
A Benchmark Study on the Effectiveness of

Search-based Data Selection and Feature Selection for

Cross Project Defect Prediction

Seyedrebvar Hosseinia, Burak Turhanb, Mika Mäntyläa

aM3S, Faculty of Information Technology and Electrical Engineering
University of Oulu, 90014, Oulu, Finland

bDepartment of Computer Science
Brunel University London, UB8 3PH, United Kingdom

Abstract

Context: Previous studies have shown that steered training data or
dataset selection can lead to better performance for cross project defect pre-
diction(CPDP). On the other hand, feature selection and data quality are
issues to consider in CPDP.

Objective: We aim at utilizing the Nearest Neighbor (NN)-Filter, em-
bedded in genetic algorithm to produce validation sets for generating evolv-
ing training datasets to tackle CPDP while accounting for potential noise in
defect labels. We also investigate the impact of using different feature sets.

Method: We extend our proposed approach, Genetic Instance Selection
(GIS), by incorporating feature selection in its setting. We use 41 releases of
11 multi-version projects to assess the performance GIS in comparison with
benchmark CPDP (NN-filter and Naive-CPDP) and within project (Cross-
Validation(CV) and Previous Releases(PR)). To assess the impact of feature
sets, we use two sets of features, SCM+OO+LOC(all) and CK+LOC(ckloc)
as well as iterative info-gain subsetting(IG) for feature selection.

Results: GIS variant with info gain feature selection is significantly
better than NN-Filter (all,ckloc,IG) in terms of F1 (p = values � 0.001,
Cohen’s d = {0.621, 0.845, 0.762}) and G (p = values � 0.001, Cohen’s
d = {0.899, 1.114, 1.056}), and Naive CPDP (all,ckloc,IG) in terms of F1
(p = values � 0.001, Cohen’s d = {0.743, 0.865, 0.789}) and G (p =

Email addresses: rebvar@oulu.fi (Seyedrebvar Hosseini),
burak.turhan@brunel.ac.uk (Burak Turhan), mika.mantyla@oulu.fi (Mika Mäntylä)

Preprint submitted to Journal of Information and Software Technology April 25, 2020

values � 0.001, Cohen’s d = {1.027, 1.119, 1.050}). Overall, the perfor-
mance of GIS is comparable to that of within project defect prediction
(WPDP) benchmarks, i.e. CV and PR. In terms of multiple comparisons
test, all variants of GIS belong to the top ranking group of approaches.

Conclusions: We conclude that datasets obtained from search based
approaches combined with feature selection techniques is a promising way
to tackle CPDP. Especially, the performance comparison with the within
project scenario encourages further investigation of our approach. However,
the performance of GIS is based on high recall in the expense of a loss in pre-
cision. Using different optimization goals, utilizing other validation datasets
and other feature selection techniques are possible future directions to inves-
tigate.

Keywords: Cross Project Defect Prediction, Search Based Optimization,
Genetic Algorithms, Instance Selection, Training Data Selection

1. Introduction1

Despite the extensive body of studies and its long history, software defect2

prediction is still a challenging problem in the field of software engineering3

[1]. Software teams mainly use software testing as their primary method of4

detecting and preventing defects in the development stage. On the other5

hand, software testing can be very time consuming while the resources for6

such tasks might be limited and hence, detecting defects in an automated7

way can save lots of time and effort [2, 3, 4].8

Defect data from previous versions of the same project could be used to9

detect defect prone units in new releases. Prediction based on the historical10

data collected from the same project is called within project defect prediction11

(WPDP) and has been studied extensively [5, 6, 7, 8, 9, 10, 11]. New code12

and releases in the same project usually share many common characteristics13

that make them a good match for constructing prediction models. But this14

approach is subject to criticism as within project data is usually not available15

for new projects. Moreover, this problem only tends to increase as the need16

for software based platforms and services is growing at a rapid pace. On the17

other hand, there are plenty of relevant public datasets available, especially18

in the open source repositories [12] that can act as candidates to identify and19

prevent bugs in the absence and even presence of within project data. Using20

the available public datasets, one can investigate the usefulness of models21

2

created on the data from other projects, especially for those with limited or22

no defect data repository [3, 4, 13].23

Various studies have focused on different aspects of defect prediction in-24

cluding data manipulation approaches (such as re-sampling [14, 15, 16, 17],25

re-weighting [17, 18, 19, 20], filtering [4, 13, 21, 22], etc.), learning technique26

optimization (boosting [14, 15, 17, 23], bagging[23], ensembles [22, 23, 24, 25],27

etc.) and metrics (feature selection [23, 26, 27, 28], different set of met-28

rics [29]) to mention some. Predictions usually target the effectiveness of29

the approaches in two main categories: binary and continuous/multi-class30

predictions[1]. The features also come in different levels of code including31

function/method, class, file and even component levels [1]. As would be dis-32

cussed in later sections, the experiments in this study are class level binary33

predictions performed on 41 Java projects. A summary of the related studies34

would be presented in Section 2.35

Learning approach and the training data are two of the major elements36

in building high performance prediction models. Finding a suitable dataset37

(instances and features) with similar defect distribution characteristics as38

the test set is likely to increase the performance of prediction models [30].39

Since defect detection and label assignment is based on mining version control40

systems [31, 32, 33], the process could be prone to errors and data quality can41

be questionable [34, 35]. In other words, the labels of some of the instances42

might not have been identified correctly, two or more instances with the43

same measurements can have different labels, or undetected defects may not44

be captured in the dataset in the time of dataset compilation.45

In this study, we address these problem with a search based instance46

selection approach, where a mutation operation is designed to account for47

data quality. Using the genetic algorithm, we guide the instance selection48

process with the aim of convergence to datasets that match the characteristics49

of the test set more precisely. The fitness function at each generation is50

evaluated on a validation set generated via (NN)-Filter. With these, we51

handle the potential noise in data while tackling the training data instance52

selection problem with GIS.53

In our earlier work [35], we combined training data instance selection with54

search based methods to address the potential defect labeling errors and we55

compared our method’s performance with benchmark CPDP and WPDP56

(cross validation) approaches. This study not only acts as a replication of57

our original study but also extends it by the following ways:58

3

• Including a more comprehensive set of datasets. In the original study,59

only the last available dataset from multi-version software projects were60

used in our experiments. Overall, 13 datasets from PROMISE repos-61

itory were used to assess the performance of our proposed approach.62

We extend the number of datasets to 41 from 11 projects. The reason63

for the choosing these datasets is their maturity (multiple versions) and64

the choice of WPDP previous releases benchmark.65

• Including an extra within project benchmark (previous releases). We66

used a single WPDP benchmark in our original study namely, 10 fold67

stratified cross validation. Since multiple releases are available for each68

project in this extension, we compare the performance of GIS with this69

WPDP benchmark as well.70

• Investigating the effect of different sets of metrics and the sensitivity of71

GIS toward them. Chidamber & Kemerer (CK)+LOC was used in the72

original study, due to its reported good performances by Hall et al.[1] as73

well as recent CPDP studies [25, 36]. To have a better understanding74

of how GIS reacts to the choice of metrics we used all features and75

one feature selection technique, i.e. iterative infogain subsetting. We76

conducted these sets of experiments to address one of the threats to77

the validity of our original conclusions, i.e. the selection of software78

metrics. Interestingly, adding SCM to CK+LOC has a positive effect79

on the WPDP performance despite its negative effect on GIS, therefore80

making it necessary to be included as failing to so, would be a threat81

to the conclusion validity.82

• Presenting a more extensive analysis, related work and discussions. A83

wider range of datasets, benchmarks and results, requires more com-84

prehensive analysis. The results are presented through multiple types85

of diagrams (violin plots, critical difference (CD) diagrams, line plots)86

and the approaches are compared with different targets in mind through87

statistical tests for pairwise and multiple comparisons for exploring dif-88

ferent perspectives of the achieved results.89

Accordingly, the aim of this study is to answer the following research90

questions:91

RQ1: How is the performance of GIS compared with benchmark cross92

project defect prediction approaches?93

4

RQ2: How is the performance of GIS compared with the within project94

defect prediction approaches?95

RQ3: How different feature sets affect the performance of GIS?96

This paper is organized as follows: The next section summarizes the re-97

lated studies on CPDP and briefly describes how our study differs. Proposed98

approach, datasets and experimental procedures are presented in Section 3.99

Section 4 presents the results of our analysis and discussions. Section 5 ad-100

dresses some of the concerns that arise during the analysis and wraps up our101

findings. Section 6 discusses the threats to the validity of our study. Finally,102

the last section concludes the paper with a summary of the findings as well103

as directions for future work.104

2. Related Work105

Cross project defect prediction (CPDP) has drawn a great deal of interest106

recently. To predict defects in projects without sufficient training data, many107

researchers attempted to build novel and competitive CPDP models [4, 13,108

18, 21, 31, 37, 38]. However, not all studies report good performances of109

CPDP [4, 16, 38].110

In a series of experiments, Turhan et al. [4] observed that CPDP un-111

derperforms WPDP. They also found that despite its good probability of112

detection rates, CPDP causes excessive false alarms. They proposed to use113

(NN)-Filter to select the most relevant training data instances based on a114

similarity measure. Through this method, they were able to lower the high115

false alarm rates dramatically, but their model performance was still lower116

than WPDP.117

Zimmermann et al. [38] performed a large scale set of CPDP experiments118

by creating 622 pair-wise prediction models on 28 datasets from 12 projects119

(open source and commercial) and observed only 21 pairs (3.4%) that match120

their performance criteria (precision, recall and accuracy, all greater than121

0.75). This observation suggests that the majority of predictions will proba-122

bly fail if training data is not selected carefully. They also found that CPDP123

is not symmetrical as data from Firefox can predict Internet Explorer defects,124

but the opposite does not hold. They argued that characteristics of data and125

process are crucial factors for CPDP.126

He et al. [13] proposed to use the distributional characteristics (median,127

mean, variance, standard deviation, skewness, quantiles, etc.) for training128

dataset selection. They concluded that in the best cases cross project data129

5

may provide acceptable prediction results. They also state that training data130

from the same project does not always lead to better predictions and carefully131

selected cross project data may provide better prediction results than within-132

project (WP) data. They also found that data distributional characteristics133

are informative for training data selection. They used a metalearner built134

on top of the prediction results of the decision table learner to predict the135

outcome of the models before making actual predictions.136

Herbold [18] proposed distance-based strategies for the selection of train-137

ing data based on distributional characteristics of the available data. They138

presented two strategies based on EM (Expectation Maximization) cluster-139

ing and NN (Nearest Neighbor) algorithm with distributional characteristics140

as the decision strategy. They evaluated the strategies in a large case study141

with 44 versions of 14 software projects and they observed that i) weights142

can be used to successfully deal with biased data and ii) the training data143

selection provides a significant improvement in the success rate and recall of144

defect detection. However, their overall success rate was still too low for the145

practical application of CPDP.146

Turhan et al. [21] evaluated the effects of mixed project data on predic-147

tions. They tested whether mixed WP and CP data improves the predic-148

tion performances. They performed their experiments on 73 versions of 41149

projects using Näıve Bayes classifier. They concluded that the mixed project150

data would significantly improve the performance of the defect predictors.151

Zhang et al [39] created a universal defect prediction model from a large152

pool of 1,385 projects with the aim of relieving the need to build prediction153

models for individual projects. They approached the problem of variations in154

the distributions by clustering and rank transformation using the similarities155

among the projects. Based on their results, their model obtained prediction156

performance comparable to the WP models when applied to five external157

projects and performed similarly among projects with different context fac-158

tors.159

Ryu et al. [22] presented a Hybrid Instance Selection with the Near-160

est Neighbor (HISNN) method using a hybrid classification to address the161

class imbalance for CPDP. Their approach used a combination of the Near-162

est Neighbour algorithm and Näıve Bayes learner to address the instance163

selection problem.164

He et al. [26] considered CPDP from the viewpoint of metrics and features165

by investigating the usefulness of simplified metric sets. They used a greedy166

approach to filter the list of available metrics and proposed to use different167

6

sets of metrics according to the defined criteria. They observed that minimum168

feature subsets and TOPK metrics could provide acceptable results compared169

with their benchmarks. They further concluded that the minimum feature170

subset can improve the predictions despite the acceptable loss of precision.171

Feature selection and more specifically, feature matching was studied by172

Nam et al.[28]. Their proposed approach provided the ability of performing173

predictions on training and test datasets with different sets of metrics. They174

used statistical procedures for the feature matching processes and observed175

that their CPDP approach outperforms WPDP in 68% of the predictions.176

While the above-mentioned studies focus on the dataset, instance and fea-177

ture selection problems, none of them are using the search based approach.178

One such approach in defect prediction context has been considered by Liu179

et al., who tried to come up with mathematical expressions as their solu-180

tions that maximize the effectiveness of their approach [36]. They compared181

their approach with 17 non-evolutionary machine learning algorithms and182

concluded that the search-based models decrease the misclassification rate183

consistently compared with the non-search-based models.184

Canfora et al. proposed a search based multi-objective optimization ap-185

proach [40] for CPDP. Using multi-objective genetic algorithm NSGA-II, they186

tried to come up with an optimal cost effectiveness model for CPDP. They187

concluded that their approach outperforms the single objective, trivial and188

local prediction approaches. Recently, Xia et al. [41] have conducted a search189

based experiment consisting of a genetic algorithm phase and an ensemble190

phase. They utilized logistic regression as their base learner and small chunks191

of within project data in their settings. They compared their proposed ap-192

proach, i.e. HYDRA with some of the most recent CPDP approaches and193

observed that it outperformed the benchmarks significantly. Even though194

these studies use a search based approach, they are neither focused on the195

instance/dataset selection nor on the data quality problem and hence, differ196

from our approach.197

3. Research Methodology198

This section describes the details of our study starting with a discussion199

of our motivation. We then present the proposed approach as well as the200

benchmark methods, datasets and metrics, and the performance evaluation201

criteria used in our study.202

7

3.1. Motivation203

If selected carefully, a dataset from other projects can provide a better204

predicting power than WP data [13] as the large pool of the available CP205

data has the potential to cover a larger range of the feature space. This may206

lead to a better match between training and test datasets and consequently207

to better predictions.208

One of the first attempts in this area was the idea of filtering the training209

dataset instances [4]. In this approach, the most similar instances from a210

large pool containing all the training instances from other projects are se-211

lected using k-NN algorithm. Since these instances are closer to the test set212

based on a particular distance measure, they could potentially lead to better213

predictions. Using the distributional characteristics of the test and training214

datasets is another approach used in multiple studies [13, 42]. Clustering the215

instances is yet another approach used in other studies [18, 31, 39]. While216

these methods have been shown to be useful, the search based approach to217

selection is not considered by any of these papers. An evolving dataset start-218

ing with the initial datasets generated using one or a combination of these219

approaches can be a good candidate for a search based data selection problem.220

221

Data Quality. Another inspiration for this work is the fact that the pub-222

lic datasets are prone to quality issues and contain noisy data [34, 35, 43].223

Since defects are discovered over time, certain defects might not have been224

discovered at the time of compiling the datasets and hence, some of the225

instances in the training set may be misrepresenting themselves as non-226

defective, while with similar kind of measurements defects can exist in the227

test set. In contrast, while some test instances are not defective, the most228

similar items in the training set might be labeled as defective. In short,229

some of the instances in the test set can have similar measurements with230

the training set, yet different class labels. Please note that mislabeling may231

not be the only reason for such situations, and they can occur naturally, i.e.232

the class labels of similar measurements can differ depending on the metric233

set used. The acknowledgment of noise in the data and guiding the learning234

algorithm to account for that can lead to better predictions, as we proposed235

in our original paper [35] and validate it in this study.236

237

Features. We used CK+LOC metric set originally to assess the per-238

formance of GIS and the other benchmarks. Hall et al. [1] asserted that239

OO (Object-Oriented) and LOC have acceptable prediction power and they240

8

Test Set

Te
st

 P
ar

ts

. .
 .

. .
 .

1
2

p-1
P

(NN)-Filter

Training Set

Validation Sets

Search Based
Optimizer

Best
Training

Sets

Learner Predictions

Feature RankingFeature Selection

1

2
3

Figure 1: Summary of the search based training data instance selection and performance
evaluation process used in this paper.

outperform SCM (static code metrics). Moreover, they observed that adding241

SCM to OO and LOC is not related to better performance [1]. Moreover, the242

usefulness of CK+LOC was validated in multiple studies in the context of243

CPDP [25, 37, 40] of which [40] involves using search based approaches. We244

extend our work not only by considering CK+LOC but also OO+SCM+LOC245

as well as feature selection.246

We used the information gain concept to select the top ranked features247

which explain the highest entropy in the data. Information gain method is248

relatively fast and the ranking process does not need any actual predictions.249

Please note that there certainly exist more sophisticated and powerful feature250

selection approaches that could be used in the context of CPDP. The use of251

information gain feature subsetting is due to its simplicity and speed and a252

proof of concept that even simple refinement of the data through a guided253

procedure can lead to practical improvements.254

Infogain is defined as follows: For an attribute A and a class C, the255

entropy of the class before and after observing A are as follows:256

H(C) = −
∑
c∈C

p(c) log2 p(c) (1)

H(C|A) = −
∑
a∈A

p(a)
∑
c∈C

p(c|a) log2 p(c|a) (2)

The amount of explained entropy by including A reflects the additional257

information acquired and is called information gain. Using this approach the258

9

Algorithm 1 Pseudo code for GIS

1: Set numGens = The number of generations of each genetic optimization run.

2: Set popSize = The size of the population.

3: Set DATA = 41 releases from {Ant, Camel, ivy, jedit, log4j, lucene, poi, synapse, velocity, xalan,xerces}
4: Set FEATURES = {CKLOC, All, IG}
5:
6: for FSET in FEATURES do
7: for RELEASE in DATA do
8: set TEST = Load Instances from RELEASE with metric set FSET
9: set TRAIN = Instances from all other projects with metric set FSET

10: tdSize = 0.02 * Number of instances in TRAIN
11: for i = 1 to 30 do
12: Set TestParts = Split TEST instances into p parts

13:
14: for each testPart in TestParts do
15: Set vSet = Generate a validation dataset using (NN)-Filter method (with three distance measures).

16: Set TrainDataSets = Create popSize dataset from TRAIN with replacement each with tdSize instances

17:
18: for each td in TrainDataSets do
19: Evaluate td on vSet and add it to the initial generation

20: end for
21:
22: for g in range(numGens) do

23: Create a new generation using the defined Crossover and Mutation function and Elites from the
curent generation.

24: Combine the two generations and extract a new generation

25: end for
26:
27: Set bestDS = Select the top dataset from the GA’s last iteration.

28: Evaluate bestDS on testPart and append the results to the pool of results.

29: end for
30:
31: Calculate Precision, Recall and F1 and G from the predictions.

32: end for
33: Report the median of all 30 experiments

34: end for
35: end for

features of the datasets are ranked from the highest to the lowest amount of259

entropy explained. We used iterative InfoGain subsetting [44] to select the260

appropriate set of features for our experiments. Iterative InfoGain subsetting261

starts by training the predictors using the top n ranked attributes for n ∈262

{1, 2, ...} and continues until a point that having j + 1 attributes instead263

of j does not improve the predictions. An improvement in predictions was264

measured using F1 values achieved from a 1 × 10 fold cross validation on265

the training dataset. The train test splits were identical when adding the266

features iteratively during the feature selection operation.267

3.2. Proposed Approach268

Figure 1 visualizes the whole research process reported in this paper. The269

details of the search based optimizer are not present in the figure and instead,270

they are provided in Algorithm 1 and discussed below.271

The process starts with splitting the test set into p parts randomly (p = 5272

10

in our experiments). Partitioning the test set into smaller chunks plays an im-273

portant role in the overall procedure. By creating smaller chunks, the process274

of optimizing and adjusting the dataset is easier as there are less elements to275

consider and the datasets generated could be better representatives for these276

smaller chunks than the whole dataset. This procedure however, adds extra277

complexity to the model and the run-time would increase consequently since278

a search based optimizer is required for each part.279

Each part (without the labels) is fed into the (NN)-Filter instance selec-280

tion method in order to select the most relevant instances from the training281

set for the purpose of reserving a validation set, on which we optimize the282

search process. Please note that the training set is a combination of all the283

instances from other projects. We used the closest three instances with mul-284

tiple distance measures to account for the possible error in using a specific285

distance measure. The unique instances from the generated set were selected286

to act as the validation dataset used to guide our instance selection process.287

The availability of mixed data as used in [17, 21, 41] could also potentially288

act as a replacement for the aforementioned similarity measures and boost289

the performance of our approach.290

The process then randomly creates an initial population containing pop-291

Size datasets (popSize=30 in our experiments). Each population element292

is a dataset selected randomly and with replacement from the large pool293

of training set instances (see Table 1). The selected number of population294

members and their sizes lead to an average of 94.99% coverage (std=0.031)295

of the instances in the large pool of available training instances (multiple296

copies for some) for each iteration.297

Each population member is then evaluated on the validation set, which298

is acquired via the (NN)-Filter in the previous step. Then, for numGens299

generations, a new population is generated and the top elements are selected300

to survive and move to the next generation. There is an alternative stopping301

criterion for GIS (described below). These procedures are repeated 30 times302

to address the randomness introduced by both the dataset selection and ge-303

netic operations. Below, the genetic operations and parameters are discussed304

in more details:305

306

Initial Population: The initial population is generated using the ran-307

dom instance selection process with replacement from a large pool of in-308

stances containing all elements from other projects than the test project.309

The instances might contain elements included in the validation dataset as310

11

F1 F2 · · · Fm-2 Fm-1 Fm L

C1 6 0 · · · 0 1 1 0
C2 3 0.97 · · · 12 3 1 1
C3 5 0.69 · · · 12.6 4 1.4 0
· ·
Cn-2 3 0.98 · · · 16 2 1 0
Cn-1 3 0.82 · · · 8.33 1 0.67 0
Cn 16 0.73 · · · 28.3 9 1.56 1

Table 1: Chromosome structure

they are not removed from the large pool of candidate training instances due311

to their possible usefulness for the learning process. The selection process312

consumes 94.99% of the initial training data on average and eliminates a313

group of them with each passing generation.314

315

Chromosome Representation: Each chromosome contains a number316

of instances from a list of projects. A chromosome is a dataset sampled317

from the large training dataset randomly and with replacement. A typical318

chromosome example can be seen in Table 1. Fi represents ith selected feature319

and L represents the class label. Atypical chromosome contains n instances320

denoted by C1 to Cn.321

We used a fixed size chromosome in our experiments. The size of each322

chromosome (dataset) was set to 0.02% of the large pool of training data323

from other projects. The fixed size chromosome was selected to show the324

effectiveness of our proposed approach with respect to the small candidate325

training sets generated. One might find the varying size chromosome more326

useful in practice as the candidates in this version might be able to capture327

more properties of the test set subject to prediction.328

329

Selection: The Tournament selection is used as the selection operator of330

GIS. Since the population size is small in our experiments, tournament size331

was set to two.332

333

Elites: A proportion of the population is moved to the next generation;334

those that provide the best fitness values. We transfer two of the top parents335

to the next generation.336

337

Stopping Criteria: We place two limitations on the number of itera-338

tions that the genetic algorithm could progress. The first one is the maximum339

12

number of generations allowed. In this case, this number was set to 20. The340

reason for selecting a relatively small number of generations (20) is due to341

having small population sizes. The small populations was selected for the342

runtime considerations. Despite their sizes however, they cover 94.99% of the343

original training instances on average in every iteration, when creating the344

initial populations. Further, we observed that the process converges quickly345

and hence, making 20 an acceptable maximum number of generations. The346

other stopping criterion is the amount of benefit gained from the population347

generated. If the difference between the mean fitness of two consecutive pop-348

ulations is less than ε = 0.0001, the genetic algorithm stops.The mentioned349

epsilon was selected arbitrarily to be a small number. One can expect to350

achieve better results by tuning these parameters.351

352

Fitness Function: F1 * G is used as the fitness value of each population353

element. Each population element (a dataset) is evaluated on the validation354

set and fitness value is assigned to it. The selection of this fitness function is355

not random as both of these values (F1 and G) measure the balance between356

precision and recall, but in different ways.357

358

Mutation: The mutation function handles potential data quality (e.g,359

noise, mislabelling etc.) issues. Randomly changing the class value of the360

instances from non defective to defective (and vice versa), the mutation op-361

eration guides the process through multiple generations for yielding more362

similar datasets. This could to some extent account for both undiscovered363

bugs as well as contradictory labels for similar measurements in different364

projects (training and test data). With the probability of mProb = 0.05,365

a number of training set instances are mutated by flipping the labels (de-366

fective → non defective or non defective → defective). Note that since the367

datasets could contain repetitions of an element (from the initial population368

generation and later from the crossover operation), if an instance is mutated,369

all of its repetitions are also mutated. This way, we could avoid conflicts370

between the items in the same dataset. The mutation process is described371

in Algorithm 2 formally.372

373

Crossover: The generated training datasets used in the population could374

possibly have large sizes. The time for training a learner with a large dataset375

and validating it on a medium size validation set increases, if the size of the376

train and validation datasets increase. To avoid having very large datasets377

13

Algorithm 2 Mutation

1: Input → DS: a dataset

2: Output → A dataset with possible mutated items

3:
4: set mProb = p // Mutation probability

5: set mCount = c // Number of instances to mutate

6: set r = Random value between 0 and 1
7:
8: if r < mProb then
9: for i in range(mCount) do

10: Randomly select an instance that is not been mutated in the same round

11: Find all repeats of the same item and flip their labels

12: end for
13:
14: end if

Algorithm 3 One point crossover

1: Input → DS1 and DS2

2: Output → Two new datasets generated from DS1 and DS2

3:
4: Set nDS1 = Empty dataset

5: Set nDS2 = Empty dataset

6: Set point = Random in the range of either of DS1 or DS2

7: SHUFFLE DS1 and DS2
8:
9: for i = 1 to point do

10: Append DS1(i) to nDS1

11: Append DS2(i) to nDS2

12: end for
13:
14: for i = point+1 to DS1’s length do

15: Append DS1(i) to nDS2

16: Append DS2(i) to nDS1

17: end for
18:
19: for each unique instance in nDS1 and nDS2 do

20: Use the majority voting to decide the label of the instance and its repetitions.

21: end for

one point crossover was used during the crossover operation. Nevertheless,378

some might find two point cross over more useful. As mentioned earlier, the379

chromosomes are a list of instances from the large training set, selected ran-380

domly and with replacement with a fixed size. Hence one point cross over381

would not increase the size of the datasets when combining them. Since the382

chromosomes possibly contain the repetitions of one item and the mutation383

operation changes the label of an instance, conflicts might occur in the chro-384

mosomes generated from combining the two selected parents. In the case of385

conflicts, the majority voting is used to select the label of such instances.386

Algorithm 3 provides the pseudo-code for crossover operation.387

388

14

3.3. Benchmark Methods389

To have a better insight into the performance achieved by GIS, it is390

compared to the following benchmarks:391

(NN)-Filter (CPDP): In this approach, the most relevant training in-392

stances are selected based on a distance measure [4]. In this case, we used393

10 nearest neighbours and Euclidean distance. This value is similar to that394

utilized by multiple previous studies [4, 14, 18, 45]. The k=10 was the value395

of choice in the study by Turhan et al. [4] which proposed NN-Filter. The396

selection of k as 10 was followed by later studies such as He et al. [45] and397

Chen et al. [14], both of which focus on CPDP. Another CPDP study by398

Herbold [18] used different values of k ∈ {3, 5, 10, 15, 20, 25, 30} and ob-399

served the best results for larger k values. The simplicity of the method and400

the comprehensive number of studies that have tested the approach are the401

reasons for choosing this method as a benchmark [4, 17, 22]. Also GIS uses402

(NN)-Filter to select the validation dataset and a benchmark is required to403

measure the performance difference between (NN)-Filter and GIS.404

Naive (CPDP): In this approach, the whole training set is fed into405

the learner and the model is trained with all the training data points. This406

method has also been tested in many studies and provides a baseline for407

the comparisons [4, 17, 22]. The approach is easy and at the same time408

demonstrates that while the availability of large pools of data could be useful,409

not all the data items are.410

10-Fold cross validation (WPDP): In this benchmark, we perform411

stratified cross validation on the test set. Many studies have reported the412

good or at least better performance of this approach compared with that of413

cross project methods [4]. Outperforming and improving WPDP is the main414

goals of many such studies. We refer to this benchmark as CV throughout415

our analysis.416

Previous Releases (WPDP): Previous releases of the same project417

are used to train the prediction model. Similar to 10-fold cross validation,418

a good performance of this approach is expected in comparison with that of419

cross project methods as these older releases are more similar to the test set420

in comparison with datasets from other projects. More importantly, there is a421

higher possibility of finding even identical classes in the old and new releases422

of a project. Previous releases are another target of the CPDP studies as423

acquiring such data is still difficult in some cases. Note that the first release424

of each project does not have a previous release and therefore no prediction425

could be performed for it in this category. We use the 10 fold cross validation426

15

Table 2: Utilized datasets and their properties

Dataset #Classes #DP DP% #LOC Dataset #Classes #DP DP% #LOC
ant-1.3 125 20 16 37699 lucene-2.0 195 91 46.7 50596
ant-1.4 178 40 22.5 54195 lucene-2.2 247 144 58.3 63571
ant-1.5 293 32 10.9 87047 lucene-2.4 340 203 59.7 102859
ant-1.6 351 92 26.2 113246 poi-1.5 237 141 59.5 55428
ant-1.7 745 166 22.3 208653 poi-2.0 314 37 11.8 93171
camel-1.0 339 13 3.8 33721 poi-2.5 385 248 64.4 119731
camel-1.2 608 216 35.5 66302 poi-3.0 442 281 63.6 129327
camel-1.4 872 145 16.6 98080 synapse-1.0 157 16 10.2 28806
camel-1.6 965 188 19.5 113055 synapse-1.1 222 60 27 42302
ivy-1.1 111 63 56.8 27292 synapse-1.2 256 86 33.6 53500
ivy-1.4 241 16 6.6 59286 velocity-1.4 196 147 75 51713
ivy-2.0 352 40 11.4 87769 velocity-1.5 214 142 66.4 53141
jedit-3.2 272 90 33.1 128883 velocity-1.6 229 78 34.1 57012
jedit-4.0 306 75 24.5 144803 xalan-2.4 723 110 15.2 225088
jedit-4.1 312 79 25.3 153087 xalan-2.5 803 387 48.2 304860
jedit-4.2 367 48 13.1 170683 xalan-2.6 885 411 46.4 411737
jedit-4.3 492 11 2.2 202363 xalan-2.7 909 898 98.8 428555
log4j-1.0 135 34 25.2 21549 xerces-1.2 440 71 16.1 159254
log4j-1.1 109 37 33.9 19938 xerces-1.3 453 69 15.2 167095
log4j-1.2 205 189 92.2 38191 xerces-1.4 588 437 74.3 141180

xerces-init 162 77 47.5 90718

result for the first release of each project in order to make the comparisons427

easier. We denote this benchmark by PR in the following.428

Feature Selection: Each of the aforementioned benchmarks are trained429

and tested using three different sets of features. CK+LOC, used in our orig-430

inal study [35] as well as the whole set of features in the datasets which431

consist of OO+SCM+LOC are considered for all benchmarks. Beside these432

feature sets, a portion of the features ranked based on their respective in-433

formation gain are used to prepare another set of benchmarks. We used434

iterative InfoGain subsetting method to select the appropriate features for435

each benchmark.436

The first two benchmarks (CPDP) are used to answer RQ1 and the latter437

are utilized to answer RQ2. The results of different versions of GIS would438

be used to answer the last research question, i.e. RQ3. Each experiment is439

repeated 30 times to address the randomness introduced by CV and GIS.440

3.4. Datasets and Metrics441

We used 41 releases of 11 projects from the PROMISE repository for our442

experiments. These projects are open source and all of them have multiple443

versions. Due to the inclusion of the multi version WPDP benchmark, we444

skipped the use of datasets with a single version. The datasets are collected445

by Jureczko, Madeyski and Spinellis [31, 32]. The list of the datasets is446

presented in Table 2 with the corresponding size and defect information.447

16

Table 3: List of the metrics used in this study

ID Variable Description

1 WMC Weighted Methods per Class
2 DIT Depth of Inheritance Tree
3 NOC Number of Children
4 CBO Coupling between Object classes
5 RFC Response for a Class
6 LCOM Lack of Cohesion in Methods
7 CA Afferent Couplings
8 CE Efferent Couplings
9 NPM Number of Public Methods
10 LCOM3 Normalized version of LCOM
11 LOC Lines Of Code
12 DAM Data Access Metric
13 MOA Measure Of Aggregation
14 MFA Measure of Functional Abstraction
15 CAM Cohesion Among Methods
16 IC Inheritance Coupling
17 CBM Coupling Between Methods
18 AMC Average Method Complexity
19 MAX CC Maximum cyclomatic complexity
20 AVG CC Mean cyclomatic complexity

The reason for using these datasets is driven by our goal to account for noise448

in the data, which is a threat specified by the donors of these datasets. Each449

dataset contains a number of instances corresponding to the classes in the450

release. Originally, each instance has 20 static code metrics listed in Table451

3. Three scenarios were considered for selecting the metric suites. In the452

first scenario, we used CK+LOC portion of the metrics as the basis of our453

experiments. CK+LOC is used and validated in previous CPDP studies454

[2, 46] and Hall et al. [1] have addressed the usefulness of these metrics in455

comparison with static code metrics. In the second scenario, the full set of456

metrics were considered for our experiments and finally for the last scenario,457

we used a very simple and fast feature selection approach based on the rank458

of the features according to their information gain. The selection of the459

metrics in our original study was skipped as its primary focus was only on460

the instance selection problem and using a reduced set that is tried in other461

studies allowed us to demonstrate the feasibility of our approach as a proof of462

concept. While this paper includes the same feature set, it also involves the463

feature selection concept to some extent and detailed analysis are presented464

accordingly.465

3.5. Performance Measures and Tools466

Näıve Bayes (NB) is used as the base learner in all experiments. NB is a467

member of the probabilistic classifier family that are based on applying Bayes’468

17

theorem with strong (näıve) independence assumptions between the features469

[47]. The good performance of NB has been shown in many studies. Menzies470

et al. [3, 48] and Lessmann et al.[49] have demonstrated the effectiveness471

of NB with a set of data mining experiments performed on NASA MDP472

datasets. Lessmann et al. compared the most common classifiers on the473

NASA datasets and concluded that there is no significant difference between474

the performances of top 15 classifiers, one of which is NB [49] .475

To assess the performance of the models, four indicators are used: Pre-476

cision, Recall, F1 and G. These indicators are calculated by comparing the477

outcome of the prediction model and the actual label of the data instances.478

To that end, the confusion matrix is created using the following values:479

TN: The number of correct predictions that instances are defect free.480

FN: The number of incorrect predictions that instances are defect free.481

TP: The number of correct predictions that instances are defective.482

FP: The number of incorrect predictions that instances are defective.483

Using confusion matrix, mentioned indicators are calculated as follows:484

Precision: The proportion of the predicted positive cases that were cor-485

rect is calculated using:486

Precision =
TP

TP + FP
(3)

Recall: Recall is the proportion of positive cases that were correctly487

identified. To calculate recall the following equation is used:488

Recall =
TP

TP + FN
(4)

F1: To capture the trade-off between precision and recall, F1 (F-Measure)489

is calculated using the values of recall and precision. The most common ver-490

sion of this measure is the F1-score which is the harmonic mean of precision491

and recall. This measure is approximately the average of the two when they492

are close, and is more generally the square of the geometric mean divided by493

the arithmetic mean. We denote F1-measure by F1 in the following.494

F1 = 2× Precision×Recall
Precision+Recall

(5)

G: While F1 is the harmonic mean of Recall and Precision, G (GMean)495

is the geometric mean of the two.496

G =
√
precision× recall (6)

18

In this study, F1 and G are selected as the principal measures of re-497

porting our results and performing comparisons in order to detect the best498

approach(es). F1 and G are also used as parts of the fitness function in GIS as499

discussed earlier. Finally, F1 is used in the context of the iterative infogain500

subsetting to select the best set of features according to their information501

gain.502

All the experiments are conducted using WEKA1 machine learning li-503

brary version 3.6.13. The statistical tests are carried out using the scipy.stats2
504

library version 0.16.1, Python3 version 3.4.4 and statistics library from505

Python. The violin plots and CD Diagrams are generated using the mat-506

plotlib4 library version 1.5.3 and evaluation package from Orange5 library507

version 3.3.8 respectively. A replication package is available online for GIS 6.508

4. Results509

Tables 5, 6, 7 and 8 provide the median F1 and G values from the exper-510

iments performed for CPDP and WPDP benchmarks, respectively. In these511

tables, the reported results are without variation for (NN)-Filter and Naive512

CPDP methods as well as PR since there is no randomness involved in their513

settings. For other benchmarks, the experiments are repeated 30 times to514

account for the existing randomness in the design of their experiments. The515

results of within and cross project predictions are presented separately to516

evaluate the differences in both within and cross project cases and to answer517

the corresponding research questions properly. The results of GIS are dupli-518

cated in the cross and within project tables to make the comparisons easier.519

In both sets of tables, the last two rows present the median and mean values520

of all predictions.521

These results are depicted through diagrams and plots in Figures 4 and 13.522

The rankings in the first figure plots are based on the median and critical523

difference scheme. The third figure provides per datasets results for GIS,524

CPDP and WPDP. These plots are described in the following.525

1http://www.cs.waikato.ac.nz/ml/weka/
2https://www.scipy.org/
3http://www.python.org
4http://matplotlib.org/
5http://orange.biolab.si/
6https://doi.org/10.5281/zenodo.804413

19

http://www.cs.waikato.ac.nz/ml/weka/
https://www.scipy.org/
http://www.python.org
http://matplotlib.org/
http://orange.biolab.si/
https://doi.org/10.5281/zenodo.804413

Table 4: Violin Plots and CD Diagrams for F1 and G

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Naiveckloc

NN−Filterckloc

NaiveIG

NN−FilterIG

Naiveall

NN−Filterall

CVckloc

PRckloc

PRIG

PRall

CVall

GISall

CVIG

GISckloc

GISIG

(a) F1

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Naiveckloc

NN−Filterckloc

NaiveIG

NN−FilterIG

Naiveall

NN−Filterall

PRckloc

CVckloc

PRIG

PRall

CVall

CVIG

GISall

GISckloc

GISIG

(b) G

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

N
a
iv
e c

k
lo
c

N
N
−
F
il
te
r c
k
lo
c

N
N
−
F
il
te
r I
G

N
a
iv
e I

G

N
a
iv
e a

ll

P
R
ck
lo
c

N
N
−
F
il
te
r a

ll

C
V
ck
lo
c

G
IS

a
ll

P
R
IG

G
IS

ck
lo
c

C
V
IG

G
IS

IG

P
R
a
ll

C
V
a
ll

C
D

(c) F1

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

N
a
iv
e c

k
lo
c

N
N
−
F
il
te
r c
k
lo
c

N
N
−
F
il
te
r I
G

N
a
iv
e I

G

N
a
iv
e a

ll

N
N
−
F
il
te
r a

ll

P
R
ck
lo
c

C
V
ck
lo
c

P
R
IG

C
V
IG

G
IS

a
ll

P
R
a
ll

C
V
a
ll

G
IS

ck
lo
c

G
IS

IG

C
D

(d) G

20

Table 5: F1: GIS vs Cross Project Benchmarks

GIS(C) NN-Filter(C) Naive(C)
file All ckloc IG All ckloc IG All ckloc IG

ant-1.3 0.292 0.326 0.314 0.372 0.444 0.488 0.294 0.250 0.375
ant-1.4 0.370 0.355 0.361 0.219 0.185 0.274 0.190 0.129 0.197
ant-1.5 0.211 0.245 0.251 0.313 0.444 0.338 0.338 0.418 0.423
ant-1.6 0.442 0.465 0.513 0.410 0.426 0.450 0.408 0.420 0.444
ant-1.7 0.361 0.395 0.416 0.497 0.424 0.485 0.465 0.437 0.504
camel-1.0 0.102 0.078 0.089 0.188 0.238 0.128 0.333 0.333 0.194
camel-1.2 0.491 0.525 0.483 0.271 0.238 0.240 0.192 0.170 0.167
camel-1.4 0.302 0.303 0.320 0.281 0.239 0.269 0.204 0.201 0.246
camel-1.6 0.329 0.342 0.329 0.219 0.214 0.226 0.196 0.235 0.212
ivy-1.1 0.664 0.703 0.589 0.375 0.222 0.222 0.274 0.225 0.243
ivy-1.4 0.150 0.157 0.173 0.318 0.129 0.182 0.300 0.273 0.292
ivy-2.0 0.277 0.300 0.338 0.364 0.434 0.412 0.391 0.391 0.421
jedit-3.2 0.543 0.575 0.587 0.336 0.226 0.303 0.486 0.359 0.424
jedit-4.0 0.423 0.451 0.463 0.422 0.302 0.368 0.468 0.468 0.500
jedit-4.1 0.486 0.486 0.520 0.493 0.414 0.403 0.601 0.523 0.567
jedit-4.2 0.300 0.259 0.342 0.443 0.378 0.420 0.460 0.473 0.481
jedit-4.3 0.043 0.034 0.047 0.096 0.164 0.152 0.079 0.119 0.108
log4j-1.0 0.447 0.523 0.442 0.519 0.391 0.348 0.256 0.162 0.111
log4j-1.1 0.575 0.619 0.579 0.576 0.500 0.462 0.233 0.053 0.150
log4j-1.2 0.730 0.668 0.781 0.217 0.138 0.165 0.119 0.071 0.071
lucene-2.0 0.633 0.640 0.609 0.446 0.324 0.383 0.175 0.175 0.198
lucene-2.2 0.643 0.680 0.612 0.282 0.226 0.235 0.185 0.127 0.127
lucene-2.4 0.691 0.714 0.668 0.358 0.217 0.252 0.280 0.211 0.194
poi-1.5 0.681 0.706 0.741 0.314 0.210 0.210 0.284 0.200 0.222
poi-2.0 0.215 0.216 0.219 0.267 0.197 0.230 0.234 0.215 0.257
poi-2.5 0.768 0.761 0.796 0.233 0.165 0.179 0.262 0.176 0.246
poi-3.0 0.766 0.803 0.786 0.263 0.185 0.196 0.269 0.194 0.287
synapse-1.0 0.196 0.220 0.223 0.421 0.311 0.410 0.333 0.276 0.320
synapse-1.1 0.415 0.457 0.455 0.463 0.311 0.442 0.370 0.237 0.240
synapse-1.2 0.520 0.527 0.537 0.560 0.310 0.431 0.431 0.262 0.273
velocity-1.4 0.564 0.642 0.724 0.188 0.088 0.132 0.120 0.099 0.133
velocity-1.5 0.628 0.583 0.712 0.228 0.116 0.185 0.164 0.116 0.198
velocity-1.6 0.506 0.521 0.558 0.291 0.205 0.317 0.250 0.237 0.283
xalan-2.4 0.304 0.287 0.311 0.390 0.317 0.344 0.367 0.327 0.400
xalan-2.5 0.569 0.583 0.577 0.373 0.301 0.301 0.395 0.281 0.294
xalan-2.6 0.514 0.567 0.589 0.511 0.404 0.413 0.490 0.375 0.382
xalan-2.7 0.798 0.831 0.763 0.402 0.248 0.251 0.416 0.255 0.261
xerces-1.2 0.234 0.256 0.239 0.240 0.171 0.200 0.244 0.200 0.240
xerces-1.3 0.379 0.329 0.327 0.331 0.291 0.288 0.331 0.327 0.295
xerces-1.4 0.646 0.638 0.710 0.310 0.189 0.198 0.250 0.171 0.184
xerces-init 0.408 0.433 0.516 0.318 0.258 0.277 0.318 0.295 0.303

Median 0.457 0.486 0.498 0.331 0.239 0.277 0.284 0.237 0.257
Mean 0.453 0.467 0.478 0.344 0.273 0.298 0.304 0.255 0.280

To measure the performance difference across the benchmarks, two differ-526

ent approaches were considered. First, the performance of GIS in comparison527

with other benchmarks was assessed through Wilcoxon signed rank tests. Ta-528

bles 9 and 10 summarize the results of the pairwise statistical tests based on529

F1 and G values respectively for all 30 runs. The first column of each entry530

in these tables is the p − value obtained from the tests and the second col-531

umn is the Cohen’s d value associated with the performance obtained from532

the two treatments subject to comparison. The following equation is used to533

21

Table 6: F1: GIS vs Within Project Benchmarks

GIS (C) CV (W) PR (W)
file All ckloc IG All ckloc IG All ckloc IG

ant-1.3 0.292 0.326 0.314 0.427 0.303 0.441 0.427 0.303 0.441
ant-1.4 0.370 0.355 0.361 0.400 0.394 0.444 0.308 0.154 0.278
ant-1.5 0.211 0.245 0.251 0.370 0.448 0.507 0.429 0.430 0.500
ant-1.6 0.442 0.465 0.513 0.576 0.431 0.586 0.601 0.514 0.477
ant-1.7 0.361 0.395 0.416 0.556 0.497 0.498 0.531 0.438 0.518
camel-1.0 0.102 0.078 0.089 0.300 0.286 0.118 0.300 0.286 0.118
camel-1.2 0.491 0.525 0.483 0.322 0.288 0.205 0.208 0.178 0.053
camel-1.4 0.302 0.303 0.320 0.265 0.245 0.264 0.300 0.304 0.288
camel-1.6 0.329 0.342 0.329 0.312 0.261 0.204 0.306 0.287 0.259
ivy-1.1 0.664 0.703 0.589 0.574 0.449 0.538 0.574 0.449 0.538
ivy-1.4 0.150 0.157 0.173 0.176 0.080 0.000 0.267 0.250 0.278
ivy-2.0 0.277 0.300 0.338 0.389 0.425 0.425 0.375 0.380 0.424
jedit-3.2 0.543 0.575 0.587 0.572 0.467 0.462 0.572 0.467 0.462
jedit-4.0 0.423 0.451 0.463 0.421 0.294 0.237 0.517 0.394 0.481
jedit-4.1 0.486 0.486 0.520 0.500 0.361 0.398 0.526 0.400 0.323
jedit-4.2 0.300 0.259 0.342 0.432 0.320 0.400 0.475 0.405 0.465
jedit-4.3 0.043 0.034 0.047 0.211 0.214 0.077 0.102 0.164 0.233
log4j-1.0 0.447 0.523 0.442 0.632 0.607 0.584 0.632 0.607 0.584
log4j-1.1 0.575 0.619 0.579 0.725 0.687 0.697 0.708 0.698 0.667
log4j-1.2 0.730 0.668 0.781 0.657 0.578 0.686 0.453 0.417 0.474
lucene-2.0 0.633 0.640 0.609 0.553 0.507 0.556 0.553 0.507 0.556
lucene-2.2 0.643 0.680 0.612 0.487 0.423 0.451 0.500 0.452 0.426
lucene-2.4 0.691 0.714 0.668 0.529 0.466 0.526 0.525 0.435 0.525
poi-1.5 0.681 0.706 0.741 0.454 0.409 0.592 0.454 0.409 0.592
poi-2.0 0.215 0.216 0.219 0.207 0.218 0.162 0.288 0.269 0.288
poi-2.5 0.768 0.761 0.796 0.578 0.281 0.812 0.256 0.208 0.238
poi-3.0 0.766 0.803 0.786 0.477 0.369 0.688 0.294 0.264 0.338
synapse-1.0 0.196 0.220 0.223 0.385 0.296 0.432 0.385 0.296 0.432
synapse-1.1 0.415 0.457 0.455 0.527 0.433 0.461 0.500 0.427 0.469
synapse-1.2 0.520 0.527 0.537 0.577 0.505 0.530 0.510 0.397 0.489
velocity-1.4 0.564 0.642 0.724 0.892 0.831 0.880 0.892 0.831 0.880
velocity-1.5 0.628 0.583 0.712 0.433 0.311 0.494 0.752 0.756 0.765
velocity-1.6 0.506 0.521 0.558 0.360 0.305 0.410 0.526 0.505 0.530
xalan-2.4 0.304 0.287 0.311 0.363 0.299 0.354 0.363 0.299 0.354
xalan-2.5 0.569 0.583 0.577 0.377 0.302 0.555 0.306 0.297 0.301
xalan-2.6 0.514 0.567 0.589 0.598 0.535 0.575 0.428 0.407 0.407
xalan-2.7 0.798 0.831 0.763 0.913 0.820 0.930 0.349 0.260 0.285
xerces-1.2 0.234 0.256 0.239 0.231 0.175 0.162 0.231 0.175 0.162
xerces-1.3 0.379 0.329 0.327 0.372 0.274 0.466 0.291 0.265 0.247
xerces-1.4 0.646 0.638 0.710 0.718 0.645 0.707 0.254 0.189 0.000
xerces-init 0.408 0.433 0.516 0.333 0.327 0.330 0.349 0.312 0.362

Median 0.457 0.486 0.498 0.450 0.373 0.472 0.429 0.394 0.424
Mean 0.453 0.467 0.478 0.468 0.399 0.460 0.430 0.377 0.402

calculate Cohen’s d:534

d =
Xgis −Xb

stdp
(7)

Here, Xb and Xgis are the means of the benchmark and GIS respectively.535

Hence, a positive Cohen’s d means that GIS yields better results than the536

compared counterpart. stdp represents the pooled standard deviation which537

22

Table 7: G: GIS vs Cross Project Benchmarks

GIS(C) NN-Filter(C) Naive(C)
file All ckloc IG All ckloc IG All ckloc IG

ant-1.3 0.381 0.434 0.418 0.373 0.447 0.488 0.299 0.258 0.387
ant-1.4 0.446 0.397 0.410 0.220 0.190 0.275 0.198 0.135 0.207
ant-1.5 0.314 0.353 0.359 0.322 0.447 0.343 0.340 0.418 0.425
ant-1.6 0.507 0.528 0.558 0.417 0.447 0.461 0.422 0.438 0.463
ant-1.7 0.450 0.486 0.501 0.502 0.449 0.504 0.477 0.454 0.523
camel-1.0 0.208 0.193 0.201 0.233 0.258 0.143 0.347 0.347 0.196
camel-1.2 0.520 0.580 0.512 0.299 0.299 0.292 0.256 0.257 0.242
camel-1.4 0.393 0.416 0.388 0.285 0.266 0.282 0.212 0.226 0.266
camel-1.6 0.402 0.445 0.388 0.226 0.246 0.249 0.207 0.267 0.234
ivy-1.1 0.664 0.705 0.604 0.458 0.336 0.336 0.398 0.356 0.342
ivy-1.4 0.247 0.270 0.271 0.331 0.129 0.182 0.306 0.283 0.309
ivy-2.0 0.366 0.391 0.419 0.371 0.434 0.419 0.395 0.395 0.426
jedit-3.2 0.563 0.612 0.603 0.374 0.274 0.352 0.502 0.393 0.455
jedit-4.0 0.467 0.502 0.515 0.428 0.332 0.388 0.469 0.478 0.511
jedit-4.1 0.520 0.529 0.561 0.501 0.444 0.427 0.602 0.536 0.576
jedit-4.2 0.389 0.364 0.435 0.453 0.379 0.420 0.484 0.477 0.484
jedit-4.3 0.114 0.098 0.129 0.156 0.213 0.203 0.141 0.176 0.166
log4j-1.0 0.494 0.565 0.517 0.537 0.446 0.396 0.383 0.297 0.243
log4j-1.1 0.581 0.635 0.615 0.596 0.552 0.509 0.336 0.164 0.285
log4j-1.2 0.746 0.697 0.790 0.349 0.272 0.300 0.252 0.192 0.192
lucene-2.0 0.638 0.654 0.610 0.517 0.422 0.471 0.272 0.272 0.331
lucene-2.2 0.643 0.681 0.614 0.363 0.323 0.327 0.295 0.231 0.231
lucene-2.4 0.693 0.718 0.669 0.439 0.338 0.356 0.377 0.344 0.315
poi-1.5 0.681 0.709 0.748 0.408 0.312 0.312 0.382 0.309 0.331
poi-2.0 0.287 0.318 0.327 0.267 0.201 0.235 0.234 0.217 0.258
poi-2.5 0.769 0.762 0.803 0.325 0.267 0.285 0.350 0.265 0.341
poi-3.0 0.767 0.809 0.794 0.361 0.301 0.308 0.365 0.300 0.390
synapse-1.0 0.292 0.337 0.343 0.469 0.325 0.417 0.334 0.277 0.333
synapse-1.1 0.461 0.521 0.514 0.466 0.330 0.458 0.388 0.290 0.300
synapse-1.2 0.554 0.574 0.577 0.566 0.354 0.455 0.455 0.329 0.330
velocity-1.4 0.575 0.645 0.725 0.275 0.160 0.203 0.189 0.176 0.214
velocity-1.5 0.635 0.602 0.712 0.319 0.209 0.281 0.265 0.209 0.300
velocity-1.6 0.511 0.538 0.569 0.340 0.322 0.378 0.320 0.322 0.346
xalan-2.4 0.392 0.385 0.402 0.397 0.322 0.347 0.383 0.327 0.400
xalan-2.5 0.575 0.590 0.583 0.399 0.360 0.360 0.414 0.331 0.344
xalan-2.6 0.522 0.580 0.596 0.540 0.478 0.486 0.509 0.440 0.445
xalan-2.7 0.813 0.842 0.785 0.502 0.376 0.379 0.513 0.382 0.388
xerces-1.2 0.249 0.278 0.287 0.242 0.183 0.201 0.247 0.209 0.242
xerces-1.3 0.428 0.356 0.400 0.334 0.310 0.290 0.334 0.338 0.298
xerces-1.4 0.665 0.652 0.716 0.418 0.308 0.310 0.371 0.303 0.301
xerces-init 0.409 0.436 0.519 0.354 0.342 0.326 0.354 0.376 0.364

Median 0.497 0.531 0.537 0.373 0.323 0.343 0.350 0.303 0.331
Mean 0.496 0.515 0.523 0.384 0.327 0.345 0.351 0.312 0.335

can be calculated as follows:538

stdp =

√
(ngis − 1) ∗ (sgis)2 + (nb − 1) ∗ (sb)2

ngis + nb − 2
(8)

Where sgis, ngis, sb and nb are the standard deviation of GIS measure-539

ments, the number of subjects in the GIS group, standard deviation of540

benchmark group and number of subjects in the benchmark group, respec-541

tively. Cohen’s d is a way of representing the standardized difference between542

23

Table 8: G: GIS vs Within Project Benchmarks

GIS (C) CV (W) PR (W)
file All ckloc IG All ckloc IG All ckloc IG

ant-1.3 0.381 0.434 0.418 0.429 0.310 0.442 0.429 0.310 0.442
ant-1.4 0.446 0.397 0.410 0.451 0.454 0.500 0.308 0.158 0.280
ant-1.5 0.314 0.353 0.359 0.411 0.448 0.511 0.457 0.438 0.506
ant-1.6 0.507 0.528 0.558 0.577 0.448 0.590 0.604 0.529 0.489
ant-1.7 0.450 0.486 0.501 0.556 0.508 0.508 0.532 0.463 0.528
camel-1.0 0.208 0.193 0.201 0.320 0.296 0.139 0.320 0.296 0.139
camel-1.2 0.520 0.580 0.512 0.349 0.336 0.257 0.280 0.269 0.118
camel-1.4 0.393 0.416 0.388 0.269 0.264 0.288 0.301 0.312 0.303
camel-1.6 0.402 0.445 0.388 0.326 0.285 0.237 0.311 0.306 0.277
ivy-1.1 0.664 0.705 0.604 0.593 0.494 0.570 0.593 0.494 0.570
ivy-1.4 0.247 0.270 0.271 0.177 0.083 0.000 0.325 0.301 0.334
ivy-2.0 0.366 0.391 0.419 0.393 0.425 0.425 0.380 0.380 0.424
jedit-3.2 0.563 0.612 0.603 0.580 0.479 0.475 0.580 0.479 0.475
jedit-4.0 0.467 0.502 0.515 0.432 0.333 0.299 0.517 0.396 0.485
jedit-4.1 0.520 0.529 0.561 0.514 0.411 0.453 0.532 0.431 0.403
jedit-4.2 0.389 0.364 0.435 0.433 0.333 0.408 0.483 0.409 0.468
jedit-4.3 0.114 0.098 0.129 0.232 0.219 0.078 0.162 0.213 0.267
log4j-1.0 0.494 0.565 0.517 0.644 0.622 0.597 0.644 0.622 0.597
log4j-1.1 0.581 0.635 0.615 0.727 0.690 0.702 0.715 0.709 0.677
log4j-1.2 0.746 0.697 0.790 0.694 0.630 0.718 0.535 0.509 0.554
lucene-2.0 0.638 0.654 0.610 0.572 0.544 0.583 0.572 0.544 0.583
lucene-2.2 0.643 0.681 0.614 0.517 0.481 0.490 0.536 0.506 0.471
lucene-2.4 0.693 0.718 0.669 0.570 0.524 0.561 0.560 0.502 0.560
poi-1.5 0.681 0.709 0.748 0.505 0.474 0.608 0.505 0.474 0.608
poi-2.0 0.287 0.318 0.327 0.208 0.232 0.186 0.306 0.281 0.331
poi-2.5 0.769 0.762 0.803 0.608 0.357 0.812 0.345 0.301 0.328
poi-3.0 0.767 0.809 0.794 0.529 0.449 0.699 0.388 0.364 0.427
synapse-1.0 0.292 0.337 0.343 0.420 0.303 0.436 0.420 0.303 0.436
synapse-1.1 0.461 0.521 0.514 0.528 0.446 0.474 0.506 0.455 0.482
synapse-1.2 0.554 0.574 0.577 0.580 0.519 0.543 0.516 0.426 0.514
velocity-1.4 0.575 0.645 0.725 0.893 0.835 0.881 0.893 0.835 0.881
velocity-1.5 0.635 0.602 0.712 0.490 0.390 0.538 0.761 0.765 0.775
velocity-1.6 0.511 0.538 0.569 0.394 0.349 0.435 0.557 0.520 0.593
xalan-2.4 0.392 0.385 0.402 0.363 0.304 0.356 0.363 0.304 0.356
xalan-2.5 0.575 0.590 0.583 0.409 0.353 0.556 0.352 0.364 0.360
xalan-2.6 0.522 0.580 0.596 0.625 0.577 0.613 0.479 0.476 0.486
xalan-2.7 0.813 0.842 0.785 0.917 0.833 0.932 0.460 0.386 0.407
xerces-1.2 0.249 0.278 0.287 0.235 0.181 0.181 0.235 0.181 0.181
xerces-1.3 0.428 0.356 0.400 0.375 0.278 0.466 0.295 0.272 0.273
xerces-1.4 0.665 0.652 0.716 0.738 0.674 0.733 0.374 0.308 0.000
xerces-init 0.409 0.436 0.519 0.387 0.398 0.388 0.383 0.392 0.383

Median 0.497 0.531 0.537 0.492 0.420 0.497 0.460 0.396 0.454
Mean 0.496 0.515 0.523 0.487 0.428 0.480 0.459 0.414 0.433

two groups. It is usually used alongside a statistical test (in this case, the543

Wilcoxon tests) as a measure of magnitude of differences. Sawilowsky [50]544

describes the magnitudes of the effect size in six categories by extending the545

original three [51]. The six categories are: very small (0.01), small (0.2)546

medium (0.5), large (0.8), very large (1.2) and huge (2.0).547

Please note that the measurements are copied multiple times in order548

to have comparable groups for comparisons in case of NN-Filter and Naive549

CPDP as no randomness in involved in their settings. Additionally, the550

24

results for the first release of each project in PR benchmark is copied from551

the same counterpart in CV. In that case, one might see a slight variation in552

the results even though there is no actual randomness involved, something553

that we have accounted for, in our analysis.554

The overall performance of all presented approaches and their possible555

differences were investigated through a second set of tests for comparison556

of multiple groups. To that end, we first perform Friedman non-parametric557

test [52] to detect any significant difference across the compared groups. The558

Friedman test works on average ranks and tests for significant differences559

within the compared groups. The Friedman test can be done via the following560

equations [53]:561

χ2
F =

12×N
k(k + 1)

(∑
j

Rj
2 − k(k + 1)2

4

)
(9)

FF =
(N − 1)× χ2

F

N × (k − 1)− χ2
F

(10)

In these equations, N and k are the number of instances (41 datasets in562

our experiments) and the number of compared groups (15 groups, three for563

each benchmark) respectively. FF which uses Friedman’s chi-square statistic564

is distributed according to the F distribution with (k−1) and (k−1)×(N−1)565

degrees of freedom. Despite detecting the existence of significant differences,566

the Friedman test is not able to locate their positions. If the null hypothesis,567

i.e. all groups perform similarly, is rejected, the search for the location of568

possible differences continues with extra tests. Since we compare all of the569

groups against each other, Nemenyi’s post-hoc test [54] is used in case of570

observing significant differences. This test is different from Bonferroni-Dunn571

test where a control group is compared against other groups [53]. With572

Nemenyi’s test, a critical difference is calculated from the average ranks as573

well as the number of datasets that are utilized during the experiments. The574

following equation is used for calculating Nemenyi’s critical difference values575

in different levels of significance[53]:576

CD = qα,k

√
k(k + 1)

6×N
(11)

Acquired CD = 3.3496 depends on qα = 3.39123 which in turn is depen-577

dent to the number of compared groups (k = 15) as well as the significance578

25

level used for the comparisons (α = 0.05). Each two approaches are sig-579

nificantly different whenever their average ranks differ by at least one CD.580

The Friedman test in conjunction with Nemenyi’s test rank the approaches581

with the highest rank belonging to the best performing approach to the low-582

est based on their average ranks. The results of these tests are presented583

through CD diagrams in Figure 4 for F1 and G.584

Beside these tests, another set of statistical tests were used to detect585

different levels of significance among individual datasets. We used Kruskal586

Wallis H (KW-H) test to detect such differences. Similar to the Friedman587

test, one should note the limited power of such tests from two aspects. First,588

KW-H is a non parametric test and has less power in comparison with its589

parametric counterpart, i.e. One way ANOVA. Secondly, KW-H only shows590

whether a difference could be observed at a specific confidence level and is591

not able to detect the position of such differences. To identify those posi-592

tions, extra tests such as Nemenyi’s post-hoc test or Bonferroni-Dunn test593

are required depending on how the comparisons are done. We skipped to per-594

form such tests in this case for two reasons. First, performing and analysing595

such test for individual datasets makes the analysis very complicated. Sec-596

ondly, the structure of the reported results through tables grouped by the597

benchmarks makes it very difficult to present any form of visualization for598

such cases. Instead, if we detect a significant difference, we report the group599

with the highest median as the best treatment for that particular dataset.600

Further, as pointed out earlier, we copied the measurements from 10 fold601

WP cross validation for the first releases of each project for PR benchmark.602

Hence, multiple treatments are selected as best in some cases since they are603

identical. Per dataset performances are illustrated in Figure 13 separated604

into GIS, CPDP and WPDP categories.605

The results of the experiments are also visualized in violin plots [55].606

Even though violin plots are in some sense similar to box plots, they are607

more informative. A box plot only shows the summary statistics such as608

mean/median and inter-quartile ranges while the violin plot shows the full609

distribution of the data. Note that the thin continuous line in the plots is the610

median and the thick dashed line represents the mean value of the results.611

Based on the results achieved, the research questions are answered as fol-612

lows.613

614

26

Table 9: Wilcoxon signed rank test results and effect sizes for the pairwise comparison
between GIS and other benchmarks in terms of F1. Positive effect sizes point to an effect
size in favor of GIS.

GISall GISckloc GISIG

p-value d p-value d p-value d

CVall 0.000 -0.102 0.202 -0.004 0.451 0.071
CVckloc 0.000 0.319 0.000 0.413 0.000 0.472
CVIG 0.375 -0.046 0.073 0.055 0.000 0.136

NN-Filterall 0.000 0.522 0.000 0.590 0.000 0.621
NN-Filterckloc 0.000 0.760 0.000 0.817 0.000 0.845
NN-FilterIG 0.000 0.668 0.000 0.726 0.000 0.762

Naiveall 0.000 0.647 0.000 0.700 0.000 0.743
Naiveckloc 0.000 0.776 0.000 0.818 0.000 0.865
NaiveIG 0.000 0.692 0.000 0.738 0.000 0.789

PRall 0.527 0.117 0.005 0.189 0.000 0.249
PRckloc 0.000 0.365 0.000 0.436 0.000 0.505
PRIG 0.000 0.230 0.000 0.297 0.000 0.355

Table 10: Wilcoxon signed rank test results and effect sizes for the pairwise comparison
between GIS and other benchmarks in terms of G. Positive effect sizes point to an effect
size in favor of GIS.

GISall GISckloc GISIG

p-value d p-value d p-value d

CVall 0.001 0.075 0.000 0.243 0.000 0.325
CVckloc 0.000 0.503 0.000 0.665 0.000 0.739
CVIG 0.000 0.131 0.000 0.288 0.000 0.387

NN-Filterall 0.000 0.729 0.000 0.874 0.000 0.899
NN-Filterckloc 0.000 0.969 0.000 1.095 0.000 1.114
NN-FilterIG 0.000 0.894 0.000 1.024 0.000 1.056

Naiveall 0.000 0.867 0.000 0.980 0.000 1.027
Naiveckloc 0.000 0.975 0.000 1.070 0.000 1.119
NaiveIG 0.000 0.884 0.000 0.989 0.000 1.050

PRall 0.000 0.232 0.000 0.364 0.000 0.438
PRckloc 0.000 0.502 0.000 0.640 0.000 0.732
PRIG 0.000 0.331 0.000 0.448 0.000 0.511

Table 11: GIS vs GIS

GISall vs. GISckloc GISall vs. GISIG GISckloc vs. GISIG

p-value d p-value d p-value d

F1 0.000 -0.280 0.000 -0.413 0.000 -0.168
G 0.000 -0.366 0.000 -0.471 0.000 -0.134

4.1. RQ1: How is the performance of GIS compared with benchmark cross615

project defect prediction approaches?616

Table 5 presents the results of GIS and cross project benchmarks. Cate-617

gory wise, GIS outperforms CPDP benchmarks in 26 cases by achieving the618

highest median values while the KW-H tests show the existence of a signifi-619

cant difference. (NN)-Filter has a better performance in nine cases and the620

27

Table 12: Selected features and their order for individual projects for GIS, Naive CPDP
and NN-Filter

For Project Selected Features

ant LOC, RFC, LCOM3, AMC, WMC, CAM, NPM, DAM, MAX CC, LCOM
camel LOC, RFC, LCOM3, CAM, WMC, MFA
ivy LOC, RFC, LCOM3, WMC, CAM, AMC
jedit LOC, RFC, AMC
log4j LOC, RFC, LCOM3, WMC, AMC, CAM, NPM, LCOM
lucene LOC, RFC, LCOM3, WMC, CAM, AMC
poi LOC, RFC, AMC, CAM, LCOM3, WMC, NPM, MAX CC, LCOM
synapse LOC, RFC, WMC, CAM, LCOM3, AMC
velocity LOC, RFC, LCOM3, AMC, WMC, CAM, NPM, MAX CC, LCOM
xalan LOC, RFC, WMC, CAM, NPM, LCOM3, LCOM
xerces LOC, RFC, WMC, LCOM3, AMC, NPM, CAM, LCOM

five remaining cases are in favor of Naive CPDP. With G, the performance621

of GIS is even better. The number of test sets that have better predictions622

are increased to 31 out of 41 for G. (NN)-Filter has six and naive CPDP623

has four better predictions. The overall mean and median values from GIS624

are higher than that of both benchmark cross project methods for F1 and G625

values with respect to all the metric sets.626

The violin plots of the measurements for F1 and G values in Figure 4 pro-627

vide more insights into the results. GIS variants have higher mean, median628

and max values compared with the CP benchmark methods. More specifi-629

cally, they provide the first, second and fourth highest median F1 and first,630

second and third highest G values while the best CPDP benchmark in terms631

of median F1 and G has the tenth rank. Of course one should note also the632

weak performances on a couple of datasets and the drop in the minimum633

value with GIS as well as its wider range of the predictions. From the results634

in Tables 7 and 5, we can see that GIS has difficulties in predicting datasets635

like JEdit-4.3 (median F1 around 0.04) and Camel-1.0 (median F1 around636

0.09). At the same time, the good performances of GIS on datasets from637

Xalan, Velocity, Synapse and Poi projects to name some, cause a dramatic638

increase in the max value. Nevertheless, the concentration of the prediction639

results with GIS is promising, i.e., around half of all predictions are over640

the maximum values received by the CPDP benchmark methods. Another641

depiction of the performance difference between GIS and CPDP benchmarks642

can be seen in Figure 13 with respect to individual datasets. For the ma-643

jority parts, the location of GIS points are higher than those from CPDP644

benchmarks while the performance differences in many cases are substantial645

(e.g for Lucene, Poi, Xalan, Velocity).646

28

Table 13: Median F1 and G values of the benchmarks for individual datasets

ant-1.3

ant-1.4

ant-1.5

ant-1.6

ant-1.7

camel-1.0

camel-1.2

camel-1.4

camel-1.6

ivy-1.1

ivy-1.4

ivy-2.0

jedit-3.2

jedit-4.0

jedit-4.1

jedit-4.2

jedit-4.3

log4j-1.0

log4j-1.1

log4j-1.2

lucene-2.0

lucene-2.2

lucene-2.4

poi-1.5

poi-2.0

poi-2.5

poi-3.0

synapse-1.0

synapse-1.1

synapse-1.2

velocity-1.4

velocity-1.5

velocity-1.6

xalan-2.4

xalan-2.5

xalan-2.6

xalan-2.7

xerces-1.2

xerces-1.3

xerces-1.4

xerces-init

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

G
IS

a
ll

G
IS

ck
lo
c

G
IS

IG
C
V
a
ll

C
V
ck
lo
c

C
V
IG

N
N
−
F
il
te
r a

ll
N
N
−
F
il
te
r c
k
lo
c

N
N
−
F
il
te
r I
G

N
a
iv
e a

ll
N
a
iv
e c

k
lo
c

N
a
iv
e I

G
P
R
a
ll

P
R
ck
lo
c

P
R
IG

(a) F1

ant-1.3

ant-1.4

ant-1.5

ant-1.6

ant-1.7

camel-1.0

camel-1.2

camel-1.4

camel-1.6

ivy-1.1

ivy-1.4

ivy-2.0

jedit-3.2

jedit-4.0

jedit-4.1

jedit-4.2

jedit-4.3

log4j-1.0

log4j-1.1

log4j-1.2

lucene-2.0

lucene-2.2

lucene-2.4

poi-1.5

poi-2.0

poi-2.5

poi-3.0

synapse-1.0

synapse-1.1

synapse-1.2

velocity-1.4

velocity-1.5

velocity-1.6

xalan-2.4

xalan-2.5

xalan-2.6

xalan-2.7

xerces-1.2

xerces-1.3

xerces-1.4

xerces-init

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

G
IS

a
ll

G
IS

ck
lo
c

G
IS

IG
C
V
a
ll

C
V
ck
lo
c

C
V
IG

N
N
−
F
il
te
r a

ll
N
N
−
F
il
te
r c
k
lo
c

N
N
−
F
il
te
r I
G

N
a
iv
e a

ll
N
a
iv
e c

k
lo
c

N
a
iv
e I

G
P
R
a
ll

P
R
ck
lo
c

P
R
IG

(b) G

29

Results of the pairwise statistical tests and the calculated effect sizes show647

that GIS is significantly better than both benchmark CPDP approaches and648

the effect sizes confirm this conclusion. GISall which achieves the lowest649

performance in the GIS group, outperforms (NN)-Filter (all, ckloc, IG) in650

terms of F1 (p − value � 0.001, Cohen’s d = {0.522, 0.760, 0.668}) and G651

(p − value � 0.001, Cohen’s d = {0.729, 0.969, 0.894}). It also outper-652

forms naive CPDP (all, ckloc, IG) in terms of F1 (p − value � 0.001,653

Cohen’s d = {0.647, 0.776, 0.692}) and G (p − value � 0.001, Cohen’s654

d = {0.0.867, 0.975, 0.884}). These performance improvements are more vis-655

ible with G and the effect sizes are larger. With careful selection of the656

features, GIS could achieve even better results. Iterative IG in GISIG leads657

to better predictions in comparison with (NN)-Filter (best case) by provid-658

ing the effect sizes of 0.621 and 0.899 in terms of F1 and G. Similarly, It659

outperforms Naive CPDP (best case) with the effect sizes of 0.743 and 1.027660

with F1 and G.661

The Friedman and Nemenyi tests for F1 and G confirm most of our find-662

ings from the pairwise Wilcoxon tests. One change in this case is that in663

terms of F1, NN-Filterall despite its lower average rank is present among the664

top ranking group of benchmarks. This situation does not occur with G and665

the top group contains only GIS and other WPDP benchmarks. Having said666

that, GIS benchmarks provide the highest absolute and per metric set ranks667

as well as highest rank sums (F1=(3+4+7) and G=(1+2+5)), outperform-668

ing both NN-Filter (F1=(9+13+14) and G=(10+13+14)) and Naive CPDP669

(F1=(11+12+15) and G=(11+12+15)).670

Even though not presented in the tables, we should note that GIS is more671

focused on recall and has a lower precision while the benchmark approaches672

focus more on precision and have lower recall values. Our fitness function673

is defined in a way that treats the recall and precision equally, but previous674

studies have shown that the (NN)-Filter (on which GIS is optimized) focuses675

on recall more than precision [4]. A fitness function with more focus on pre-676

cision could optimize the results for achieving values with higher precisions.677

Of course, this might come with a decrease in the recall as there usually is678

a trade-off between the two, but careful fitness function selection is one of679

the key areas to pursue further. This recall based nature could probably be680

linked to the choice of metrics as well (e.g. MODEP in [40] with CK+LOC681

metrics is heavily recall based and He at al.[26] asserted that feature selection682

in these datasets could be related to some degree of loss in precision).683

684

30

4.2. RQ2: How is the performance of GIS compared with the within project685

defect prediction approach?686

In terms of F1, the GIS category is better than both benchmark WPDP687

approaches in 15 cases while CV and PR provide better predictions in 18688

and eight cases. With G, GIS is better in 16 cases whereas CV and PR are689

better in 17 and eight cases respectively.690

The mean and median values from GIS are higher except in one case691

(CVall) when compared based on the feature sets used. The worst case of692

GIS outperforms the best cases of PR in terms of both F1 and G.693

The pairwise Wilcoxon tests provide a better insight into the results. GIS694

and WPDP benchmarks do not have a significant difference in five cases. The695

obtained p−values = {0.375, 0.527, 0.202, 0.073, 0.451} as well as small effect696

sizes provide the evidence for such insignificant differences. The performance697

of one GIS variant, i.e. GISall is lower than one WPDP case, i.e. CVall with698

a very small to small effect size (0.102). In all other cases, GIS outpeforms699

WPDP wherever a significant p− value is observed with effect sizes ranging700

from 0.136 to 0.505.701

With G, GIS is significantly better than all benchmark WPDP cases,702

but in some cases the effect sizes are very small. GIS has a tiny difference703

with CVall (which provides the best WPDP performances considering both704

median and the range of the values-stability) based on the obtained effect size705

(0.075). Despite that, higher and significant effect sizes could be observed as706

well in case of CVckloc and PRckloc with effect sizes 0.739 and 0.732 (medium707

to large) respectively.708

According to Friedman and Nemenyi tests for F1, GISIG, the third rank709

among all the benchmarks, achives the highest average rank among all CPDP710

approaches. The two other GIS variants, i.e. GISckloc and GISall have the 5th
711

and 7th ranks based on their average ranks. These GIS variants are accompa-712

nied by five WPDP benchmarks and one CPDP benchmark, i.e. NN-Filterall713

in the top ranking group of approaches for which no significant difference714

could be observed at α = 0.05 with Nemenyi’s test. This behaviour for the715

most part is in accordance with the Wilcoxon tests and further confirms our716

findings (except the presence of NN-Filterall in the top ranking group). With717

G, the top two ranks belong to GISIG and GISckloc followed by four WPDP718

benchmark and the remaining GIS variant in the top performing group based719

on the Nemenyi’s test. The rank sum for GIS in terms of F1=(3+5+7) is720

lower than CV with F1=(1+4+8) while GIS achieves higher rank sum with721

31

G=(1+2+5) compared with CV which achieves G=(3+6+8). GIS outper-722

forms PR in terms of rank sums with both F1=(2+6+10) and G=(4+7+9).723

The shape of the violin plots also support our claims as illustrated in724

Figure 4. With F1, the GISIG and GISckloc achieve the first and second highest725

highest median values and GISall gets the fourth spot after CVall. With regard726

to G, the GIS variants manage to get the top three spots by outperforming all727

other benchmarks. GIS and WPDP benchmarks are overall less stable, but on728

the bright side, this instability is generally toward increasing the prediction729

performance. While CPDP benchmarks provide more stable predictions,730

their performance is significantly lower than GIS and WPDP.731

Finally, the competitive behaviour of GIS variants compared with WPDP732

can be seen in Figure 13 as they usually perform better or as good as WPDP.733

Despite that, the lower performance with datasets like Jedit-4.3 is quite vis-734

ible.735

4.3. RQ3: How different feature sets affect the performance of GIS?736

Different metric sets were used when comparing the performance of GIS737

with those of CPDP and WPDP counterparts. In the first case, all features738

present in the datasets were used to train and test the models. The number739

of available features in this case are 20, consisting of SCM, OO and LOC740

metrics. The second case was used in the original study and includes seven741

features and a subset of OO+LOC, namely CK+LOC. The good performance742

of these two group (OO and LOC) are reported by multiple studies [1, 36].743

In the third and final case, iterative IG subsetting was used to select the744

most informative set of features in the datasets. These three sets of features745

were used to train and test all the models in this study, including GIS and746

CPDP and WPDP benchmarks.747

We perform a separate test for each dataset to detect differences among748

GIS variants. The italic style font is used to represent the best result for749

each dataset among GIS versions. According to the results presented in Ta-750

ble 5, GISall outperforms other GIS counterparts in only three cases. GISckloc751

shows better performance in 14 cases and GISIG achieves the highest among752

GIS in 22 cases. The KW-H tests do not show a significant difference for753

two datasets, namely Poi-2.0 and Synapse-1.2. With G the number of cases754

are three, 15 and 23 respectively for GIS with all, ckloc and IG metrics.755

This difference in performance, demonstrate the importance of using a re-756

fined set of features when searching for the right set of data in CPDP. The757

32

difference between different GIS versions is pointed out by the pairwise sta-758

tistical tests as well. The test results presented in Table 11 show that GISall759

underperforms both GISckloc (Cohen’s d = {0.280, 0.366}) and GISIG (Co-760

hen’s d = {0.413, 0.471}) in terms of F1 and G. Among the GIS variants,761

GISIG achives the highest median and mean F1 and G values and supersedes762

GISckloc, the second best GIS variant according to the significant p− values763

and observed effect sizes (Cohen’s d = {0.168, 0.134}).764

The Friedman and Nemenyi tests fail to detect a significant difference765

between these variants. Despite that, with both F1 and G, all GIS variants766

belong to the top ranking group for which no significant difference is detected767

from these tests. Please note that we identified a significant difference when768

comparing only GIS variants against each other with the Friedman and Ne-769

menyi tests in which bolds out the better performances of GISIG and GISckloc.770

Moreover, GISIG achives the highest average ranks in terms of both F1 and771

G, consistent with our earlier discussed findings.772

A depiction of the performance of different GIS variants is presented in773

Figure 4. The achieved small effect sizes among GIS groups can be seen this774

figure considering a very similar pattern observed for them.775

Better feature selection techniques coupled with the proposed instance776

selection approach, i.e. GIS, can lead to better predictions and even outper-777

forms WPDP.778

5. Discussion779

We used NN-Filter approach in the context of our proposed approach by780

generating the validation datasets used for guiding the evolutionary instance781

selection process. While Nearest Neighbor selection has been shown to be782

useful by other studies [4, 17, 22], the usefulness of it for guiding the genetic783

algorithm is not guaranteed. Nevertheless, GIS which performs on top of NN784

instance selection as validation dataset, improves it significantly in terms of785

both F1 and G. A more useful alternative in this case can be the availability786

of a small portion of within project data that could be used either as a whole787

or as a part of a better validation dataset since such a dataset could better788

guide the process due to its extra similarities to the test dataset. This is one789

of the potential ways to improve GIS and will be investigated in the future.790

Table 12 presents the list of the extracted features from the third case of791

selected features, i.e. iterative InfoGain subsetting for GIS, NN-Filter and792

33

Naive CPDP approaches. These features are sorted based on their impor-793

tance according to the respective information gain. Note the presence of fea-794

tures LOC and RFC for every project, two of which belonging to CK+LOC.795

Of the same set, RFC and LCOM are present for the majority of the projects.796

This in turn is in line with the findings reported by Hall et al. [1] on the use-797

fulness of OO and LOC feature subsets. The performances of these feature798

sets however, are not as good as they are for GIS with NN-Filter and Naive799

CPDP and one can see the positive effect of optimization techniques such as800

our proposed approach in practice.801

Please keep in mind that the Nemenyi test is well known to be conser-802

vative and usually achieving significance through such tests is difficult. As803

pointed out in [53], these tests sometimes even fail to detect a significant804

difference between the best and worst performing groups even though such805

differences might exist in practice. So the failure to detect such a difference806

in performance can sometimes be linked to the limited power of tests of this807

kind.808

The ranking procedure used by Nemenyi test could also be problematic.809

The ranking does not differentiate between a good performing approach that810

has a slightly lower performance among the benchmarks, on one hand, and an811

absolute worst performing approach, not even close to the other benchmarks812

in terms of performance on the other hand. Hence, the decision between813

a good and a bad approach becomes more difficult (e.g the performances814

observed from the benchmarks for Poi-3.0 and JEdit-4.3 datasets). Such815

differences however are considered when the effect size is calculated as in the816

case for the Wilcoxon tests and Cohen’s d values. The two way of comparing817

the results, i.e. the pairwise tests-effect sizes and the Friedman-Nemenyi818

tests are chosen according to the aforementioned points.819

This however is not to justify the bad performances seen for datasets820

such as JEdit-4.3, Camel-1.0 and Ivy-1.4 which have bad performances in all821

benchmarks. One could speculate on the reasons for the bad performances by822

considering the defect density for these datasets (2.2% for JEdit-4.3, 3.8%823

for Camel-1.0 and 6.6% for Ivy-1.4). These datasets, usually suffer from824

a severe case of class imbalance problem, an issue which despite being in-825

vestigated extensively [14, 15, 16, 17, 19], still seems to be a challenge for826

CPDP. A step toward solving these problems would be extending/proposing827

smarter methods/approaches to deal with such problems based on various828

other distributional characteristics their data.829

Finally, our results show the effect of specialized data on performance,830

34

selected and refined according to a defined set of criteria. The results not831

only showed that all the data are not useful in practice, but also considered832

the data quality issue present in defect prediction data due to their time833

dependent nature. Such improvements of course might come at a cost of834

losing one criterion to some extent (such as precision in our experiments)835

with the benefit of achieving significantly better performance toward other836

criteria (like recall, F1 and G in the context of our study). Despite that,837

the achieved results provide the evidence for the usefulness of our proposed838

approach.839

5.1. Runtime840

GIS works by generating and evaluating evolving datasets using a search841

based approach. Consequently, one could expect higher runtime than the842

conventional models, i.e. feeding the data into a learner after few prepro-843

cessing steps and make predictions.844

Our goal at this stage was to optimize the effectiveness of CPDP. However,845

a brief demonstration of the runtime of the approach would be beneficial. As846

pointed out earlier, the experiments were implemented in Java and Weka847

library. The spent time for each iteration of each variant was captured for848

GIS.849

The GIS experiments took 1698 minutes (approximately 28.3 hours) in to-850

tal to complete. This amount of time is spent on performing 30 iterations*41851

datasets*3 variants = 3690 runs for the GIS variants.852

A rough estimate shows that each GIS iteration requires 1698 ÷ 3690 ≈853

27.6 seconds. The GISIG is the fastest of the three, due to the use of cus-854

tomized feature sets. The spent time on average for the datasets in this group855

is 11.8 seconds with standard deviation of 6.3 seconds. GISall requires the856

highest time to finish. The (avg, std) pair for GISall and GISckloc are (45.9,857

42.7) and (25.09, 44.80) respectively. The high deviations in both cases are858

caused by releases belonging to camel project (and xalan to some extent in859

the case of GISall). These releases have the highest number of instances.860

Therefore, NN-Filter generated validation datasets would potentially have861

much more instances, requiring more time for training and testing candidate862

training datasets for multiple generations and multiple iterations for each863

dataset.864

The mentioned times could be decreased greatly by writing the code in a865

parallel manner. We ran our experiments in a single thread in a Laptop PC866

with a core i7 CPU and 8 GB of ram.867

35

6. Threats to Validity868

During an empirical study, one should be aware of the potential threats869

to the validity of the obtained results and derived conclusions [56]. The870

potential threats to the validity identified for this study are assessed in three871

categories, namely: construct, external and conclusion validity.872

6.1. Construct validity873

The metrics used in this study are SCM, OO and LOC which are the874

only metrics present in the datasets. These metrics have been widely used in875

previous studies [1, 2, 46, 57]. Even though these metrics can achieve good876

performances [57], the usefulness of this metrics has been widely criticised877

[1, 3, 4]. The experimental datasets are collected by Jureczko et al. [31, 32],878

who cautioned that there could be some mistakes in non defective labels as879

not all the defects had been found (regex search through version control880

commit comments). This may be a potential threat for defect prediction881

models training and evaluation; on the other hand, this is one of the issues882

that GIS is designed to account for. We did not test for different values of883

k in NN-Filter, but for large datasets, even though only unique elements are884

selected, the size of the training datasets for NN-Filter could become large.885

One could expect performance changes depending on different values of k.886

However, this impact could be for better or worse as seen with some of the887

datasets for which the Naive CPDP that is trained with all the data lead to888

better prediction results than NN-Filter with k=10.889

6.2. External validity890

It is difficult to draw general conclusions from empirical studies of software891

engineering and our results are limited to the analyzed data and context [58].892

Even though many researchers have used subsets of our utilized datasets as893

the basis of their conclusions, there is no assurance about the generalization894

of conclusions drawn from these projects. Particularly the applicability of the895

conclusions for commercial, proprietary and closed source software might be896

different as there usually are more rigorous code quality standard associated897

with such projects. Further, all the projects contributing to our study are898

written in Java and including projects written in other languages surely would899

affect the generalizability of our findings. On the other hand, in this study900

we considered a much larger collection of datasets and further investigated901

and validated some of our findings from our original study. Hence, this study902

36

acts not only as an extension to our original study, but also replicates it as903

well while presenting more evidence for the usefulness of GIS. Having said904

that, we should note that the external validity threats are usually strong with905

defect prediction studies and neglecting such threats will bias the conclusions906

highly.907

6.3. Conclusion validity908

Our experiments are repeated 30 times to address the randomness and909

the results are compared using multiple tests, i.e. Kruskal-Wallis H, Fried-910

man and Nemenyi’s post-hoc as well as pairwise Wilcoxon signed rank tests.911

KW-H test requires further post hoc tests to identify the position(s) of de-912

tected differences in multiple groups. Since KW-H tests are performed only913

for individual datasets, we did not perform such post hoc tests as they would914

have made the analysis very complicated and we decided to select the group915

with the highest median as the best treatment for that particular dataset916

whenever a significant p−value is observed from KW-H. However, for Fried-917

man test which is used to compare the overall performance, we used the918

Nemenyi post-hoc test and presented the results. Further, we performed919

pairwise Wilcoxon tests to detect possible differences between various GIS920

versions and other CPDP and WPDP benchmarks. Moreover, to calculate921

the magnitude of the differences, Cohen’s d for related samples was used as922

effect size. Another threat is the choice of the evaluation measure. Other923

researchers might consider different measures to evaluate the methods and as924

a consequence, some of the observations and conclusions may change. Even925

though our method works better for a large set portion of the datasets (com-926

pared with both WPDP and CPDP benchmarks), it is not necessarily better927

for all of them and further investigation is required.928

7. Conclusions929

In this study, we further investigated the usefulness of a search based ap-930

proach to instance selection, i.e., GIS, in the context of cross project defect931

prediction. Through an evolutionary process, we aimed to converge to an932

optimal training dataset and at the same time, we considered the effect of933

feature selection and the potential noise in the labeling of the datasets. We934

incorporated (NN)-Filter into the model by using it in generating the valida-935

tion set to optimize the performance of our approach. We generated further936

refined datasets by utilizing iterative info gain feature subsetting for feature937

37

selection. The proposed method outperforms cross project benchmarks sig-938

nificantly in terms of both F1 and G and the achieved large effect sizes. The939

performance of GIS is also comparable to within project benchmarks. Specif-940

ically, GIS outperforms PR while achieving a tie with cross validation. In941

terms of the effect of feature selection on GIS, we observe that using simple942

feature selection techniques improves the effectiveness of GIS significantly in943

comparison with other GIS variants, especially GIS using all features.944

Based on the results of this study, we show the usefulness of third party945

project data and the search based methods in the context of cross project946

defect prediction. We observed that the performance of a simple classifier947

like Naive Bayes could be boosted with such approaches. Using a different948

fitness function targeting other measures like precision, AUC (Area Under949

the Curve) or other measures may lead to different results while giving the950

practitioners the flexibility of guiding the process toward their desired goals.951

Other validation dataset selection techniques using approaches like clus-952

tering, distributional characteristics, small portions of within project data,953

better and more powerful feature selection techniques and tuning the param-954

eters of the genetic model in addition to designing other fitness functions with955

a focus on different measures are among possible future works to pursue.956

References957

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A system-958

atic literature review on fault prediction performance in software en-959

gineering, IEEE Trans. Softw. Eng. 38 (6) (2012) 1276–1304. doi:960

10.1109/TSE.2011.103.961

URL http://dx.doi.org/10.1109/TSE.2011.103962

[2] M. D'Ambros, M. Lanza, R. Robbes, Evaluating defect prediction ap-963

proaches: a benchmark and an extensive comparison, Empirical Soft-964

ware Engineering 17 (4-5) (2012) 531–577.965

[3] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes966

to learn defect predictors, Software Engineering, IEEE Transactions on967

33 (1) (2007) 2–13.968

[4] B. Turhan, T. Menzies, A. B. Bener, J. Di Stefano, On the relative969

value of cross-company and within-company data for defect prediction,970

Empirical Software Engineering 14 (5) (2009) 540–578.971

38

http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103

[5] V. R. Basili, L. C. Briand, W. L. Melo, A validation of object-oriented972

design metrics as quality indicators, Software Engineering, IEEE Trans-973

actions on 22 (10) (1996) 751–761.974

[6] K. El Emam, W. Melo, J. C. Machado, The prediction of faulty classes975

using object-oriented design metrics, Journal of Systems and Software976

56 (1) (2001) 63–75.977

[7] T. Gyimothy, R. Ferenc, I. Siket, Empirical validation of object-oriented978

metrics on open source software for fault prediction, Software Engineer-979

ing, IEEE Transactions on 31 (10) (2005) 897–910.980

[8] N. Nagappan, T. Ball, Static analysis tools as early indicators of pre-981

release defect density, in: Proceedings of the 27th international confer-982

ence on Software engineering, ACM, 2005, pp. 580–586.983

[9] N. Nagappan, T. Ball, Use of relative code churn measures to predict984

system defect density, in: Software Engineering, 2005. ICSE 2005. Pro-985

ceedings. 27th International Conference on, IEEE, 2005, pp. 284–292.986

[10] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component987

failures, in: Proceedings of the 28th international conference on Software988

engineering, ACM, 2006, pp. 452–461.989

[11] R. Subramanyam, M. S. Krishnan, Empirical analysis of ck metrics990

for object-oriented design complexity: Implications for software defects,991

Software Engineering, IEEE Transactions on 29 (4) (2003) 297–310.992

[12] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, B. Turhan,993

The promise repository of empirical software engineering data, West994

Virginia University, Department of Computer Science.995

[13] Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, An investigation on the feasibil-996

ity of cross-project defect prediction, Automated Software Engineering997

19 (2) (2012) 167–199.998

[14] L. Chen, B. Fang, Z. Shang, Y. Tang, Negative samples reduction in999

cross-company software defects prediction, Information and Software1000

Technology 62 (2015) 67–77.1001

39

[15] D. Ryu, O. Choi, J. Baik, Value-cognitive boosting with a support vec-1002

tor machine for cross-project defect prediction, Empirical Software En-1003

gineering 21 (1) (2016) 43–71.1004

[16] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,1005

A. E. Hassan, Studying just-in-time defect prediction using cross-project1006

models, Empirical Software Engineering 21 (5) (2016) 2072–2106.1007

[17] D. Ryu, J.-I. Jang, J. Baik, A transfer cost-sensitive boosting approach1008

for cross-project defect prediction, Software Quality Journal (2015) 1–1009

38.1010

[18] S. Herbold, Training data selection for cross-project defect prediction, in:1011

Proceedings of the 9th International Conference on Predictive Models1012

in Software Engineering, ACM, 2013, p. 6.1013

[19] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company1014

software defect prediction, Information and Software Technology 54 (3)1015

(2012) 248–256.1016

[20] X. Jing, F. Wu, X. Dong, F. Qi, B. Xu, Heterogeneous cross-company1017

defect prediction by unified metric representation and cca-based transfer1018

learning, in: Proceedings of the 2015 10th Joint Meeting on Foundations1019

of Software Engineering, ACM, 2015, pp. 496–507.1020

[21] B. Turhan, A. T. Mısırlı, A. Bener, Empirical evaluation of the effects1021

of mixed project data on learning defect predictors, Information and1022

Software Technology 55 (6) (2013) 1101–1118.1023

[22] D. Ryu, J.-I. Jang, J. Baik, A hybrid instance selection using nearest-1024

neighbor for cross-project defect prediction, Journal of Computer Sci-1025

ence and Technology 30 (5) (2015) 969–980.1026

[23] Y. Zhang, D. Lo, X. Xia, J. Sun, An empirical study of classifier com-1027

bination for cross-project defect prediction, in: Computer Software and1028

Applications Conference (COMPSAC), 2015 IEEE 39th Annual, Vol. 2,1029

IEEE, 2015, pp. 264–269.1030

[24] S. Uchigaki, S. Uchida, K. Toda, A. Monden, An ensemble approach1031

of simple regression models to cross-project fault prediction, in: Soft-1032

ware Engineering, Artificial Intelligence, Networking and Parallel & Dis-1033

40

tributed Computing (SNPD), 2012 13th ACIS International Conference1034

on, IEEE, 2012, pp. 476–481.1035

[25] A. Panichella, R. Oliveto, A. De Lucia, Cross-project defect prediction1036

models: L’union fait la force, in: Software Maintenance, Reengineer-1037

ing and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution1038

Week-IEEE Conference on, IEEE, 2014, pp. 164–173.1039

[26] P. He, B. Li, X. Liu, J. Chen, Y. Ma, An empirical study on software1040

defect prediction with a simplified metric set, Information and Software1041

Technology 59 (2015) 170–190.1042

[27] L. Yu, A. Mishra, Experience in predicting fault-prone software modules1043

using complexity metrics, Quality Technology & Quantitative Manage-1044

ment 9 (4) (2012) 421–434.1045

[28] J. Nam, S. Kim, Heterogeneous defect prediction, in: Proceedings of the1046

2015 10th Joint Meeting on Foundations of Software Engineering, ACM,1047

2015, pp. 508–519.1048

[29] O. Mizuno, Y. Hirata, A cross-project evaluation of text-based fault-1049

prone module prediction, in: Empirical Software Engineering in Practice1050

(IWESEP), 2014 6th International Workshop on, IEEE, 2014, pp. 43–48.1051

[30] B. Turhan, On the dataset shift problem in software engineering predic-1052

tion models, Empirical Software Engineering 17 (1-2) (2012) 62–74.1053

[31] M. Jureczko, L. Madeyski, Towards identifying software project clusters1054

with regard to defect prediction, in: Proceedings of the 6th International1055

Conference on Predictive Models in Software Engineering, ACM, 2010,1056

p. 9.1057

[32] M. Jureczko, D. Spinellis, Using object-oriented design metrics to predict1058

software defects, Models and Methods of System Dependability. Oficyna1059

Wydawnicza Politechniki Wroc lawskiej (2010) 69–81.1060

[33] J. Śliwerski, T. Zimmermann, A. Zeller, When do changes induce fixes?,1061

SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–5. doi:10.1145/1082983.1062

1083147.1063

URL http://doi.acm.org/10.1145/1082983.10831471064

41

http://doi.acm.org/10.1145/1082983.1083147
http://dx.doi.org/10.1145/1082983.1083147
http://dx.doi.org/10.1145/1082983.1083147
http://dx.doi.org/10.1145/1082983.1083147
http://doi.acm.org/10.1145/1082983.1083147

[34] M. J. Shepperd, Q. Song, Z. Sun, C. Mair, Data quality: Some comments1065

on the NASA software defect datasets, IEEE Trans. Software Eng. 39 (9)1066

(2013) 1208–1215. doi:10.1109/TSE.2013.11.1067

URL http://dx.doi.org/10.1109/TSE.2013.111068

[35] S. Hosseini, B. Turhan, M. Mäntylä, Search based training data selection1069

for cross project defect prediction, in: Proceedings of the The 12th1070

International Conference on Predictive Models and Data Analytics in1071

Software Engineering, PROMISE 2016, ACM, New York, NY, USA,1072

2016, pp. 3:1–3:10. doi:10.1145/2972958.2972964.1073

URL http://doi.acm.org/10.1145/2972958.29729641074

[36] Y. C. Liu, T. M. Khoshgoftaar, N. Seliya, Evolutionary optimization1075

of software quality modeling with multiple repositories, Software Engi-1076

neering, IEEE Transactions on 36 (6) (2010) 852–864.1077

[37] S. Watanabe, H. Kaiya, K. Kaijiri, Adapting a fault prediction model1078

to allow inter languagereuse, in: Proceedings of the 4th international1079

workshop on Predictor models in software engineering, ACM, 2008, pp.1080

19–24.1081

[38] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Cross-1082

project defect prediction: a large scale experiment on data vs. domain1083

vs. process, in: Proceedings of the the 7th joint meeting of the European1084

software engineering conference and the ACM SIGSOFT symposium on1085

The foundations of software engineering, ACM, 2009, pp. 91–100.1086

[39] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, Towards building a universal1087

defect prediction model with rank transformed predictors, Empirical1088

Software Engineering (2015) 1–39.1089

[40] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella,1090

S. Panichella, Defect prediction as a multiobjective optimization prob-1091

lem, Software Testing, Verification and Reliability 25 (4) (2015) 426–459.1092

[41] X. Xia, D. Lo, S. J. Pan, N. Nagappan, X. Wang, Hydra: Massively com-1093

positional model for cross-project defect prediction, IEEE Transactions1094

on Software Engineering 42 (10) (2016) 977–998.1095

[42] P. He, B. Li, D. Zhang, Y. Ma, Simplification of training data for cross-1096

project defect prediction, arXiv preprint arXiv:1405.0773.1097

42

http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1109/TSE.2013.11
http://doi.acm.org/10.1145/2972958.2972964
http://doi.acm.org/10.1145/2972958.2972964
http://doi.acm.org/10.1145/2972958.2972964
http://dx.doi.org/10.1145/2972958.2972964
http://doi.acm.org/10.1145/2972958.2972964

[43] G. Liebchen, M. Shepperd, Data sets and data quality in software engi-1098

neering: Eight years on, in: Proceedings of the The 12th International1099

Conference on Predictive Models and Data Analytics in Software Engi-1100

neering, PROMISE 2016, ACM, New York, NY, USA, 2016, pp. 7:1–7:4.1101

doi:10.1145/2972958.2972967.1102

URL http://doi.acm.org/10.1145/2972958.29729671103

[44] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes1104

to learn defect predictors, IEEE transactions on software engineering1105

33 (1) (2007) 2–13.1106

[45] Z. He, F. Peters, T. Menzies, Y. Yang, Learning from open-source1107

projects: An empirical study on defect prediction, in: 2013 ACM/IEEE1108

International Symposium on Empirical Software Engineering and Mea-1109

surement, IEEE, 2013, pp. 45–54.1110

[46] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets,1111

and feature selection techniques on software fault prediction problem,1112

Information Sciences 179 (8) (2009) 1040–1058.1113

[47] B. Turhan, A. Bener, Analysis of naive bayes’ assumptions on software1114

fault data: An empirical study, Data & Knowledge Engineering 68 (2)1115

(2009) 278–290.1116

[48] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, Y. Jiang, Im-1117

plications of ceiling effects in defect predictors, in: Proceedings of the1118

4th international workshop on Predictor models in software engineering,1119

ACM, 2008, pp. 47–54.1120

[49] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classi-1121

fication models for software defect prediction: A proposed framework1122

and novel findings, Software Engineering, IEEE Transactions on 34 (4)1123

(2008) 485–496.1124

[50] S. Sawilowsky, New effect size rules of thumb, Journal of Modern Applied1125

Statistical Methods 8 (2) (2009) 597–599.1126

[51] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, D. I. Sjøberg, A systematic1127

review of effect size in software engineering experiments, Information1128

and Software Technology 49 (11) (2007) 1073–1086.1129

43

http://doi.acm.org/10.1145/2972958.2972967
http://doi.acm.org/10.1145/2972958.2972967
http://doi.acm.org/10.1145/2972958.2972967
http://dx.doi.org/10.1145/2972958.2972967
http://doi.acm.org/10.1145/2972958.2972967

[52] M. Friedman, The use of ranks to avoid the assumption of normality1130

implicit in the analysis of variance, Journal of the american statistical1131

association 32 (200) (1937) 675–701.1132

[53] J. Demšar, Statistical comparisons of classifiers over multiple data sets,1133

Journal of Machine learning research 7 (Jan) (2006) 1–30.1134

[54] P. Nemenyi, Distribution-free multiple comparisons, in: Biometrics,1135

Vol. 18, INTERNATIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE1136

700, WASHINGTON, DC 20005-2210, 1962, p. 263.1137

[55] J. L. Hintze, R. D. Nelson, Violin plots: a box plot-density trace syner-1138

gism, The American Statistician 52 (2) (1998) 181–184.1139

[56] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,1140

Experimentation in software engineering, Springer Science & Business1141

Media, 2012.1142

[57] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault predic-1143

tion metrics: A systematic literature review, Information and Software1144

Technology 55 (8) (2013) 1397–1418.1145

[58] V. R. Basili, F. Shull, F. Lanubile, Building knowledge through fami-1146

lies of experiments, Software Engineering, IEEE Transactions on 25 (4)1147

(1999) 456–473.1148

44

	Introduction
	Related Work
	Research Methodology
	Motivation
	Proposed Approach
	Benchmark Methods
	Datasets and Metrics
	Performance Measures and Tools

	Results
	RQ1: How is the performance of GIS compared with benchmark cross project defect prediction approaches?
	RQ2: How is the performance of GIS compared with the within project defect prediction approach?
	RQ3: How different feature sets affect the performance of GIS?

	Discussion
	Runtime

	Threats to Validity
	Construct validity
	External validity
	Conclusion validity

	Conclusions

