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Abstract

A novel approach for inferring the underlying non-metallic inclusion distri-
bution from fatigue test fractography is presented. It is shown that the
non-metallic inclusion size distribution obtained from fatigue testing differs
from the extreme value distributions, which do not take fatigue into account.
Fatigue, as a process, acts as a filter for the observed inclusions, and by
taking advantage of this allows us to extract more refined information from
the fractography using statistical inference. The emphasis in this paper is
on analysis of axial fatigue testing of smooth specimens. The concepts pre-
sented here apply to all fatigue testing where the data from fracture surfaces
is collected.

Keywords: Bayesian inference, Extreme values, Fatigue size effect,
Fractography, Inclusion size distribution

1. Introduction1

Manufacturing large volume castings and components of high quality is2

not an easy task. With increased volume, the fatigue properties tend to de-3

crease – a phenomenon known as the fatigue size effect. Weibull’s weakest-4

link (WL) theory [1] has been employed to explain the effect with statistically5

distributed defects or flaws in the material [2]. The larger the volume, the6
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larger the expected flaw size. The typical formulation assumes the critical de-7

fect size and applied stress to follow a power-law relationship and the largest8

defect to follow a Fréchet extreme value distribution [3]. With these assump-9

tions the defect size becomes an auxiliary variable, as the survival probability10

is expressed using effective stresses, highly stressed volume, Weibull-exponent11

and the fatigue limit. The developments of this statistical framework focus12

on finding the correct multiaxial fatigue criterion complying with the obser-13

vations [4, 5], the selection of the defect size distribution and the methods14

fitting these distributions [6, 7, 8, 9, 10, 11, 12, 13].15

The weakest-link theory based methods have recently received criticism16

for their inability to predicting notched fatigue test results [5]. On the other17

hand, the method has seen quite some success in predicting various load-18

ing and specimen geometries [4, 2]. The prediction errors of volume based19

WL-method shown in [3] were improved from local stress concepts. The well-20

known benchmark data set for the fatigue size effect is the fatigue test series21

for 30CrNiMo8 by Böhm [14] and Magin [15] containing a combination of 2622

different specimen geometries or loading conditions. The WL-concept has23

been extended for combined surface and internal failures and various loading24

cases [16, 4]. Specimen geometry with two distinct competing notches as25

possible failure initiation locations was developed and studied in [17, 18, 5].26

The WL-based model was reported to fail in capturing the experimental out-27

come of two competing notches. Recently, the WL-concept was successfully28

applied to predict fatigue behavior with varying number and diameter of ar-29

tificial surface defects for 7050 aluminium alloy [19]. The same group then30

applied the model to predict the fatigue strength of various surface roughness31

levels obtained by milling [20]. In both cases, the predictions from volume32

based model were reported to better agree with the experimental results.33

A layer with depth of 50 µm from the surface was considered, unlike in the34

original WL-volume formulation. This was justified with the observation35

of intermetallic particles in the vicinity of the crack initiation site for large36

portion of the specimens. A similar concept was proposed in [5] to enhance37

the prediction capability. The physical problem is inevitably two-fold: first,38

there exist statistically distributed non-metallic inclusions/defects and sec-39

ond, how the inclusions affect the fatigue properties. What is observed from40

fracture surfaces of fatigue testing is the outcome of both problems.41

The surface effects from stereology [21] were incorporated analytically42

by Cetin et al. in [22] to model the statistically distributed defects with a43

strong physical basis. The log-normal based total failure probability predic-44
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tions matched well for several specimen geometries in Böhm’s axial fatigue45

test-set but failed for some of the specimens with minimal notch radius.46

Non-propagating cracks [23] controlling the fatigue of these specimen was47

proposed as a possible explanation. Their work acts as a solid foundation48

for the development of statistical likelihood-based methods predicting the49

non-metallic inclusion distribution.50

The tests performed in [24, 13] show significantly smaller nitrides being51

found from fracture surfaces than the oxides. Recent studies have reported52

different fatigue properties for different inclusion compositions [25, 26, 27].53

Mixture model and competing risks approaches have been developed for an-54

alyzing materials containing multiple defect types [28]. Cetin et al. [13]55

categorized inclusions by composition and made predictions from each dis-56

tribution separately. In their paper, they successfully applied log-normal57

distribution to fit the polished cross-section data and to predict the fracture58

surface observations of smooth axial fatigue tests for 100Cr6. The statistics59

of extremes have been successfully applied to analysis of non-metallic inclu-60

sions in various materials, graphite spheroids in ductile cast irons, pores in61

cast aluminium, hard second phases (in Al-Si eutectic alloys) and carbides62

in tool steels [29].63

Our analysis is built on the statistical methodology presented in [22] for64

fracture surface observations from axial smooth fatigue specimens by using65

the Generalized Pareto Distribution. The objective of the current study is to66

extend the statistical analysis to more thoroughly include the fracture surface67

observations. Different fatigue failure sources, including locations (surface or68

internal), are distinguished in the analysis. The corresponding analytical69

likelihood is built with analysis of competing failure modes. The observation70

at fracture surface is the critical fatigue failure source in the specimen.71

2. Model72

2.1. Non-metallic inclusion size distribution73

We assume that the sizes of potentially dangerous non-metallic inclusions74

can be described by Generalized Pareto Distribution (GPD). The applica-75

tion of GPD to analysis of non-metallic inclusion extreme values has been76

studied extensively by one research group [12, 30, 31, 7, 32, 33]. GPD is a77

peak over threshold (PoT) method, where every occurrence exceeding pre-78

determined threshold is counted instead of counting only block (inspection79

volume) maxima (BM). Three extreme value distribution families (I, II and80
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III) exist, determined by the shape parameter ξ and characterized by the dis-81

tribution tail behavior. The parameters of GPD are uniquely determined by82

those of the associated BM Generalized Extreme Value (GEV) distribution83

[34]. Saturation of the fatigue size effect was reported to occur for ductile84

cast iron at highly stressed volume 8000 mm3 [35], whereas a continuous85

decrease of fatigue limit has been reported for 30CrNiMo8 even with highly86

stressed volumes up to 100000 mm3 [36] – indicating that the model needs87

to be flexible enough to describe both kinds of saturation behavior.88

2.1.1. Base size distribution89

The analytical formulation shown below was first derived by Cetin et al.90

for log-normally distributed inclusion size in [22]. We follow their example91

here and derive the model for GPD. We say that a random variable X follows92

a GPD distribution and write X ∼ GPD(µ, σ, ξ), if the probability density93

function of X is94

f(x | µ, σ, ξ) =
1

σ

(
1 + ξ

(x− µ)

σ

)− 1
ξ
−1

, (1)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and95

ξ ∈ R is the shape parameter. We choose the shape parameter as ξ < 0,96

which corresponds to the Type III extreme value distribution yielding an97

upper limit to the size of the non-metallic inclusions that is more in line with98

the expectation from steelmaking practice [7, 31]. Then X is supported on99

the finite interval [µ, µ− σ/ξ] and the cumulative distribution function is100

F (x | µ, σ, ξ) = 1−
(

1 + ξ
(x− µ)

σ

)− 1
ξ

, µ ≤ x ≤ µ− σ/ξ. (2)

At this point it is necessary to make the choice what is the variable that101

follows GPD. The GPD distribution has a nice scaling property. Namely, if102

we choose that the base parametrization is for the diameterD of the inclusion,103

that is D ∼ GPD(µ, σ, ξ), then
√

area :=
√

π
4
D follows the GPD(µ̂, σ̂, ξ)104

distribution with the modified location and scale parameters µ̂ :=
√

π
4
µ and105

σ̂ :=
√

π
4
σ. The upper limit for inclusion size in

√
area is then106

xmax := µ̂− σ̂

ξ
, ξ < 0. (3)
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2.1.2. Internal size distribution107

Assuming the number of inclusions exceeding the threshold size µ to108

follow Poisson distribution, with inclusion density ρ the expected number109

of inclusions found in volume is ρV , leads to the cumulative distribution110

function111

Fint(x | µ, σ, ξ) = exp [−ρVint (1− F (x | µ̂, σ̂, ξ))] (4)

for the largest inclusion in the volume denoted by
√

areamax-int. We added112

subscript int for internal. The density function is obtained by differentiating113

(4) with respect to x:114

fint(x | µ, σ, ξ) = ρVintf(x | µ̂, σ̂, ξ)Fint(x | µ, σ, ξ). (5)

2.1.3. Surface size distribution115

For surface distribution there are three additional things that need to be116

accounted for [22]:117

• The larger sizes are more likely to penetrate the surface, producing a118

size-weighted distribution towards the larger [21]119

• The effective surface volume, or number of inclusions penetrating the120

surface [21]121

• Cutting of the free surface (machining) modifying the effective size122

distribution123

A well-known result in stereology is that the effective surface volume is124

Vsurf = Asurf
E(D)

1000
, (6)

where Asurf is the surface area in mm2, E(D) = µ + σ
1−ξ is the expected125

diameter of inclusions in µm. We assume here area, volume and inclusion126

density to be expressed in millimeters whereas the rest of the parameters are127

in micrometers. The inner volume is then128

Vint = Vtot − Vsurf , (7)

where Vtot is the homogeneously stressed total volume. The size-weighted129

distribution for diameter of inclusions penetrating the surface is [21]130

FDsurf
(d | µ, σ, ξ) =

1

E(D)

∫ d

0

tdF (t | µ, σ, ξ). (8)

5



Cetin et al. [22] show an efficient way of modeling the cutting of inclusions131

with the function h(u)132

√
area(u) = d

√
π

4
− arccosu

4
+

sin(2 arccosu)

8
= h(u)d, (9)

where u = r
R

is the distance from the cut to the center of the inclusion r133

normalized by the radius of the inclusion R. r is negative when the center of134

the inclusion is outside of the material. This can be assumed to be a random135

variable following uniform distribution u ∼ U(−1, 1). It follows then that136

the distribution function for the maximum surface defect size
√

areamax-surf137

is138

Fsurf(x | µ, σ, ξ) = exp

[
−ρVsurf

2

∫ 1

−1

(
1 +

x− h(u)µ

(1− ξ)h(u)E(D)

)
(1− F (x | h(u)µ, h(u)σ, ξ)) du

]
.

(10)
The density function is obtained again by differentiating (10) with respect139

to x:140

fsurf(x | µ, σ, ξ) =
ρVsurf

2

∫ 1

−1

[
x

h(u)E(D)
f(x | h(u)µ, h(u)σ, ξ)

]
duFsurf(x | µ, σ, ξ).

(11)
The formulation is now complete. Being able to write these analytical ex-141

pressions allows the use of likelihood-based fitting methods.142

2.1.4. Other choice for size distributions143

Murakami and co-workers have employed Type I GEV distribution for144

their analysis method often labeled as Statistics of Extreme Values (SEV)145

[6, 37, 11]. In [29] they agree that an upper limit for the defect size should146

exist, but the type I extreme value distribution has been sufficient to describe147

the inclusion sizes obtained from fatigue tests with various volumes (20 - 1000148

mm3). Critique has been raised regarding the sensitivity of the large volume149

extrapolation values with respect to the slope parameter, the method not150

considering all the available data due to the BM nature, the lack of saturation151

(upper limit for inclusion size) as prediction volume increases and potentially152

over-optimistic estimates of prediction accuracy [7, 32].153

Log-normal distribution has been employed by several authors [8, 22,154

10, 13]. The distribution will asymptotically approach the Type I extreme155

value distribution as the prediction volume tends to infinity. Type II GEV156

distribution is the most commonly used with the WL-method [2, 4, 16, 3].157
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The type III GPD distribution has an upper limit for the inclusion size,158

and differing from type III GEV distribution, also a lower limit. It allows the159

use of more data when fit to optical microscopy samples, not only the block160

maximum. These characteristics are desirable for the distribution suitable161

for our purposes.162

2.2. Parameters163

Bayesian inference was employed in this paper to obtain stochastic es-164

timates of the model parameters. The use of Bayesian inference in fatigue165

data analysis and design of experiments has recently been studied in [38, 39].166

The parameters and their respective prior distributions are discussed next.167

For parameters with little prior knowledge from the literature relatively168

objective prior distributions were chosen. The prior distributions in these169

cases were adjusted to allow wide range of parameters to be inferred in pre-170

liminary analyses on simulated data. Log-normal distributions were preferred171

for parameters with limited support due to physical reasoning.172

2.2.1. Location parameter173

The location parameter µ of GPD restricts the support of the distribution.174

GPD is conditional to observations X > µ. When fitting GPD to PoT data175

and assuming the shape parameter ξ < 0, a mean excess plot is commonly176

utilized. A sufficiently large µ is to be chosen as the mean excess should177

become approximately linear after such threshold. [34, 7]178

The prediction results have been reported to be relatively insensitive to179

the choice of the location parameter [7]. One might question why the critical180

defect size is not modeled using µ. The short answer is that the conditions for181

crack growth are potentially different for surface and internal cracks. The182

location parameter was here chosen to be 1µm, representing the size of a183

distinguishable inclusion.184

2.2.2. Shape parameter185

The shape parameter ξ is what dominates the high volume predictions186

of the model. The existence of an upper limit of inclusion size depends on187

the assumption that ξ < 0. The upper limit is strongly dependent on the188

shape parameter ξ, especially when ξ tends towards zero [32]. The shape189

parameter is crucial in determining the saturation rate of the characteristic190

inclusion size to the upper limit with an increase of prediction volume [32] –191
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more negative ξ results in more rapid saturation and vice versa. The afore-192

mentioned flexibility of modeling different kinds of observations of saturation193

comes with this parameter.194

The prior distribution was chosen to be left truncated normal distribution195

196

− ln(−ξ) ∼ N (2.0, 0.72) conditional on − 1 < ξ < 0. (12)

This choice allows practically everything between no saturation when ξ tends197

to zero and finite saturation when ξ is negative.198

2.2.3. Scale parameter199

The scale parameter σ also contributes to the upper limit of the inclusion200

size and variance of the inclusion size distribution. Its effect is emphasized201

in the smaller prediction volumes [32].202

The maximum defect size xmax was chosen as a parameter as it had a203

clear lower bound (the maximum observed inclusion size) and its prior was204

chosen to be the log-normal distribution with the location parameter set to205

the largest observed inclusion:206

ln
(
xmax −max

i

√
areai

)
∼ N (4.0, 2.02). (13)

For example, if maxi
√

areai was 50µm, then the 5% and 95% percentiles207

would be 52 µm and 1515 µm, respectively. The scale parameter σ was then208

calculated from (3).209

2.2.4. Inclusion density210

The inclusion density ρ [1/mm3] is a measure of intensity of the Poisson211

point field. The number of inclusions found in volume V is a random variable212

that follows the Poisson distribution with the expected value of ρV . The213

inclusion density used here is conditional to the GPD location parameter214

X > µ. Values between 1-100 are suggested in the literature [12, 8, 22].215

The prior distribution for ρ was chosen to be log-normal with a rather216

high variance:217

ln ρ ∼ N (3.0, 4.72). (14)

The 5% and 95% percentiles are 0.009 1/mm3 and 45 744 1/mm3, respectively.218
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2.2.5. Surface criticality factor219

The surface defect can be rated to be generally more dangerous than the220

internal defect of similar size. By critical defect we mean the defect that221

reveals itself, i.e., wins the competition between different failure modes and222

is found from the fracture surface as the cause of fatigue failure. We thus223

define a surface criticality factor k that relates the surface and internal defect224

sizes to be as likely cause for the fatigue failure. The internal defect has to225

be k times bigger than the largest surface defect to be critical. Potential226

factors that affect the surface criticality factor are: fracture mechanical stress227

intensity factors [23], different crack growth rates, surface residual stresses228

and surface finishing quality. If the stress is not approximately homogeneous229

in the specimen’s highly stressed volume (smooth specimen, axial loading),230

such surface criticality factor cannot be applied. In these cases, a spatial231

failure probability density function could be implemented and applied in the232

likelihood with more accurate details of the fatigue initiation location. This233

kind of approach additionally requires the fatigue relationship of stress level234

and defect size to be known or modeled.235

Setting the surface and internal fatigue limits equal from [23] gives k =236

(1.56/1.43)6 ≈ 1.69. The prior distribution was chosen to be log-normal:237

ln k ∼ N (1.0, 1.0). (15)

2.2.6. Other failure sources238

When the most critical inclusion in the material is small enough, failures239

initiate from surface scratches, weak grains or the alike. In other words, there240

is an inherent flaw in the material that can be more critical than the largest241

non-metallic inclusion. The sizes of the other defects at the surface and242

subsurface are modeled as log-normally distributed random variables with243

their respective distribution parameters. The reason to distinguish between244

surface and subsurface with other failure sources is to be able to relate the245

respective defect sizes of the corresponding location’s non-metallic inclusion246

sizes. We are thus able to use the surface criticality factor that should also247

affect the cracks initiated from other failure sources. This definition leads to248

the distributions being specific to the test geometry and manufacturing.249

The priors for the hyperparameters of both surface and internal distribu-
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tions were chosen to be

µother−j ∼ N (2.0, 4.02), j ∈ {int, surf} (16)

lnσother−j ∼ N (0.0, 1.0), j ∈ {int, surf} (17)

lnxother−j ∼ N (µother−j, σ
2
other−j), j ∈ {int, surf} (18)

2.3. Fitting model250

Likelihood-based fitting strategies are commonly utilized to fit the mod-251

els, typically coupled with confidence intervals. Bayesian inference was used252

in [12]. For optical metallography of polished cross-sections, the Wicksell’s253

corpuscle problem has to be utilized in order to find the true 3D-size dis-254

tribution analytically [21, 40]. The fit for GPD from cross-section data is255

shown in [12], for Gumbel distribution in [9] and for log-normal distribution256

in [13]. A typical problem with the cross-section-based fit is the volume of257

samples needed to get statistically reliable estimates of the extremes (em-258

phasized with the BM methods) [13] and the sensitivity of the fit becoming259

pronounced with an increase in the extrapolation volume. Larger volumes of260

metal can be studied with for example cold crucible remelting, electrolytic261

dissolution or electron beam button remelting [31]. A more reliable estimate262

of the inclusion density can be achieved based on these inclusion counting263

methods.264

Another approach to fitting the models is calibrating the total failure265

probability at the stress levels close to the fatigue limit combined with the266

Kitagawa-Takahashi diagram [41, 42] or the Murakami model [23] providing267

the inclusion size-fatigue limit relationship [8, 16, 3, 36, 5, 4, 43, 19]. One268

problem with these kinds of fits is that, first of all, the failure probability is269

a result of statistical inference and prone to sample size errors; inferring the270

correct standard deviation of the fatigue limit from small samples is not an271

easy task. Another problem is that these fits typically neglect the observed272

failure initiation cause and can thus yield various defect distributions that273

do not necessarily represent the material’s true defect distribution. Espe-274

cially the inclusion density parameter remains difficult to calibrate to only275

fatigue test data and values of 1-100 defects/unit volume or area (in surface276

fatigue based models) are typically assumed [22, 8]. WL-based models that277

apply independent parameters to the area and volume failure probabilities278

are in danger of losing the connection of the defects originating from a joint279

statistical distribution. The relative explanatory power between defects and280

fatigue process can thus become unclear.281
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2.3.1. Likelihood282

The likelihood function here accounts for the fracture surface observa-283

tions. We identify four different failure initiation types:284

• Surface non-metallic inclusion (c = 0), Figure 1a285

• Internal non-metallic inclusion (c = 1), Figure 1b286

• Surface other failure source (e.g. scratch or surface roughness) (c = 2),287

Figure 1c288

• Internal other failure source (e.g. weak grain) (c = 3), Figure 1d289

Examples of the different initiation types are shown in Figure 1. For the sake290

of simplicity, interaction of defects, clusters of inclusions and non-spherical291

shaped inclusions were neglected in this paper. Clusters and non-spherical292

shaped inclusions would alter the number of surface defects found on the293

surface, as the probability of an elongated inclusion penetrating the surface294

increases. The size distributions would also change, and we refer to [40] for295

Wicksell’s corpuscle problem of the non-spherical shapes and [44] for the fa-296

tigue interpretation of these defects. The results of Abroug et al. [19] suggest297

that the fracture mechanical severity-index might not alone be enough to an-298

alyze the elongated inclusion shapes. A stochastic non-local approach, such299

as the WL, might be required to capture the increased probability of weak300

neighboring microstructure, as discussed in [45]. For micromechanics based301

fatigue analyses we refer to [46, 47].302

The likelihood then depends on the observed failure mode, and it repre-303

sents the fact that the namely location was critical and other locations were304

less critical. The likelihood that we use is305

Li (θ | xi, ci) =


fsurf (xi | θ)Fint (kxi | θ)Fother−surf (xi | θ)Fother−int (kxi | θ) , ci = 0

fint (xi | θ)Fsurf (xi/k | θ)Fother−surf (xi/k | θ)Fother−int (xi | θ) , ci = 1∫
fother−surf (x | θ)Fint (kx | θ)Fsurf (x | θ)Fother−int (kx | θ) dx, ci = 2∫
fother−int (x | θ)Fint (x | θ)Fsurf (x/k | θ)Fother−surf (x/k | θ) dx, ci = 3

(19)
where xi is the observed inclusion size at the fracture surface and θ represents306

the parameter vector. The total likelihood is obtained by taking the product307

of the likelihoods of all observations. In case of more failure sources were308

recognized and included in the analysis, e.g. another non-metallic inclusion309
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distribution, the likelihoods would be multiplied with the additional distri-310

bution functions. For the non-inclusion initiated failures the size is thought311

to be unobserved, and thus the integrals represent the probability of failure312

from non-inclusion. This convention is seen necessary as determining the313

comparable sizes of scratches or grain initiated failures to non-metallic inclu-314

sions is a difficult task from the fracture surfaces and could induce subjective315

bias between different operators. The critical inclusion has an original size316

distribution that is different from the underlying extreme value distribution317

because it is conditional on the fact that the other failure modes were less318

critical. This distribution depends on the specimen geometry. To our best319

knowledge, this has not been presented anywhere else.320

The essence of this paper is in this likelihood; we utilize all the informa-321

tion available from the observation – even including what was not observed!322

By this way, we find the parameters of the non-metallic inclusion distribu-323

tion that is compliant with the observed inclusion sizes and gives a realistic324

probability of failure to each failure mode with respect to the observations.325

With the surface and internal having different inspection volumes, we simul-326

taneously fit the volume sensitivity of the model. The non-inclusion initiated327

failures on the other hand help fit the inclusion density parameter ρ. These328

are seen as clear benefits over other approaches fitting the defect distribution329

models to fatigue tests. Even with a data set containing only surface failures,330

it is useful to check that the probability of internal failure is in agreement331

with the observations.332

2.3.2. Posterior distribution333

The parameter posterior distribution is obtained by the Bayes rule334

p(θ | ȳ) =
p(ȳ | θ)p(θ)

p(ȳ)
, (20)

where ȳ denotes the data vector containing (xi, ci) pairs, p(ȳ | θ) is the total335

likelihood function constructed from (19), p(θ) is the prior constructed from336

product of each probability distribution function described in the priors in337

section 2.2, and p(ȳ) =
∫
p(ȳ | θ)p(θ)dθ is the marginal probability. The338

posterior distribution was solved numerically using Markov Chain Monte339

Carlo (MCMC) method. More details of the numerical solution are given in340

the beginning of section 4.341

2.4. Limitations of the model342

The assumptions of the model are343
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• Inclusions are approximately spherical344

• Inclusions are approximately uniformly distributed in the volume345

• GPD can describe the inclusion size distribution346

• An upper limit for inclusion size exists when volume tends to infinity347

(ξ < 0)348

• Direct interaction of distinguished failure sources is neglected, e.g. a349

non-metallic inclusion at the bottom of a machining scratch or clusters350

of inclusions351

• In smooth axial fatigue specimen, the criticality difference between sur-352

face and internal defects can be described by a load-level independent353

factor354

• All failure types can compete, and only the most critical is observed355

• Runout level (history) does not affect the outcome of retesting356

The model predictions can thus be questioned for heavily formed mate-357

rials with clusters of inclusions, high aspect ratio inclusions and grainflow.358

Less error is caused if the loading direction is parallel to the grainflow. The359

load-level independence of the model causes probably more error if tests are360

performed on very different load levels or the material exhibits signs of sur-361

face fatigue limit (discontinuous SN-curve). The errors from these sources362

can be alleviated if load levels and conditions have been relatively similar363

(for example high-cycle fatigue), a continuously decreasing SN-curve is ob-364

served, and surface failures are observed from very small inclusions. The365

history independence can be tolerated in situations where the runout load366

levels have been significantly lower than the retest/failure load levels, signs of367

very high cycle fatigue (optically dark area/fine-grained area) have not been368

observed at the fracture surfaces or the material is not subject of significant369

coaxing effect. Further condition for history independence is no significant370

pre-damaging at the previous test levels, so that statistical selection [48]371

alone explains majority of the behavior.372

The lack of fatigue life in the analysis model requires more caution in the373

use of the current model. Stochastic analysis of low cycle fatigue and material374

variability has been studied in [49]. Murakami and Miller experimentally375

showed the effect of defect size to the fatigue life [50].376
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Removing these limitations is subject to future development work of the377

model. On the more optimistic side, the Bayesian framework offers excellent378

user-model-user communication if the model does not correctly represent the379

observations. For example, such problems may be exposed by comparing380

predictions of the model to the observations [51].381

3. Experimental382

Series of high-cycle fatigue tests were conducted using axial ultrasonic383

fatigue testing device to test the model. The material was quenched and384

tempered X40CrSiMo10-2 martensitic steel. The chemical composition is385

shown in Table 1. The mechanical properties of the material are given in386

Table 2.

C Si Mn P S Ni Cr Mo Cu
0.39 1.84 0.31 0.028 0.004 0.15 10.04 0.72 0.06

Table 1: Chemical composition of the material in weight %.

Yield strength [MPa] Tensile strength [MPa] Hardness [HBW] Elongation [%]
731 974 286 19

Table 2: Mechanical properties of the material.

387

The specimen was a smooth specimen with 3.6 mm diameter, 5 mm long388

straight gauge section and 15 mm radius fillets at the shoulders of the speci-389

men. The specimens were carefully mechanically polished, and the resulting390

diameter was on average 3.5 mm. Tests were performed in three tempera-391

tures: 300 ◦C, 400 ◦C and 600 ◦C and two stress ratios were used: R = −1392

and R = 0. The runout limit was chosen to be 108 cycles. For each runout393

specimen, the load level was increased until fatigue failure was observed and394

finally the fracture surfaces of each specimen were inspected with a scanning395

electron microscope (SEM). The inclusion size measured from the fracture396

surface is assumed to sufficiently represent the real/effective size of the in-397

clusion. A total of 80 specimens were tested and inspected. The fatigue398

crack initiation and growth was observed from the drop of the resonance399

frequency of the specimen. Once crack initiation was observed, the test was400

interrupted. A static tensile loading was applied and the specimen fatigued401
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to failure with positive stress ratio to avoid ruining the fracture surfaces.402

The different types of fracture initiations found from the fracture surfaces403

are shown in Figure 1.404

The fatigue failure sources were divided into spherical inclusions and other405

failure sources. The division was based on the fact that majority of the non-406

metallic impurities at the fatigue fracture initiation location were spherical407

inclusions: 1) calcium aluminates (CaO-Al2O3), 2) Al2O3-xMgO spinels em-408

bedded in calcium aluminates and 3) aluminium oxides A2O3. Most of these409

inclusion types were encapsulated with a calcium sulphide (CaS) shell. The410

rest of the inclusions were titanium nitrides (2 pcs) and spherical Al2O3-MnO411

spinel type inclusion (1 pc.). The TiN inclusions found at fracture surfaces412

were some of the smallest inclusions that is in line with the findings reported413

in [24, 13]. In addition, three SiC containing surface defects were found from414

the fracture initiation location. These types of particles were not found from415

the internal inclusion failures and therefore it may be concluded that the416

SiC particles embedded in the specimen surface are most likely residues from417

the mechanical polishing process. Only the spherical aluminates and oxides418

were chosen to be described with the GPD. Other inclusions, namely the TiN419

and SiC, were moved to the other-category of failure sources. Eventually, 56420

spherical inclusions were taken into account in the GPD. The other-category421

comprised altogether of 24 incidents, of which 5 were non-metallic inclusions.422

The amounts of failures from each failure initiation types are shown in Table423

3.424

Inclusion Other failure source
Surface Internal Surface Internal

∑
Amount 10 46 16 8 80

Table 3: Amount of observations from each failure initiation type.

No discontinuous SN-curve was observed for the material. At the lower425

temperatures, signs of the transition from surface to internal failures was426

observed as a function of loading cycles. At the highest temperature, no427

systematic transition was observed. The failures occurred at somewhat sim-428

ilar loading levels: the relative standard deviation of the failure load was 8%429

in 300 ◦C, R=-1 tests. The observed sizes of fatigue failures initiating from430

non-metallic inclusions are shown in Figure 4.431
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(a) Surface inclusion. (b) Internal inclusion.

(c) Surface other failure source. (d) Internal other failure source.

Figure 1: The different types of failure initiation types in X40CrSiMo10-2.

4. Results432

The model was built and fitted to the experimental fracture surface ob-433

servations using Markov Chain Monte Carlo (MCMC) method in statistical434

computation platform Stan [52, 53] version 2.18.0 using the No-U-Turn Sam-435

pler (NUTS). The statistical inference model and prior distributions were436

first calibrated to be able to robustly infer the model parameters from sim-437

ulated data with various parameters before we proceeded to the real data.438

Numerical integration procedure was applied in the computation of the likeli-439

hood. Four independent Markov chains were used in the final inference, each440

with 10000 samples of which the first 5000 were used for warm-up of the441

sampler and excluded from the analysis. The Stan convergence indicators442
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[51] were good already with 2000 samples per chain indicating no problems443

with the inference, but higher resolution of the parameters is achieved with a444

greater number of samples. The result is a trace of parameter samples from445

the posterior distribution visualized in Figure 2. An interesting point to be446

made of the parameters is that the expected value of the inclusion density447

ρ is 0.23 [1/mm3] which is very low compared to what others have proposed448

for other materials. Also, the surface criticality factor seems to be getting449

rather high values – the expected value is 5.75, and the one percent quantile450

is 2.35. Compared to the prior distribution the inference only ruled out the451

possibility of the surface criticality factor being too low.452

The predictive probabilities of failure from each location and the observed453

failure probabilities are shown in Figure 3. The most significant discrepancy454

is in the surface failure probability that, by comparing the expected value to455

the observed, seems to be underestimated by roughly 5%. On the other hand,456

the probability of internal failure is over-estimated by a similar amount. In457

conjunction with the earlier observation that the inclusion density was sur-458

prisingly low, we checked whether the mere occurrence of surface inclusion459

caused the surface failures. Indeed, given at least one inclusion at the surface,460

the probability of failure from surface inclusion was 61% in our predictions.461

The probability of failure from internal inclusion in such case was approxi-462

mately 23%, surface other sources 11% and internal other sources 5%.463

Predictions were made from the posterior trace so that Poisson distributed464

defects were simulated to 20 fatigue specimen from each set of parameters465

(total of 400000 simulated specimen), and the size and the location of the466

most critical defect were captured. The predictive distributions for the criti-467

cal surface and internal inclusions are shown with the observed sizes in Figure468

4. The predictive distributions of the largest inclusions in respective loca-469

tions are also shown. The density functions are normalized with the predicted470

probability of failure from the respective locations. It can be seen that the471

predicted failure sizes are in good agreement with the observed sizes and the472

maximum and critical sizes follow their respective distributions. The discrep-473

ancy between critical and maximum distributions is ought to increase when474

there is no single dominant failure type.475

In Figure 5 the volume extrapolation capabilities of the fit model are476

highlighted. The shown quantiles are for the largest internal inclusion. The477

model prediction credibility regions (CR) are plotted for the critical inclu-478

sions as well. The horizontal histograms show the predictive distributions of479

the other failure sources’ representative sizes. The different effective volumes480
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Figure 2: Posterior parameter traces of ξ, σ, ρ and surface criticality factor k. Different
colors represent different chains. Convergence indicators, representative statistics and
quantiles at the top of each parameter trace in tabular form.
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Figure 3: Predicted probabilities of failure from each location.

for surface and internal inclusions can also be seen from this Figure.481

5. Discussion482

A method for inferring non-metallic inclusion data from axial smooth fa-483

tigue specimens’ fracture surfaces has been presented. It has been shown484

that in the case of a competition of two or more failure sources with differ-485

ent fatigue severity the sizes of the most critical inclusions follow a modified486

distribution from the block maxima distribution. Taking the different fail-487

ure modes into account constraints the underlying inclusion size distribution488

and further aids the fit to be more compliant with the observations and489

more credible volume extrapolations can thus be made. The model was fit490

to the experimental fracture surface data, and the prediction distributions491

were in good agreement with the observations. The current model is load-492

level independent, meaning that the model might lack important explanatory493

mechanisms, such as the surface fatigue limit. The model utilized low inclu-494

sion density values and high surface criticality factors to explain the surface495

inclusion initiated failure observations. The low inclusion density is also sup-496

ported by the observed amount of non-inclusion initiated failures. With the497

introduction of the surface fatigue limit to the model, it is expected that the498

likelihood of observing small internal inclusions increases at lower load levels499

and the critical surface inclusion size distribution is weighted to larger sizes.500

Had the inclusions been measured also using the direct methods, such as501

optical microscopy from polished cross-sections, the fit of the model could502
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Figure 4: Prediction distributions and observed critical defect sizes from surface and
internal inclusions and the maximum distributions.

be verified at least quantitatively. If the result of such measurement showed503

the fit parameters to be erroneous, it would serve as further motivation for504

improving the description of the fatigue process in the model – considering505

the rigorous statistical framework developed for the analysis of inclusions.506

In the current version of the model, the analysis of fatigue effects was on507

purpose kept light: a surface criticality factor was used to describe multiple508

effects leading to surface defects being more critical than internal defects of509

the same size. (Although the possibility of it being the other way around510

was not ruled out in the prior distribution for the parameter). This kind of511

description can only be applied to homogeneous stress fields where catego-512

rization of only surface and internal failure locations to be different in terms513

of fatigue is possible. With such systematic approach to developing the model514

with minimal fatigue assumptions, the relative explanatory power between515

fatigue and statistically distributed defects is not compromised. With typical516

notched specimen or bending/torsion loading, the crack is promoted to ini-517

tiate in specific locations effectively nullifying the competition. In this light,518

the potential value of axial smooth fatigue tests is increased compared to519

the other test methods. The failures initiated from different inclusion types520

than the aluminates and oxides should be analyzed using separate size dis-521

tributions to account for the competition of different failure modes properly.522

Modeling TiN with its own size distribution in the inference would, however,523

double the number of parameters in the inference and introduce questions524

regarding the relative severity of each inclusion decomposition, and was thus525
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Figure 5: Predicted volume extrapolation effect. The prediction quantiles are for the
largest internal inclusion. The credibility regions are for the model predictions of critical
inclusions shown in Figure 4.

left out of the current paper. As long as the log-normal distribution suf-526

ficiently represents the specimen-specific distributions for the other failure527

sources’ equivalent defect sizes, this is not a problem.528

The better quantification of non-metallic inclusions can be used to design529

safer machine components, support the dynamic risk assessment of fatigue530

failure in analysis of complex systems [54, 55], identify problems in the man-531

ufacturing processes, comparison of suppliers and defining the normal for532

quality control purposes.533

5.1. Conclusions534

The goal of this paper was to further develop the statistical methodology535

for fitting the inclusion size distributions and predicting the critical sizes.536

The findings are summarized below:537

• The inclusion size distribution obtained with fatigue testing is condi-538

tional on the other failure sources and thus different than the block539

maxima distribution.540

• The presented methodology takes the above into consideration while541

fitting the size distribution yielding new constraints to the parameters.542

• Observation of the most critical inclusion simultaneously limits the543

possible largest sizes of other failure sources, further enhancing the544

volume extrapolation capabilities of the model.545
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• The predictions given by the presented method are compatible with546

the experiments.547

• Axial smooth fatigue tests with fractography yield great information548

potential of the underlying inclusion distributions.549

• Inclusion types should be categorized and modeled with separate size550

distributions to account for the competition of failure types properly.551
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senschaft und Werkstofftechnik 13 (4) (1982) 120–128. doi:10.1002/560

mawe.19820130408.561
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