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Abstract 
 

We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric 

data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope 

covering 1981-2016. We summarize the results in terms of state vectors, mean orbital elements, and orbital 

uncertainties. The estimated masses of the two innermost moons, Naiad and Thalassa, are GMNaiad= 

0.0080±0.0043 km3 s-2 and GMThalassa=0.0236±0.0064 km3 s-2, corresponding to densities of 0.80±0.48 g cm-3 

and 1.23±0.43 g cm-3, respectively. Our analysis shows that Naiad and Thalassa are locked in an unusual type 

of orbital resonance. The resonant argument  73𝜆̇%&'('))' − 69𝜆̇-'.'/ − 4Ω̇-'.'/ ≈ 0  librates around 180° 

with an average amplitude of ~66° and a period of ~1.9 years for the nominal set of masses. This is the first 

fourth-order resonance discovered between the moons of the outer planets. More high precision astrometry is 

needed to better constrain the masses of Naiad and Thalassa, and consequently, the amplitude and the period 

of libration. We also report on a 13:11 near-resonance of Hippocamp and Proteus, which may lead to a mass 

estimate of Proteus provided that there are future observations of Hippocamp. Our fit yielded a value for 

Neptune’s oblateness coefficient of J2=3409.1±2.9 ´ 10-6.  
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1. Introduction 

 

The Neptune system consists of seven regular inner moons, Triton, Nereid, and five irregular outer moons. 

Naiad, Thalassa, Despina, Larissa, Galatea, and Proteus are the regular moons discovered by the Voyager 2 

spacecraft during the 1989 flyby of Neptune (Smith et al., 1989; Owen et al., 1991). Showalter et al. (2013) 

reported on the HST discovery of the seventh regular moon – Hippocamp. This tiny moon, ~17 km in radius 

orbits between Larissa and Proteus. All regular moons have nearly circular prograde orbits and their semi-

major axes span 48,000-118,000 km. The semi-major axis of the farthest moon, Proteus, is less than five 

Neptune radii from the planet’s center. The entire closely-packed system would fit within one third of the 

Earth-Moon distance.  

 

Triton, discovered in 1846 by William Lassell (Lassell, 1846), is one of the oddballs of the solar system because 

it has characteristics of both regular and irregular moons. Triton is very large, ~1,350 km in radius and orbits 

close to the planet in a nearly perfect circle as is expected for a regular satellite. However, the orbit of Triton 

is retrograde with an inclination of ~157° with respect to Neptune’s equator, as is typical for an irregular 

satellite. The regular and irregular moons have dramatically different origins; the regular moons were formed 

²in-situ² while the irregular moons are widely regarded as captured objects (Harrington and Van Flandern, 

1979; Goldreich et al., 1989). Current theories suggest that Triton is a captured moon after all, and that the 

original regular moons got destroyed in collisions as Triton destabilized the system (McCord, 1966; Goldreich 

et al., 1989; Banfield and Murray, 1992; Ćuk and Gladman, 2006). Nereid is a possible lone survivor of the 

original population that was scattered into a highly eccentric orbit during the capture and orbital circularization 

of Triton. Nereid is sometimes regarded an irregular moon although its periapse and inclination are not typical 

of irregular moons.  
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The regular moons we see today formed from the ring of a collisional debris. They remain strongly perturbed 

by massive Triton. Triton is a critical component of the Neptunian system as the system’s invariable plane is 

defined by both the rotational angular momentum of the planet and by the orbital angular momentum of Triton. 

Our paper describes the orbital fits for the regular moons based on the latest set of astrometry. Owen et al. 

(1991) were the first to publish orbital fits for the six regular moons known at the time based on the Voyager 

2 imaging data. The orbits were modeled as precessing ellipses inclined to their respective Laplace planes. 

Owen et al. (1991) estimated seven equinoctial elements plus three stochastic pointing offset angles to account 

for the unknowns in the Voyager 2 camera orientation. Jacobson and Owen (2004) extended this study by 

adding Earth-based and HST astrometry to the original Voyager 2 data set. Because the data were still relatively 

sparse, Jacobson and Owen (2004) continued to use an analytical model to fit the data. The new orbital fits 

improved estimates of the mean motions and also determined the Laplace planes’ precession rates. Jacobson 

(2009) was the first to attempt an integrated orbit fit to the Proteus astrometry and also revised the pole model 

for Neptune. 

 

We report on integrated orbital fits for all seven regular inner moons of Neptune. This is a significant 

improvement over the precessing ellipse fits because integrated orbits rigorously capture the dynamics of the 

system. Our fits benefit from an extensive set of the high-precision HST astrometry that was obtained during 

2004-2016 (Showalter et al., 2019), including all astrometry for Hippocamp.  
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2. Methods 

 

2.1 Observations 

 

Tables 1 and 2 summarize the observations used in this analysis. The astrometric data cover the period from 

1981-2016, with the most significant amount of data originating from the Voyager 2 spacecraft and HST. 

Voyager 2 imaged all regular satellites except Hippocamp between 1989 June 7 and 1989 August 24 (Table 

1). The narrow-angle camera took pictures of the satellites against a stellar background, and the stars provided 

the pointing reference for the camera. The camera had ~10 µrad resolution per sample (Owen et al. 1991). The 

positions of the satellites were recorded in the form of samples and lines. We used the astrometry reprocessed 

with the US Naval Observatory CCD Astrograph Catalog, UCAC2 (Zacharias et al., 2004) as described in 

Jacobson and Owen (2004). We applied tighter data weights than the ones reported in Jacobson and Owen 

(2004) because we noticed that the normalized fit residuals were too small and that the data were underutilized. 

Our newly assigned data weights were based on the size of a satellite and the distance between the spacecraft 

and the satellite, with a minimum data weight of 0.5 sample, corresponding to ~5 µrad. For example, on 1989 

June 7 the spacecraft distance from Proteus was ~1´108 km, and the assigned 1s position measurement 

accuracy was ~540 km. On 1989 August 23 Proteus was ~2.7´106 km from the spacecraft and the 1s accuracy 

was 80 km. Given that the radius of Proteus is ~210 km, these are both very precise measurements. Naiad 

position accuracy ranged from ~120 km from a distance of 2.5´107 km to ~20 km from a distance of ~1.9´106 

km. Naiad is the second smallest inner moon with a radius of ~33 km (Karkoschka, 2003). 

 

The Earth-based and HST observations are listed in Table 2. The table starts with the observation of Larissa 

from 1981 from the University of Arizona Catalina and Mount Lemmon telescopes. This measurement predates 
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the 1989 Voyager 2 discovery of Larissa. The satellite location was assumed to be coincidental with the 

occulted star location. The astrometry was reduced with respect to the UCAC2 star catalog (Jacobson and 

Owen, 2004) and the uncertainty in the star position was ~200 mas.  

 

The follow-up observations originated from several Earth-based telescopes, but the majority were still obtained 

by HST. Most of the astrometry was reported as relative separations between a satellite and the center of 

Neptune in the tangent plane. Sicardy et al. (1999) detected Galatea on a single day in 1998 from the Mauna 

Kea Observatory and Colas and Buil (1992) observed Proteus on a single day in 1991 from the European 

Southern Observatory at La Silla. Marchis et al. (2004) observed Despina, Galatea, Larissa, and Proteus from 

the Mauna Kea Observatory in 2002 and 2003. They also reported three points for Thalassa and three tentative 

detections of Naiad. Jacobson and Owen (2004) used these points in their fit, but with very loose weights of 

225 mas for Naiad and 60 and 180 mas for Thalassa. We used two out of three points for Thalassa weighted at 

200 mas, but we did not use Naiad measurements because their residuals were large. Showalter et al. (2019) 

also found that the Marchis et al. (2004) observations of Naiad cannot be fit, and they reported that Thalassa’s 

measurements were 19° off from their predicted position. We were able to fit two Thalassa points from 2002 

with RA residuals of -327 mas and 546 mas and Dec residuals of -213 mas and 321 mas, respectively. These 

residuals are within 3s of their weights, so we kept them in the fit.  

 

Dumas et al. (2002) and Pascu et al. (2004) reported the HST observations of Despina, Galatea, Larissa, and 

Proteus. Jacobson and Owen (2004) converted the original Dumas et al. (2002) measurements of the longitude 

offsets from the Voyager ephemerides RNG022 (Owen et al. 1991) to Neptune-relative position angles. Vieira 

Martins et al. (2004) reported more Proteus astrometry spanning 2000-2002. These were relative 
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measurements of Proteus position with respect to Triton as opposed to Neptune. We kept the same weights for 

the Earth-based observations as the ones published in Jacobson and Owen (2004). 

 

Showalter et al. (2019) published the latest set of the HST astrometry including the discovery and follow up 

observations of Hippocamp. These measurements were obtained during 2004-2016. The satellite positions 

were measured relative from the center of Neptune in the tangent plane, and we kept the original weights as 

reported in the paper.  

 

2.2 Orbital model 

 

Jacobson et al. (2004) used a precessing ellipse fit referred to the Laplace plane of each satellite. This simplified 

model accounts for the effects of Neptune’s oblateness and the Triton torque, but it does not account for the 

mutual interactions of the satellites due to their masses. Furthermore, it does not account for the gravitational 

perturbations from Triton, planets other than Neptune, or the Sun. We used integrated orbits to fit the data, 

then precessing ellipses in order to summarize the results of integration in terms of the mean orbital elements. 

Our orbital fit is based on the Peters (1981) formulation of numerical integration of the satellites of the outer 

planets. The equations of motion are defined in Cartesian coordinates with the Neptune system barycenter at 

the origin and referenced to the International Celestial Reference Frame (ICRF). The equations include the 

gravitational effects of Neptune, the J2 and J4 zonal harmonics of its gravity field, and perturbations by Triton, 

Jupiter, Saturn, Uranus, and the Sun. The mass of the Sun is augmented with the masses of the terrestrial 

planets and the Moon. The values of the dynamical parameters are listed in Table 3. We used the trigonometric 

expansion for the pole of Neptune from Jacobson (2009) and the pole parameters were kept fixed in the 

integration. We used DE435 planetary ephemerides (Folkner, 2016) for the orbits of planets and NEP081 
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(Jacobson, 2009) for the orbit of Triton. DE435 is a minor update of DE430 (Folkner et al., 2014). Compared 

to DE430, DE435 has an improved orbital solution for Pluto as well as minor improvements and/or updates 

for the orbits of Mercury and Saturn (Bill Folkner, pers. comm.). 

 

The integration utilizes variable size time steps and is based on the variable-order Gauss-Jackson method. We 

set the maximum velocity error of 10566 km s-1 in order to control the integration step size. The average 

integration step size was 200 s. We used the weighted least-squares method based on the Householder 

transformations (Lawson and Hanson, 2004; Tapley et al., 2004) to solve for the state vectors, the GMs of the 

satellites, and J2. In addition to these dynamical parameters, we also fit for a systematic camera bias in the 

Voyager 2 data. A single pair of sample and line biases is applied to all Voyager 2 imaging data. 

 

3. Results 

 

3.1 The state vectors, GMs, and J2 

 

Our fitting process progressed in several stages as we investigated which dynamical parameters can be fit based 

on the available astrometry. We started with a model where all inner satellites were kept massless and the state 

vectors were the only fitted parameters. This was followed by a fit where only the satellites that showed some 

mass sensitivity (Naiad and Thalassa) had their GMs fitted, while the rest were still considered massless. 

Finally, we progressed to a full fit where we estimated state vectors, GMs for all satellites (assuming some a 

priori values), and J2. 
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The state vectors and the uncertainties of the final fit (nep090) are listed in Table 4. Galatea, Despina, Larissa, 

and Proteus have many observations and long data arcs that constrain their state vectors down to several 

kilometers (1s). The small satellites, Naiad, Thalassa, and Hippocamp, have 1s position uncertainties of 10-

20 km, which is still acceptable accuracy given the sparse data set.  

 

Figures 1 and 2 show the Naiad and Thalassa nep090 fit residuals for the two most abundant data sets: the 

Voyager 2 astrometry and the HST astrometry from Showalter et al. (2019). Overall, the root-mean-square 

(rms) of the residuals show good correspondence between the fit and the data. For the Voyager 2 data, Naiad 

has a combined rms of the line and sample residuals of ~49 km and Thalassa has a combined rms of ~60 km.  

The HST astrometry of Naiad has a combined rms of the X and Y residuals of ~21 mas and Thalassa has a 

combined rms of ~16 mas. At Neptune’s average distance from Earth, 1 arcsec is 21,000 km, which makes the 

HST astrometry of Naiad and Thalassa almost an order of magnitude less precise than the Voyager 2 data. 

 

The last two columns in Tables 1 and 2 list the nep090 rms of the residuals for all satellites. We evaluate the 

data weights by dividing the rms of residuals by the astrometric uncertainties. If the normalized rms is less 

than 1, the data weights were too loose, and if it is higher than 1, the data weights were too tight. All of our fits 

show normalized rms of ~1, suggesting that the data weights adequately describe the data quality. 

 

Long data arcs and high-precision astrometry are prerequisites for good quality integrated orbits and GM 

estimates. The inner satellites of Neptune have data arcs that are several decades long, but the data are relatively 

sparse, especially for Naiad and Thalassa. Table 5 shows a range of GMs assuming densities between 0.05-1.5 

g cm-3. This range of densities was constrained by Zhang and Hamilton (2007) based on a theoretical study of 

the resonant history of Proteus and Larissa. Naiad, Thalassa, and other inner moons likely formed in a similar 
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way to Proteus and Larissa, so we assumed that the same range of densities would apply to these moons as 

well.  

 

The fitting process revealed the data sensitivity to the masses of Naiad and Thalassa, but not to the masses of 

other moons. The first estimates of the densities of Naiad and Thalassa suggested a range between 0.8-1.2 g 

cm-3, and we used this as an a priori for the GMs of the other satellites (Table 5). The a priori values were 

removed to estimate the final uncertainties of the converged fit.  

 

The fitted GMs for Naiad and Thalassa are GMNaiad= 0.0080 ± 0043 km3 s-2 and GMThalassa= 0.0236 ± 0.0064 

km3 s-2.  The improvements in the means and the rms of the residuals are subtle between the massless and with-

mass (nep090) fits (red and black residuals in Figures 1 and 2 and Table 6), suggesting that the data have a 

border-line sensitivity. However, the fit converged toward non-zero masses without any constraints. We also 

note that the masses of Naiad and Thalassa did not change significantly between the fit that had the rest of the 

satellites massless and the nep090 fit that estimated the GMs of the other satellites with Table 5 a priori 

constraints.  

 

The Voyager 2 astrometry is important for the Naiad and Thalassa mass determination because it significantly 

extends the data arc. The uncertainties increased by more than 60% after we removed the Voyager 2  data from 

the fit. We also investigated how the relative weights between Voyager 2 and Showalter et al. (2019) data 

affect the mass determination. We de-weighted Voyager 2 data by a factor of two and re-converged the fit, 

which led to ~0.5s change in the mass of Naiad and ~0.03s change in the mass of Thalassa. This shows that 

the formal uncertainties successfully account for the mass changes due to a slightly different choice of the data 

weights.   
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Figure 3 shows the in-orbit, radial, and out-of-plane differences for the massless and nep090 fits. The in-orbit 

differences for Naiad show a sinusoidal pattern with an amplitude of ~500-600 km and a period of ~2 years. 

The small upward slope is due to a change in the mean motion. The out-of-plane orbit comparison also shows 

a difference of several hundred km.  Thalassa’s in-orbit differences show the same sinusoidal pattern as for 

Naiad, except these are smaller, ~200-300 km in amplitude, and they are shifted in phase by 180°. Given that 

the HST astrometry precision for Naiad and Thalassa is ~10-20 mas or, at the average Neptune’s distance, 

~200-400 km, it can be expected that the orbital fit is sensitive to dynamics that shifts the orbits several hundred 

km. The correlated pattern of Naiad and Thalassa in-orbit differences strongly suggests that these two satellites 

are in a resonance (Section 3.3).  

 

The fitted GMs for Naiad and Thalassa allow for a density estimate. If we adopt the sizes from Karkoschka 

(2003) the densities are rNaiad= 0.80 ± 0.48 g cm-3 and rThalassa= 1.23 ± 0.43 g cm-3 (Table 5). The uncertainties 

were calculated from the errors on the GMs and the radii. The Naiad and Thalassa densities are consistent with 

each other within the error bars and are also consistent with the Zhang and Hamilton (2007) constraints. The 

GMs of other moons did not change much from the values set by a default density of 1 g cm-3, confirming our 

assessment that the current data have no mass sensitivity. The formal uncertainties on the GMs of Despina and 

Proteus are only about a factor of two larger than their a priori values, raising a possibility that their masses 

will become measurable with longer data arcs and more high-precision astrometry. 

 

Despina, Galatea, and Larissa are closely packed with their semimajor axes, a, of 52,500 km, 61,900 km, and 

73,500 km, respectively. The largest inner moon, Proteus (a~117,600 km), is fairly close to both Hippocamp 

(a~105,300 km) and Larissa. We compared the massless and nep090 orbital solutions from 1990 to 2030, and 
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the most significant differences are evident for the orbit of Hippocamp. Hippocamp’s in-orbit difference grows 

to ~100 km due to the influence of Proteus. For comparison, Larissa’s in-orbit differences are on the order of 

~20 km which is non-detectable with the current astrometry. We conclude that a several decades long data arc 

on Hippocamp with a few mas precision could allow for an estimate of the mass of Proteus. The GMs for 

Despina, Galatea, and Larissa also may become available given the sub-mas astrometry precision.  

 

We found that the current fit improved the uncertainty on J2 by almost a factor of two with respect to Jacobson 

(2009), from J2=3408.4±4.5 ´ 10-6 to J2=3409.1±2.9 ´ 10-6. The data showed no sensitivity to the value of J4, 

but we still used J4= -33.4±2.9 ´ 10-6 from Jacobson (2009) as a ²consider parameter².  Consider parameters 

are not estimated in the fit, but their uncertainties inflate the overall fit statistics, and result in more conservative 

errors (Biermann, 1977). We also investigated sensitivity of the fit to Neptune’s Love number, k2N, but the 

state vectors changed by only a few hundred meters when we hardwired the k2N value to 0.41 (Burša, 1992). 

The formal error on k2N was orders of magnitude larger than the value, signaling that k2N is unconstrained by 

the data at hand. We examined the data sensitivity with respect to the GM of Triton, but our fit showed an order 

of magnitude less sensitivity than that found by Jacobson (2009). This is not surprising considering that the 

dominant data for computing Triton’s GM originate from the Voyager 2 flyby, used in Jacobson (2009) fit. 

Even when we changed Jacobson  (2009) GM of Triton by 2s, from 1427.6 km3 s-2 to 1423.9 km3 s-2, and re-

converged the fits, orbits changed at sub-km level for all but Proteus and Hippocamp. Their orbits changed by 

a few km in the in-orbit and out-of-plane directions from 1990-2020. The data at hand are not sensitive to this 

level of change.   
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3.2 Mean Orbital elements 

 

We summarize results of the orbital integration in the form of planetrocentric mean orbital elements and angle 

rates (Table 7) as we did in our previous analyses (Jacobson, 2009; Brozović and Jacobson, 2009; Jacobson et 

al. 2012; Brozović and Jacobson, 2017). We used 900 years of integrated orbits to make a large set of state 

vectors that were fit by precessing ellipses. The initial equinoctial elements and rates were refined by the least-

squares method until the fit showed no further improvement. The fitted ellipses capture the constant and secular 

behavior of the integrated orbits and the residuals are dominated by the periodic perturbations. In this definition 

of mean elements, we do not associate any uncertainties with them because that would only describe how well 

the precessing ellipse fits to the integration. Only the state vectors and the GMs obtained from the integrated 

orbits have accompanying uncertainties. 

 

The equinoctial elements and angle rates that describe the fits are usually reported with respect to an invariable 

plane of the system. However, Triton perturbs the moons so that their orbits precess about their local Laplace 

planes. Each Laplace plane is inclined by iLap to the invariable plane of the Neptune system. Furthermore, the 

satellites have the orbits inclined with respect to their local Laplace planes by ²free inclinations², ifree. The 

elements and rates in Table 7 are defined with respect to the individual Laplace planes. The node of the orbit, 

Wfree, is measured from the intersection of the local Laplace plane and the invariable plane (Figure 7 in Zhang 

and Hamilton, 2007). The local Laplace planes maintain fixed orientations with respect to Neptune’s equator 

and Triton’s orbit which means that they precess together with the Neptune’s equatorial plane and Triton’s 

orbit about the invariable plane at rate dWTriton/dt.  
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Overall, the mean elements from Table 7 match the Jacobson and Owen (2004) elements. We were able to 

estimate both iLap and ifree while Jacobson and Owen (2004) used a calculated value of iLap. iLap progressively 

increases from Naiad, iLap ~ 0.5°, to Proteus, iLap ~ 1°, reflecting stronger influence from Triton. Naiad has a 

free inclination of ~4.7°, which is significantly higher than any other inner satellite of Neptune. 

 

All satellites have short orbital periods, ranging from ~0.3 days for Naiad to just over a day for Proteus. The 

orbits are also characterized by relatively short nodal and apsidal precession periods ranging from ~0.3 years 

for Naiad to ~13 years for Proteus. The satellites have fairly circular orbits with the highest eccentricity being 

~0.0012 for Larissa. Zhang and Hamilton (2007) studied the Proteus-Larissa 2:1 resonant passage that is the 

most likely culprit for the eccentricity of Larissa. Even today, the mean motion rates in Table 7 show that 

Proteus and Larissa are not far from their 2:1 resonance. 

 

3.3 Two body resonances 

 

Zhang and Hamilton (2007, 2008) presented a detailed numerical investigation of the past resonances in the 

Neptune system, but our analysis uncovered a resonance that is currently acting on Naiad and Thalassa. We 

found that the mean longitude rates and the nodal rate of Naiad add up to almost zero in the expression for the 

fourth-order inclination resonance, 𝜑 = 73𝜆̇%&'('))' − 69	𝜆̇-'.'/ − 4Ω̇-'.'/ = 	6.6 × 105< ° 𝑑𝑎𝑦56 , for 

𝜆̇-'.'/ = 1222.8584171 ° 𝑑𝑎𝑦56 , 	𝜆̇%&'('))' = 1155.7585817 ° 𝑑𝑎𝑦56 , and  Ω̇-'.'/ =

−1.71358060 ° 𝑑𝑎𝑦56.	  Note that the Laplace inclinations of Naiad and Thalassa differ by only one 

milidegree, hence we can consider that their elements are in the same reference frame.  We list an unusual 

number of digits because these rates are fits to the integrated orbits as opposed to the data. If we add up the 

mean longitude angles from Table 7, we get 180.023° which confirms that the two satellites are in a resonance. 
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Figure 3 already hinted at the mutual perturbations, but now we found the specific resonant angle responsible 

for the libration of Naiad and Thalassa. Figure 4 directly displays the resonant angle j calculated from 

osculating elements based on integrated orbits (nep090). A Fourier fit revealed an average amplitude of ~ 66° 

and a period of ~ 1.9 years. These values change for a different set of masses. As an example, we hardwired 

the mass of Thalassa to 0.03 km3 s-2, or +1s from the nominal mass, and re-converged the fit. The resonant 

argument still librates around 180°, but now with an amplitude of ~ 46° and a period of ~ 1.7 years. 

 

The latest addition to Neptune’s system, Hippocamp (Showalter et al., 2019), has the smallest eccentricity, 

e=1´10-5, and the smallest free inclination, ifree=0.0019°, among all inner moons of Neptune. Hippocamp 

appears to be very close to the 13:11 mean motion resonance with Proteus. This is likely the reason why our 

fit shows some sensitivity to the mass of Proteus (Table 5). As Proteus is migrating outward due to tidal 

interactions with Neptune, growth in its semimajor axis of only several tens of km will bring it into resonance 

with Hippocamp. We use the equation from Murray and Dermott (2001) (Section 4.9) that describes radial rate 

for a tidal migration of a small satellite, 

𝑎̇ = ± EFGH
IH

JKH
'
L
M
J N
NH
L𝑛𝑎  ,                                                                    (1)     

in order to get a first-order estimate of when Hippocamp and Proteus will enter the resonance. We assume 

Neptune’s Love number k2N = 0.41 (Burša, 1992) and tidal dissipation factor QN = 20,000 (Figure 2 in Zhang 

and Hamilton, 2008). The semi-major axis, a, mean motion, n, and mass of Proteus are listed in Tables 5 and 

6. The mass of Neptune, mN, can be obtained from the system mass by subtracting the mass of Triton and the 

rest of the regular satellites (Tables 2 and 5). The radius of Neptune RN was rounded to 24,600 km. Equation 1 

gives an estimate of ~18 million years for Proteus to migrate ~40 km outward, which is approximately the 

location of resonance with Hippocamp. 
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4. Discussion 

 

4.1 Naiad-Thalassa fourth-order resonance 

 

The higher-order resonances, or the ones that involve inclinations are rare among the planetary satellites 

(Murray and Dermott, 2001). Saturn’s satellites Mimas and Tethys are in the second-order mean motion 

resonance that involves both of the nodes. The resonant argument is of the form, 𝜑 = 4𝜆%PQ&R) − 2𝜆S.N') −

Ω%PQ&R) − ΩS.N')  (Greenberg, 1973; Murray and Dermott, 2001), and the conjunction of the satellites librates 

about the midpoint of the nodes with an amplitude of 43.6° and a period of 71.8 years. Cooper et al. (2008)  

reported the first-order mean motion resonance between Mimas and Anthe that involves nodes of both satellites 

and the longitude of pericenter, v, of Anthe: 𝜑 = 11𝜆TUQ&P − 10𝜆S.N') − 𝜛TUQ&P − ΩTUQ&P − ΩS.N') . 

Cooper et al. (2008) also noted the 77:75 eccentricity-type near-resonance between Methone and Anthe. 

 

Fourth-order mean motion resonances are known to exist in the main asteroid belt. For example, the 7:3 

resonance with Jupiter is located between the Koronis and Eos families, and some short-lived asteroids reside 

in this gap (Yoshikawa, 1991; Tsiganis et al., 2003). Furthermore, there are some trans-Neptunian objects 

(TNOs) that are in 1:5 resonance with Neptune (Gladman et al., 2012; Alexandersen et al., 2016; Bannister et 

al., 2018). We did not find a discussion of whether the inclinations or eccentricities play a role in these 

resonances.   

 

The Naiad and Thalassa 73:69 resonance is the first case of the fourth-order resonance in a population of the 

planetary satellites and the first resonance that only involves a single satellite’s node. Naiad and Thalassa 73:69 
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commensurability has five possible inclination-only dependent resonant terms (Table B.16 in Murray and 

Dermott, 2001): 

 

〈ℛ〉6 = 𝑓6	𝑖-'.'/\ cos	(73𝜆%&'('))' − 69𝜆-'.'/ − 4Ω-'.'/)                                                   (2) 

〈ℛ〉b = 𝑓b	𝑖%&'('))'\ cos	(73𝜆%&'('))' − 69𝜆-'.'/ − 4Ω%&'('))')                                          (3) 

〈ℛ〉E = 𝑓E	𝑖-'.'/b 𝑖%&'('))'b cos	(73𝜆%&'('))' − 69𝜆-'.'/ − 2Ω-'.'/ − 2Ω%&'('))')              (4) 

〈ℛ〉\ = 𝑓\	𝑖-'.'/E 𝑖%&'('))'cos	(73𝜆%&'('))' − 69𝜆-'.'/ − 3Ω-'.'/ − Ω%&'('))')                (5) 

〈ℛ〉M = 𝑓M	𝑖-'.'/𝑖%&'('))'E cos	(73𝜆%&'('))' − 69𝜆-'.'/ − Ω-'.'/ − 3Ω%&'('))')                (6) 

 

Here, 𝑓. = 𝑓.(𝛼), are combinations of Laplace coefficients. We tested all five cases, and the resonant argument 

only librates for Eq. 2. The Naiad-Thalassa resonance also has five resonant terms equivalent to Eq. 2-6 which 

involve eccentricities, but these would have negligible contributions given the near-circular orbits of Naiad 

and Thalassa. There are also mixed inclination and eccentricity resonant terms that would also be very small. 

 

The Naiad and Thalassa resonant argument can be converted from rates to periods for a more intuitive 

interpretation. First, we will adopt the following expression for the longitude of the node: 

 

Ω̇-'.'/ = 𝜆̇-'.'/ − 𝜈̇-'.'/                                                      (7) 

 

Here, n=M+w is the vertical angle, M is the mean anomaly, and w is the argument of periapsis. 

 

73𝜆̇%&'('))' − 69𝜆̇-'.'/ − 4e𝜆̇-'.'/ − 𝜈̇-'.'/f = 0               (8) 

73e𝜆̇%&'('))' − 𝜆̇-'.'/f = −4𝜈̇-'.'/                                       (9) 
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From Eq. 9, it is straightforward to replace the rates with periods as 𝑃-'.'/5%&'('))'
)RUh/.i = jE

\
𝑃-'.'/kPlQ.i'(. This means 

that Naiad undergoes 18.25 vertical oscillations between every conjunction with Thalassa. Figure 5 illustrates 

what the fourth-order inclination resonance looks like in space in a frame that is centered on Neptune and that 

rotates with Thalassa. The large vertical amplitude is a consequence of Naiad’s inclination with respect to the 

orbit of Thalassa. At the time that they align in mean longitude, Naiad is ~ 1850 km interior to Thalassa in the 

radial direction but 6
√b
𝑎-'.'/ sin(𝑖-'.'/) ≈ 2800	𝑘𝑚 away vertically. From Thalassa’s viewpoint, Naiad is 

~57° out of the orbital plane at the conjunction point. This is a simplified description of integrated orbits. The 

sequence of symmetric offsets repeats every four synodic periods: south, south, north, north. Like many 

resonances, this particular configuration maximizes the minimum conjunction distance between the two 

moons. 

 

The conjunction librates about the node of Naiad with an observed average amplitude of ~66° and a period of 

~1.9 years. Figure 5 shows what the Naiad-Thalassa encounters look like when j»180° while Figure 6 shows 

resonant approaches when the libration amplitude is at its maximum. The inclination of Naiad with respect to 

Thalassa is no longer ~57° as it was in Figure 5, but it oscillates around this value from conjunction to 

conjunction. Again, this is a simplified description of integrated orbits. 

 

While a fourth-order inclination resonance would normally be expected to be very weak, the large inclination 

of Naiad, combined with the small radial separation between the two moons, strengthens this interaction 

considerably. The high-inclination of Naiad is likely not caused by the fourth-order resonance with Thalassa, 

but by the past lower-order resonant captures. Banfield and Murray (1992) identified 35 second-order mean 

motion resonances, 𝜙.HstsuG = (𝑝 + 2)𝜆)'QP((.QP − 𝑝𝜆-'.'/ − 2Ω-'.'/	,	that Naiad could have passed through 
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since Triton’s orbit circularization. Banfield and Murray (1992) proposed that the high inclination most likely 

originates from a temporary 12:10 Naiad-Despina resonance that ended with the strengthening of the secondary 

2:1 resonance. Banfield and Murray (1992) noted that the resonance order depends on the assumed masses of 

the satellites, but that the overall likelihood of a resonant capture does not. Another possible past resonance is 

the 2:1 Larissa-Naiad (Zhang and Hamilton, 2007). Naiad and Thalassa likely drifted into the 73:69 resonance 

under the tidal interactions with Neptune after the lower-order resonance kicked Naiad’s inclination.  

 

 

4.2 Accuracy of the orbital fits 

 

The covariance matrix of parameter errors, produced by the weighted least-squares, is a measure of the fit 

accuracy. Jacobson et al. (2012) concluded that the orbital fit errors in general are dominated by random and 

systematic errors in observations as opposed to the orbital model being incomplete or the dynamical constants 

being poorly determined. The rms of the weighted residuals from Tables 1 and 2 suggest that the data were 

properly weighted and we did not notice any systematic biases when inspecting the residuals. We additionally 

inflated the uncertainties by including the GM of the Neptune’s system and the zonal harmonic J4 in the 

consider parameter list. It is thus reasonable to assume that the formal errors from the fit are good 

approximation of the orbital uncertainties. We considered including Triton’s orbit into this fit as a potential 

source of unmodeled uncertainties, but Jacobson (2009) showed that the Triton orbit uncertainty in the in-orbit 

direction grows linearly to only 75 km (~3.7 mas) for the period 1990-2020. This is below the current data 

accuracy and should not affect the fit. 
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The orbital uncertainties are often used to evaluate the need for future observations. We used linear covariance 

mapping as described in Jacobson et al. (2012) to propagate the orbital uncertainties to 2020-2030.  Figure 7 

shows the combined in-orbit (tangential), radial, and out-of-plane (normal) positional uncertainties. All 

uncertainties are on the order of several tens to several hundred km, which means that the satellites are in no 

danger of being lost. The largest uncertainty component is in-orbit direction due to the uncertainties in the 

orbital mean motion. The uncertainty in Neptune’s pole orientation coupled with the uncertainty in the 

Neptune’s gravitational harmonics are the primary causes of the out-of-plane uncertainties. It is important to 

note that there is a definite need for more astrometry of the regular moons of Neptune, in this case not due to 

large orbital uncertainties, but due to an interesting resonant dynamics that may lead to better GM constraints 

for Naiad, Thalassa, and Proteus. 

 

4.3 Influence of Triton 

 

Figures 8A and 8B show the comparison between a precessing ellipse and an integrated orbit for Proteus over 

intervals of twenty and nine hundred years, respectively. These figures visualize orbital dynamics captured in 

the integration, but not in an analytical fit. The oscillations of several km present in Figure 8A in in-orbit 

direction have a period of ~12.8 years, or the same as the nodal precession of Proteus in Table 7. Intuitively, 

this can be explained by the perturbations from Triton that are part of the integrated orbit, but not part of the 

analytical solution. The mean motion of Proteus depends on the radial force; Neptune pulls inward while Triton 

pulls outward. At the moment when the ascending node of Proteus is aligned with Triton's descending node, 

the mean outward pull from Triton is at its strongest because the orbits are closer to the same plane. This is the 

point when Proteus slows down.  The opposite occurs half a mutual nodal regression period later. The orbital 

planes are now most distant from each other which means that the mean outward force of Triton on Proteus is 
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a bit smaller and the moon speeds up. Figure 8B shows the longer-term variations in the orbit of Proteus due 

to the nodal precession of Triton which is ~687 years long (Jacobson, 2009). The same trend is visible for other 

satellites, although the magnitude decreases as the distance from Triton increases. 

 

5. Conclusions 

 

We report on the latest orbital fits for the regular satellites of Neptune. This analysis is an extension of the 

Jacobson and Owen (2004) and Jacobson (2009) orbital fits, but with a much more extensive set of astrometry, 

and with a more sophisticated orbital model that uses numerically integrated equations of motion. We were 

able to estimate the GMs for Naiad and Thalassa, GMNaiad= 0.0080±0.0043 km3 s-2 and 

GMThalassa=0.0236±0.0064 km3 s-2, due to the fact that the satellites are in a 73:69 inclination resonance. This 

fourth-order resonance is unique among the planetary satellites. The resonant argument librates with a large 

amplitude, ~66°, and a fast period, ~1.9 years, when compared to the values known for first- and second- order 

mean motion resonances that involve planets or satellites in the solar system (Table 8.8 in Murray and Dermott, 

2001). However, these values were calculated based on the nominal set of masses which may change with the 

addition of more high-precision astrometry. We also found that the newly discovered moon Hippocamp is in 

a 13:11 near-resonance with Proteus. This is only the third second-order resonance among outer planet moons 

after the 4:2 Mimas-Tethys and the 77:75 Methone-Anthe. Future observations of Hippocamp could reveal the 

mass of Proteus. The GMs of Despina, Galatea, and Larissa are more difficult to measure because they are not 

in any direct resonance and their masses are small.  Our fit also yielded an improved value for the oblateness 

coefficient of Neptune: J2=3409.1±2.9 ´ 10-6. The orbital uncertainties show that the positions of the satellites 

are known within several hundred kilometers until at least 2030. 
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Tables 
 

Table 1. Voyager 2 observations. 
  
Satellite  Time  Observatory   Points  Astrometry   Reference                 Residuals  Nresid. 
                                           Type                               (km, km) 
Naiad      1989  Voyager 2      28,28  Sample, Line  Owen et al. (1991),       41, 27    0.81,0.58    
Thalassa                        45,45               Jacobson and Owen (2004)   45, 40    0.48,0.48    
Despina                        104,104                                         62, 68    0.54,0.52 
Galatea                        101,101                                         91, 62    0.72,0.48 
Larissa                        138,138                                         88, 66    0.61,0.45 
Proteus                        178,178                                        155,160    0.54,0.54 
  
 

Samples and lines determine locations of satellites in Voyager 2 images. The last two columns list the residuals 
for the nep090 orbital fit and the same residuals normalized by the data weights (Nresid). 

 
 
Table 2. The Earth-based and the HST observations. 
 
  
Satellite  Time  Observatory   Points  Astrometry   Reference                 Residuals  Nresid. 
                                          Type                                (mas, mas)             
Larissa    1981  Mt Lemon        1,1      RA, dec   Reitsema et al. (1982),    15,185    0.08,0.93 
           1981  Catalina        1,1                Jacobson and Owen (2004)   15,185    0.08,0.93 
Proteus    1991  La Silla        8,8      X, Y      Colas and Buil (1992)      97,124    0.97,0.99   
Despina          HST             6,6       q, r      Pascu et al. (2004)       15, 18    0.95,1.11 
Galatea                         17,17                                          18, 16    1.07,0.94 
Larissa                         13,5                                           11,  9    1.07,0.93 
Proteus                         39,39                                           7,  6    0.98,0.86 
Galatea    1998  Mauna Kea       8,8       X, Y     Sicardy et al. (1999)      67, 45    0.96,1.00 

Despina    1998  HST             1         Dlong          Dumas  et al. (2002)      15        0.29 
Galatea                          1                                             17        0.55 
Larissa                          1                                             14        0.92 
Proteus                          1                                              0        0.03 
Proteus    2000  Picos Dos Dias  4,4       X, Y     Vieira Martins            243, 83    1.06,0.33 
Proteus    2001                 16,16               et al. (2004)             229, 82    1.00,0.33 
Proteus    2002                 42,42                                         150, 91    0.65,0.36 
Thalassa   2002  Mauna Kea       2,2       X, Y     Marchis et al. (2004)     450,272    1.80,1.36 
Despina                          9,9                                           36, 32    1.28,1.29         
Galatea                         15,15                                          37, 31    1.34,1.23 
Larissa                         15,15                                          46, 27    1.12,1.08 
Proteus                         16,16                                          35, 26    1.09,1.05 
Despina    2003  Mauna Kea      16,16      X, Y     Marchis et al. (2004)      16, 11    0.56,0.45      
Galatea                         18,18                                          16, 11    0.57,0.45 
Larissa                         20,20                                          15, 11    0.53,0.44 
Proteus                         12,12                                           8,  8    0.27,0.31 
Naiad      2004  HST             1,1       X, Y     Showalter et al. (2019)    11,  4    1.68,0.61   
Thalassa                         7,7                                            7, 13    1.09,1.88 
Despina                         25,25                                           6,  4    1.24,0.86 
Galatea                         42,42                                           5,  4    0.99,0.80 
Larissa                         35,35                                           2,  2    0.67,0.75 
Proteus                         50,50                                           3,  2    1.06,0.73 
Hippocamp                        3,3                                            3,  3    0.69,0.80   
Thalassa   2005  HST             7,7       X, Y     Showalter et al. (2019)     7, 10    1.51,1.30 
Despina                         64,64                                           4,  4    0.91,0.92 
Galatea                         87,87                                           3,  4    0.85,0.96 
Larissa                        102,102                                          4,  3    1.12,0.94 
Proteus                        103,103                                          2,  2    0.77,0.84 
Hippocamp                        1,1                                            5, 15    0.76,2.17 
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Naiad      2009         HST      5,5       X, Y     Showalter et al. (2019)    23, 13    1.53,0.91          
Thalassa                         3,3                                           10,  5    1.25,0.85 
Despina                         19,19                                           5,  4    0.98,1.02 
Galatea                         40,40                                           5,  5    0.78,0.75 
Larissa                         30,30                                           4,  3    0.77,0.61 
Proteus                         44,44                                           2,  2    0.62,0.49 
Hippocamp                        3,3                                            1, 11    0.24,1.13 
Despina    2010         HST     23,23      X, Y     Showalter et al. (2019)     9,  7    1.14,0.87         
Galatea                         35,35                                           9,  6    1.02,0.79 
Larissa                         29,29                                           7,  6    1.17,0.98 
Proteus                         36,36                                           2,  3    0.54,0.69 
Despina    2011         HST     37,37      X, Y     Showalter et al. (2019)     9,  9    0.91,0.96 
Galatea                         24,24                                           7,  8    0.76,0.88 
Larissa                         49,49                                           8,  7    1.02,0.91  
Proteus                         63,63                                           3,  4    0.74,0.88  
Despina    2015         HST     32,32      X, Y     Showalter et al. (2019)    25, 18    1.02, 0.84 
Galatea                         58,58                                          22, 15    1.10, 0.94 
Larissa                         56,56                                          16, 14    0.94, 1.00 
Proteus                         57,57                                           5,  5    1.14, 1.23 
Naiad      2016         HST     10,10      X, Y     Showalter et al. (2019)    15, 11    1.40, 1.19       
Thalassa                        29,29                                          11, 12    1.34, 1.22 
Despina                         25,25                                           3,  3    0.71, 0.84        
Galatea                         28,28                                           4,  4    0.88, 0.96 
Larissa                         35,35                                           6,  2    0.80, 0.43 
Proteus                         43,43                                           3,  1    0.69, 0.34 
Hippocamp                        9,9                                            6,  5    0.82, 0.86 
 
 
Astrometry in the format X, Y is relative separations of a satellite and Neptune on the tangent plane in RA and 
Dec direction. q, r are satellite’s position angle and separation from Neptune, Dlong   is the satellite’s longitudinal 
separation from Neptune. RA, Dec are absolute measurements of the satellite position on the plane of sky. The 
last two columns list the residuals for the nep090 orbital fit and the same residuals normalized by the data 
weights (Nresid). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28	

 
 
 

 
Table 3. Dynamical constants used in the orbital fit 

 
 
Parameter                     Value            Reference 
                                
GM Neptune system       6836527.1±10.0 km3s-2   Jacobson (2009) 
GM Triton                  1427.6±1.9  km3s-2   Jacobson (2009) 
GM Jupiter system     126712764.1±2.7  km3s-2   JUP310 Jacobson, personal comm.  
GM Saturn system       37940584.9±0.04 km3s-2   Jacobson, personal comm.    
GM Uranus system        5794556.5±4.3  km3s-2   Jacobson (2014) 
GM Sun+            132713233264.±10.   km3s-2   Konopliv (2011); Folkner (2016) 
J4 Neptune (´10-6)           -33.4±2.9          Jacobson (2009) 
 
Parameters and their values that were used in nep090 orbital solution. GM Sun+ stands for the mass of the Sun 
augmented by the masses of the terrestrial planets and the Moon. J2 is estimated in the fit, while J4 value is held 
fixed based on Voyager 2 data (Jacobson, 2009). JUP310 (Jacobson, personal comm.) are ephemerides for the 
Galilean satellites available on JPL Horizons database: https://ssd.jpl.nasa.gov/horizons.cgi  (Giorgini et al., 
1996). 
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Table 4. State vectors and their uncertainties. 
        
Satellite   Position (km)        s (km)   Velocity (km s-1)   s (km s-1)         
Naiad       38622.15178849510     20.    -5.192078367667181   0.00704  
            28591.24153864961     21.     5.456862658299498   0.00621  
            4864.059370324697     31.     9.226693664145152   0.00254  
Thalassa    42788.42603660395     14.    -4.386937928695694   0.00482  
            26055.26565945493     21.     6.649099992784474   0.00425  
            1739.911923856407     22.     8.558823312442090   0.00331  
Despina    -32183.30540272224     12.     8.034862203275067   0.00171 
           -37295.00414520138      9.    -3.375316024267507   0.00253 
           -17981.08043273324     10.    -7.377004848585427   0.00150  
Galatea    -25919.69475269366     13.     8.767539491626424   0.00113  
           -47166.08851829967      6.    -1.143027297382970   0.00190  
           -30518.35663600751     10.    -5.684044107376814   0.00145  
Larissa     58494.36328593099      7.     4.732561367834237   0.00139  
           -12639.69688416622     12.     7.202403080805486   0.00086 
           -42901.10080049761     11.     4.303239131788079   0.00124  
Hippocamp   85048.87057480606    149.    -3.762159902153145   0.01783  
            60927.21769143848    177.     4.070644538587873   0.01532  
            12429.89739095648    237.     5.847629561228800   0.00638 
Proteus    -46301.98049762944     12.     6.445686731041889   0.00038 
           -89449.00901759176      5.    -0.6112611011524898  0.00067 
           -60730.36015174328      8.    -4.020949170553930   0.00047 

 

The state vectors (nep090) are listed at epoch 1989 September 01, 00:00:00 TDB (barycentric dynamical time). 
We list the full precision state vectors suitable for numerical integration and the formal 1s uncertainties from 
the fit. 
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Table 5.  Masses and densities of the inner moons of Neptune 
 
  
Satellite   Radii       Mass*             GM*        Fitted GM  GM uncertainty Density 
            (km)        x1015 (kg)       (km3s-2)     (km3s-2)    (km3s-2)        (g cm-3) 
                                        
Naiad       33±3     7.527-225.8     0.0005-0.0151   0.0080     0.0043        0.80±0.48 
Thalassa    41±3     14.43-433.0     0.0010-0.0289   0.0236     0.0064        1.23±0.43 
Despina     75±3     88.36-2651.     0.0059-0.1769   0.1179Ap    0.2428         - 
Galatea     88±4     142.7-4282.     0.0095-0.2857   0.1905Ap    0.9816         - 
Larissa     97±3     191.1-5734.     0.0128-0.3827   0.2551Ap    4.8479         - 
Hippocamp   17±2     1.029-30.87     0.0001-0.0021   0.0014Ap    0.8006         - 
Proteus    210±7     1940.-58190.    0.1294-3.8829   2.5886Ap    4.6455         - 
 
 
Radii estimates for all but Hippocamp are based on Voyager 2 imaging data (Karkoschka, 2003). Hippocamp 
radius is from Showalter et al. (2019). The masses and GMs marked with an asterisk are calculated by assuming 
densities of 0.05-1.5 g cm-3. Here, GM is the product of the Newtonian constant of gravitation, G = 6.67300 ´ 
10-11 m3 kg-1 s-2, and the bodyʼs mass, M. The GMs marked with Ap had an a priori GM set to the density of 
1.0±0.2 g cm-3. The GM uncertainties represent the formal post-fit 1s without any a priori values. The densities 
were calculated only for Naiad and Thalassa because their masses were fit without any a priori values. The 
uncertainties were obtained by propagating errors on radius and mass.  
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Table 6.  Comparison	of	the	massless	and	nep090	solutions	for	Naiad	and	Thalassa	
	
                       Naiad                                      Thalassa                                                                                              
        ----------------------------------------   -------------------------------------------                  
        Voyager 2        Showalter et al. (2019)    Voyager 2          Showalter et al. (2019) 
        -------------    -----------------------   ----------------    -----------------------     
         Sample    Line       X            Y       Sample      Line        X          Y   
          (km)     (km)     (mas)        (mas)      (km)       (km)      (mas)      (mas) 
Massless 3.0±44.5 7.3±27.6 -10.0±17.0   -1.0±12.0  -12.8±45.0 -7.7±39.1  2.0±10.0   0.0±12.0 
nep090   2.7±40.6 6.6±27.0 -10.0±18.0   -1.0±11.0  -11.0±44.6 -6.1±39.5  2.0±10.0   0.0±12.0  
	
List of means and rms of the residuals for two different orbital fits. The first orbital solution assumed that the 
satellites are massless. The second solution is our nominal nep090 fit where the masses were allowed to 
adjust. The residuals are shown separately for Voyager 2 and Showalter et al. (2019) data.  
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Table 7. Neptune-centric mean orbital elements at 2020 January 1 TDB referred to the local Laplace planes 
 
Element     Naiad       Thalassa  Despina    Galatea    Larissa    Hippocamp   Proteus 
a (km)      48228.      50075.    52526.     61953.     73548.     105283.     117647.    
e           0.00014     0.00019   0.00027    0.00020    0.00121    0.00001     0.00047  
v(°)        194.476      66.367   320.236    137.266   191.273     55.913     301.616  
w(°)        295.867      42.832   215.729    258.396   234.488    305.446     268.929  
l(°)         98.810     341.813   197.617    107.056    72.262     25.814      70.716  
M(°)        264.335     275.446   237.381    329.789   240.988    329.901     129.101  
ifree(°)        4.728      0.168      0.039     0.010     0.214       0.002       0.042  
W(°)        258.609      23.535   104.507   238.870    316.786    110.467      32.686  
𝜆̇(° day-1)  1222.858    1155.759  1075.733   839.661    649.054    378.906     320.766  
𝜛̇(° yr-1)    620.264     551.560   466.078   261.265    143.320     37.534      28.147 
w(° yr-1)   1246.149    1102.393   931.603   522.308    286.555     77.358      56.289 
Ω̇(° yr-1)   -625.885    -550.833  -465.524  -261.043   -143.236    -39.824     -28.142  
Pl(days)      0.29        0.31      0.33      0.43       0.55       0.95        1.12 
Pv(yr)        0.58        0.65      0.77      1.38       2.51       9.59       12.79 
Pw(yr)        0.29        0.33      0.39      0.69       1.26       4.65        6.40 
PW(yr)        0.58        0.65      0.77      1.38       2.51       9.04       12.79 
iLap(°)         0.467       0.468    0.470      0.481     0.510      0.773       1.010 
aLap(°)       299.459     299.459  299.459    299.459   299.458    299.457     299.456  
dLap(°)        42.938      42.937   42.935     42.923    42.895     42.632      42.395  
 
 
Elements include semi-major axis, a, eccentricity, e, inclination iLap of the local Laplace plane to the invariable 
plane, inclination ifree of the orbit plane to the local Laplace plane, mean longitude l, mean anomaly M, and 
longitude of periapsis, v = W+w, where w is argument of periapsis and W is the longitude of the node. The 
longitudes are measured from the intersection of the local Laplace planes with the invariable reference plane so 
these are the equivalent of ²free² angles in Zhang and Hamilton (2007). The nodal and longitudinal rates are 
corrected for the local Laplace plane precession about the invariable plane. The pole of the invariable plane is 
ainv=299.4609°, dinv=43.4048° (Jacobson, 2009).  
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Figures 
 

 

Figure 1. A. Naiad residuals for the integrated orbit fit for the 28 astrometry points from Voyager 2. The red 

points mark the residuals for an orbital solution where the masses of the satellites are zero. The black points 

mark the residuals for nep090 solution where the satellites have mass.  B. Naiad residuals for the 16 astrometry 

points from Showalter et al. (2019).  
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Figure 2. A. Thalassa residuals for the integrated orbit fit for the 45 astrometry points from Voyager 2. The 

red points mark the residuals for an orbital solution where the masses of the satellites are zero. The black points 

mark the residuals for nep090 solution where the satellites have mass. B. Thalassa residuals for the 46 

astrometry points from Showalter et al. (2019).  

 
 
 



 35	

 
 
 
Figure 3. Comparison between the massless and with-mass (nep090) orbital solutions for Naiad and Thalassa. 

A. In-orbit (along the track), radial, and out-of-plane differences for the orbit of Naiad. B. In-orbit, radial, and 

out-of-plane differences for the orbit of Thalassa. 
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Figure 4. The resonant angle 𝜑 = 	73𝜆%&'('))' − 69𝜆-'.'/ − 4Ω-'.'/  calculated based on osculating 

elements from integrated orbits (nep090). We used a function, 𝑎y + 𝑎6 cos(𝜔6𝑥) + 𝑎bsin	(𝜔6𝑥), where x is 

time in years, in order to estimate an amplitude and a period of libration. The fit yielded  𝑎y = 179.9°, 𝑎6 =

52.1° , 𝑎b = −40.7° , and 𝑃 = b|
}~
= 1.9	𝑦𝑒𝑎𝑟𝑠. The average amplitude of libration is ~66°. The dates and 

resonant angle values for one full libration cycle are: 2018 Apr. 20, 16:48 UTC – 2018 Sep. 27, 16:48 UTC – 

2019 Mar. 12, 12:00 UTC – 2019 Sep. 19, 12:00 UTC – 2020 Mar. 09, 19:12 UTC and 

180.0°-235.8°-180°-108.7°-180° respectively.  
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Figure 5. Naiad-Thalassa fourth-order mean motion inclination resonance. The orbit of Naiad is shown in a 

frame that is centered on Neptune and that rotates with Thalassa. The panels show four consecutive conjuctions 

of Naiad and Thalassa. Naiad undergoes 18.25 vertical oscillations from conjuction to conjuction which results 

in south, south, north, north offsets. The cycle repeats after this. At the time of a conjuction, Naiad is ~1850 

km interior to Thalassa in the radial direction and ~2800 km in the vertical direction. This is a simplified 

description of integrated orbits. We used the data from Figure 4 to find the time when osculating elements add 

up to j=180° and the libration angle is 0°. The visualization of Naiad and Thalassa integrated orbits (nep090) 

was done using the Cosmographia software, https://naif.jpl.nasa.gov/naif/cosmographia.html.  
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Figure 6. Naiad-Thalassa resonant encounters at the time of maximum libration angle. We used the data from 

Figure 4 to find the maximum libration amplitude. The rest of the caption is equivalent to Figure 5. 
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Figure 7. Estimated orbital uncertainties, 𝜎 = �𝜎.U	hl�.Qb + 𝜎l'/.'(b + 𝜎h�Q	h�	�('UPb  for the orbital solution 

nep090.  
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 Figure 8. In-orbit, radial, and out-of-plane differences between an integrated orbit and a precessing ellipse 

approximation for the orbit of Proteus. A. The differences over twenty years, 2000-2020. B. The differences 

over nine hundred years, 1600-2500. 


