussions we excluded six papers, as in practice these papers included

only anecdotal evidence. These six exclusions are not reported in the previous

numbers.

While we were conducting this literature review, work by Basten [13] has

been published. Our work at that stage already included 9 of the 13 papers

Basten introduced in his work. Of the four not included, based on our inclusion

and exclusion criteria, we decided to include two, as well as the paper by Basten.

This explains the +2 in Figure 2 in the final set of papers. Overall, our work is

broader than Basten’s as we have 102 papers while Basten had 13 of which we

include all but two.

We have also provided verdicts for all papers in Table 2. This table only

includes verdicts for papers found with the database search strategy and snow-

balling. This means that papers found Ad hoc (see figure 2), such as Basten

[13], are not included in the table.

As can be seen in Table 2, the most common reason to exclude a paper was

when its context was deemed outside of software engineering. This, for example,

included papers focusing on users of information systems rather than develop-

ers. The second most common reason to exclude a paper was not meeting any

of inclusion criteria. Not available verdict includes sources with incomplete bib-

liographic information, non-digitalized material, as well as some papers behind

paywalls we did not have access to. Of the included papers, 29 were included
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with the inclusion criteria I1 and 73 were included with the criteria I2.

3.4. Data extraction

The papers we included were qualitatively coded and analyzed using QSR

International’s NVivo3. We followed Zhang and Wildemuth [147] qualitative

guidelines. The coding scheme was both used to familiarize ourselves with the

material, as well as to form the basis for Sections 4, 5.2 and 6.

Coding started with few ready codes, such as process phases and causes

of time pressure, but it was iteratively improved. In the end, highest level of

the coding included classes empirical results, definitions, research methodology,

research questions and hypotheses, and lastly process phases. The coding for

process phases formed the basis for the mapping in Section 5.2, while coding

for empirical results formed the basis for Section 6. In the first round, the first

author coded all the sources. The resulting coding scheme was improved and

checked by the second author. Once every paper was coded and the coding

scheme was ready, the first author went through all the papers a second time to

apply the scheme consistently on every source. Finally, all the authors checked

the results and analyzed a part of the coding that was given to them. In practice,

this meant that at least two persons checked all parts of the coding scheme and

coded text. We have included a picture depicting the coding scheme in our

replication package4.

4. Definition, metrics, and previous theoretical work in software en-
gineering

In this section, we provide and examine the definitions given for time pres-

sure in the previous literature, summarize the metrics used to measure it, and

introduce prior theoretical works focusing on time pressure in software engi-

neering context. Research question RQ1-Definitions about which definitions of

time pressure are used is answered in Subsection 4.1. Additionally, research

3https://www.qsrinternational.com/nvivo/home
4https://figshare.com/s/0662c66e0705ebf8dca7
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question RQ2-Metrics about which metrics are used to measure time pressure

is answered in Subsection 4.2.

4.1. Definition

Multiple synonyms for time pressure exist in the scientific literature about

software engineering, such as schedule pressure [34], deadline pressure [29], and

time budget pressure [91]. Schedule pressure and deadline pressure emphasize a

deadline or deadlines when a task or project should be done while time budget

pressure highlights the amount of time that can be used for a task or a project.

Pressure due to compression of the schedule was considered in the early

work of software engineering. Barry Boehm [18] defined schedule compression

as the percentage of schedule cut in a project’s planned duration compared to

the nominal schedule of the project. This a definition was used later in research

into project simulation models [53, 1].

Powell et al. [108] defined schedule pressure as the relationship between

required and applied productivity. Additionally, they discovered that “it is

possible to increase pressure on the development team (by requiring additional

productivity) but only up to a certain point, after which productivity rapidly

declines,” pointing at the Yerkes-Dodson law [145].

To summarize, the definitions of time pressure focus on an individual’s per-

ception of the time scarcity [13, 59, 28], or on the project level of schedule

compression [18, 108]. The two main concepts of how time pressure is under-

stood in software engineering literature are the U-shaped relationship between

arousal and performance [145] and the division of time pressure into challenge

and hindrance time pressure [25].

4.2. Metrics and operationalization

Gathering metrics for time pressure is essential. As different definitions of

time pressure exist, metrics for operationalization of those definitions reveal

more details about time pressure. The metrics in empirical settings can vary

from study to study, and they also depend on what is available in each context.
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Summarizing the metrics helps future researchers as they can consider the ex-

isting metrics when designing their studies. Table 3 shows all the metrics we

found to measure time pressure.

Questionnaire and survey-based metrics that use an ordinal scale to mea-

sure time pressure are popular [97]. Early on, Banker and Kemerer [11] simply

asked project leaders if the deadline pressure was higher than average. Simi-

larly, Mukhopadhyay and Kekre [88] asked to rate software projects on a scale

of one to four regarding deadline pressure, where four signaled very high pres-

sure. Durham et al. [32] developed a scale specifically designed to measure time

pressure, which Maruping et al. [83] used to study time pressure in software

projects. General questionnaires, such as the NASA Task Load Index (NASA-

TLX), have a question about the temporal demand of a task and have been

used to measure time pressure in software engineering [81].

The literature of software cost estimation uses metrics-based estimated ef-

fort. Ruiz et al. [117] defined schedule pressure as estimated effort, minus the

remaining effort divided by the estimated effort, meaning a positive value indi-

cates delayed project, while a negative value indicates a project that is advancing

according to the initial estimates. Nan et al. [90] defined time pressure as the es-

timated time for the project minus the customer negotiated time for the project

divided by the estimated time for the project. This work is similar to Ruiz et al.

[117], but the difference is that they used customer-negotiated time instead of

estimated effort. Cycle time was defined as the project duration starting from

the first day of design work and continuing until the customer accepts the de-

livered product. The authors also used this metric in a more well-known later

work from 2009 [91]. In COCOMO II [17] actual schedule compression is defined

as the ratio between actual schedule and the estimated nominal schedule.

Cataldo [23] used a metric, called the task temporal metric, to estimate time

pressure experienced in a project. It is calculated as the standard deviation of

modification requests completed each month. The author contented that the

high value of the task temporal metric is associated with an uneven workload

during the project which suggests time pressure in the months with a high
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Table 3: Metrics identified from the collected literature
Metric to Measure Time Pressure Example Papers Data Source
Estimated time − customer negotiated time

estimated time
[90] Company Project Database
[91]

Actual Schedule
Nominal Schedule

[17] Company Project Database

Estimated effort − Remaining effort
Remaining effort

[117] Model simplification
Standard deviation of tasks
completed in a project each month [23] Company Project Databases
Questionnaires and surveys [97] Questionnaires and surveys

[83]
Physiological measurements [62] Skin Conductance

[134] Electromyography
Electrocardiography, etc.

Sentiment analysis [77, 80] Natural Language Text

number of tasks.

More recently, there have been efforts to detect time pressure with sentiment

analysis and various sensors. Ko lakowska et al. [62] introduced a multi-modal

emotion recognition application, which combined physiological, video, and depth

sensors, to train a classifier to be used with several software engineering meth-

ods. The motivation for the work in part came from future work of detecting

stress induced by time pressure and an investigation of productivity and emo-

tions. Similarly, using sentiment analysis, Mäntylä et al. [77] found that higher

arousal (e.g., activation level) was associated with more severe issue reports. In

a later work, Mäntylä et al. [80] developed a lexicon for sentiment analysis for

more efficient detection of arousal levels in the software engineering context.

We present experimental designs used to create time pressure; see Table 4.

They are not about measuring time pressure but represent essential information

on the operationalization of time pressure. An early paper by Hwang [52] noted

that time pressure can be operationalized as the time available for task perfor-

mance, for example, as different time limits in experiment settings. Different

time limits [56] and task difficulties [113] have been widely used in experimental
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Table 4: Creating time pressure in Experiments

Creating Time Pressure Example Papers Data Source
Time limits in [56] performance in the experiment
experimental settings [78]
Task difficulties in [113] performance in the experiment
experimental settings
Reward for faster completion [81] performance in the experiment
in experimental setting

settings as operationalizations of time pressure. Rewarding faster completion is

another alternative to create time pressure in experiments [81].

4.3. Theoretical papers and reviews

During our search for academic literature, we did not find any previous

sources following systematic literature review guidelines to assess previous work

related to time pressure in software engineering. However, we found theoretical

work and non-systematic literature reviews that focused mainly on time pressure

in software engineering.

Early focus on time pressure in software engineering is related to cost models

and cost estimation. Costello’s paper from 1984 is a prime example of a purely

theoretical paper. The paper presents a simplistic scheduling model and dis-

cusses schedule pressure at length based on experiences. The main contribution

of the paper is a list of resource allocation strategies aimed at decreasing the

effects of schedule pressure.

Widely cited paper by Austin [7] presents an agency framework focused on

the effects of time pressure on software quality. Based on the modeled frame-

work, the author recommends setting aggressive deadlines, where it is okay to

miss deadlines. The author also concluded that adding slack time does not nec-

essarily minimize costs and that deadlines should be set separate from planning

estimates.

Malgonde et al. [75] presents a research proposal about how emergent out-

come controls are adapted when time pressure increases. The authors planned

to investigate with interviews and critical incident method.
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Harris et al. [44] considers time-related concepts and issues in Agile software

development and introduces research propositions for the future. These concepts

and issues are highlighted with data from qualitative interviews. The authors

compare the role of deadlines in traditional software projects that use the wa-

terfall life cycle and software projects that use Agile methods. The authors

argue that employee motivation and stress should be compared with multiple

shorter deadlines versus one longer deadline in the Agile software development

context, and additionally comparing time-to-completion with higher and lower

uncertainty projects developed with Agile and plan-driven approaches.

Basten [13] present a literature review and a research agenda basis for future

studies. Part of the research agenda is a call for methodological pluralism, as

the author argued that previous works did not use qualitative research methods.

Basten [13]) also argue for research agenda conceptualization (e.g., better def-

initions of time pressure), research on contemporary development approaches,

such as Agile and Scrum, better definitions of the role of the context of time

pressure to better understand the diverse results, and empirical validation in

the form of replication studies.

Last, our previous work [63] presented a computer-aided literature review

and introduced testable hypotheses related to time pressure from fields other

than software engineering. The paper presented a list of testable hypotheses

in software engineering related to time pressure derived from fields other than

software engineering. For example, under time pressure, fewer test can run and

hence less feedback is provided, or more bugs are introduced to the code in more

complex classes near deadlines. Additionally, that paper formed the foundation

for this paper.

5. Mapping

In this section, we provide bibliographical information the selected studies,

map them to process phases and methodologies, as well as to used research

methods. In Subsection 5.1, we provide bibliographical information for the
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selected studies and their mapping to the adopted research methods. Next,

Subsection 5.2 discusses the mapping to process phases and methodologies.

5.1. Publication years, venues and used research methods

Figure 3: Number of publications per year.
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The main focus is time pressure in software engineering.

The paper presents empirical evidence of time pressure in software engineering.

Figure 3 shows the publication years of all the papers included in the present

study. It can be observed that the number of publications is larger after the

year 2000, than before it. All the earliest publications focus on cost estima-

tion and process simulation models, e.g., Costello [29] and Jeffery [53]. More

recent papers include Agile methodologies (e.g., Laanti [65]), software process

improvement (e.g., Agrawal and Chari [4]), and time pressure detection (e.g.,

Ko lakowska et al. [62]).

Similarly, Table 5 shows the most common publication venues, which pub-

lished two or more papers of the articles we included in the study. We note that

35 were published in conferences or workshops, 57 in academic journals, 7 in

academic magazines (e.g., IEEE Software, Computer, Communications of the

ACM, etc.) and 2 in PhD theses.
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Table 5: Most common publications venues

Publication N
Journal of Systems and Software 10
Information and Software Technology 7
International Conference on Software Engineering (ICSE) 5
IEEE Transactions on Software Engineering 5
Americas Conference on Information Systems (AMCIS) 4
Academy of Management Journal 3
Computer 3
International Symposium on Empirical Software Engineering and Measurement (ESEM) 3
Journal of Management Information Systems 3
Communications of the ACM 2
CrossTalk - The Journal of Defense Software 2
Hawaii International Conference on System Sciences (HICSS) 2
IEEE Software 2
Information Systems Research 2
International Conference on Information Systems (ICIS) 2
International Conference on Mining Software Repositories (MSR) 2
International Journal of Human-Computer Interaction 2
Others 43

We have mapped the included studies also according to the adopted research

methodologies. We define as ”Theoretical Papers & Reviews” (see Table 6) ar-

ticles that do not provide their own original empirical evidence (i.e., secondary

and tertiary studies). Next, position pieces include positional papers arguing

for a position or a research proposal, but lacking experimentation and original

research. We have defined studies that create and evaluate an artifact (e.g., a

simulation model) as design science research Peffers et al. [100]. Otherwise, for

empirical research we followed the categorization by Easterbrook et al. East-

erbrook et al. [33], with the addition of a “company data” category for studies

that quantitatively analyze software project data from multiple projects. We

present the result in Table 6. The most commonly used research method is

Design Science. The code to reproduce Tables 5 and 6 and Figure 3 is given in

our replication package.5
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Table 6: Number of implemented research methodologies.

Methodology N
Design Science Research 19
Mixed Methods 14
Survey 13
Experiment 12
Case Study 12
Company Data 12
Theoretical Papers & Reviews 9
Position Piece 7
Ethnographic Study 3
Action Research 1

5.2. Process phase or approach

In this section, we summarize and map the papers we found into different

process phases and methodologies, to give the context of their results. This

can be useful for a scientist who is interested in a particular process area. We

map the papers to the different process phases of the waterfall model [126].

Additionally, we mapped the sources to two other categories. First, the category

whole process or approach includes papers that cover multiple process phases.

Second, the category other includes various sub-categories in which multiple

papers concentrated on a single theme. One paper can be mapped to multiple

groups.

We found only two papers related to requirements engineering. In total,

the software design category contains five papers and includes papers related

to software acquisition. Papers related to programming and implementation,

in general, are grouped under one category and included five papers. Papers

related to integration, testing, and defect fixing are categorized under quality

assurance and included 17 papers in total. For the process phases, papers related

to maintenance are categorized with software evolution and release engineering

and include three papers. Of all the sources categorized into software process

phases, the highest number of papers is found in the quality assurance category.

5https://figshare.com/s/0662c66e0705ebf8dca7
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Table 7: Found papers by investigated software development process phases and methodologies

Category Sub-Category Papers
Process phase Requirements engi-

neering
[15, 36]

Process phase Design and Acquisi-
tion

[35, 52, 95, 116, 130]

Process phase Programming and
implementation

[82, 107, 119, 125, 133]

Process phase Quality Assurance [12, 23, 24, 26, 30, 34, 43, 56,
58, 67, 70, 77, 78, 79, 81, 122]

Whole Process
or approach

Evolution and main-
tenance:

[11, 43, 113]

Whole Process
or approach

Agile and Scrum: [15, 44, 65, 72, 76, 115, 116,
134, 138]

Whole process
or approach

Process improve-
ment

[4, 8, 9, 93, 94, 99, 123]

Whole process
or approach

Cost estimation,
cost models, simu-
lation and project
escalation:

[1, 2, 3, 14, 15, 22, 29, 47, 48,
50, 51, 53, 61, 68, 71, 86, 88,
90, 91, 106, 108, 112, 114, 116,
117, 124, 143, 144, 146]

Whole Process
or Approach

Project Success and
Failure

[34, 55, 92, 110, 139]

Other Detection of time
pressure

[62, 77, 80]

Other Group interaction [66, 72, 82, 83, 97]
Other Fields other than

Software Engineer-
ing and Information
Systems

[19, 27, 38, 39, 54, 101, 102,
103, 104, 120, 128, 131, 141]

Other Literature reviews
and theoretical
papers:

[7, 13, 29, 44, 63, 75]

Other New product devel-
opment

[16, 136, 137]

Other Individual psycho-
logical factors

[38, 39, 42, 65, 98, 134, 135]
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This could reflect that quality assurance is the last step before software releases,

and thus, is performed just before the most critical deadlines.

Other sub-categories are derived from the qualitative coding with NVivo.

We grouped papers related to whole processes or approaches into Agile and

Scrum, project failure, and process improvement. In addition, papers related

to temporal aspects of project management are in this category as subcategory

cost estimation, cost models, simulation, and project escalation. There is a

total of 29 papers in this category. The high number of studies related to cost

estimation, cost models, simulation, and project escalation can be explained

by the problems in these activities, as errors in cost estimation and scheduling

cause time pressure. This is further explained in Section 6.1.

Last, we put other groups under the group Other. Detection of time pres-

sure includes papers that present or investigate ways of detecting hurry and

arousal in software engineering. Group interaction contains sources investigat-

ing interaction in software context. Sources not containing their own empirical

evidence are grouped as Literature reviews and theoretical papers. Papers from

non-software engineering fields such as psychology, occupational health, and

sociology as a fourth sub-category. We included these papers because they

examine software engineering projects and offer valuable contributions to the

understanding of time pressure in software engineering context. We also found

three papers examining new product development and five papers that investi-

gated group interaction in software engineering. We placed papers from studying

factors related to the mind in the sub-category Individual psychological factors.

6. Empirical results

In this section, we present and summarize the empirical contributions of the

papers we found in the literature. First, we review the identified causes of time

pressure in Section 6.1. Then, we present effects on individuals in Section 6.2

and different software processes in Section 6.3. Finally, in section 6.4, we review

how time pressure affects the outcome of a software project by investigating
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the results through common project management measures of time, cost and

quality. Each of these sections end with a summary helping a skimming reader.

6.1. Causes of time pressure

6.1.1. Effort estimation, scheduling, and management

Several problems in effort estimation and scheduling that cause time pressure

are mentioned in the literature. These problems include long schedules [55], in-

sufficient experience [139], insufficient historical data [123], schedule slips [136],

and change requests [67, 54].

Jones [55] wrote about the reasons for software project failures. In his ar-

ticle, he listed the root causes of unrealistic schedule pressure as follows: “1.

Large software projects usually have long schedules of more than 36 months. 2.

Project managers are not able to successfully defend conservative estimates. 3.

Historical data from similar projects is not available. 4. Some kind of external

business deadline affects the schedule.”.

In further work, Ebert and Jones [34] noted that projects with higher defect

removal effectiveness tend to have shorter schedules, as testing is the part of

development where delays typically happen. This observation is supported by

Table 7 that shows a high number of papers in the quality assurance phase. The

authors elaborate further: “Applications that enter testing with an excessive

volume of defects cannot exit the testing phase because they don’t work.”

Incorrect estimates often lead to deviations from the initial project plan [14].

Another study showed that allowing schedule slippage increases time pressure

if the final deadline is not adjusted [136]. Although the root cause of schedule

pressure in Van Oorschot et al. [136] was chronic under-staffing, the schedule

slips increased the overall schedule pressure of this new product development

project.

Reasons for effort estimation problems and subsequent failures to meet dead-

lines in Capability Maturity Model Integration (CMMI) level 5 organizations are

given by Smite and Gencel [123]. In many cases, these problems stem from a

lack of historical data for creating the estimates. Similarly, Miranda and Abran

[86] suggested using probabilistic models to combat underestimation. In an
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older survey about using expert judgment as an estimation tool [50], it was

found that only few estimators use information about deadline pressure when

producing estimates.

Verner et al. [139] investigation on the causes of failures showed that software

projects failed because of multiple factors. However, three of the four most

common factors involved time and were outlined as the “delivery date impacted

the development process,” which was present in 93% of failed projects, “project

was underestimated”, which was present in 81% of failed projects, and ”staff not

rewarded for working long hours”, which was present in 73% of failed projects.

In a survey, partly by the same authors, time related reasons such as ”project

completed on time” are not seen as important for project success [110]. In

contradiction, a literature review summarizing project success factors [92] lists

”Realistic schedule” as the third most common factor, and ”Realistic budget”

as the eight most common success factor on the reviewed literature.

Change requests, especially ones that are tied to internal dependencies of

the developed software, have also been reported to increase time pressure [67,

54]. Similarly, requirements volatility has been mentioned as a cause for time

pressure in a study conducted with surveys [36]. Overscoping, i.e. requiring

more resources than available, is mentioned as a cause for time pressure by

Bjarnason et al. [15]. It has been noted by Reichelt and Lyneis [114] that in

complex projects with significant overruns, budgets were consumed for original

work and any rework resulted in overruns and time pressure. Projects with

budgets in which resources remained after initial rework were tied to less severe

overruns [114].

Similarly, an unexpected shortage of resources, for example, unplanned leaves,

have been reported to increase time pressures in software testing [122]. In the

same paper, postponement of deadlines was also mentioned as one cause of time

pressure. A case study investigating the effect of rapid releases on software

testing found that testing becomes more deadline oriented with rapid releases,

as testing is performed closer to deadlines [79].

In the interviews, poor planning and a lack of organization were also men-
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tioned as a cause of time pressure in addition to redundant meetings taking

time away from other work tasks [30]. In interviews conducted by Blackburn

and Scudder [16], managers mentioned that by not giving developers enough

time, they forced developers to reuse more code. Last, interruptions and the

increased cognitive load of task switching during a constantly changing software

project was mentioned by Sawyer and Southwick [120] as a reason for increased

pressure and declining performance. Scheduling does not generally take individ-

uals and their long-term tasks into account, resulting in difficulties prioritizing

and multitasking when the task is continuously changing.

To summarize, evidence shows that poor effort estimates lead to time pres-

sure in software engineering. Conversely, realistic schedule is seen as a critical

success factor for projects. A lack of historical data causes poor estimates, as

well as business motivations for earlier deadlines, but more in-depth analysis

for the reasons of poor estimates is beyond the scope of this work. If the final

deadline is not adjusted, changes in a project’s internal schedule do not help in

dealing with time pressure. Moving deadlines up also increases time pressure.

Based on Ebert and Jones [34] and the numerous studies in Table 7, it appears

that time pressure is most common in quality assurance. The lack of a buffer

for unexpected work (e.g. change requests) or unexpected resourcing changes

(e.g. unplanned leaves) leads to time pressure. Finally, poor organization of

work and interruptions cause time pressure in software projects.

6.1.2. Company culture

Many papers reported time pressure and long hours as part of company

culture, instead of time pressure being created due to shortcomings in effort

estimation, which can be technical. Prolonged or constant pressure can lead

to an unsustainable pace of software development and crisis mentality in the

company.

Perlow [101] reported on the use of demands by senior managers to junior

managers and engineers, where those who demonstrate prioritization of work

over their lives outside work are rewarded. This is also demonstrated by pressur-
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ing employees not to take time off during ”crisis time,” which leads to canceled

vacations.

A company culture of individual heroics, high-visibility work and valuing

of commitment to the company over everything were seen as factors that affect

company culture and time pressure in another study by Perlow [102]. Individual

heroics refer to a cycle observed in the company where deadlines are confronted

too late and met with a crisis mentality and the extra effort of individual work-

ers. High-visibility work was seen as a way to advance in the company; managers

prioritized this work as they considered it crucial for their advancement, and

resulted in regular checkups by the managers.

Perlow [103] also studied the time usage of software engineers in three dif-

ferent sites (China, India, and Hungary), to see if different cultural settings

and management styles influence work hours or if long work hours are inherent

in software engineering work. Perlow discovered variations in the way work is

scheduled and coordinated, as well as in the flexibility of when and where soft-

ware engineers can work. Furthermore, Perlow found that specialized roles and

personal modes of coordination make working hours more strict, as developers

need to work more overlapping hours.

Perlow et al. [104] conducted an ethnographic study of an Internet start-up

during a period of 19 months, during which the company grew from a group of

four students to a $125 million company to bankruptcy. Because of the context

of Internet start-ups, the company adopted a culture of fast decision making.

Initially, it helped the company grow, but eventually, this mentality trapped the

company in a process where they believed they had to make continually faster

decisions to survive. The managers decided to ”light a fire under the company”

to create a ”state of emergency address” to stimulate people. It created a sense

of urgency which had a positive influence on the speed of decisions. Faster

decisions created faster growth, which itself implied a need for faster decisions.

This is the opposite of intuition and theory as, after initial growth, there should

have been a lower sense of urgency according to previous work [21]. The authors

justified this difference with the context in which the company evolved: the fast
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world of the Internet.

Tapia [131] conducted a study using qualitative social research methods on

the role of myths in the IT workplace. Tapia noted that in the company, employ-

ees working in teams challenged each other and developed a ”one-up-man-ship”

culture, where employees competed to see who could spend the most time for

work. This turned into more frequent 80-hour workweeks, as free time was

expected after the next deadline but most of the time was not realized.

In a study by Jemielniak [54], a similar company culture was reported, where

managers believed programmers showed their commitment to the company by

remaining at the workplace for longer hours. Additionally, in part because

programmers’ schedules were flexible at the company, and because programmers

were asked to estimate how time-consuming their tasks were going to be, some

software engineers admitted that scheduling and estimating changed to guessing

the wishes of managers and the customer.

An action research study by Borg [19] focused on company culture in an

ICT company located in Malta. Borg noted that using long work hours as a

benchmark for ideal workers led to time pressure and even to burnout. Borg

also noted the unequal effects on different kinds of workers, with mothers having

the most trouble committing to the extra time demanded.

In summary, qualitative studies report on company cultures which foster

time pressure. Factors reported to create company culture of constant time

pressure include demanding prioritization of work over private lives to advance

ones career [101, 54, 19], focus on individual heroics over development process

[102], specialized roles and personal modes of coordination [103], prioritizing a

sense of urgency without a period of rest and refocus [104].

6.2. Effects on individuals

Positive effects of time pressure can include an increase in motivation or

teamwork. Paul and He [98] report, based on an experiment, that in the con-

text of short-term online virtual groups, time pressure enhances motivation.

Similarly, Marques et al. [82] reported that pressure acts as a support that
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triggers teamwork.

Two studies [113, 81] reported support for a mediating role of knowledge to

perceived time pressure by an individual, that is, knowledge increases efficiency

and decreases the effort needed for task completion.

Langer et al. [66] and Maruping et al. [83] studied the effect of managers on

team performance. Langer et al. [66] studied the relation of managers’ practical

intelligence and job performance, finding that software projects with schedule

pressure benefited from a manager who scored high on practical intelligence.

Practical intelligence is related to “resolving unexpected and difficult situations

that often cannot be resolved using established processes and frameworks.” Sim-

ilarly, Maruping et al. [83] showed that “managers can intervene to reorient

team members’ efforts toward effective task management through scheduling of

interim milestones, synchronization of tasks, and restructuring of priorities,”,

increasing team performance.

In the job demands-resources model, stress is assumed to be the result of

an imbalance between demands and resources, for example, the demand for

the tasks needed for the next deadline and the limited time resources before

it. Hence many effects of stress can be linked to a lack of time. Sanjram

and Gupta [119] showed that programmers with time constraints experienced

more significant workload as measured by the NASA-TLX assessment tool [45].

Furthermore, the group with time constraints failed more often when working

on a separate task simulating multitasking. Fehrenbacher and Smith [35] found

that time pressure increases feelings of uneasiness and willingness to postpone

decisions and decreases individuals’ confidence.

Taking shortcuts has been linked to time pressure in software engineering.

Sojer et al. [125] reported that perceived severity of time pressure affects indi-

viduals’ attitude toward unethical reuse of code, meaning developers who feel

severe time pressure are more likely to have a more positive view on copying

code unethically from the Internet. Similarly, on a survey by Turley and Bie-

man [135], shortcut taking was identified as the second most negative software

development competence.
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Agile ways of working have been reported to mediate the effects of time

pressure. Mann and Maurer [76] reported decrease of overtime work and an

increase in customer satisfaction with the introduction of Scrum. Laanti [65]

reported that sustainable pace in Agile and Kanban projects lead to better

performance, and that employees who reported being empowered were able to

deal better with stress. Tuomivaara et al. [134] found that developers who

followed agile development process more closely felt less job strain at the end of

the study period.

Time pressure was mentioned as the second most frequent reason for unhap-

piness among software developers in a survey conducted by Graziotin et al. [42].

Additionally, time pressure was the most frequent cause of unhappiness from

factors external to the developer. The most common reason was “being stuck

in problem-solving”.

Fujigaki [38] investigated software engineers and their well-being by using

the self-reported depressive scale (SDS) and semi-structured interviews to gauge

job and life events. The self-reported depressive scale was developed by Zung

in 1965 and has been widely used. Fujigaki [38] observed that SDS scores rose

with increased job events, one of which was time pressure caused by deadlines.

This result links time pressure to depressive symptoms, while higher depressive

symptoms in turn have been linked to clinical depression. In a later study,

Fujigaki and Mori [39] investigated physiological metrics in relation to the work

strain of information system engineers. In the study adrenaline increased before

a deadline, at the start of a project, and during budget negotiations. Cortisol,

which captures exhaustion, increased after constant busy states, such as after

deadlines and/or after employees had gotten used to the job.

Borg [19] observed that time pressure and increased working hours lead to

burnout for individuals. Borg also noted the difficulty in balancing work and

life outside of work and different attitudes between genders. Young mother

reported being tired all the time, when her tasks continued at home with clean-

ing, preparing meals and taking care of the children. In contrast, men in the

company mentioned their children in relation to leisure time.
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Mäntylä et al. [77] detected higher arousal (i.e., activity level) with sentiment

analysis on more severe issues reports in JIRA repositories. Additionally, as

issues are resolved, arousal drops, offering possible ways to detect time pressure

In summary, it has been shown that while time pressure can have positive

effects on software developers, like increased motivation, it has also negative

effects. These, such as increased stress and unhappiness, can eventually lead to

depression and burnout. However, these negative effects on individuals can be

mediated in different ways. In particular, Agile methods such as Kanban and

Scrum decrease overtime and allows developers to better deal with stress and

job strain. In addition, individuals’ knowledge and managers’ skills can also

ease the negative effects of time pressure on individuals.

6.3. Effect on the software process

Speed accuracy trade-off [10] and the covariance of decision speed with de-

cision accuracy [46] can be seen as the general theory related to time pressure

and software engineering. However, conflicting with general theory, the reported

effects of time pressure on decision quality in software engineering literature are

mixed. Less organizational change, communication, and knowledge transfer

have been reported with time pressure. Additionally, time pressure has been

reported to be an obstacle for software process improvement (SPI) and user

involvement in the design process.

6.3.1. Effect on software design

Rosenberg et al. [116] discuss schedule compression in resilient agile context

at length, and consider the use of parallel development as the the most powerful

practice. In the authors view, the amount of schedule which can be compressed

is a trade-off between the amount of feedback and planning. The lowest cost

is somewhere in the middle, i.e. having both some planning and feedback from

the customer.

In a survey by Tang et al. [130], the respondents considered the lack of time

or budget to be the most common reason for not documenting design rationale.

Similarly, Rahmandad and Weiss [112] report that under time pressure people
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tend to take shortcuts on documentation and requirements development. In a

survey of the Chinese software industry, by Yang et al. [143] showed that one

barrier to using software estimation cost models is schedule pressure. In the

survey, the respondents proposed this answer; it was not a predefined answer

option.

6.3.2. Effect on communication and coordination

Time pressure also affects the communication and coordination within or

outside the organization. Scientific evidence from software engineering suggests

that with time pressure, there is more willingness to report bad news, less

knowledge transfer, less communication between testers, and less organizational

change.

Based on an experiment Park et al. [97] reported that individuals under time

pressure were more willing to report bad news, as well as more likely to perceive

themselves having personal responsibility to do so, which were in line with pre-

vious studies on the subject Waller et al. [140]. However, less communication

between developers and tester have been reported under time pressure [122].

[58] found a negative relationship between knowledge transfer and schedule pres-

sure, meaning those projects under study which reported knowledge transfer had

less success staying in schedule and vice versa.

According to Staudenmayer et al. [128] temporal shifts can be used as co-

ordination mechanisms enabling organizational change. Temporal shifts consist

of variations in five dimensions of how people experience time: a sense of time

pressure, sense of ability to allocate time to different activities, perceived ten-

sion among competing task demands, the time horizon considered, and sense of

found time. An introduction of buffer time during a project allowed for better

review and reassessment of the project and subsequently for more organizational

change.

6.3.3. Effect on decision making

The 19-month ethnographic study conducted by Perlow et al. [104] showed

that although fast decision making was initially beneficial for the company’s
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growth, it later led to bad decisions. With a growing artificial sense of emer-

gency, decisions had to be made faster, and the decision-making board ignored

valid objections because making a fast decision had become more important

than making the right decision.

The effect of time pressure on decision making in Agile software development

was pondered at length by Riordan et al. [115]. In their conceptual framework,

decision quality was explained with three temporal parameters: time pressure,

polychronicity (i.e., unexpected or sporadic order of tasks), and iterative deci-

sion making.

Lohan et al. [72] investigated decision quality under time pressure. Better

decision quality was achieved when time pressure was perceived to be stimulat-

ing, enjoyable, or satisfying. However, based on results when time pressure is

perceived to be annoying, discouraging, and upsetting, there does not appear

to be an effect on decision quality.

6.3.4. Effect in software process simulation models

During our literature search, we included papers examining process sim-

ulation models and their schedule compression effects. Table 8 presents the

assumptions on the effects of time pressure underlying the models.

Two early studies [53, 61] compared empirical data with established cost es-

timation models taking schedule compression or extension into account, namely

COCOMO I [18] and Putnam’s [111]. Jeffery [53] observed that, depending on

the case, effort can either increase or decrease among 47 projects. Similarly,

Kitchenham [61] noted two different schools of thought at the time. One where

compressing or extending the schedule increases effort (COCOMO I), and one

where compression increases effort and extension decreases it [111]. Because of

varying results, Kitchenham reports that all underlying assumptions are likely

invalid.

Smith et al. [124] added four task assignment factors to COCOMO I [18]

and produced more accurate estimations on a single project. One of them, in-

tensity, is defined as ”the ratio between the number of active time units and the
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total number of time units during the development span”. In the study, devel-

opment effort has a negative relationship with intensity. This means that when

development is focused on a single module, the overall effort on it decreases.

Later, the effects of different schedule compression levels on the estimates of

COCOMO II [17] have been compared to real schedule compression ratios [144,

51]. Yang et al. [144] also present an overview of other cost estimation models

and their schedule compression approaches (PRICE-S PRICE Systems [109],

SEER-SEM Fischman et al. [37] and SLIM Panlilio-Yap [96]). In COCOMO

II compression increases the total effort needed for project completion. Based

on newer empirical data, Hussain et al. [51] found an increased effort in highly

compressed schedules.

Based on interviews, Rahmandad and Weiss [112] created a simulation model

of the dynamics in concurrent software development. Developers under time

pressure work harder, but also start to omit requirements, code reviews, unit

testing, and documentation. This deteriorates quality and increases mainte-

nance effort. In addition, organizational ability to produce software was reduced

due to time pressure because not enough time was invested in improving the

development tools or processes.

Lin et al. [71] introduce a simulation model (SEPS) based on literature

reviews, interviews and expert reviews. If the initial schedule estimation is

compressed, it results in an overall increased effort. Otherwise an extended

schedule corresponds to slightly lessened effort. Hu et al. [48] produced a cost

model based on a theory called Minimum Software Cost Model (MSCM),where

the overall cost in man-months, gets higher with longer schedules, other things

being equal.

Pfahl [106] created multiple models by conducting interviews and partici-

pating in review meetings. In one of them, increased schedule pressure leads to

defect injection, and faster work progress. Overall, the effect of time pressure

can result in earlier completion of the project, but also in delays when errors

are introduced because of schedule pressure.

An Agile process simulation model was created based on interviews and an
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extensive literature review by Cao et al. [22]. Decreases in available time should

result in adjustments in the scope or schedule, otherwise schedule pressure in-

creases. Interviewees also stated that code refactoring was largely ignored and

unit testing was reduced under schedule pressure, while pair-programming was

said to perhaps alleviate the corner-cutting effects of pressure, as paired de-

velopers are usually more disciplined. No link between schedule pressure and

development speed was suggested.

Another software process simulation model was developed by Abdel-Hamid

and was discussed in multiple articles [1, 2, 3]. The model is based on inter-

views and software managers’ review of the resulting model. The main model

proposed that schedule pressure leads to process losses and increases the error

rate. However, the model does not have a link between schedule pressure and

development rate, meaning it does not support the claim that schedule pressure

improves development speed.

Houston et al. [47] simulated six risk factors of software development and

produced a model called Software Project Actualized Risk Simulator (SPARS).

The model assumed that the effects of excessive schedule pressure are fluctuat-

ing productivity, exhaustion, higher error creation, morale change, and weaker

reviews. Based on previous models, Ruiz et al. [117] present a reduced dynamic

model (RDM) where schedule pressure increases errors and productivity.

Van Oorschot et al. [137] validated a software process simulation model in a

new product development (NPD) software project, according to which schedule

pressure increases errors, overwork, task rejection, and delays. The authors

simulate an actual project which suffered from schedule pressure, and show

that with a later due date, the overall effort would have been decreased.

In summary, most simulation and cost models report an increase in effort

when the project’s schedule is compressed, see Table 8. While schedule com-

pression can make developers work faster in the short term, it usually result in

them omitting or avoiding reviewing, testing or documentating their code. This

leads to an overall decrease in quality, more introduced errors and bugs, and

eventually an increase in maintenance effort.
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Table 8: Empirically derived assumptions of cost and simulation models on schedule compres-
sion

Compressed schedule Eased schedule
Model Effort Quality Effort Quality
Putnam model and
SLIM [111, 96]

Increase Decrease

COCOMO I [18] Increase Increase
PRICE-S PRICE Sys-
tems [109]

Increase Increase

SEER-SEM Fischman
et al. [37]

Increase Increase

System Dynamics
Model [1]

Increase Decrease No Effect

SEPS [71] Increase Decrease
MSCM [48] Decrease Increase
COCOMO II [17] Increase No Effect
SPARS [47] Both (usually

increase)
Decrease

Pfahl [106] Both
RDM [117] Decrease Decrease
Rahmandad and Weiss
[112]

Increase Decrease

Cao et al. [22] Decrease
Van Oorschot et al.
[137]

Decrease Decrease

6.3.5. Effect on software process improvement

Several sources mentioned time pressure to be an essential obstacle in soft-

ware process improvement (SPI) [99, 9, 8]. However, practitioner surveys dif-

fered on the importance of time pressure as a barrier, with the more recent

paper ranking time pressure lower in importance [94, 93].

Paulish and Carleton [99] recommend using SPI techniques to improve the

process to meet future deadlines without emergencies. Similarly, Baddoo et al.

[9] cite the lack of time as the biggest obstacle to software process improvement

by participants from entry-level positions while strategic- and operational-level

managers did not see the same importance for time pressure. Baddoo and Hall

[8] report, based on a study of practitioner focus groups, that although both

managers and developers reported the demotivating effect, the occurrence of
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time pressure as a demotivator was higher in focus groups composed of devel-

opers.

Niazi et al. [94] identify time pressure as a barrier to implementing software

process improvement (only 17% of the time in interviews vs. 36% in scientific

literature, rank 2 vs. rank 5). In a later article [93], time pressure as a barrier to

SPI is mentioned again. Resources should be explicitly allocated to SPI efforts

to ensure adequate time to complete tasks.

6.3.6. Effect on user involvement in the development process

Clegg et al. [27] present three case studies on software development in com-

panies, one of which tried to include users in its software development process.

An increase in time pressure decoupled the user and developer interaction, ex-

cluded user knowledge from the development process, and thus in the end,

wasted resources and effort. However, afterwards the developers stated that

involving users in development could be improved with more realistic deadlines

and better management.

6.3.7. Effect on quality assurance

[12] reported that time pressure lowers quality of the code during the initial

product development and leading to rework and redesign during later product

development. Similarly, high time pressure caused by unrealistic deadlines leads

to minimal quality assurance [139]. The quality assurance effort can be saved

by using workarounds or compromises during implementation, by reducing the

effort spent on documentation, by reallocating tasks to newly assigned devel-

opers, or by reducing the quality of the final product [14]. However, while the

degree of time pressure seems to greatly reduce quality, [43] did not find an

increased amount of defects on project with expedited schedules.

Effect on reviews

In a broad survey [26] about software reviews with 226 respondents from

companies of different sizes and from different countries, time pressure was cited

the most often (75% of the time) as an obstacle to software review.
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Staudenmayer et al. [128] studied change in the development cycle in a big

software company. The company introduced buffer times. After several weeks

of regular development, a buffer period of unallocated time is added. During the

buffer time period, coding activity is suspended, but the tasks to be completed

are not specified. Buffer time allows teams to reflect on the past and present,

allowing the developers to switch from a development mode to a mode of reflec-

tion, awareness, and analysis. Developers can cope better with new or altered

requirements caused by unexpected events, changes in customer needs, or other

problems or ideas discovered during development. Teams in which buffer times

were introduced kept to the schedule better and met release dates.

Effect on pair programming

A study of pair programming of 31 developers from 4 companies [107] showed

that time pressure (e.g., near the release date) leads developers to avoid pair

programming and work individually to increase productivity.

Effect on testing

In an experiment by Mäntylä et al. [81], a group under time pressure found

fewer defects, but the difference was not statistically significant. Overall time

pressure was associated with higher efficiency (more defects found per unit of

time). However, Deak et al. [30] report a negative impact of time pressure on

product quality, as well as its presence in Agile context when the project is

behind schedule, as in the waterfall model.

6.4. Effect on outcome - time-cost-quality scope

The so-called project management triangle dating back to the 1950s suggests

that the outcome of any project can be explained by four constraints: quality,

schedule, scope, and cost [6]. Time pressure in a project can be understood

as a situation in which the project members realize that time, which can be

either schedule (schedule pressure) or cost (time budget pressure), is running

out. The project members try to avoid scheduling slippage or cost extension

with various strategies, but typically by working faster. Studies have addressed

quality, schedule, scope, and cost concerning time pressure. We divide the
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papers based on the data they use. We begin with studies with industrial

project management data in Section 6.4.1, followed by experiments, surveys,

and case studies in Sections 6.4.2 through 6.4.4. The results are summarized in

table 9.

For papers with quantitative data, we report whether time pressure has a

positive or negative effect and statistical significance. We do not set an arbitrary

threshold for significance reporting, often p = 0.05, as we consider this to be

misleading. For example, if many sources all had p = 0.06, this would provide

solid support for the impact of time pressure. Thus, omitting information based

on an arbitrary threshold would not show this evidence.

6.4.1. Industrial project management data

Investigations of Capability Maturity Model (CMM) level 5 projects con-

cerning effort, cycle time, and quality showed that schedule pressure decreases

effort (p = 0.065) and cycle time (p = 0.15) [4]. In both cases, time pressure

was the second most statistically significant predictor of the nine studies after

project size. Schedule pressure was also linked to a decrease in quality but with

a low p value (p = 0.4).

Hale et al. [43] studied among other things, whether software projects with

expedited schedules had more defects than projects with non-expedited in a

Capability Maturity Model Integration (CMMI) level 3 company. However

this hypothesis concerning schedule pressure was not supported (p = 0.400).

Mukhopadhyay and Kekre [88] investigated 58 software projects in the process

control manufacturing domain and found that schedule pressure decreased soft-

ware project effort with high statistical significance (p = 0.0001), while other

statistically significant predictors were project size and programmer speed.

Langer et al. [66] investigated the practical intelligence of project managers.

The evidence showed that difficult projects achieved better client satisfaction

and cost performance than standard projects because of the practical intelligence

of the project manager. Concerning direct effects, the study reported that

schedule pressure, surprisingly, increases cost (p < 0.01) and reduces client
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satisfaction (p < 0.01) even when they are controlled for project size.

Nan and Harter [91] investigated the inverted U-shaped relationship (the

initial pressure improves, but after a certain point, the pressure decreases per-

formance) of budget and schedule pressure of 66 projects. They used regression

models to predict the cycle time and development effort using budget and sched-

ule pressure while controlling for the process maturity, size, complexity, and

quality of the projects. For budget pressure, they found a U-shaped relation-

ship. Furthermore, the linear terms of schedule pressure were negative, meaning

an increase in schedule pressure reduced the cycle time and development effort.

From the paper appendix, we found that quality had a negative correlation with

budget pressure (-0.51), but a positive correlation with schedule pressure (0.51).

In earlier work, Nan et al. [90] conducted a similar investigation in a large

company ($1 billion/year). They found that time pressure (schedule) had a

U-shaped relation with cycle time or effort. They also found that pressure had

a non-statistically significant relationship with quality. However, this earlier

work omitted many details, such as sample size and did not show the statistical

values, making the results less trustworthy.

Cataldo [23] reports that time pressure measured as concurrent execution of

tasks was the most important source of errors (p < 0.01) in distributed software

development projects. In the regression model, the expected number of defects

increased by 47.1% when the value measuring time pressure changed from the

minimum to maximum value. Similarly, Cataldo and Herbsleb [24] report that

in global feature-oriented software development, time was the most significant

factor when feature integration failed (p < 0.01), as well as associated with a

lower likelihood of failures in that feature. In the regression model based on

a project with 1.5 million lines of code and 1,195 features, an additional week

corresponds to a lower likelihood of 0.8% of integration failure.

6.4.2. Experiments

A controlled experiment in requirements review and test case development Mäntylä

et al. [81] showed that time pressure reduced effectiveness in defect detection
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(p = 0.342) and had no impact on test case quality (p = 0.922). Efficiency,

effectiveness divided by time, improved defect detection (p = 0.002) and test

case quality (p < 0.001). This result supports the idea that effectiveness (or

quality of the work) will decrease, but efficiency will increase due to less time

being used.

An experiment on time pressure in manual testing by Mäntylä and Itkonen

[78] also showed lower effectiveness (p < 0.001) and higher efficiency (p < 0.001)

under time pressure. The paper reports no t-test so we computed the p-values

from the raw data. The researchers also concluded that combining several time-

pressured testers would have been beneficial because ”we can either find roughly

the same amount of defects with 59% less effort, or we can use the same effort

to find 71% more defects.” The drawback of using several independent time-

pressured testers would have been the extra work in duplicate defect filtering.

In another experiment, Fehrenbacher and Smith [35] performed an experi-

ment about time pressure in software acquisition. The study shows that under

time pressure individuals worked faster but felt less confident in their decisions

and were keener to postpone it. Gaze duration was reduced under time pressure

as the individuals try to work faster (p = 0.02). Under time pressure, the work

strategy is focused on higher-level topics, while on the other hand, without time

pressure, more effort is spent looking at the details (p = 0.013). The best search

of information for the software acquisition task occurred under time pressure

and with requirements for explicitly written reasoning about the acquisition

choice. Hence according to results, to achieve the best performance regarding

effectiveness and time spent, time pressure and a quality control requirement

should be used.

Lee et al. [68] showed in an experiment that project escalation, that is,

willingness to continue a troubled software project, is less likely to happen if

there is high time pressure in the project. This willingness to stop a problematic

project was generally seen as positive by the authors as project escalation can

waste valuable resources in ”a failing course of action”.

An experiment by Ramanujan et al. [113] investigated the time used in
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short software maintenance tasks. For documented programs time pressure

had no effect, but for programs with no documentation time pressure reduced

maintenance task time by 20%. The authors also found that the performance

of participants with low and high knowledge increased (p = 0.0399) under time

pressure. However, the impact was larger for low-knowledge participants (16%)

than for high-knowledge participants (6%). The results offer further support

that time pressure reduces effort. However, the finding that low-knowledge

participants are affected more by time pressure is contrary to previous research.

Another controlled experiment by Topi et al. [133] of database query devel-

opment tasks showed unexpectedly that time pressure didn’t make the subjects

work faster and reduced their efficiency. However, the p-values were high (p

= 0.51 simple task, p = 0.82 complex task). Effectiveness was reduced under

time pressure as well (p < 0.001 simple task, p= 0.1281 complex task). The

authors provide the following explanation: ”The subjects did not have good

mechanisms for accelerating their work. Thus, this seems to indicate that with

this task type, just reducing the available time does not improve productivity.”

On the other hand, time pressure reduced the number of total correct database

queries.

6.4.3. Surveys

Investigation of software project teams reports a statistically significant in-

verted U-shaped relationship between team process and time pressure as the

quadratic term of time pressure Maruping et al. [83]. The authors did not pro-

vide separate measures for product quality, or the effort used, but combined

them in a team performance metric. However, temporal leadership statistically

significantly removed the U-shaped relationship so that with strong temporal

leadership, only positive effects of time pressure on team process exist. In the

paper, temporal leadership was defined as ”the structuring, coordination, and

management of task pacing in teamwork.”

Lohan et al. [72] investigated the effect of group cohesion, perceived chal-

lenge, and hindrance time pressure on decision-making quality of information
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system development. Challenge time pressure perceived as stimulating, enjoy-

able, and satisfying was thought to have a positive effect on quality. However,

perceived hindrance time pressure did not have a negative effect.

In a survey, Nugroho and Chaudron [95] found that meeting a deadline was

considered by the respondents to be the smallest factor driving deviations be-

tween the design and code with 27% of responses stating that the deadline never

caused deviations. Of the chosen factors, meeting a deadline was the only fac-

tor that did not directly mention design quality (other factors being impractical

design, incomplete design, and design not satisfying the requirements).

A survey conducted by Verner et al. [139] on software project failures found

that too aggressive delivery dates caused time pressure, which then caused the

omission of QA practices and led to project failures in six out of the eight

projects studied. The authors proposed that projects should be kept short and

manageable to prevent failures from too aggressive delivery dates. This practice

sounds like Agile with small iterations. Another survey by Ferreira et al. [36]

showed that requirements volatility causes time pressure which increases errors

in generating requirements.

6.4.4. Case studies

A qualitative case study by Lavallée and Robillard [67] in a telecom company

provided a concrete example of how taking shortcuts reduces overall quality.

The researchers found that budget pressure prevented the implementation of a

proper company-wide solution to a technical problem and resulted in a cheap

patch solution that was repeated by at least 12 development teams. Each team

was protecting their budget and decided to take a shortcut solution. A case

study in another telecom company showed that time pressure was selected as

the root cause for 40% of the defects [70]. A more detailed investigation showed

that for algorithmic defects, the share of time pressure was as high as 70%,

while for functionality defect type it was only 17%. The authors elaborated

that ”functionality defect refers to missing or wrong functionality (w.r.t. re-

quirements) and algorithm defect refers to an inadequate (efficiency) or wrong
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(correctness) algorithmic realization.”

6.4.5. Summary

We summarize quantitative empirical evidence from analysing software com-

panies and software engineering experiments that performed statistical tests

regarding whether time pressure improves development efficiency and whether

time pressure reduces development quality. For this, we consider only papers

that measured actual outcomes. Thus, we omit the results of questionnaire

surveys. Development efficiency means that software development is faster in

terms of the cycle time, or effort, or both. In experiments, development effi-

ciency means that effectiveness per time unit is faster, e.g., more defects per

hour are found. Quality reduction in company cases was often measured by the

number of defects or customer satisfaction. In experiments, quality reduction,

becomes effectiveness, e.g., fewer defects are found in reviews, or less correct

database queries are made.

Table 9 shows the results. The + sign means that the paper found an impact

in the direction predicted in the column headings, that is, improved efficiency

or reduced quality. The - sign means the opposite, and U sign means that

some pressure results in the predicted impact, but too much pressure causes the

opposite effect. This inverted U-shape effect comes from the Yerkes-Dodson law

which states that initial pressure improves performance while pressure increasing

above a certain point reduces the performance. After the sign, we report the

statistical significance from the paper. The statistical significance can originate

from various statistical tests, such as regression models, correlations, or t-tests.

Seven papers support improvement in development efficiency due to time

pressure, two papers report inverted U-shaped results, and two papers report a

decreased efficiency. One of the two papers offering the counter-evidence had

a strong statistical significance [66] but offered no explanation. Therefore we

contacted the authors for further details but received no response. In the other

paper, the statistical significance was much lower: p = 0.5 and 0.8. The paper

also offered an explanation: in the case of database development tasks, the sub-
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jects were unable to go faster. Overall, we conclude from quantitative analysis

of company data and experiments, that small to medium size time pressure is

beneficial for development efficiency (9 paper for and 2 papers against). This is

partly in contradiction to Section 6.3.4, where majority of models assume the

total amount of effort to increase with schedule compression.

Nine papers support a reduction in quality due to time pressure. Three pa-

pers report the opposite, that time pressure increased quality, and two papers

provide no data on quality reduction. If we examine the three papers offering

the counter-evidence, the statistical significance was very low on two papers p =

0.922 [81] and p = 0.957 [35], while in the remaining paper [91] with high statis-

tical significance (p = 0.00) quality improvement computation was shown with

a correlation only with industrial data. A regression model or partial correla-

tion controlling for confounding factors would be a more robust alternative. We

conclude from qualitative analysis of company data and experiments, that time

pressure reduces quality in software engineering, but we suspect this is because

less time is available or used. Reduced quality due to time pressure is further

supported unanimously by the cost and simulation models in Section 6.3.4.

7. Threats to validity

The first threat to the validity of the findings is the search strings we used

to query search engines for the literature. Before starting the literature review,

we familiarized ourselves with the topic and iteratively improved the search

strings. In total, we used synonyms and different ways of spelling, but it is

possible some sources could have been missed with the otherwise inconsistent

terminology used in the literature. However, as we did not run into other terms

in the snowballing and analysis phase, we believe we have covered at least the

terms most frequently used in the literature.

Several databases and search engines can be used to search scientific liter-

ature. Due to the limited amount of resources, we decided to use those that

had the most extensive coverage, namely Scopus and Google Scholar. From

these, partial automatic data retrieval is possible. However, it is possible that
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more sources of information could have been found by searching other academic

databases, as data in a single one is incomplete and can contain errors such as

missing abstracts. Indeed, we are aware of missing abstracts on some confer-

ence proceedings related to information systems. Another limiting factor in our

study was using only first 100 search results for Google Scholar searches, which

were meant to complement the primary searches made with Scopus. Indeed,

more sources could possibly be found by increasing the number of search results

examined for Google Scholar. As our resources are limited, and the application

of the selection criteria more laborious than usual with reading at least the ab-

stract, the boundary has to be set somewhere. We have tried to combat these

issues with conducting backwards and forwards snowballing.

Although we applied the selection criteria specified in Section 3.1 when we

identified the relevant literature, we may have missed relevant papers. This is

more the case in studies where time pressure was not the main topic investigated

but constituted some of the empirical evidence. There is an inherent trade-off

between the effort spent and the number of details that can be examined in the

papers while applying the selection criterion.

The inexperience of the first author on performing systematic reviews can

be mentioned as a threat to validity. However, other authors had previous expe-

rience on conducting systematic literature reviews and they provided guidance.

First author had gained experience on conducting the previous work [63]. Sim-

ilarly, reviewer bias in study selection could be an issue. We tried to solve this

as best as we could by marking even remotely borderline cases up for discussion

as explained in Section 3.

We could could have missed some details in the qualitative coding phase

with NVivo due to errors in this stage. We are also aware of some more recent

papers on the topic that were published during the analysis of the collected

literature [118, 64]. However, adding the most recent papers to the analysis

would be a never-ending circle. Last, we want to mention publication bias as

a threat to these findings [129]. It can be formulated that results, where no

links between time pressure and investigated processes or approaches are found,
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might have a smaller chance of being published.

8. Conclusions

We conclude the paper by first highlighting the contributions of this work.

Next, we provide practical takeaways, and we outline directions for future work.

8.1. Contributions

In this article, we perform the largest literature review related to time pres-

sure in software engineering. Our main contributions are as follows.

• In Section 4.1 we provide the definitions of time pressure as used in soft-

ware engineering literature. They can be roughly be divided into two

categories. The first one is based on the Yerkes-Dodson law, which states

that the amount of time pressure affects performance in an inverted U-

shaped form. Initial increases in pressure improve performance, although

only up to a certain point, after which further increases in time pres-

sure decrease performance. The second category of definitions is based on

the challenge-hindrance framework, which states that positive (challenge)

time pressure improves performance, while negative (hindrance) decreases

performance.

• In Section 4.2, we provide a list of papers containing metrics and opera-

tionalizations, used in previous literature to measure and operationalize

time pressure in software engineering.

• In Section 5.2, we map the selected papers to different stages of the soft-

ware development process and approaches (see Table 7). The main topics

of papers related to time pressure were found to be either cost estimation

or quality assurance.

• In Section 6.1, we summarize the reported causes of time pressure: prob-

lems in effort estimation, scheduling, commercial pressures, management

styles, and social settings.
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• We review the effects of time pressure on individuals and software pro-

cess outcomes. We summarize the corresponding quantitative results in

Table 9. The predominant effect of time pressure on outcome is that it

reduces quality while increasing efficiency. However, many of the cost and

process simulation models in Table 8 support the increase in overall effort

for a software project with compressed schedule.

8.2. Practical takeaways

We have performed many primary studies ourselves on performance under

time pressure and arousal detection (e.g., [78, 64]). After spending considerable

effort on systematically familiarizing ourselves with related literature, we want

to conclude this paper by providing a practitioner-oriented summary with key

takeaways.

Time pressure is common in the software industry, and it can be caused

by commercial pressure, company culture, or errors in effort estimation (see

Section 6.1). Time pressure can have both positive and negative outcomes. On

the positive side, it increases efficiency in the short term: the sense of urgency

that time pressure creates provides focus on the basic product requirements. On

the negative side, the lack of time reduces the quality of the outcome, leads to

tunnel vision, and limits opportunities for improving the software product and

process. See Section 6.4 and Table 9 for details.

The question thus becomes: “can a software project achieve the best of both

worlds: increased efficiency and urgency while avoiding reduced quality?” The

answer is yes and no. No, in the sense that the best of both worlds cannot

be achieved simultaneously. With heavy time pressure, it is difficult to find

the time to make important improvements to the product during the software

development process. However, it is possible for a project to have periods of

time pressure and periods of buffer and reflection time, in which the former

provides efficiency while the latter ensures a high quality of the product and

process. This is a balance that skillful software engineers and managers should

aim to achieve.
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The amount and type of time pressure also play a role (see Section 4.1).

Small to moderate time pressure brings out positive effects, while very high

time pressure provides no additional benefits. If the pressure is experienced

as positive, it leads to a more positive outcome than if the time pressure is

experienced as negative. Positive time pressure can be achieved when a team

feels that timely delivery is essential. Conversely, multiple conflicting goals,

such as having to deliver a high-reliability product with minimal effort, can

generate a negative time pressure. Typically, negative time pressure is more

intense and has the trait of impossibility attached to it. Software engineers and

managers should be mindful how the software development team feels about the

time pressure they are dealing with.

Saying that time pressure improves efficiency and reduces quality in software

engineering is a generalization. Important task dependent variations are likely

to occur. Although empirical evidence of task-dependent effects of time pressure

in software engineering is limited, we found partial evidence for two variations.

First, it appears that time pressure most often occurs during software quality

assurance and testing (see Section 5.2). This happens because testing, in partic-

ular, is the last phase that precedes software release: therefore, all the schedule

slips of earlier phases are felt during software testing. Another possible cause is

having a lower quality product because of time pressure, which ends up needing

more testing. Second, the effects of time pressure vary according to the type of

tasks. We found evidence that tasks with a high algorithmic nature have fewer

efficiency improvements and suffer more from reduced quality than other types

of tasks under time pressure [133, 70]. Software engineers and managers should

be particularly mindful in ensuring that software testing is not under too much

negative time pressure and that tasks that are highly algorithmic in nature are

under minimal pressure.

When it comes to different software process models, there is some empirical

evidence and theoretical reasoning why Agile software development and time

pressure are a good fit. We believe there are three reasons for this. First,

in Agile software development, iterations are small, meaning that there is a
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constant low time pressure to meet the next deadline, although there is no

massive final deadline [134, 44]. The sustainable pace of Agile is also good at

cutting down extreme time pressure. Psychological experiments have shown that

aggressive intermediate deadlines can improve outcome quality and individuals’

time management [5]. We assume the same is true for software development

teams. Second, in Agile software development, quality assurance and testing

go hand-in-hand with development and thus, avoid the intense time pressure

that haunts software testing in traditional phases. However, Agile is not a silver

bullet, as lack of testing and re-factoring have been reported in Agile projects

as well [30, 22]. Third, team empowerment, which is higher in Agile than in

traditional projects, can block the negative stress caused by time pressure [65].

This effect can be linked to the well-established occupational theory based on the

job demands-control model [10, 57]. This model proposes that adverse effects

of time pressure (and other stressors) can be reduced when an employee has

high independence and decision latitude in the job. This is precisely the case

for Agile teams with high empowerment.

In more traditional development, processes can suffer from the effects of one

final deadline, especially if there are no intermediate deadlines. Focusing on

one final deadline can make the workload uneven, which has been linked to

integration failures [24]. Similarly, time budget pressure, combined with each

team optimizing their own project, has been reported to lead to multiple teams

developing a cheap patch instead of a company-wide solution [67].

8.3. Takeaways for researchers

There seems to be a contrast in results on productivity under time pressure

between empirical studies on project performance and studies creating cost and

process models, as it can be seen in Tables 8 and 9. The majority of cost and

process models assume that overall effort increases with compressed schedules,

whereas most empirical studies report improved efficiency under time pressure.

There are multiple possible explanations for this. For example, in some of the

models, the increased effort in compressed schedules is the result of an increase
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in error rate; thus, increased maintenance is needed to complete the project.

Moreover, the time scale is also important: improved efficiency is more likely

to occur in the short term, whereas negative effects become pronounced in the

long term. Future studies could help establish guidelines for these trade-offs.

Because of the U-shaped relationship between performance and arousal based

on the Yerkes-Dodson law, quantifying the amount of time pressure on an indi-

vidual would help investigate its effects at the project level data. The multiple

assumptions and effects of schedule compression, as noted in Table 8, are can be

partially explained by the difference in contexts in which software projects have

been developed. However, the effects of time pressure on individuals might also

play a role. Indeed, as it can be seen in Table 9, quantitative studies focused

on experiments either on individuals, or on groups at the project level, but not

on both at the same time. From the developers’ point of view, it should mat-

ter if the system is developed with less re-usable code or with more overtime

hours. This is further indicated by recent studies using the challenge-hindrance

framework [69]. Taking into account these effects in future quantitative studies

would provide better context and reasoning for conflicting results.

As noted in Section 6.1, prior literature has identified company culture as

a cause of time pressure. In these types of situations, hurry and time pressure

are either prolonged or constant [102, 54]. The negative effects of time pressure,

such as increased stress, burnout, and depression, are reported to be products

of exhaustion and job strain. Hence, the negative effects of time pressure might

not become apparent in a single software project and especially in a lab exper-

iment, if time pressure is otherwise at manageable levels or even rare in the

company. We believe that company culture, together with varying time scales,

might explain the discrepant assumptions and effects of schedule pressure and

compression, noted in Tables 8 and 9.

Many recent studies have tried to detect time pressure with various tech-

niques, including sentiment analysis [80], repository mining [64], and physio-

logical measurements [62, 134]. However, while promising results have been

acquired, none of them have been able to reliably detect time pressure within
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a single project. Hence, if possible, future work should aim to accomplish this

through combining different data sources. It could eventually provide project

managers with up-to-date information on the state of a project, as felt by the

individual developers.
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