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Abstract

Mass transfer is subject to numerous sources of uncertainties due to scarcity of observational data. In this
research, a numerical procedure was developed for the probabilistic study of a two-dimensional advection-
dispersion problem, while considering chemical reactions. Innovatively, the lattice Boltzmann method was
coupled with the concept of random ficld theory for the probabilistic simulations. The effects of various
coefficients of variations (COV) and a number of autocorrelation distances were considered for the
stochastic parameters, including dispersion coefficient, pore velocity, and the reaction term. The results
indicated that the introduced probabilistic framework can be employed to effectively describe the effects
of uncertainties in parameters related to the advection-dispersion equation. Moreover, it was deduced that
the mass travel time and the time-concentration curves were influenced significantly by the variations of
COV and autocorrelation distance for pore velocity. Interestingly, the mass transfer in the transverse
direction increased (through the dispersion phenomenon) with a rise in the values of COV for longitudinal
pore velocity. However, different values of COV and autocorrelation distances for the dispersion coefficient

and the reaction term caused small alterations in the mass travel time and time-concentration curve.
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Nomenclature

C Mass concentration ACM Auto-correlation matrix
D Dispersion coefficient n, Number of random field elements
U Pore velocity L Lower triangular matrix
by Reaction rate G, Standard Gaussian random field
. . An indicator of standard normal
VA
c Lattice velocity i distribution
T Single relaxation time RV Random variable
f; Particle distribution function Cov Cocfficient of variations
£ Equilibrium distribution function Hry Mean of random variable
G Lattice velocity in direction 1 Oy Stapdard deviation of random
variable
W Weight coefficient in the lattice " Mean of logarithmic random
! direction i InRY variable
Pe* Scaled Peclet number . Standard deylatlon of logarithmic
random variable
p (RV1 ,RV,) Cross-correlation coefficient
Cr Courant number between RV, and RV,
. G Modified standard Gaussian
Peg Grid Peclet number iRV, random ficld for RV
Cs Constant parameter for the ACF Auto-correlation function
lattice scheme
L, Horizontal autocorrelation distance Y, Transyersal locations of input
pollution plume
L, Vertical autocorrelation distance Y, Transyersal locations of input
pollution plume
T 2 T L - 1 1 . .
p(t,-T,)  Auto-correlation coefficient W Domain width
T Horizontal distance between the T Mass travel time
i centroid of the ith and jth eclements - (concentration is 5 mg/lit)
T Vertical distance between the T Mass travel time
Yij c=20

centroid of the ith and jth elements (concentration 1s 20 mg/lit)

1. Introduction

The advection-dispersion equation, also called convection-diffusion equation, governs several
natural phenomena, including mass, energy, turbulence, and heat transfer [1]. The incomplete
knowledge of information and various assumptions in the mathematical modeling end up with
uncertainty in the model constants such as dispersion coefficient and velocity [2]. In addition, in
cases such as pollution transport in groundwater resources, natural soil is faced with heterogeneity
as a result of geological formations, leading to higher variability of physical properties [3, 4]. Mass

transfer modeling is essential for management or remediation of groundwater resources all over
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the world [4, 5]. To deal with the above-mentioned uncertainties, stochastic methods are combined

with the mathematical or numerical solutions of advection-dispersion equation [2, 6].

A host of studies have made use of the random field theory to describe the uncertainty in
different fields of engineering, including geotechnical, structural, and water engineering. Griffiths
etal. [7] and Lo and Leung [8] employed random the field theory coupled with the finite element
method to investigate the probability of failure of an embankment slope. Regarding the seepage
phenomenon, several types of stochastic analyses have been conducted by Cho [9], Tan etal. [10],
Hekmatzadeh et al. [11], Srivastava et al. [12], Ahmed [13, 14], and Griffiths and Fenton [15-18]
to estimate the probability distribution of exit gradient beneath a dam. Do et al. [19] applied

random field concept for the Young’s modulus in the analysis of structures.

In terms of mass transfer, as with pollution transport, a few studies have been conducted to
examine the effect of spatial variability. The effect of random soil hydraulic conductivity on solute
transport was analyzed using Monte Carlo simulation (MCS) by Wang and Huang [20]. In the
aforementioned study, the random permeability field was generated using successive random
addition. Then, groundwater flow and solute transport were simulated using well-known finite
difference MODFLOW code and MT3DMS code, respectively. In addition, the first order
reliability method (FORM) has been combined with a finite element code to develop a stochastic
scheme for modeling the groundwater pollution [21]. Shi et al. [2] used stochastic collection
method to consider the influence of a heterogeneous aquifer on the advection dispersion equation.
The uncertainty in the advection and dispersion terms of a solute transport problem was studied

by Li etal. [5] using stochastic finite element method.

In the majority of aforementioned stochastic studies which employed the random field
concept, thousands of random field realizations have been produced, and then for each realization,
the governing differential equation such as Laplace equation has been solved using finite element
methods or finite difference methods [19, 22, 23]. Regarding mass transfer problems that are
generally time-dependent, the abovementioned procedure may not be efficient when it comes to
computational time. Moreover, numerical solutions of time-dependent problems may suffer from
instability issues when the time step is not small enough [24, 25]. In addition, advection-dominated
mass transfer problem may face artificial numerical oscillations when the grid size is large. One

solution to eliminate theses over/undershoots and guarantee the stability is to reduce the grid size



[24, 26, 27]. However, the smaller the time step and grid size are, the more computational time 1s

required, which is challenging in the random field problems.

In the last decade, the lattice Boltzmann (LB) method has emerged as a robust numerical tool
to solve time-dependent problems, including advection-dispersion equations [28-30]. Not only are
the LB methods efficient and fast computational methods, but also their stability is admirable,
especially in advection-dominated mass transport problems [26, 31]. Easy programing in addition
to modeling complex boundary conditions are other advantages of the LB method [26, 30]. In
addition, the LB method shows superior capability to comply with parallel programming
techniques utilizing graphics processing unit (GPU) [32]. The central idea of the LB method is to
provide a bridge between microscopic distribution function and macroscopic variables such as
mass concentration [33]. Different lattice configurations have been introduced to solve advection-
dispersion equation, comprising D2Q4, D2Q5 in addition to D2Q9 for two-dimensional problems
[31, 33].

To the author’s best knowledge, no study was found to combine random field discretization
with the LB method in order to investigate stochastically an engineering problem [10, 13, 23, 34,
35]. Regarding the advection-dispersion equation, few studies make use of the stochastic field to
investigate mass transfer, especially in a transient state [6, 36-38]. Besides, it is beneficial to
determine the effects of stochastic reaction term in the advection-dispersion equation coupled with

the chemical reaction of mass.

The main motivation of this study is to carry out probabilistic analysis of mass transfer using
random field theory in two dimensions. For this purpose, the LB method is combined with random
field discretization for the first time. Among several schemes of the LB method, D2Q5 Scheme
with single relaxation time was chosen due to its high level of accuracy and high computational
speed [26, 32]. The Cholesky decomposition method together with MCS and exponential
autocorrelation function were used to generate random parameters, including dispersion
coefficient, pore velocity, and chemical reaction term. Moreover, lognormal distribution was
assumed for the parameters mentioned above. The mass travel time and the time-concentration
curve were considered as objective parameters for stochastic investigations. The influences of

different autocorrelation distances in addition to several coefficients of variations (COV) are



surveyed comprehensively. Finally, the effects of cross-correlation between the realizations of

dispersion coefficient and the realizations of pore velocity were taken into consideration.
2. Mass transfer

Mass transfer in a system such as porous media is modeled mathematically using the mass
balance relationship. Assuming linear chemical reaction between the mass and the system, the
governing equation of the mass transfer in 2D is written as Eq. (1), which is called advection-

reaction-dispersion equation [24].
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where C is the mass concentration, D represents the dispersion coefficients along both x and y
directions, U indicates the pore velocity along x direction, and A is the chemical reaction rate of
mass with the media. It should be noted that Eq. (1) describes the mass transfer phenomenon in
isotropic circumstances, and consequently, the dispersion coefficients along x and y directions are

identical.

3. Review of lattice Boltzmann method

The mathematical model of several natural phenomena can be described using LB equation
[31, 33]. The discrete form of LB equation with regard to the Bhatnagar, Gross and Krook (BGK)
collision operator is expressed as [33]:

f(x+cAtt+At)=f (x.t)+ %[fﬁq (x.t)-f (x.t)] )

where 1 1s the single relaxation time (SRT), f, signifies the particle distribution function along the

lattice direction i, f™ represents the equilibrium distribution function (EDF) of particles, and c;

stands for the lattice velocity in directioni , which 1s defined by Eq. (3).

¢ =

(0,0) i=0
{(cos[(i ~Dr/2].sin[G-Dn/2])c i=1,2,3, 4 3)



In this relation, ¢ is the lattice velocity (c=Ax/At). Regarding advection-dispersion equation, the

relaxation time and the equilibrium distribution function of the LB equation are stated as follows

[27]

o =2 41
ad_Atcsz 2 )
Uc.
f9=w.C|1+ !
1 wl{ } )

where ¢, =c¢/~/3 for D2Q5 scheme. w, is the weight coefficient in the lattice direction i, defined

by relations (6) for D2Q5 scheme [39]:

(6)
i=1,2 3, 4

The mass concentration is estimated by the summation of particle distribution function

alongside all lattice directions [29, 33]:
C=Xf(xt) (7)

Considering the Dirichlet boundary condition where the variable is specified at the left border,

the particle distribution function in direction 1 (see Fig. 1) is computed using Eq. (8) [40]:
£=C-f,—f,~f,~f (8)
where f,, f,, f,, f, are obtained from the streaming process. In terms of the Neumann boundary

condition, where the variable gradient is identified at the eastern border of the domain, f, is

estimated using Eq. (9) [40].

fl(n—l) = Zfi(n) - fO(n—l) - f2(n—1) - f3(n71) - f4(n71) (9)

4. Random field theory

The constants of advection-reaction-dispersion equation, including the dispersion coefficient,

the pore velocity, and the reaction term, may be faced with spatial variability. In case of pollution



transport in the groundwater, the properties of natural soil such as dispersion coefficient encounter
special variability due to the geological soil formations [3, 41]. The spatial variability can be
modeled using random field theory by the employment of a suitable probability density function
(PDF) and an auto-correlation function (ACF) [16]. In the random field approach, values of soil
properties are assumed as random variables in different locations. Considering MCS, random
numbers are generated for soil parameters at these locations in association with their PDF.
Afterwards, thousands of analyses predicated on the generated random fields were performed.
Generally, analyses were performed with a mesh identical to that used for deterministic analysis.
Accordingly, the variables of interest (such as mass travel time) are obtained from every

realization, forming the probability distribution for the quantities under study [11, 42].

Concerning the lognormal distribution for the parameters mentioned above, the mean and

standard deviation (u, ., and o, ., ) of the random variables (RV) are estimated using Eqs. (10)

and (11), respectively [12, 16].

1

M ry :ln(“RV)_EGIZHRV (10)
62

Cpry = 1n[1+%]: In(1+COVy, ) (11)
l’LRV

where p, and o, are the mean and standard deviation of random variable. One advantage of the

lognormal distribution is that there is no possibility for the negative values [43].

There are a number of ACF to describe the degree of correlation between two points
irrespective of their global coordinates [41, 44]. The most applied ACF used to illustrate the spatial
variability of soil characteristics is the exponential auto-correlation function [22, 45], which is

given by:

P(Txij 1, ) _ exp(—iﬁ— %J _ exp(_ |XiL_ Xj‘ _ YiL_ Yj‘} (12)

X y X y

here, T, =|X1 —XJ‘ and Ty, =|V; —yj’are the absolute distances between two points in the

horizontal and vertical directions, respectively. L, and L, represent the horizontal and vertical

autocorrelation distances of stochastic parameter, respectively.



Considering the numerical mesh, the following auto-correlation matrix (ACM) is constructed

for the whole domain:

1 p('cxlz,'cyu) p('cxlne,'cyme)

ACM = p(T"“’_Ty“) 1 N ol ’.Tyz%) (1)

p(TXnel ’Tynel ) p(TXnez ’Tynez ) e 1

where p(rXij ’Ty;j) indicates the autocorrelation coefficient between the centroids of elements. T,
and Ty, indicate the distances between the centroid of the ith and the jth elements. In this study,

the Cholesky decomposition method [12, 44, 46] was used to generate random values of stochastic
parameter. Accordingly, the above-mentioned matrix is decomposed into the product of a lower
triangular matrix, L, and its transpose (Eq. (14)).

LLT = ACM (14)

Regarding matrix L, the standard Gaussian random field ( G, ) can be attained using Eq. (15):

G, :ZLUZJ' Ci=123, .0 (15)
=

In the above equation, Z; follows the standard normal distribution (L =0 and o =1). Finally, the

values of random variable along x and y directions for each element are estimated as follows:

RV, = eXp{“lnRv + GlnRVGi} (16)
In a case where two random variables (RV1 and RV2) are correlated with a cross-correlation
coefficient (pgy, zyv,), the parameter G,in Eq. (16) is replaced with G,_;,, and G_;, according

to the following relations:

{GiRVl } - A Gi*RVl*Eq. (15) (17)
Gi*RVZ Gi*RVZ*Eq. (15)
1 pRV RV,
AAT — 1-1% V2 (l 8)
pRVl,RV2 1



where G, ., and G, ., represent the modified standard Gaussian random field for RV; and RV,,
respectively, and G, yy, g, o5y and G, gy, 5, 5, are computed using Eq. (15) [12, 44, 46]. In the
random field generation process of this study, it is assumed that the logarithms of variables are
Normally distributed. Here, the cross-correlation coefficient may be assumed between RV, and
RV, or it may be defined between the logarithms of variables. Considering the former case, a

correction factor (F), defined below, is multiplied by pyy, gy, [47]:

IN(1+ Ppyy pys COV, COV,)

F =
Prvirvs JINL+ COV)In(l+ COV/?)

(19)

The above equation is valid when COV varies between 0.1 to 0.5.

Of note, an identical regular mesh was used for both LB method and the generation of random
field (construction of ACM). The LB equation (Eq. (2)) is solved at the mesh points, and it needs
mass transfer parameters (D, U, and 1) at every point. However, by the formation of the ACM,
these parameters are determined for the element area. Therefore, the properties at every location

were set to the average values of adjacent elements [48].

5. Stability

The LB method is an explicit scheme, which may be subject to stability criterion. Hence, time
step and spatial resolution should be carefully selected to prevent numerical instability in the
solution. Servan-Camas and Tasi [29, 31] specified the stable domain for the LB solution of
advection-dispersion equation using von Neumann analysis. Accordingly, the stability domain

depends on the scaled Peclet number Pe” = (uAx/D)(t—0.5), the Courant number Cr=uAt/Ax,

and the relaxation time, as shown in . Regarding the artificial oscillations induced by
advection-dominated mass transfer [24], D2QS5 faces numerical over/undershoots when the grid

Peclet number Pe, =(uAx/D) is greater than 20 [26]. Hence, mesh resolution should fulfill this

criterion.



6. Application to mass transfer problems

6.1. Problem 1

Herein, a two-dimensional solute transport problem is considered in a domain size of
50 m x50 m . The solute plume with the concentration of 200 mg/lit enters the domain across 10
meters of the left side (Fig. 2a). The 1nitial solute concentration inside the domain 1s assumed to
be zero. The groundwater flow is considered along x direction, while the dispersion happens along
both x and y directions. Therefore, the mass can exit the domain through all borders except line

MN in Fig 2a.

The advection-reaction-dispersion equation mentioned above (Eq. (1)) contains three
stochastic parameters as follows: pore velocity (U), dispersion coefficient (D), and reaction term (
2). These parameters were described using lognormal distribution according to Table 1. It should
be noted that lognormal distribution has been widely used by researchers to describe soil stochastic
parameters [12, 44, 46]. Different values of autocorrelation distance and coefficient of variations
were taken into account for each stochastic parameter (Table 1). After the discretization of the
domain, the soil properties were generated using random field theory explained in section 4. The
LB method was employed to solve the mass transfer equation. The Neumann boundary condition
was assumed for the borders of the domain excluding line MN. Both grid size and time step play
key parts in the stability, convergence, and the accuracy of numerical solutions. Following
numerous numerical tests, the grid size was set to 0.5 m. The time step was chosen for each
realization according to the stable domain presented in Fig. 1. Consequently, the time step varied

between 0.5 to 4 min based on the range of variables in every realization.

In case where the stochastic parameters mentioned above are constant in the whole domain,
the analytical solution of the advection-reaction-dispersion equation (Eq. (1)) is stated as Eq. (20)
[49]:
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C(x,y,t) =C, > L, P, cos(ny)

n=0
. exp x(U=P) erfc x—Pt +exp xU=P) erfc X+ P
2D 2Dt 2D 2Dt

{0.5 n=0

! 0
n> (20)

Y=Y, n=0
P W
"TlsinnY,) -sinn YDl

nm

n=nrn/W n=01 2, 3, ...

B :\/UZ +4D, (WD, + 1)
where Y, and Y, are transversal locations of input pollution plume (see Fig. 2) and W 1s domain

width.

6.2. Problem 2

This problem is also a two-dimensional mass transfer problem where point source pollution
enters the domain. The pollution plume with the rate of 43 mg/min enters the groundwater at Point
F (Fig. 2b). The domain size, the initial and boundary conditions, and the stochastic parameters
are identical to assumptions mentioned in problem 1. The numerical solution for this problem is

available in the literature [50].

7. Results and discussion

7.1. Deterministic analysis

Aiming to check the accuracy of the LB method, the numerical solutions were verified with
the analytical answers for the above-mentioned 2D mass transfer problems. According to Fig. 3,
both numerical and analytical solutions give identical time-concentration curves at point P (see
Fig. 2). Here, 2 =0.0005 1/min, D=0.003 m?/min, U=0.03 m/min, dx=1 m, dt=2 min. The high
level of agreement 1s also observed in the concentration contour lines at steady state (Fig. 3),

confirming the high precision of the presented numerical code.
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7.2. Effects of spatial variability of dispersion coefficient

Fig. 4 shows the spatial variability of the dispersion coefficient in different autocorrelation
distances of 1 and 10 m, respectively. The coefficient of variations in these figures is 0.5. As
shown, the higher the autocorrelation distance is, the more homogeneous soil realization is

obtained.

Regarding problem 1, Figs. 5a and 5b show the effects of spatial variability of the dispersion
coefficient on the mean of mass travel time when the concentration is equal to 5 and 20 mg/lit, 1.e.
T.—s and T,—,, respectively. Several values of COV and autocorrelation distance were taken into
consideration. Accordingly, T,—s increased and T,-,, decreased with a rise in the value of COV in
all autocorrelation distances. The highest T.-s was obtained when the autocorrelation distance was
1 m, while the highest T.-,o was attained at an autocorrelation distance of 20 m. In addition, the
mean of mass travel time was more affected by COV of dispersion coefficient in comparison to
autocorrelation distance of that coefficient. For instance, considering the autocorrelation distance
of 10 m, T,-s varied from 1240 to 1259 min when the COV increased from 0.125 to 1, representing
1.5% variation in the mean travel time. Nevertheless, T.-s ranged from 1259 to 1262 min for

different autocorrelation distances at COV= 1, indicating 0.2% increase in T_s.

The effects of spatial variability on the standard deviation of T.-s and T.-5 for problem 1 are
also shown in Fig. 5. Accordingly, the standard deviation is constantly increasing with an increase
in the values of COV and autocorrelation distance, implying that wider histograms are obtained

for T,—s and T,y at greater COV and autocorrelation distances.

Besides, the cumulative distribution functions (CDF) of T.-s for several autocorrelation
distances are displayed in Fig. 6a. Interestingly, all CDF curves intersect neatly at the same point.
Accordingly, the probability that T._s is less than 1250 min 1s about 52 % regardless of different

autocorrelation distances, 1.e., P(T_, <1250min) = 0.52. Two types of behavior are perceived from

Fig. 6a regarding the values of T.—s higher or smaller than 1250 min. Considering higher values of
T.-s, the cumulative probability decreases with a rise in autocorrelation distance, and vice-versa
for smaller values of T.-s. Similarly, the crossing of CDF curves of T,-s for a number of COV

values at approximately one point 1s also observed (Fig. 6b). In these cases, P(T, ; <1230 min) is

40 % 1irrespective of the COV values.

12



It is worth mentioning that the probability distributions of T,_s are accurately described with
normal, lognormal, and skew normal distributions. In line with Table 2, the correlation coefficients
between the histograms and the induced distributions are higher than 0.98, signifying the high
level of compliance. Several values of COV and autocorrelation distances are considered in the

above evaluation, as reported in Table 2.

Figs. 6¢ and 6d show the influence of stochastic dispersion coefficient on the mean time-
concentration curves for problem 1, considering several values of COV and different
autocorrelation distances. Regarding different values of COV, the time-concentration curves are
closely in agreement at early times, while the final mean concentrations are slightly different,
ranging from 36 to 40 mg/lit (Fig 6¢). The final mean concentration increases once the COV of
dispersion coefficient rises. Therefore, a greater portion of mass is transported longitudinally at
higher COV values for dispersion coefficient, and consequently a smaller portion leaves the
domain transversally. Concerning various autocorrelation distance, the breakthrough curves are in

high agreement, which confirms that the autocorrelation distance is insignificant (Fig 6d).

In terms of problem 2, the influences of spatial variability of dispersion coefficient on the
mean and standard deviation of T,_s and T,_,, are shown in Fig. 7. Similar to results presented in
Fig. 5, there are upward and downward trends in the mean values of T,_s and T, respectively,
with a rise in the value of COV. In line with Fig. 7a, T.—5 increases approximately from 941 to 953
min once the COV varies from 0.125 to 1, Indicating 1.3 % variation in the mean travel time.
Moreover, the standard deviations of both T.-s and T, increase with COV values, which are in
accordance with the increasing trends in Figs. 5¢ and 5d. Analogous to problem 1, the CDF curves
of T.-s, which stemmed from numerous COV values or those resulted from several autocorrelation
distances, intersect approximately at the same point. For instance, the CDF curves of Tc=5,
stemmed from several COV and the autocorrelation distance of 5 m, intersect approximately at the

cumulative probability of 46% (P(T_, <939 min) =46%).

The results mentioned above indicate that the stochastic dispersion coefficient ends up with
small variations in the mean of mass travel time and the time-concentration curves. The stochastic
concentration contour lines of several realizations with regards to spatial variability of dispersion
coefficient for both problems are shown in Fig. 8. It is observed that the concentration contour

lines deviated slightly in different directions.
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7.3. Effects of spatial variability of pore velocity

The influence of inherent uncertainty of pore velocity on the mass transfer is also explored.
Concerning problem 1, Fig. 9 shows an increase in the mean and standard deviation of T.—5 versus
COV for different autocorrelation distances. According to Fig. 9a, the mean of T..s changes
considerably with respect to the COV of pore velocity. For instance, considering autocorrelation
distance of 10 m, the mean of T,_s ranges from 1247 to 1755 min when the COV varies from 0.125
to 1, indicating 41 % increase in the mean travel time. Compared to the results obtained from
spatial variability of dispersion coefficient (see Fig. 5a), the mean of mass travel time is much
more sensitive to the COV of pore velocity. Besides, the standard deviation of T,-s varies between
83 to 605 min (Fig. 9b), which is nearly 10 times higher than the range of standard deviation

obtained from spatial variability of dispersion coefficient (see Fig. 5b).

In addition, the mean and standard deviation of T.s rises with an increase in the
autocorrelation distance. The estimated mean of T.—s varies between 1382 and 1756 min with
regard to COV=I1, representing 27% increase in T.—s (see Fig. 9). Therefore, the role of
autocorrelation distance is significant in the mass transfer once the velocity is considered to
comply as a random field variable. It should be pointed out that similar figures were perceived for

greater travel times, which are not offered here for the sake of brevity.

Of note, the lognormal distribution, followed by skew normal distribution, gives the best fit to
the histograms of T._s (Table 3). The R? values higher than 0.95 confirm these good agreements.
Regarding numerous values of COV for velocity, all CDF curves approximately cross each other
when T,—s=1150 min (Figs. 10a). Furthermore, the CDF curves of T.-5, stemming from different
autocorrelation distances for velocity, intersect each other at the same point (Fig. 10b). The slope
of CDF curves is affected noticeably by the values of autocorrelation distance. In line with Fig.
10b, the cumulative probability of T.-s increases with respect to autocorrelation distance when

T,-s<1240 min, whereas that probability declines once T.-s>1240 min.

The mean breakthrough curves at point P (see Fig. 2) when the velocity is considered as a
random field variable are also depicted in Fig. 10. The slope of breakthrough curves is influenced
considerably by the variations in the values of COV. Accordingly, the mean concentrations of
mass at termination times are in the range of 21 to 36 mg/lit. Remarkably, the minimum

concentration is attained at the greatest value of COV. The reason being that the likelihood of
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small velocities in the domain is high when the COV of velocity is large. Consequently, points
with small velocities act as obstacles against mass transfer alongside x direction, resulting in less
longitudinal mass transport. In other word, a larger portion of pollution is transported in lateral

direction through the dispersion phenomenon at greater COV values.

Regarding the effects of autocorrelation distance on the breakthrough curves, the final mean
concentrations of mass at the small autocorrelation distances are considerably higher than those
resulted from large autocorrelation distances. The clue to this observation may be the fact that the

region is more homogeneous when the autocorrelation distance is large.

According to results obtained for problem 2, the mean and standard deviation of T,_s manifests
a considerable increasing trend with respect to both COV and autocorrelation distance (Fig. 11).
For instance, the mean of T.-s changes between 950 and 1310 min for the autocorrelation distance
of 20 m, which indicates roughly 38 % alteration. These results confirm that the variability of pore
velocity influences the mass transfer phenomenon considerably. It was also observed that the CDF
curves cross roughly at an identical point. In the case where the autocorrelation distance is equal
to 5 m, the probability that T.-s is smaller than 901 min is equal to 30 %, considering all COV

values.

7.4. Effects of spatial variability of reaction term

To explain the effect of reaction term () on mass transfer, the time-concentration curves of
advection dispersion equation with and without J are illustrated in Fig. 12, considering problem
1. As shown, the final mass concentration declined over 50% by considering the reaction rate of

% =0.0005 (1/min). Moreover, the slope of time-concentration curve decreased by the

implementation of reaction term. The reason being that the mass is decayed in the domain by

considering the reaction term.

The influence of spatial variability for reaction term in the transport equation (Eq. (1)) is given
in Fig. 13. Two types of behavior are perceived for the mean value of T,—s. The mean of T.—s tends
to fall behind the deterministic value (T.-s=1239 min) for the autocorrelation distances of 1, 2, 5
m, while this parameter increases at autocorrelation distances larger than 5 m. Nonetheless,

standard deviation of T._s increases with elevation of both autocorrelation distance and COV
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values. It should be pointed out that the variations of T,_5 are limited. According to Fig. 13a, T,—s
changes between 1238 and 1244 min at different values of COV and autocorrelation distance,
indicating 0.5 % variation of T.-s. Therefore, the probabilistic assumption for reaction term causes

negligible influence on the mass transfer.

Furthermore, the time-concentration and CDF curves for different values of autocorrelation
distance and COV are displayed in Fig. 14. The slope of time-concentration curves is not
influenced by the variations of COV and autocorrelation distance. In addition, the terminal
concentration varies slightly at various values of COV and autocorrelation distance. These results
indicated that the stochastic variations of reaction term cause small effects on the mass transfer.
However, the presence of reaction term in the advection dispersion equation declines the final

concentration considerably.

In these cases, where the reaction term is a random field variable, the skew normal distribution
ends up with high accordance with the histograms of T.—s. However, based on the R? values given
in Table 4, both normal and lognormal distributions may explain the histograms satisfactorily.
Similar to Figs. 6 and 10, the CDF curves of T.-s, arisen from several values of autocorrelation
distance or COV, meet each other nearly at identical point (Fig. 14). The slope of CDF curves

declines with an increase in the values of COV and autocorrelation distance.

The mean of T.-s reflects a tendency to decrease with COV at small autocorrelation distances,
considering the results of problem 2 (Fig. 15). Besides, the mean of T,_s is between 940 and 942
at different values of COV and autocorrelation distance, indicating 0.2 % deviation which
corroborates insignificant effects of probabilistic reaction term for mass transfer in problem 2.
Regarding the standard deviation of T.-s, the increasing trend with respect to both COV and
autocorrelation distance is observed in Fig. 15. Akin to previous cases, the intersection of CDF

curves at an approximately identical point is perceived.

7.5. Effect of cross-correlation between dispersion coefficient and pore velocity

The effects of cross-correlation coefficient between D and U on the mean of T,—s are illustrated
in Fig. 16. Both dispersion coefficient and pore velocity are considered as random field variables

with the COV of 0.25. This figure is obtained for problem 1. Accordingly, with an increase in
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correlation coefficient, a higher mean of mass travel time (T.-s) 1s estimated for different
autocorrelation distances. For instance, the mean of T,_s varies from 1267 to 1280 min when the
correlation coefficient between D and U increases from 0.1 to 0.9, considering the autocorrelation
distance of 5 m. The interpretation is that D and U are linearly more dependent on one another at
greater cross-correlation coefficients. At lower cross-correlation coefficients, there are numerous
realizations where velocity is small, whereas the dispersion is high. However, at higher cross-
correlation coefficients, the simultaneous occurrence of smaller D and U values is more plausible.
Therefore, longer elapsed time is needed at smaller correlation coefficient for the pollution to reach
the end point P. In addition, the standard deviation of T,_s increases slightly with a rise in the cross-

correlation coefficient between dispersion coefficient and pore velocity (see Fig. 16).

In addition, the values of correction for the cross-correlation coefficient (F) are given in Table
5. The correction coefficient, F, changes from 1.003 to 1.027, whereby the maximum F is
associated with the smallest cross-correlation coefficient. Furthermore, this coefficient decreases
noticeably when the cross-correlation coefficient increases. The results indicated that the
implementation of correction coefficient leads to negligible influences on the results presented in

Fig. 16.

8. Conclusion

In this study, the two-dimensional mass transfer problem was probabilistically analyzed and
the influences of uncertainty in the parameters of advection-reaction-dispersion equation were
explored. The results indicated that the combination of the lattice Boltzmann method and random
field generation can be employed to successfully consider the effect of spatial variability in

parameters associated with advection-reaction-dispersion equation.

Amongst the spatial variability of dispersion coefficient, reaction term, and pore velocity, the latter
was most influential on the variations of mass travel time and time-concentration curve at the
termination point. Considering large values of COV for pore velocity, higher rate of mass was
transported in lateral direction. However, the spatial variability of dispersion coefficient caused
slight changes in the mean of mass travel time and the time-concentration curve. Although the

existence of reaction term in the advection-dispersion equation changed the terminal mass
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concentration noticeably, its spatial variability ended up with small variations on the mass transfer
process. Considering all stochastic parameters, the CDF curves of mass travel time (T,-s), stemmed
from several autocorrelation distances or various values of COV, intersect neatly at the same point.
Finally, several cross-correlation coefficients were assumed between the random field of
dispersion coefficient and the realizations of pore velocity. It was observed that the mean travel

time increases at higher values of cross-correlation coefficient.
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Fig. 1. Stability domain for D2Q5 lattices. The stable domain is the area underneath the solid lines. Redrawn after
[31].
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distances, (¢) CDF curves of T.—s obtained from different COV values, (d) CDF curves of T.-s obtained from different

autocorrelation distances.
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Fig. 15. Influence of COV and autocorrelation distance for the reaction term on the mass travel time in problem
2. (a) mean of T.—s, (b) standard deviation of Ts.
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Fig. 16. Effect of cross-correlation between dispersion coefficient and pore velocity on T.-s in problem 1. (a)
mean of T vs. cross-correlation coefficient, (b) standard deviation of T.s vs. cross-correlation coefficient.



Table 1

Statistical distribution constants of advection-reaction-dispersion equation for the probabilistic

simulations.
. . Autocorrelation distance S
Parameters Mean Cocfficients of variations (m) Distribution type
D (m*min) 0.03 0.125,0.25,05,0.75, 1.0 1,2,5, 10,20 Lognormal
U (m/s) 0.03 0.125,0.25,05,0.75, 1.0 1,2,5, 10,20 Lognormal
A (1/min) 0.0005 0.125,0.25,0.5,0.75, 1.0 1,2,5,10,20 Lognormal
Table 2

Correlation coefficients for different PDFs of T._s regarding spatial variability of dispersion coefficient.

Correlation coefficient R2

Autocorrelation Coefficient of variation
distance COV Normal Lognormal Skew normal
distribution distribution distribution
Im 0.5 0.987 0.987 0.987
2m 0.5 0.994 0.994 0.989
S5m 0.125 0.994 0.994 0.994
5m 0.25 0.993 0.993 0.989
5m 0.5 0.994 0.993 0.993
S5m 0.75 0.984 0.989 0.985
5m 1.0 0.974 0.987 0.987
10 m 0.5 0.980 0.990 0.986
20m 0.5 0.973 0.988 0.990




Table 3
Correlation coefficients for different PDFs of T__; regarding spatial variability of pore velocity.

Correlation coefficient R2

Autocorrelation Cocfficient of variation
distance COV Normal Lognormal Skew normal
distribution distribution distribution
Im 0.5 0.984 0.996 0.993
2m 0.5 0.979 0.997 0.990
5m 0.125 0.990 0.994 0.984
5m 0.25 0.988 0.996 0.994
5m 0.5 0.956 0.996 0.983
5m 0.75 0917 0.997 0.972
5m 1.0 0.877 0.996 0.952
10 m 0.5 0.927 0.997 0.977
20 m 0.5 0.883 0.989 0.958
Table 4

Correlation coefficients for different PDFs of T._s regarding spatial variability of reaction term

Correlation coefficient R2

Autocorrelation Coefficient of variation
distance COV Normal Lognormal Skew normal
distribution distribution distribution
Im 0.5 0.973 0.973 0.981
2m 0.5 0.987 0.987 0.992
S5m 0.125 0.983 0.983 0.985
5m 0.25 0.991 0.991 0.995
S5m 0.5 0.983 0.984 0.996
S5m 0.75 0.968 0.970 0.997
5m 1.0 0.957 0.960 0.996
10m 0.5 0.972 0.974 0.997

20m 0.5 0.950 0.954 0.996




Table 5
Modified cross-correlation coefficient between U
and D for COV=0.25

Pup F (Pe). s
0.1 1.0277 0.1027
0.3 1.0213 0.3064
0.5 1.0151 0.5075
0.7 1.0090 0.7063

0.9 1.0029 0.9027
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