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Abstract

Despite the significant attention given to the problem of face spoofing, we still lack generalized presentation attack detection
(PAD) methods performing robustly in practical face recognition systems. The existing face anti-spoofing techniques have indeed
achieved impressive results when trained and evaluated on the same database (i.e. intra-test protocols). Cross-database experiments
have, however, revealed that the performance of the state-of-the-art methods drops drastically as they fail to cope with new attacks
scenarios and other operating conditions that have not been seen during training and development phases. So far, even the popular
convolutional neural networks (CNN) failed to derive well-generalizing features for face anti-spoofing. In this work, we explore the
effects of different factors, such as acquisition condition and presentation attack instrument (PAI) variation, on the generalization of
color texture-based face anti-spoofing. Our extensive cross-database evaluation of seven color texture-based methods demonstrate
that most of the methods are unable to generalize to unseen spoofing attack scenarios. More importantly, the experiments show
that some facial color texture representations are more robust to particular PAIs than others. From this observation, we propose a
face PAD solution of attack-specific countermeasures based solely on color texture analysis and investigate how well it generalizes
under display and print attacks in different conditions. The evaluation of the method combining attack-specific detectors on three
benchmark face anti-spoofing databases showed remarkable generalization ability against display attacks while print attacks require
still further attention.
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1. Introduction

The vulnerability of biometric systems against the learned
or forged biometric traits has been the subject of many recent
studies, including [1, 2, 3, 4, 5]. These works have concluded
that most of the biometric systems, even those presenting a high5

recognition performance, are vulnerable to spoofing attacks (or
a presentation attack as defined in the current ISO/IEC 30107-3
standard [6]). Face recognition systems are particularly easy to
be deceived. With the increase of the social networks’ popular-
ity and the improvement of the camera resolution, it is easy10

to spoof the identity of a target person by using his/her im-
ages published in the web or captured from distance without
permission. For instance, in a recent study [5], six commer-
cial face recognition systems, namely Face Unlock, Facelock
Pro, Visidon, Veriface, Luxand Blink and FastAccess, were15

easily fooled with crude photo attacks using images of the tar-
geted person downloaded from social networks. Even worse,
also their dedicated challenge-response based liveness detec-
tion mechanisms were circumvented using simple photo ma-
nipulation to imitate the requested facial motion (liveness cues),20

including eye blinking and head rotation.
To discriminate between real and fake face images, many

face presentation attack detection (PAD) methods have been
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proposed in the literature (see [7, 8, 9] for extensive surveys).
The existing face anti-spoofing techniques analyzing motion,25

facial texture content and image quality have already achieved
impressive results particularly when trained and evaluated on
the same database (i.e. intra-test protocols). As all the exist-
ing benchmark publicly available datasets lack variations in the
collected data, e.g. user demographics, application scenarios,30

illumination conditions and input cameras, the reported anti-
spoofing results may unfortunately not reflect the real uncon-
trolled operating conditions that will be definitely faced in real-
world applications, such as mobile authentication. For instance,
in the widely used Replay-Attack Database [10], the video sam-35

ples of the training, development and test sets have been col-
lected using a single camera.

To gain insight into the generalization performance of face
anti-spoofing techniques, de Freitas Pereira et al. [11] sug-
gested a cross-database evaluation in which the anti-spoofing40

models are trained and tuned on one database and then tested on
other databases. The experiments have revealed that the perfor-
mance of the state-of-the-art methods drastically drops as they
failed to cope with new spoofing scenarios that have not been
seen during training and development phases. So far, even the45

popular convolutional neural networks (CNN) have failed to de-
rive well-generalizing features for face anti-spoofing [12, 13].

Cross-database testing has been increasingly applied in face
PAD research [12, 13, 14, 15, 16, 17, 18, 19, 20] to overcome
the shortcomings of the public datasets since the generalization50
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issue was pointed out by de Freitas Pereira et al. [11]. This
has been a nice trend but the main limitation with these prelim-
inary studies has been that, in general, the generalization per-
formance has been only broadly evaluated on the plain overall
protocol (i.e. combining all types of spoofing scenarios) with-55

out any deep analysis on the effect of different factors such as
input sensor or presentation attack instrument (PAI) variation
on the generalization capability. Since the overall performance
of the state of the art has been far from satisfying the strict se-
curity demands of biometric systems, one can even question the60

meaningfulness of this kind of benchmarking.
In this work, we show that the blind overall assessment might

actually lead to overly pessimistic conclusions on the contrary
as a method might be able to generalize under some condi-
tions even if its plain overall performance is poor. We argue65

that careful breakdown analysis across different covariates, es-
pecially attack scenarios, is very crucial to gain better insights
into the performance and importantly the generalization of dif-
ferent face anti-spoofing methods. The recently standardized
ISO/IEC 30107-3 metrics [6] are an important step to the right70

direction because the attack potential is taken into account as
the overall PAD performance corresponds to the most success-
ful PAI. However, this indicates how easy a biometric system
is to fool on average by exploiting its (possible) vulnerability,
which suits well for evaluating the robustness of complete bio-75

metric solutions. Since it is reasonable to assume that no single
superior technique is able to detect all known, let alone unseen,
attacks types, it is also important to find out the operating condi-
tions of different PAD methods and how complementary coun-
termeasures could be combined to achieve more robust overall80

performance [21].
Based on the above observations, we present in this work

an in-depth analysis on the generalization of color texture-
based face anti-spoofing. This is motivated by our recent works
[16, 17, 18] showing that color texture features extracted from85

both luminance and chrominance color channels provide the
state-of-the-art performance and very promising generalization
abilities in face PAD. We perform extensive cross-database tests
which measure the robustness of seven different facial color
texture descriptions across different covariates, like acquisition90

conditions and attack scenarios. Our experiments depict that
most of methods are unable to generalize to unseen spoofing
attack scenarios but some of the methods are more robust to
particular PAIs. Inspired by this, we propose an attack-specific
approach to cope with the problem of generalized face PAD.95

Compared to the state of the art, we obtained very competitive
intra-database and inter-database results on three benchmark
face spoofing databases. More importantly, the color texture
based method can generalize extremely well against display at-
tacks (digital photo and video-replay attacks) launched at short100

distance, while further work or other complementary counter-
measures is needed for tackling print attacks.

The rest of the article is organized as follows. First, in Sec-
tion 2, we give a brief overview on the different approaches
for face PAD proposed in the literature. Section 3 presents the105

different color texture descriptors studied in this work. The ex-
perimental setup is described in Section 4. Section 5 is devoted

to the in-depth analysis, exploring the generalization problem
across different conditions, and describing the newly proposed
scheme along with a fair comparison against state of the art.110

Concluding remarks are drawn in Section 6.

2. Related work

There exists no unified taxonomy for the different face PAD
approaches. In this article, we categorized the methods into two
groups: hardware-based methods and software-based methods.115

Hardware-based methods are probably the most robust ones
for anti-spoofing because the dedicated sensors are able to di-
rectly capture or emphasize specific intrinsic differences be-
tween genuine and artificial faces in 3D structure [22, 23] and
(multi-spectral) reflectance [23, 24, 25, 26] properties. For in-120

stance, planar PAI detection becomes rather trivial if depth in-
formation is available [22], whereas near-infrared or thermal
cameras are efficient in display attack detection as most of the
displays in consumer electronics emit only visible light. On the
other hand, these kinds of unconventional sensors are usually125

expensive and not compact, thus not (yet) available in mobile
devices, which prevents their wide deployment.

It would be rather appealing to perform face PAD by further
analyzing only the same data that is used for the actual bio-
metric purposes or additional data captured with the standard130

acquisition device. These kinds of software-based methods can
be broadly divided into active (requiring user collaboration) and
passive approaches. Additional user interaction can be very ef-
fectively used for face anti-spoofing because we humans tend
to be interactive, whereas a photo or video-replay attack cannot135

respond to randomly specified action requirements. Further-
more, it is almost impossible to perform liveness detection or
facial 3D structure estimation by relying only on spontaneous
facial motion. Challenge-response based methods aim at per-
forming face PAD detection based on whether the required ac-140

tion (challenge), e.g. facial expression [27, 28], mouth move-
ment [27, 29] or head rotation (3D structure) [30, 31, 32], was
observed within a predefined time window (response). Also, ac-
tive software-based methods are able to generalize well across
different acquisition conditions and attack scenarios but at the145

cost of usability due to increased authentication time and sys-
tem complexity.

Ideally, passive software-based methods would be preferable
for face PAD because they are faster and less intrusive than
their active counterparts. Due to the increasing number of pub-150

lic benchmark databases, numerous passive software-based ap-
proaches have been proposed for face anti-spoofing. In general,
passive methods based on analyzing different facial properties,
like frequency content [33, 34], texture [10, 35, 36, 37, 38, 39]
and quality [40, 41, 42], or motion cues, like eye blinking155

[43, 44, 45, 46], facial expression changes [27, 44, 45, 46],
mouth movements [27, 44, 45, 46], or even color variation
due to blood circulation (pulse) [47], to discriminate face arti-
facts from genuine ones. Passive software-based methods have
shown impressive results on the publicly available datasets but160

the preliminary cross-database tests, like [11, 32], revealed that
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the performance is likely to degrade drastically when operating
in unknown conditions.

Recently, the research focus on software-based face PAD has
been gradually moving into assessing and improving the gen-165

eralization capabilities of the proposed and existing methods
in a cross-database setup instead of operating solely on single
databases. Among hand-crafted feature based approaches, im-
age distortion analysis [14], combination of texture and image
quality analysis with interpupillary distance (IPD) based reject170

option [19], dynamic spectral domain analysis [15] and pulse
detection [48] have been applied in the context of generalized
face anti-spoofing but with only moderate results.

The initial studies using deep CNNs have resulted in excel-
lent intra-test performance but the cross-database results have175

still been unsatisfactory [12, 13]. This is mainly due to the fact
that the current publicly available dataset may not probably pro-
vide enough data for training well-known deep neural network
architectures from scratch or even for fine-tuning pre-trained
networks, thus the CNN models have been suffering from over-180

fitting. In [20], deep dictionary learning based formulation was
proposed to mitigate the requirement of large amounts of train-
ing data with very promising intra-test results but the general-
ization capability was again unsatisfying. In order to exploit
CNNs to their full potential, novel techniques for cross-domain185

adaptation are needed, or application-specific learning needs to
be further explored when more comprehensive databases are
available.

Cross-database testing has been indeed an important
paradigm shift in the research community towards general-190

ized face PAD. Unfortunately, so far the average overall per-
formance of the best-performing method [13] across different
databases has been 22% in terms of Half Total Error Rate
(HTER). This demonstrates clearly that the generalization ca-
pabilities of the existing methods are not at acceptable level,195

thus they cannot be directly utilized in real-world applications.
However, in this work, we show that some of the methods might
be actually able to generalize reasonably well under some con-
ditions, like particular attack types and scenarios. This can
be easily overlooked as the poor overall cross-database perfor-200

mance does not really encourage to conduct a closer examina-
tion of the results.

3. Color texture descriptors for face PAD

For our generalization study, we considered color texture
analysis based face PAD because it has shown promising gen-205

eralization capabilities in our recent works [16, 17, 18]. The
key idea behind color texture based face anti-spoofing is that an
image of an artificial face is actually an image of a face which
passes through two different camera systems and a printing sys-
tem or a display device, thus it can be referred to in fact as210

a recaptured image. As a consequence, the observed artificial
face image is likely to suffer from different kinds of quality is-
sues, such as printing defects, video artifacts, PAI dependent
(local) color variations and limited color reproduction (gamut),
that can be captured by analyzing the texture content of both215

luminance and chrominance channels.

We have shown in our previous works [16, 17, 18] that ex-
tracting texture features separately from luminance and chromi-
nance channels of the HSV and YCbCr color spaces provide ef-
ficient and complementary facial color texture descriptions for220

anti-spoofing because the representation of chroma components
in the two color spaces is different. The three color components
of RGB color space (red, green and blue) are highly correlated,
while both HSV and YCbCr color spaces are based on the sep-
aration of the luminance and the chrominance components. In225

the HSV colour space, hue and saturation define the chromi-
nance of the image while value corresponds to the luminance.
The YCbCr space separates the RGB components into lumi-
nance (Y), chrominance blue (Cb) and chrominance red (Cr).
For further details on the color texture based face PAD, inter-230

ested readers are referred especially to [17], while more infor-
mation about different color spaces can be found e.g. in [49].

In this present work, we selected seven feature descriptors
for extracting the facial color texture representation from the
HSV and YCbCr color spaces. These descriptors include Uni-235

form Local Binary Patterns (LBP), Rotation Invariant Uniform
Local Binary Patterns (RI-LBP), Binarized Statistical Image
Features (BSIF), Co-occurrence of Adjacent Local Binary Pat-
terns (CoALBP), Rotation Invariant Co-occurrence among Ad-
jacent Local Binary Patterns (RIC-LBP), Local Phase Quanti-240

zation (LPQ) and Speed-Up Robust Features (SURF). As some
of these texture descriptors were originally designed to operate
on gray-scale images, they are adapted to analyze color images
by combining the texture features extracted from different color
channels. A short description of these descriptors is given in the245

following.

3.1. Local Binary Patterns (LBP)
The Local Binary Patterns descriptor is a discriminative gray-

scale texture descriptor proposed by Ojala et al. [50]. For each
pixel in an image, a binary code is computed by thresholding a250

circularly symmetric neighborhood with the value of the central
pixel.

LBPP,R(x, y) =

P∑
n=1

δ(rn − rc) × 2n−1, (1)

where δ(x) = 1 if x >= 0, otherwise δ(x) = 0. rc and rn(n =

1, ..., P) denote the intensity values of the central pixel (x, y) and255

its P neighborhood pixels located at the circle of radius R (R >
0), respectively. To represent the image texture information,
the occurrences of the different binary codes are collected into
a histogram.

The uniform LBP (LBPu2) and the rotation invariant uniform260

LBP (LBPriu2) are two extensions of the LBP operator. An LBP
pattern is considered as uniform if its binary code contains at
most two transitions from 0 to 1 or from 1 to 0. In the LBPriu2

descriptor, the LBPu2 binary code is shifted until it corresponds
to one of the pre-selected rotation invariant patterns.265

3.2. Co-occurrence of Adjacent Local Binary Patterns (CoA-
LBP)

In the original LBP method, the collection of the LBP pat-
terns into one histogram discard the spatial relation between the
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patterns. To exploit this spacial information, the Co-occurrence270

of Adjacent LBP (CoA-LBP) method [51] was proposed. In
this method, first, the LBP patterns are exacted from the images
using the simplified LBP descriptors (LBP+ or LBP×). Then,
to exploit the correlation between the adjacent patterns, four
directions were defined: D = {(0,∆d), (∆d, 0), (∆d,∆d) and275

(−∆d,∆d)} where ∆d is the distance between two adjacent LBP
patterns. For each direction, a 16× 16 2-D histogram is created
then the resulting histograms are reshaped and concatenated to
form the final feature descriptor. In the Rotation Invariant Co-
occurrence LBP (RIC-LBP) [52], the CoA-LBP patterns cor-280

responding to a pre-selected rotation invariant code are pooled
together giving a reduced feature vector.

3.3. Local Phase Quantization (LPQ)

The Local Phase Quantization (LPQ) descriptor [53] was
proposed to extract the texture information from the blurred285

images. It uses the Short Term Fourier Transform (STFT) to
analyze the M × M neighborhoods surrounding a target pixel
x. Let Fu(x) be the output of the STFT at the pixel x us-
ing the bi-dimensional spatial frequency u. In the LPQ de-
scriptor, only four complex frequencies are used: u0 = (α, 0),290

u1 = (α, α), u2 = (0, α), u3 = (−α,−α) where α is a small
scalar (α << 1). These frequencies correspond to the direc-
tions 0, 45, 90 and 135. The LPQ features at a pixel x are
given by the vector Fx = [Re{Fu0 (x), Fu1 (x), Fu2 (x), Fu3 (x)},
Im{Fu0 (x), Fu1 (x), Fu2 (x), Fu3 (x)}] where Re{.} and Im{.} are the295

real and the imaginary parts of a complex number, respectively.
The elements of the vector Fx are binarized using the δ func-
tion defined previously then the resulting binary coefficients
are represented as integer values in [0-255] and collected into a
histogram. To make the LPQ coefficients statistically indepen-300

dents, a de-correlation step based on the whitening transform is
suggested and applied before the quantization process.

3.4. Binarized Statistical Image Features (BSIF)

For each pixel in an image, the Binarized Statistical Image
(BSIF) descriptor [54] computes a binary code string. Each bit,305

in this code, is computed by binarizing the response of a linear
filter with a threshold at zero. Let X be an image patch of size
l × l and let Wi be a filter of the same size. The response of the
filter Wi is obtained by:

S i = δ(
∑
u,v

Wi(u, v)X(u, v)) = δ(wix), (2)310

where wi and x are the vectors which contain the pixel values
of Wi and X, respectively. The length of the binary code is de-
termined by number of filters used. The filters’ coefficients are
learnt by maximizing the statistical independence of the filter
responses using natural image patches.315

3.5. The Speed Up Robust Features (SURF)

The Speed Up Robust Features (SURF) [55] is an interest
point detector proposed to improve the speed of the Scale In-
dependent Feature Transform (SIFT) descriptor. The SURF

descriptor uses the Harr box filters to approximate the Lapla-320

cian of Gausssian instead of using the Difference of Gaussian
(DoG) filters. The convolution with these box filters can be eas-
ily computed using the integral images and it can be paralyzed
at different scales.

The region around each interest point is first divided into 4×4325

sub-regions. Then, for each sub-region j, the horizontal and
vertical Wavelet responses are used to form a feature vector V j

as follows:

V j = [
∑

dx,
∑

dy,
∑
|dx|,
∑
|dy|] (3)

The feature vectors extracted form each sub-region are then330

concatenated to from a S URF descriptor with 64 dimensions.

S URF = [V1, ...,V16] (4)

Before classification, we use the Fisher Vector (FV) method
[56] to encode the SURF features. FV encoding embeds the
SURF features in a high-dimensional space by fitting a genera-335

tive parametric model (Gaussian Mixture Model GMM) to the
features to be encoded. The encoded features represents how
the distribution of the local descriptors differ from the distri-
bution of the GMM model learnt with all the training images.
The FV representation is normalized using a square rooting fol-340

lowed by L2 normalization, which leads to excellent results
even with efficient linear classifiers [56, 57]. To de-correlate
the SURF features and reduce their dimensionality, Principal
Component Analysis (PCA) is applied before the FV encoding.

Table 1: The parameters for the different descriptors and the dimensions of the
concatenated HSV and YCbCr texture representations

used in our experiments
Method Parameters Dimension

LBP Radius R=1, Neighbors P=8 354
RI-LBP Radius R=1, Neighbors P=8 60

LPQ Widows size M=7 and α=1/7 1536
BSIF Filter size l=7×7, Number of filters=8 1536

CoALBP R=1, LBP descriptor= LBP+, B=2 6144
RIC-LBP R=1, LBP descriptor= LBP+, B=2 408

SURF+FV Step= 2 pixels, PCA=300, GMM=256 1536001

4. Experimental setup345

In this study, the generic pipeline for performing color tex-
ture based face spoofing detection is as follows. First, the face
is detected, cropped and geometrically normalized into a 64×64
pixel image based on the eye locations. The normalized RGB
face image is converted into HSV and YCbCr color spaces350

and holistic texture features are extracted separately from each
channel. The resulting feature vectors are concatenated into an
enhanced feature vector in order to get an overall representation

1The dimension of the SURF features before and after PCA is 384 and 300,
respectively, while FV encoding embeds the de-correlated SURF features in a
high-dimensional space more amenable to linear classification [18, 56, 57].
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Table 2: Summary of three benchmark face presentation attack databases: Replay-Attack Database, CASIA FASD and MSU-MFSD .
Database # subjects Acquisition devices # lighting scenarios Attacks # real/attack videos

Replay-Attack [10] 50 1 laptop 2 1 printer & 2 displays 200/1000
CASIA-FASD[14] 50 2 webcams & 1 compact system camera 1 1 printer & 1 display 150/450
MSU-MFSD [58] 35 1 laptop & 1 smartphone 1 1 printer & 2 displays 110/330

Table 3: The performance (HTER) of the different descriptors on the display vs
display scenario

Train on: CASIA Replay MSU
Average

Test on: Replay MSU CASIA MSU CASIA Replay
LBP 29.1 33.7 26.4 23.9 32.3 30.2 29.3

RI-LBP 8.7 9.9 25.2 21.8 36.3 14.4 19.4
BSIF 35.4 17.1 37.7 34.2 42.6 47.6 35.8
LPQ 33.9 20.1 38.5 34.0 44.8 46.4 36.3

CoLBP 17.2 21.0 20.8 23.7 32.7 27.6 23.8
RIC-LBP 25.4 16.1 26.1 24.5 36.2 16.5 24.1

SURF 26.9 14.8 17.2 26.7 43.1 40.6 28.2

of the facial color texture. Finally, the obtained feature vec-
tors are fed into a Softmax classifier. The score value describes355

whether there is a live person or a fake one in front of the cam-
era. The parameters and the feature dimensions of the different
descriptors used in our experiments are provided in Table 1.

For extensive experimental analysis, we considered three
benchmark and publicly available face anti-spoofing databases360

namely CASIA Face Anti-Spoofing Database (CASIA FASD)
[58], Replay-Attack Database [10] and MSU Mobile Face
Spoof Database (MSU MFSD) [14]. These are the most chal-
lenging face anti-spoofing benchmark databases consisting of
video recordings of real client accesses and various presentation365

attacks. These videos are captured with different imaging qual-
ities, including mobile phones, webcams and (compact) system
cameras. Table 2 provides a summary of the three databases
in terms of number of subjects, lighting scenarios, printers and
display devices used to create the attacks, and real and attack370

videos.

We followed the official test protocols of the three databases
throughout our intra-database experiments, which allows a
fair comparison with other methods proposed in the literature.
Since the CASIA FASD and MSU MFSD lack a pre-defined375

development set, the model parameters are trained and tuned
using subject-disjoint cross-validation on the training set and
the results are reported in terms of Equal Error Rate (EER) on
the test set. The Replay-Attack Database provides a separate
development set for tuning the model parameters. Thus, the re-380

sults on the test set are given in terms of HTER which is the
average of False Acceptance Rate (FAR) and False Rejection
Rate (FRR) at the decision threshold defined by the EER on the
development set. Similarly, in our cross-database tests, we used
the training set to build the countermeasure models and the test385

set to estimate the EER threshold which is applied on the other
databases to compute the generalization performance in terms
of HTER.

Table 4: The performance (HTER) of the different descriptors on the print vs
print scenario

Train on: CASIA Replay MSU
Average

Test on: Replay MSU CASIA MSU CASIA Replay
LBP 30.9 51.5 41.5 43.0 56.7 48.3 45.3

RI-LBP 23.1 53.7 38.9 53.3 56.7 48.1 45.6
BSIF 29.6 48.4 32.5 49.1 50.0 49.4 43.2
LPQ 31.5 40.2 37.7 42.4 49.0 49.6 41.7

CoLBP 33.7 50.2 43.3 46.0 55.3 52.3 46.8
RIC-LBP 21.5 49.4 41.9 53.5 61.2 64.9 48.7

SURF 27.2 34.7 32.4 27.2 36.1 46.0 34.0

5. Experimental analysis

In this section, we present our in-depth analysis on the gener-390

alization of color texture based face PAD. We begin our experi-
ments by comparing the robustness of the different color texture
features to different PAIs. Then, we combine complementary
facial color texture representations to form the final face de-
scription used in our anti-spoofing method and provide exten-395

sive experimental analysis and discussion. Finally, we compare
our intra-database and cross-database performance against that
of state-of-the-art algorithms.

5.1. Generalization across different PAIs

In the following experiments, we analyze the attack-specific400

generalization capabilities of the different color texture descrip-
tors in cross-database setup. We considered two very broad
classes of attacks based on the used PAI: print and display at-
tacks (consisting of both digital photos and video-replays) be-
cause they are present in almost all existing face anti-spoofing405

databases, including the three databases used in our study. In
each scenario, only one attack type (display or print) is present
in training, development and test sets.

The results on the two scenarios: display vs display and print
vs print are presented in Table 3 and Table 4, respectively. In410

general, the color texture based methods can generalize sig-
nificantly better in detecting the display attacks compared to
the print attacks. The simple and compact texture operator RI-
LBP outperforms the other feature descriptors in the display vs
display scenario with an overall HTER of 19.4% over all the415

databases. In the print vs print scenario, by far, the best results
are obtained using the SURF features with an average HTER of
34.0%.

5.2. Fusion of attack-specific methods

The findings of the previous experiment confirmed our420

hypothesis that complementary attack-specific algorithms are
probably needed for detecting different attack types. Even
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Table 5: The performance of our proposed method on the cross-database scenario
Train on: CASIA Replay MSU

Average
Test on: Replay MSU CASIA MSU CASIA Replay
RI-LBP 17.9 18.7 34.9 30.0 47.5 46.3 32.5
SURF 28.0 20.1 22.5 31.2 25.2 29.5 26.1

RI-LBP+SURF ∗ 14.0 20.7 32.7 31.3 45.0 45.9 31.6
Proposed 9.6 19.8 39.2 33.3 29.7 21.4 25.5

* RI-LBP+SURF is trained with both display and print attacks then the resulting scores are fused using the simple sum method.

Table 6: The performance of the proposed method on the different type of attacks.
Train on: CASIA Replay MSU

Average
Test on: Replay MSU CASIA MSU CASIA Replay

All attacks
EER 9.9 19.9 31.2 21.4 29.2 16.2 21.3

HTER 9.6 19.8 39.2 33.3 29.7 21.4 25.5

Display attacks
EER 6.5 7.6 29.7 13.6 27.4 10.1 15.8

HTER 6.4 9.8 34.9 25.3 27.4 18.4 20.4

Print attacks
EER 22.8 33.0 33.2 50.3 30.0 33.7 33.9

HTER 22.3 43.9 41.5 52.6 30.9 33.4 37.4

Table 7: The performance of the proposed method on the different types of attacks using combined training sets
Train on: CASIA+MSU CASIA+Replay MSU+Replay

Average
Test on: Replay MSU CASIA

All attacks
EER 10.2 18.4 22.6 17.0

HTER 9.6 19.0 22.8 17.2

Display
EER 7.9 6.0 27.5 13.8

HTER 7.8 9.2 25.7 14.2

Print
EER 19.0 26.6 20.3 21.9

HTER 18.7 42.6 21.5 27.6

though cross-database results in the case of print attacks were
not particularly good, we investigate next how well a face PAD
solution based solely on color texture analysis generalizes un-425

der all sorts of attacks. Among the studied facial color tex-
ture descriptions, those based on RI-LBP and SURF features
were clearly the most robust in the display vs display and print
vs print scenarios, respectively. Therefore, we propose a face
PAD scheme based on the fusion of the two complementary430

attack-specific facial color texture representations: one based
on the RI-LBP descriptor for detecting the display attacks and
the other based on the SURF descriptor for detecting the print
attacks. The model based on the RI-LBP descriptor is trained
using only real and display attack samples while the model435

based on the SURF descriptor is trained using only the real and
the print attack samples. The countermeasure models based on
RI-LBP and SURF features are combined at the score level us-
ing simple sum fusion rule.

The obtained cross-database results are summarized in Table440

5. To gain insight into the significance of our proposed attack-
specific fusion and training scheme, we have also reported the
performance when both models were trained using both dis-
play and print attacks (RI-LBP+SURF). From these results, we
can observe that the proposed method with specialized detec-445

tors yields in more robust performance on average than with
the models trained using both PAIs. The breakdown analysis
reported in Table 6 shows that the generalization performance

against display attacks is much better compared to print attacks.
These results confirm the benefits of attack-specific training as450

the proposed fusion scheme is able to maintain the performance
of the two individual attack-specific detectors even when both
PAIs are present in the test data.

The performance of the proposed method varies a lot be-
tween the different test scenarios. The main reason behind455

this is the amount of representative training data as the CA-
SIA FASD contains more variations in the collected data, e.g.
imaging quality, attack presentations and proximity between the
camera and the face, compared to the Replay-Attack Database
and MSU MFSD. Therefore, the model optimized for these460

databases has difficulties to perform well in the authentication
scenarios. In order to study how the amount of training data af-
fects the generalization performance, we combined two of the
databases for training and used the remaining one for testing.
As expected, the results presented in Table 7 demonstrate that465

the use of more comprehensive training set yields in more stable
performance on both the Replay-Attack Database and the MSU
MFSD and improves the generalization on the CASIA FASD.

5.3. Further analysis

In the following, we provide further discussion on: 1) the at-470

tack standoff distance, 2) differences between display and print
attack detection, and 3) ”standard” performance metrics used in
face anti-spoofing literature and system tuning.
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Table 8: The performance of the proposed method on the different imaging qualities of the CASIA FASD database: low, normal and high
Train on: Replay MSU Replay+MSU
Test on: Low Normal High Low Normal High Low Normal High

All attacks
EER 31.2 36.6 25.3 31.8 30.4 18.7 21.3 22.2 11.1

HTER 42.0 49.0 26.2 39.0 29.9 24.0 21.6 36.0 11.8

Display attacks
EER 29.2 36.5 19.3 31.8 31.0 16.2 26.1 32.1 3.8

HTER 38.1 47.6 17.9 37.6 32.1 12.7 25.8 45.6 3.7

Print attacks
EER 32.4 35.8 31.8 31.8 29.7 19.3 19.4 16.1 12.0

HTER 43.6 49.9 30.7 39.5 28.7 30.2 20.0 30.8 16.1

Figure 1: Sample images highlighting the variation of the standoff distance between the low, normal and high imaging qualities of the CASIA FASD. Please note
that the original 1920×1080 resolution videos have been cropped into patches of 1280×720 pixels containing mainly the face region [59].

5.3.1. Attack standoff distance

Both of real and attack videos in the CASIA FASD were475

recorded using three imaging qualities: low (L), normal (N),
and high (H). At first glance, it may seem that the results on the
CASIA FASD database are still unsatisfying even under display
attacks. However, a closer look at the results at the three differ-
ent imaging qualities reported in Table 8 reveals that actually480

the proposed method trained on both Replay-Attack Database
and MSU MFSD generalizes extremely well in the high imag-
ing quality scenario, especially against display attacks. Similar
observations can be made when the models are trained only on
a single dataset.485

The low and normal quality scenarios in the CASIA FASD
are somewhat similar in the end. In principle, they both share
the same video resolution (480×640 and 640×480, respec-
tively) and the quality difference is mainly due to the age of
the used webcam as aging degrades the imaging quality [59].490

The high quality samples, however, have been collected using
a Sony NEX-5 (compact) system camera with a resolution of
1920×1080 (cropped into patches of 1280×720 in order to save
memory and computational burden [59]). As seen in Figure 1,
the standoff distance between the attack presentations and the495

input sensor is much larger in both the low and normal imag-
ing quality scenarios compared to the videos recorded with the
high quality camera and, more importantly, also to the videos in
the Replay-Attack Database and MSU MFSD. Since the cross-
database results on the low and normal imaging qualities are500

similar and the video resolution is comparable to the ones used
in the Replay-Attack Database and MSU MFSD, we believe
that the lack of generalization on the CASIA FASD is mainly
due to the difference in the standoff distance rather than sensor

interoperability issues in this case.505

Attack presentation can be performed with large or small
standoff distance. Presentation attacks with large standoff are
difficult to detect based on the facial texture information be-
cause the resulting face size (image resolution) might be too
small to distiguish the PAI dependent artifacts. Fortunately,510

larger standoff means usually that contextual cues, like the a
bezel (frame) of a display device or photograph edges, or the
attackers’ hands, might be visible in the provided view and eas-
ily detected with algorithms utilising the whole video frame
for PAD, like [13, 19, 60]. The contextual visual cues can515

be concealed by placing the PAI very close to the input sen-
sor but this may cause in defocus and results in larger resolu-
tion facial images that reveal PAI related characteristic quality
degradations better. Our cross-database experiments using the
combined training sets support this intuition as the proposed520

color texture based method is able to achieve promising over-
all generalization performance against attacks launched at short
distance (9.6%, 19.0% and 11.8% in terms of HTER on the
Replay-Attack Database, MSU MFSD and the H protocol of
the CASIA FASD, respectively). Since the users aiming at pos-525

itive verification can be expected to be cooperative, most of the
commercial mobile face authentication systems are using as-
sisted data capture mode for roughly fixing acquisition setup.
Consequently, the same approach could be used for restricting
the standoff distance, and potentially revealing also new visual530

cues, for PAD purposes.

5.3.2. Display vs print attack detection
In general, the main finding of our experiments is that the

very promising generalization performances are obtained in dis-
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play attack detection while only moderate detection results are535

achieved in the case of print attacks. This can be explained
by taking a close look at: 1) the attack variation between the
benchmark databases, 2) the inherent differences between dis-
play and print attacks in general.

The high quality display attacks in all three databases are540

performed using an iPad (presumably a 1st generation iPad in
the Replay-Attack Database and the CASIA FASD and a 1st
generation iPad Air in the MSU MFSD). The Replay-Attack
Database and the MSU MFSD contain also mobile phone at-
tacks launched using iPhone 3GS and iPhone 5S, respectively.545

Thus, it is likely that the display attacks are similar between the
three databases. The print attacks, on the other hand, vary sig-
nificantly between the three datasets because different printers
and paper qualities are used for performing the attacks. In addi-
tion, the used paper size on the CASIA FASD and the Replay-550

Attack Database is A4, while A3 is used on the MSU MFSD.
Another issue is that, in principle, print attacks have higher res-
olution (and quality) than display attacks due to the size of PAI.
Therefore, print attacks can be presented from longer distance
compared to display attacks. For instance, in MSU MFSD, the555

average standoff for iPhone 5S, iPad Air, A3 paper print at-
tacks and genuine face are 10cm, 20cm and 40 cm and 50cm,
respectively. Thus, the quality of the display attacks is lower
compared to the print attacks whose standoff is almost as long
as for real subjects.560

Despite the fact that the display attacks might be similar be-
tween the different datasets, it is worth highlighting that the dis-
play attacks suffer from device-independent artifacts in general,
thus have less textural variations in the recorded images. For
instance, when the proposed method is trained only on CASIA565

FASD that does not contain mobile phone attacks, remarkable
generalization is obtained on the display attacks of the Replay-
Attack Database and MSU MFSD (6.4% and 9.8% in terms of
HTER, respectively). Due to the very short standoff, the display
attacks are likely to be defocused and low contrast, and moiré570

effects and other noise signatures are much more evident the
closer a (high-quality) camera is to a display PAI. The proposed
color texture based method is able to capture well these kinds of
degradations if the attacks are launched at close distance. This
can be attested by the astonishing generalization performance575

achieved in the cross-database test using combined training sets
as the HTERs in display attack detection are 7.8%, 9.2% and
3.7% on the Replay-Attack Database, MSU MFSD and the H
procotol of the CASIA FASD, respectively. The generalization
against display attacks is indeed very promising but should be580

still treated with caution as the variation of display types be-
tween the existing bechmark datasets is limited.

Print attacks, on the other hand, have larger variations in the
texture information as the use of different printers and paper
qualities (and sizes) alter the inherent high-frequency artifacts,585

e.g. printing signatures. While the proposed approach might be
suitable for capturing the display related artifacts, the studied
color texture representations of the downsampled 64×64 face
images are not optimal for describing the higher frequency type
noise signatures of print attacks. Thus, color texture based print590

attack detection requires still further attention, or, alternatively,

approaches utilizing e.g. motion, eyeblink or pulse detection
could be coupled with color texture based methods in order to
increase the robustness to print attacks.

5.3.3. Performance metrics and system tuning595

When investigating more closely the scenarios in which the
proposed color texture based approach failed to generalize, we
computed the corresponding EER on the test set in addition to
HTER. We noticed that in some cases there is a significant in-
consistency between the EER and HTER. For instance from Ta-600

ble 6, in the case of display attacks, when the model trained
and tuned on the Replay-Attack Database is tested on the MSU
MFSD, the HTER is far from satisfactory, whereas the EER
is actually quite good (25.3% and 13.6%, respectively). Also,
when the model trained and tuned on the MSU MFSD is evalu-605

ated on the Replay-Attack Database, the HTER is again signif-
icantly higher than the EER (18.4% and 10.1%, respectively).
Again, by looking only at the plain HTER values, one might
overlook the fact that a method is actually able to generalize
under some conditions. To be more specific, the color texture610

based method is actually able to separate the two classes (real
vs display) well but the operating point, i.e. HTER threshold,
is severely biased between the development and test sets. For
instance, metric learning [61] might be one possible approach
to consider for future work to mitigate this kind of tuning issues615

in transferring face PAD methods into practice.

5.4. Comparison against the state of the art

For the sake of completeness, Tables 9 and 10 provide a thor-
ough comparison between our proposed face PAD scheme and
the state-of-the-art methods. From the intra-test comparison620

presented in Table 9, it can be noticed that the proposed ap-
proach gives comparable performance on all three benchmark
datasets. The results of the cross-database setup shown in Ta-
ble 10 demonstrate the good overall generalization ability of
our method compared to the state of the art. When the model625

is trained on the CASIA FASD and evaluated on the Replay-
Attack Database, a significant improvement can be observed.
Even the recent method combining eyeblink detection and a
deep CNN framework analyzing both facial texture and con-
textual cues is left behind. In general, the color texture analysis630

seems to be promising direction for future face PAD studies as
the state-of-the-art results in all scenarios are obtained using a
color texture based method. It is also worth mentioning that
our cross-database results obtained by training the model with
combined databases are comparable to the intra-database per-635

formance of some existing methods, like gray-scale LBP.

6. Conclusion

The face anti-spoofing methods have shown astonishing re-
sults on the individual benchmark databases but have failed to
generalize in more realistic setup introducing previously un-640

seen acquisition conditions and attack types, for instance. In
the preliminary cross-database studies, the generalization per-
formance has been only broadly evaluated on the plain overall
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Table 9: Comparison against state of the art (intra-database)
Replay-Attack CASIA MSU

Method EER HTER EER EER
Motion [62] 11.6 11.7 26.6 -

LBP [10] 13.9 13.8 18.2
DoG [58] - - 17.0

LBP-TOP [63] 7.9 7.6 10.0 -
magLBP+magHOOF [45]∗ 0.0 0.2 14.4 -

LBP+HOOF [46] - - 3.1 0.0
CDD [37] - - 11.8 -
IQA[40] - 15.2 32.4 -

Spectral cubes [15] - 2.8 14.0 -
CNN [12] 6.1 2.1 7.4 -
DMD [44] 5.3 3.8 21.8 -
IDA [14] - 7.4 - 8.5

Deep dictionary [20] - 0.0 - -
LBP+motion [21] 4.5 5.1 - -
SBIQF+OFM [42] 0.83 0.0 5.8 -
Color LBP [16]∗∗ 1.5 5.1 8,8 10.8
Color SURF [18] 0.1 2.2 2.8 2.2
Color texture [17] 0.4 2.8 2.1 4.9
Proposed method 1.2 4.2 4.6 1.5

* from https://repository.iiitd.edu.in/jspui/handle/123456789/138
** the results are re-computed using the frame based scenario.

protocol (i.e. combining all types of spoofing scenarios) with-
out any deep analysis on the effect of different factors such as645

input sensor or presentation attack instrument (PAI) variation
on the generalization capability. In this article, we showed that
a method might be actually able to generalize well under some
conditions even though its plain overall performance is far from
satisfying.650

For our in-depth analysis, we considered the color texture
based face anti-spoofing approach, which has shown to pro-
vide state of the art performance in face spoofing detection and
promising generalization abilities in our previous works. We
performed extensive cross-database evaluation of seven color655

texture descriptors on three face anti-spoofing databases and
focused on attack-specific analysis, namely display and print
attacks, to gain better insights into the generalization perfor-
mance of the different methods. Furthermore, we investigated
the robustness of a color texture-based approach combining two660

complementary descriptors, each handling a specific type of at-
tacks (print and display attacks). Our experiments revealed that
the method is able to generalize extremely well against display
attacks launched at short distance and moderate performance is
achieved in the case of print attacks. We provided a thorough665

comparison against state of the art in both intra-database and
inter-database scenarios, obtaining very promising results.

This work is by no mean complete. While excellent re-
sults were obtained in display attack detection, the color tex-
ture based approach might not be efficient in the case of print670

attacks. Thus, novel (complementary) approaches are needed
for tackling the problem of print attacks. However, it is worth
pointing out that the aim of this work was not to optimize the
facial color texture representations for the different attack types

Table 10: Comparison against state of the art (cross-database)
Train on: CASIA Replay MSU
Test on: ReplayMSUCASIAMSUCASIAReplay

Motion [11] 45.2 - 47,9 - - -
LBP [11] 45.9 - 57.6 - - -

LBP-TOP [11] 49.7 - 60.6 - - -
magLBP+magHOOF [45]∗ 50.1 - 47.1 - - -

LBP+HOOF [46]∗∗ 35.4 - 44.6 - - -
Spectral cubes [15] 34.4 - 50.0 - - -
CompRep [19]∗∗∗ 29.3 - 35.4 - - -

IDA [14]∗∗∗ 26.9 - 43.7 - - -
CNN [12] 48.5 - 45,5 - - -

CNN+eyeblink [13] 12.4 - 31.6 - - -
Deep dictionary [20] 22.8 - 27.4 - - -
Color LBP [16] ∗∗∗∗ 37.9 21.0 35.4 33.0 45.7 44.8
Color SURF [18] 26.9 19.1 23.2 31.8 24.3 29.7
Color texture [17] 30.3 20.4 37.7 34.1 46.0 33.9
Proposed method 9.6 19.8 39.2 33.3 29.7 21.4

* from https://repository.iiitd.edu.in/jspui/handle/123456789/138
** from [20].
*** from [13].
**** the results are re-computed using the frame based scenario.

but to demonstrate the limitations of the preliminary cross-675

database studies and to highlight the importance of careful
breakdown analysis across different covariates. We believe and
hope that our present work will advance the research and open
new directions in face anti-spoofing.
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