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Abstract

In this work the dynamic descriptive complexity of the k-clique query
is studied. It is shown that when edges may only be inserted then k-clique
can be maintained by a quantifier-free update program of arity k− 1, but
it cannot be maintained by a quantifier-free update program of arity k−2
(even in the presence of unary auxiliary functions). This establishes an
arity hierarchy for graph queries for quantifier-free update programs under
insertions. The proof of the lower bound uses upper and lower bounds for
Ramsey numbers.

1 Introduction

The k-clique query — does a given graph contain a k-clique? — can be expressed
by an existential first-order formula with k quantifiers. In this work we study
the descriptive complexity of the k-clique query in a setting where edges may
be inserted dynamically into a graph. In particular we are interested in lower
bounds for the resources necessary to express this query dynamically.

The dynamic descriptive complexity framework (short: dynamic complex-
ity), independently introduced by Dong, Su and Topor [6, 3] and Patnaik and
Immerman [16], models the setting of dynamically changing graphs. For a graph
subject to changes, auxiliary relations are maintained with the intention to help
answering a query Q. When an insertion (or, in the general setting, a dele-
tion) of an edge occurs, every auxiliary relation is updated through a first-order
query that can refer to both the graph itself and the auxiliary relations. The
query Q is maintained by such a program, if one designated auxiliary relation

∗An extended abstract of this work appeared in the proceedings of the conference Mathe-
matical Foundations of Computer Science 2014 (MFCS 2014)[19]. The author acknowledges
the financial support by the German DFG under grant SCHW 678/6-1.
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always stores the current query result. The class of all queries maintainable by
first-order update programs is called DynFO1.

Since k-clique can be expressed in existential first-order logic, it can be triv-
ially maintained by a first-order update program. Therefore for characterizing
the precise dynamic complexity of this query we need to look at fragments of
DynFO. It turns out that k-clique can still be maintained under insertions
when the update formulas are not allowed to use quantifiers at all and auxiliary
relations may only have restricted arity. We obtain the following characteriza-
tion.

Main result: When only edge insertions are allowed then k-clique (k ≥ 3) can
be maintained by a quantifier-free update program of arity k − 1, but it
cannot be maintained by a quantifier-free update program of arity k − 2.

Actually we prove that every property expressible by a positive existential
first-order formula with k quantifiers and, possibly, negated equality atoms can
be maintained by a (k − 1)-ary quantifier-free program under insertions.

In order to understand why the lower bound contained in the above result
is interesting, we shortly discuss the status quo of lower bound methods for the
dynamic complexity framework. Up to now very few lower bounds are known;
all of them for fragments of DynFO obtained by either bounding the arity of
the auxiliary relations or by restricting the usage of quantifiers (or by restricting
both). Usually those bounds have been stated only for the setting where both
insertions and deletions are allowed. We emphasize that our lower bound for
the insertion-only setting immediately transfers to this more general setting.

The study of bounded arity auxiliary relations was started by Dong and
Su [5]. They exhibited concrete graph queries that cannot be maintained in
unary DynFO, and they showed that DynFO has an arity hierarchy for general
(that is non-graph) queries. Both results rely on previously obtained static lower
bounds.

Hesse started the study of the quantifier-free fragment of DynFO (short:
DynProp) in [15]. Although this fragment appears to be rather weak at first
glance, deterministic reachability [15] and regular languages [11] can be main-
tained in DynProp. In [11], Gelade et al. also provided first lower bounds.
They proved that non-regular languages as well as the alternating reachabil-
ity problem cannot be maintained in this fragment. The use of very restricted
graphs in the proof of the latter result implies that there is a ∃∗∀∗∃∗FO-definable
query that cannot be maintained in DynProp. In [21] it was shown that reach-
ability and 3-clique cannot be maintained in the binary quantifier-free fragment
of DynFO.

In general, it is a difficult task to prove lower bounds in the dynamic com-
plexity setting; even when update formulas are restricted to the quantifier-free
fragment of first-order logic. We are not at the point where we can, when given a

1In this work we stick to the specific framework introduced by Patnaik and Immerman. The
main result also holds in the framework of Dong, Su and Topor, even though both frameworks
differ in details.
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query, apply a set of tools in order to prove that the query cannot be maintained
in DynProp. Finding more queries that cannot be maintained in DynProp
seems to be a reasonable approach towards finding more generic proof methods.

The lower bound provided by the main result follows this approach and is
interesting in two ways. First, it exhibits, for every k, a query in ∃kFO that
cannot be maintained in (k − 2)-ary DynProp, even when only insertions are
allowed. We believe that finding simple queries that cannot be maintained
will advance the understanding of dynamic complexity. Using the same proof
technique as is used for the main result we also exhibit a ∃∗∀∗FO-definable query
that cannot be maintained in DynProp; this improves the result from [11].
Second, the main result establishes the first arity hierarchy for graph queries,
although for a weak fragment of DynFO and for insertions only.

The proof of the lower bound uses upper and lower bounds for Ramsey
numbers. This has been quite curious for us.

A natural question is how far this method to prove lower bounds can be
pushed. As an intermediate step between the quantifier-free fragment and
DynFO itself, Hesse suggested the study of quantifier-free update programs
with auxiliary functions [15]. The main result can be extended as follows.

Extension of the main result: k-clique (k ≥ 3) cannot be maintained by a
quantifier-free update program of arity k − 2 with unary auxiliary func-
tions.

So far there have been only two lower bounds for dynamic classes with auxil-
iary functions. Alternating reachability was actually shown to be not maintain-
able in the quantifier-free fragment ofDynFO even in the presence of a successor
and a predecessor function [11]. Further, in [21], it was shown that reachabil-
ity cannot be maintained in unary DynProp with unary auxiliary functions.
Thus our extension is a first lower bound for arbitrary unary auxiliary functions
and k-ary auxiliary relations, for every fixed k. We also explain why the lower
bound technique does not extend to binary auxiliary functions. To this end we
show that binary DynQF can maintain every boolean graph property when the
domain is large with respect to the actually used domain.

A preliminary version of this work appeared in [19]. It was without many of
the proofs and did not contain the lower bound for a ∃∗∀∗FO-definable query.

Related work Up to now we mentioned only work immediately relevant for
this work. For the interested reader we give a short list of further related work.

Further lower bounds have been shown in [1, 2, 12]. Further upper bounds
have been shown in [10, 14, 18, 12]. Many other aspects such as whether the
auxiliary relations are determined by the current structure (see e.g. [17, 4, 12])
and the presence of an order (see e.g. [12]) have been studied.

Outline In Section 2 we fix some of our notations and in Section 3 we re-
capitulate the formal dynamic complexity framework. In Sections 4 and 5 we
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prove the upper and lower bound of the main result, respectively. In Section 6
we study the extension of DynProp by auxiliary functions.

Acknowledgement I am grateful to Thomas Schwentick for encouraging dis-
cussions and many suggestions for improving a draft of this work. Further I
thank Samir Datta for fruitful discussions while he was visiting Dortmund. I
thank Nils Vortmeier for proofreading.

2 Preliminaries

We fix some of our notations. Most notations are reused from [21]. The reader
can feel free to skip this section and return when encountering unknown nota-
tions.

A domain D is a finite set. A (relational) schema τ consists of a set τrel
of relation symbols and a set τconst of constant symbols together with an arity
function Ar : τrel → N. A database D of schema τ with domain D is a mapping
that assigns to every relation symbol R ∈ τrel a relation of arity Ar(R) over D
and to every constant symbol c ∈ τconst an element (called constant) from D.

A τ -structure S is a pair (D,D) where D is a database with schema τ

and domain D. If S is a structure over domain D and D′ is a subset of D
that contains all constants of S, then the substructure of S induced by D′ is
denoted by S ↾D′.

A tuple ~a = (a1, . . . , ak) is ≺-ordered with respect to a linear order2 ≺ of the
domain, if a1 ≺ . . . ≺ ak. The k-ary atomic type 〈S,~a〉 of ~a over D with respect
to S is the set of all atomic formulas ϕ(~x) with ~x = (x1, . . . , xk) for which ϕ(~a)
holds in S, where ϕ(~a) is short for the substitution of ~x by ~a in ϕ. As we only
consider atomic types here, we will often simply say type instead of atomic type.

For a set A, denote by Ak the set of all k-tuples over A and, following [13],
by [A]k the set of all k-element subsets of A. A k-hypergraph G is a pair (V,E)
where V is a set and E is a subset of [V ]k. If E = [V ]k then G is called complete.
An r-coloring col of G is a mapping that assigns to every edge in E a color from
{1, . . . , r}. A r-colored k-hypergraph is a pair (G, col) where G is a k-hypergraph
and col is a r-coloring of G. If the name of the r-coloring is not important we
also say G is r-colored.

A (directed) graphG = (V,E) is in k-Clique if V contains k nodes v1, . . . , vk
such that (vi, vj) ∈ E or (vj , vi) ∈ E for all 1 ≤ i, j ≤ k.

3 Dynamic Setting

The following introduction to dynamic descriptive complexity is borrowed from
previous work [21, 20]. Although the focus of this work is on maintaining the
k-clique query under insertions, we introduce the general dynamic complexity
framework in order to be able to give a broader discussion of concrete results.

2All linear orders in this work are strict.

4



A dynamic instance of a query Q is a pair (D, α), where D is a database
over some finite domain D and α is a sequence of modifications to D. Here,
a modification is either an insertion of a tuple over D into a relation of D or
a deletion of a tuple from a relation of D. The result of Q for (D, α) is the
relation that is obtained by first applying the modifications from α to D and
then evaluatingQ on the resulting database. We use the Greek letters α and β to
denote modifications as well as modification sequences. The database resulting
from applying a modification α to a database D is denoted by α(D). The result
α(D) of applying a sequence of modifications α

def

= α1 . . . αm to a database D is
defined by α(D)

def

= αm(. . . (α1(D)) . . .).
Dynamic programs, to be defined next, consist of an initialization mechanism

and an update program. The former yields, for every (input) database D, an
initial state with initial auxiliary data. The latter defines the new state of the
dynamic program for each possible modification.

A dynamic schema is a tuple (τin, τaux) where τin and τaux are the schemas
of the input database and the auxiliary database, respectively. For the mo-
ment schema τaux may not contain constant symbols. This will be adapted in
Section 6. We always let τ

def

= τin ∪ τaux.

Definition 1. (Update program) An update program P over a dynamic schema
(τin, τaux) is a set of first-order formulas (called update formulas in the following)
that contains, for every relation symbol R in τaux and every δ ∈ {insS ,delS}
where S is a relation symbol from τin, an update formula φRδ (~x; ~y) over the
schema τ where ~x and ~y have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A)
where D is a finite domain, I is a database over the input schema (the current
database) andA is a database over the auxiliary schema (the auxiliary database).

The semantics of update programs is as follows. Let P be an update program,
S = (D, I,A) be a program state and α = δ(~a) a modification where ~a is a
tuple over D and δ ∈ {insS ,delS} for some S ∈ τin. If P is in state S then
the application of α yields the new state Pα(S)

def

= (D,α(I),A′) where, in A′,

a relation symbol R ∈ τaux is interpreted by {~b | S |= φRδ (~a;
~b)}. The effect

Pα(S) of applying a modification sequence α
def

= α1 . . . αm to a state S is the
state Pαm

(. . . (Pα1
(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where

• P is an update program over some dynamic schema (τin, τaux),
• Init is a mapping that maps τin-databases to τaux-databases, and
• Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(Q)
if, for every dynamic instance (D, α), the relation Q(α(D)) coincides with the
query relation QS in the state S = Pα(SInit(D)), where SInit(D) is the initial
state for D, i.e. SInit(D)

def

= (D,D, Initaux(D)).
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Definition 3. (DynFO and DynProp) DynFO is the class of all dynamic
queries that can be maintained by dynamic programs with first-order update
formulas and arbitrary initialization mappings. DynProp is the subclass of
DynFO, where update formulas are not allowed to use quantifiers. A dynamic
program is k-ary if the arity of its auxiliary relation symbols is at most k.
By k-ary DynProp (resp. DynFO) we refer to dynamic queries that can be
maintained with k-ary dynamic programs.

In the literature, classes with restricted initialization mappings have been
studied as well, see [21] for a discussion. The choice made here is not a real
restriction as lower bounds proved for arbitrary initialization hold for restricted
initialization as well. On the other hand, our upper bounds also hold for other
settings of initialization; with the single exception of Theorem 6.5, which re-
quires arbitrary initialization. Furthermore our results also hold in the related
setting where domains can be infinite.

4 k-Clique Can Be Maintained under Insertions

with Arity k − 1

In this section we prove that the k-clique query can be maintained in (k−1)-ary
DynProp when only edge insertions are allowed. Instead of proving this result
directly, we show that the class of all semi-positive existential first-order queries
can be maintained in DynProp under insertions.

A positive existential first-order query over schema τ is a query that can
be expressed by a first-order formula of the form ϕ(~y) = ∃~xψ(~x, ~y) where ψ is
a quantifier-free formula that contains no negations. Semi-positive existential
first-order queries may contain literals of the form zi 6= zj.

We will prove that every semi-positive existential first-order query can be
maintained in DynProp when only insertions are allowed. More precisely, it
will be shown that (k− 1)-ary DynProp is sufficient for boolean queries with k
existential quantifiers. In particular k-Clique can be maintained in (k− 1)-ary
DynProp. Before turning to the proof we give some intuition.

Example 1. We show how to maintain 3-Clique in binaryDynProp under in-
sertions. The very simple idea is to use an additional binary auxiliary relation R
that stores all edges whose insertion would complete a 3-clique. Hence a tuple
(a1, a2) is inserted into R as soon as deciding whether there is a 3-clique contain-
ing the nodes a1 and a2 only depends on those two nodes. We refer to Figure 1
for an illustration.

Thus the update formula for R is

φRinsE(u, v;x, y)
def

= u 6= v ∧ x 6= y ∧
(

(

E{u, y} ∧ v = x
)

∨
(

E{u, x} ∧ v = y
)

∨
(

E{v, y} ∧ u = x
)

∨
(

E{v, x} ∧ u = y
)

)

where E{x, y} is an abbreviation for E(x, y) ∨ E(y, x).
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G :

a2

a3 a4

a5

a1

R :

a2

a3 a4

a5

a1

Figure 1: Illustration of the construction from Example 1. Inserting the edge
(a2, a5) into G leads, e.g., to the insertion of (a1, a2) into R since inserting
(a1, a2) into G would now complete a 3-clique. The tuple (a1, a2) is inserted into
R by the dynamic program since chosing (u, v, x, y) as (a2, a5, a1, a2) satisfies
the update formula φRinsE(u, v;x, y).

The update formula for the query symbol Q is φQinsE(u, v;x, y) = Q∨R(u, v).

The general proof for arbitrary semi-positive existential first-order properties
extends the approach from the previous example.

Theorem 4.1. An ℓ-ary query expressible by a semi-positive existential first-
order formula with k quantifiers can be maintained under insertions in (ℓ+k−1)-
ary DynProp.

Proof. For simplicity we restrict the proof to boolean graph queries. The proof
easily carries over to arbitrary semi-positive existential queries.

We give the intuition first. Basically a semi-positive existential sentence
with k quantifiers can state which (not necessarily induced) subgraphs with k
nodes shall occur in a graph. Therefore it is sufficient to construct a dynamic
quantifier-free program that maintains whether the input graph contains a sub-
graph H . Such a program can work as follows. For every induced, proper
subgraph H ′ = {u1, . . . , um} of H , the program maintains an auxiliary relation
that stores all tuples ~a = (a1, . . . , am) such that inserting H ′ into {a1, . . . , am}
(with ai corresponding to ui) yields a graph that contains H .

In particular, auxiliary relations have arity at most k − 1 (as only proper
subgraphs ofH have a corresponding auxiliary relation). Furthermore the graph
H is contained in the input graph whenever the value of the 0-ary relation
corresponding to the empty subgraph of H is true. In the example above, the
relation R is the relation for the subgraph of the 3-clique graph that consists
of a single edge, and the designated query relation is the 0-ary relation for the
empty subgraph.

Those auxiliary relations can be updated as follows. Assume that a tuple
~a = (a1, . . . , am) is contained in the relation corresponding to H ′. If, after
the insertion of an edge with end point am, every edge from um in H ′ has a
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H :

x1

x2x3

x4 G:

a1

a2a3

a4

Figure 2: Illustration of the notions used in Theorem 4.1. The graph H is the
graph defined by the existential semi-positive formula ∃x1∃x2∃x3∃x4

(
∧

i6=j xi 6=

xj ∧ E(x3, x1) ∧ E(x1, x2) ∧ E(x3, x2) ∧ E(x2, x4)
)

. Before inserting the edge
(a3, a1) into G, the tuple (a1, a2, a3) can be extended to H((x1,x2,x3),x4), but
(a1, a2) does not extend to H((x1,x2),(x3,x4)). After inserting the edge (a3, a1),
the tuple (a1, a2) can be extended to H((x1,x2),(x3,x4)) as well.

corresponding edge from am in the graph induced by {a1, . . . , am}, then the
tuple ~a ′ = (a1, . . . , am−1) has to be inserted into the auxiliary relation for the
induced subgraph H ′ ↾ {u1, . . . , um−1}. This is because inserting the graph
H ′ ↾{u1, . . . , um−1} into {a1, . . . , am−1} will now yield a graph that contains H .
Observe that for those updates no quantifiers are needed.

In the following we make the intuitive idea outlined above more precise.
We first show how a quantifier-free dynamic program can maintain whether the
input graph contains a certain (not necessarily induced) subgraph. Afterwards
we show how to combine the programs for several subgraphs in order to maintain
an arbitrary semi-positive existential formula.

For the first step it will be technically easier not to speak about subgraphs
H ′ of H (as in the intuition above) but to work with partitions of H. We
introduce this notion as well as other useful notions next. Let H be a graph.
A tuple (~y, ~z) is called a partition of H if it contains every node of H exactly
once. The subgraph of H induced by ~y is denoted by H ↾~y; the graph obtained
from H by removing the edges of H ↾~y is denoted by H(~y,~z).

Now let G = (V,E) andH = (V ′, E′) be graphs, and let (~y, ~z) be an arbitrary
partition of H with |~y| = ℓ. We say that an ℓ-ary tuple ~a can be extended to

H(~y,~z), if there is a |~z|-tuple~b such that the mapping π defined by π(~y, ~z)
def

= (~a,~b)
maps edges in H(~y,~z) to edges in G. Intuitively ~a can be extended to H(~y,~z) when
deciding whether H is a subgraph of G, where ~y corresponds to ~a, depends only
on ~a and not on nodes of G not contained in ~a. See Figure 2 for an illustration.

Let ~a = (a1, . . . , aℓ) be a tuple that can be extended to H(~y,~z). Then a
node ai is called saturated with respect to a partition (~y, ~z) and ~a if (ai, aj)
(respectively (aj , ai)) is an edge in G whenever (yi, yj) (respectively (yj , yi)) is
an edge in H . A tuple (c, d) is critical for ai with respect to a partition (~y, ~z)
and ~a if ai is not saturated in G but it is saturated in G + (c, d). In Figure 2,
the tuple (a3, a1) is critical for a3 with respect to the partition ((x1, x2, x3), x4)
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and the tuple (a1, a2). Observe that therefore the insertion of the edge (a3, a1)
yields a graph where (a1, a2) can be extended to H((x1,x2),(x3,x4)).

We are now ready to construct a DynProp-program P that maintains
whether the input graph contains a graph H as (not necessarily induced) sub-
graph. The program P has an auxiliary relation R(~y,~z) of arity |~y| for every
partition (~y, ~z) of H with |~z| ≥ 1. The intention is that, for a state S with
input graph G, a tuple ~a is in RS

(~y,~z) whenever ~a extends to H(~y,~z) in G. Thus

R(~y,~z) corresponds to the auxiliary relation for H ↾~y in the intuitive explanation
above. The condition |~z| ≥ 1 ensures that the auxiliary relations are of arity at
most |H | − 1.

Before sketching the construction of the update formulas it is illustrative to
see what happens when inserting the edge (a3, a1) in Figure 2. We observed
above that this yields a graph where (a1, a2) can be extended toH((x1,x2),(x3,x4)).
Therefore (a1, a2) should be inserted into the auxiliary relation R((x1,x2),(x3,x4)).
However, this update of R((x1,x2),(x3,x4)) can be made without quantifiers since
it is sufficient to verify that (a1, a2, a3) is already in R((x1,x2,x3),x4) and that
(a1, a3) was critical. This involves the nodes a1, a2 and a3 only.

In general, when an edge e is inserted, the update formulas of P check for
which nodes and partitions the edge is critical; and adapt the auxiliary relations
accordingly.

For updating a relation R(~y,~z) with ~y = (y1, . . . , yℓ) and ~z = (z1, . . . , zk−ℓ)
the update formula φRins E(u, v; ~y) has to check whether there is some R(~y ′,~z ′)

with ~y ′ = (y1, . . . , yi, zj, yi+1 . . . , yℓ) and ~z
′ = (z1, . . . , zj−1, zj+1, . . . , zk−ℓ) such

that the insertion of (u, v) saturates zj . It is also possible that the insertion of a
single edge saturates two nodes, this case is very similar and will not be treated
in detail here.

The formula φRins E(u, v; ~y) is a conjunction of formulas ϕu, ϕv and ϕu,v

responsible for dealing with the cases where u, v and both u and v are being
saturated. We only exhibit ϕu:

ϕu
def

=
∨

For all (~y ′,~z ′) with
~y ′=(y1,...,yi,zj ,yi+1,...,yℓ)

~z ′=(z1,...,zj−1,zj+1,...,zk−ℓ)

(

R(~y ′,~z ′)(y1, . . . , yi, u, yi+1, . . . , yℓ) ∧
∧

i′

u 6= yi′

∧
∧

(zj,yi′ )∈H↾~y ′

E(u, yi′) ∧
∧

(yi′ ,zj)∈H↾~y ′

E(yi′ , u)
)

The other formulas are very similar. This completes the construction of P .
It remains to construct a quantifier-free dynamic program for an arbitrary

semi-positive existential formula using quantifier-free programs for subgraphs.
To this end let ϕ = ∃~xψ(~x) be an arbitrary semi-positive existential first-order
formula. We show how to translate ϕ into an equivalent disjunction of formulas
ϕi of the form

ϕi = ∃~xi
∧

y,y′∈~xi

(

y 6= y′ ∧ ψi(~xi)
)

9



where each ψi is a conjunction of atoms over {E} and |~xi| ≤ |~x|.
Observe that the quantifier-free part of each ϕi encodes a subgraph Hi.

Hence a graph G satisfies ϕ if and only if one of the graphs Hi is a subgraph
of G. Thus a program maintaining the query defined by ϕ can be constructed
by combining the dynamic programs for all Hi in a straightforward way.

We now sketch how to translate ϕ into the form stated above. First ϕ is
rewritten as disjunction of conjunctive queries, that is as

∨

i ∃~yiγi(~yi) where each
γi is a conjunction of positive literals and literals of the form x 6= x′. Afterwards
each ∃~yiγi(~yi) is rewritten into an equivalent disjunction over all equality types
on the variables in ~yi, that is as

∨

ε

∃~yi,ε
(

∧

y,y′∈~yi,ε

y 6= y′ ∧ ϕi,ε(~yi,ε)
)

where ε is over all equality types and ϕi,ε is a conjunction of atoms over {E}.

5 k-Clique Cannot BeMaintained with Arity k−2

In this section we prove that the k-clique query cannot be maintained by a
(k − 2)-ary quantifier-free update program when k ≥ 3. The proof uses two
main ingredients; the Substructure Lemma from [11, 21] and a new Ramsey-like
lemma. We state those lemmas next. Towards the end of this section we apply
the lower bound technique presented in this section to show that there is a first-
order property expressible by a formula with only one quantifier alternation
which cannot be maintained in DynProp (with arbitrary arity).

For the convenience of the reader we recall the intuition for the Substructure
Lemma as presented in [21]. When updating an auxiliary tuple ~c after an

insertion or deletion of a tuple ~d, a quantifier-free update formula has access to
~c, ~d, and the constants only. Thus, if a sequence of modifications changes only
tuples from a substructure A of S, then the auxiliary data of A is not affected
by information outside A. In particular, two isomorphic substructures A and B
remain isomorphic, when corresponding modifications are applied to them.

For stating the Substructure Lemma we need the following notion of cor-
responding modifications in isomorphic structures. Let π be an isomorphism
from a structure A to a structure B. Two modifications α = δ(~a) on A and

α = δ′(~b) on B where δ, δ′ ∈ {insR,delR} for some R ∈ τin are said to be

π-respecting if δ = δ′ and ~b = π(~a). Two sequences α1 · · ·αm and β′
1 · · ·β

′
m of

modifications respect π if αi and α′
i are π-respecting for every i ≤ m. Recall

that Pα(S) denotes the state obtained by executing the dynamic program P for
the modification sequence α from state S.

The Substructure Lemma stated next is illustrated in Figure 3.

Lemma 5.1 (Substructure Lemma [11, 21]). Let P be a DynProp-program
and let S and T be states of P with domains S and T . Further let A ⊆ S and
B ⊆ T such that S ↾A and T ↾B are isomorphic via π. Then Pα(S) ↾A and
Pβ(T )↾B are isomorphic via π for all π-respecting modification sequences α, β
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S
S

A

~a

T
T

B

π(~a)
∼=
π

α = δ(~a) β = δ(π(~a))

S
Pα(S)

A

T
Pβ(T )

B∼=
π

Figure 3: The statement of the Substructure Lemma.

on A and B. In particular, if the query relation of P is boolean, then it has the
same value in Pα(S) and Pβ(T )

The second ingredient exhibits a disparity between upper bounds for Ramsey
numbers in k-ary structures and lower bounds for Ramsey numbers in (k + 1)-
dimensional hypergraphs. While the first condition in the following lemma
guarantees the existence of a Ramsey clique of size f(|A|) in k-ary structures
over A, the second condition states that there is a 2-coloring of the complete
(k+1)-hypergraph over A that does not contain a Ramsey clique of size f(|A|).
This disparity is the key to the lower bound proof.

Lemma 5.2. Let k ∈ N be arbitrary and τ a k-ary schema. Then there is a
function f : N → N and an n ∈ N such that for every domain A larger than n

the following conditions are satisfied:

(S1) For every τ-structure S over A and every linear order ≺ on A there is a
subset A′ of A of size |A′| ≥ f(|A|) such that all ≺-ordered k-tuples over
A′ have the same type in S.

(S2) The set [A]k+1 of all (k+1)-hyperedges over A can be partitioned into two
sets B and B′ such that for every set A′ ⊆ A of size |A′| ≥ f(|A|) there
are (k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.

The two lemmas above can be used to obtain the lower bound for the k-clique
query as follows. The proof of Lemma 5.2 will be presented afterwards.

11



A

C
def
= [A]k+1

A′

B

B′

b1 b2 bk+1

b′1 b′2 b′
k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b
′

2, . . . , b
′

k+1}

Figure 4: The construction from the proof that (k + 2)-clique cannot be main-
tained in k-ary DynProp.

Theorem 5.3. (k+2)-Clique (k ≥ 1) cannot be maintained under insertions
by a k-ary DynProp-program.

Proof. Towards a contradiction assume that there is a k-ary DynProp-
program P over schema τ that maintains (k + 2)-Clique. Let n and f be
as in Lemma 5.2. For a set A larger than n let ≺ be an arbitrary order on A
and let D

def

= A ⊎ C be a domain with C
def

= [A]k+1. Further let B,B′ be the
partition of [A]k+1 guaranteed to exist by (S2) in Lemma 5.2.

We consider a state S over domain D where the input graph G contains the
following edges:

{(b, b1), (b, b2), . . . , (b, bk+1) | b = {b1, b2, . . . , bk+1} ∈ B}

See Figure 4 for an illustration.
By Condition (S1) there is a subset A′ ⊆ A of size |A′| ≥ f(|D|) such that

all ordered k-tuples over A′ have the same τ -type in S. Then by (S2) there
are (k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′. Without loss of
generality b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1 and b′ = {b′1, b

′
2, . . . , b

′
k+1}

with b′1 ≺ . . . ≺ b′k+1. By construction of the graph G, all elements in b are
connected to the node b ∈ C while there is no node in C connected to all
elements of b′. Thus applying the modification sequences

(α) Insert the edges (bi, bj) in lexicographic order with respect to ≺.

(β) Insert the edges (b′i, b
′
j) in lexicographic order with respect to ≺.

yields one graph with a (k + 2)-clique and one graph without a (k + 2)-clique,
respectively. However, by the Substructure Lemma, the program P yields
the same result since the substructures induced by ~b = (b1, . . . , bk+1) and
~b ′ = (b′1, . . . , b

′
k+1) are isomorphic. This is the desired contradiction.

In the following we prove Lemma 5.2. The k-dimensional Ramsey number for
r colors and clique-size l, denoted by Rk(l; r), is the smallest number n such that

12



every r-coloring of a complete k-hypergraph with n nodes has a monochromatic
clique of size l. The tower function towk(n) is defined by

towk(n)
def

= 22
..
.2

n

with (k − 1) many 2’s. The following classical result for asymptotic bounds on
Ramsey numbers due to Erdős, Hajnal and Rado is the key to prove Lemma 5.2.
The concrete formulation is from [7].

Theorem 5.4. [9, 8] Let k, ℓ and r be positive integers. Then there are positive
constants ck, ck,r and ℓk such that

(a) Rk(ℓ; r) ≤ towk(ck,rℓ)

(b) Rk(ℓ; 2) ≥ towk−1(ckℓ
2) for all ℓ ≥ ℓk

The theorem immediately implies that (T1) Ramsey cliques in r-colored

k-dimensional complete hypergraphs are of size at least Ω(log(k−1)(n)); and
that (T2) there are 2-colorings of the (k + 1)-dimensional complete hyper-

graphs such that monochromatic cliques are of size O((log(k−1)(n))
1
2 ). Here

log(k)(n) denotes log(log(. . . (logn) . . .)) with k many log’s.
The conditions (T1) and (T2) are formalized and proved in the following

corollary.

Corollary 5.5. Let k and r be integers. There are functions g ∈ Ω(log(k−1)(n))

and h ∈ O(

√

log(k−2)(n)) such that:

(a) Every r-colored complete k-hypergraph with n nodes contains a monochro-
matic clique of size g(n).

(b) The complete k-hypergraph with n nodes can be 2-colored such that every
monochromatic clique is of size at most h(n).

Proof. The corollary follows immediately from Theorem 5.4. Define g and h by

g(n)
def

=
⌊

1
ck,r

log(k−1)(n)
⌋

and h(n)
def

=
⌈
√

1
ck

log(k−2)(n)
⌉

+ 1

where the constants ck,r and ck are as in Theorem 5.4.
For proving a), consider an arbitrary hypergraph G with n nodes, and an

arbitrary r-coloring of G. Then, by Theorem 5.4a), there is a monochromatic
clique of size ℓ where ℓ is the maximal number such that towk(ℓck,r) ≤ n. The
number ℓ is exactly g(n).

For proving b), consider again an arbitrary hypergraph G with n nodes. By
Theorem 5.4b), there is a 2-coloring without a monochromatic clique of size ℓ
where ℓ is the minimal number such that n < towk−1(ℓ

2ck). Thus the largest
monochromatic clique of G is of size at most h(n).

13



The conditions (T1) and (T2) are already quite similar to the conditions
(S1) and (S2). The major difference is that (T1) is about hypergraphs and not
about structures with a k-ary schema.

Fortunately the upper bound from Theorem 5.4 can be generalized to Ram-
sey numbers for structures. To this end some notions need to be transferred
from hypergraphs to structures. Let τ be a k-ary schema, let S be a τ -structure
over domainD and let ≺ be a linear order on D. A subset D′ ⊆ D of the domain
of S is called an ≺-ordered τ-clique if all ≺-ordered k-tuples ~a ∈ D′k have the
same τ -type. Recall that the type of a tuple ~a includes information of how ~a

relates to the constants of the structure, and therefore all tuples over a τ -clique
relate in the same way to constants as well. Denote by R(ℓ; τ) the smallest
number n such that every τ -structure with n elements contains an ≺-ordered
τ -clique of size ℓ, for every order ≺ of the domain.

Theorem 5.6. Let τ be a schema with maximal arity k and let ℓ be a positive
integer. Then there is a constant c such that R(ℓ; τ) ≤ towk(ℓc).

Proof. The proof of Observation 1’ in [11, p. 11] yields this bound. For the sake
of completeness we repeat the full construction.

Consider the schema τ and let Γ be the set of all k-ary types for τ . Let S
be a τ -structure over domain D of size towk(ℓc) where c = |Γ|. Further let ≺ be
an arbitrary order on D. Define a coloring col of the complete k-dimensional
hypergraph over domain D with colors Γ as follows. An edge {e1, . . . , ek} with
e1 ≺ . . . ≺ ek is colored by the type 〈S, e1, . . . , ek〉. By Theorem 5.4 there is an
induced monochromatic sub-k-hypergraph with domain D′ ⊆ D with |D′| ≥ ℓ.
By the definition of the coloring col, two ≺-ordered k-tuples over D′ have the
same type and therefore D′ is a ≺-ordered τ -clique in S as well.

The previous theorem implies that Ramsey cliques in k-ary structures are of
size at least Ω(log(k−1)(n)). The proof is analogous to the proof of Corollary 5.5.

Corollary 5.7. Let τ be a schema with maximal arity k. There is a func-
tion g ∈ Ω(log(k−1)(n)) such that every τ-structure with n elements contains an
ordered τ-clique of size g(n).

It remains to prove Lemma 5.2.

Proof (of Lemma 5.2). Let k ∈ N be arbitrary and let τ be a k-ary schema τ .

Choose f
def

= g where g ∈ Ω(log(k−1)(n)) is the function from Corollary 5.7. We
show that there is an n such that f satisfies the conditions (S1) and (S2) for all
domains larger than n.

Let h ∈ O(

√

log(k−1)(n)) be the function guaranteed to exist for k + 1

by Corollary 5.5b). Then h ∈ o(f), and therefore there is an n such that
f(n′) > h(n′) for all n′ > n. Hence for every domain larger than n condition
(S1) is satisfied for f due to Corollary 5.7 and condition (S2) is satisfied due to
Corollary 5.5.

Next we apply the lower bound proof technique presented above in order to
improve upon a result by Gelade et al. [11]. They provided a lower bound for the
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A

C
def
= [A]k+1

A′

B

B′

b1 b2 bk+1

b′1 b′2 b′
k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b
′

2, . . . , b
′

k+1}

s

t

Figure 5: The construction from the proof that the ∃∗∀∗FO-definable query
ϕ

def

= ∃x∀y
(

E(s, x) ∧ (E(y, t) → E(x, y))
)

cannot be maintained in DynProp.
The edges inserted by the modification sequence α are dashed.

alternating reachability problem. The use of very restricted graphs in the proof
implies that there is a ∃∗∀∗∃∗FO-definable query that cannot be maintained
in DynProp. We show that there is a first-order property expressible by a
formula with only one quantifier alternation which cannot be maintained in
DynProp. It remains open whether there is a ∃∗FO- or ∀∗FO-property that
is not maintainable in DynProp.

Theorem 5.8. There is a ∃∗∀∗FO-definable query which cannot be maintained
by a DynProp-program.

Proof. Consider the graph schema {E} extended by two constants s and t. We
show that the query Q defined by ϕ

def

= ∃x∀y
(

E(s, x)∧(E(y, t) → E(x, y))
)

can-
not be maintained by any DynProp-program. We remark that it is possible to
remove the constants from the following construction by using more existential
quantifiers.

The proof is an adaption of the proof of Theorem 5.3. Towards a contra-
diction assume that there is a k-ary DynProp-program P over k-ary schema τ
that maintains Q. Let n, f , A, C, B, B′, ≺ be as in the proof of Theorem 5.3.

We consider a state S over domain D where the input graph G contains, as
before, the edges

{(b, b1), (b, b2), . . . , (b, bk+1) | b = {b1, b2, . . . , bk+1} ∈ B}

and, additionally, the edges

{(s, b) | b = {b1, b2, . . . , bk+1} ∈ B}

See Figure 5 for an illustration.
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By Lemma 5.2, we can find tuples b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1

and b′ = {b′1, b
′
2, . . . , b

′
k+1} with b′1 ≺ . . . ≺ b′k+1 such that (s, t, b) and (s, t, b′)

have the same τ -type in S.
However, applying the modification sequences

(α) Insert the edges (bi, t) in lexicographic order with respect to ≺.

(β) Insert the edges (b′i, t) in lexicographic order with respect to ≺.

yields one graph that satisfies ϕ and one graph that does not. However, by the
Substructure Lemma, the program P yields the same result. This is the desired
contradiction.

6 Adding Auxiliary Functions

In quantifier-free update programs, as considered up to here, only the modi-
fied and updated tuple as well as the constants can be accessed while updating
an auxiliary tuple. Since lower bounds for first-order update programs where
arbitrary elements can be accessed in updates seem to be out of reach for the
moment, it seems natural to look for extensions of quantifier-free update pro-
grams that allow for accessing more elements in some restricted way.

With DynQF, one such extension was proposed by Hesse. In addition to
auxiliary relations, a DynQF-programmay maintain auxiliary functions. Those
functions are updated by update terms that may use function symbols as well
as an if-then-else construct.

While Hesse obtained upper bounds for DynQF only, in subsequent work
some first lower bounds have been obtained. In [11] it was shown that the
alternating reachability problem cannot be maintained in DynProp extended
by a fixed successor function and a fixed predecessor function. Later, in [21],
the reachability problem was shown to be not maintainable in unary DynProp
with additional (updatable) unary auxiliary functions.

In this section we continue the study of DynProp extended by auxiliary
functions. In the first part we prove that (k+2)-Clique cannot be maintained
by a k-ary DynProp-program with unary auxiliary functions, even if only in-
sertions are considered. In the second part we discuss the expressiveness of
binary DynQF in large domains and argue why the lower bound technique for
the k-clique query does not immediately translate.

Before continuing, we repeat a toy example from [20] which is designed to
give an impression of DynQF. For a more formal treatment we refer the reader
to [11] and [21].

Example 2. Consider the unary graph query Q(x) that returns all nodes a of
a given graph G with maximal outdegree .

We construct a unary DynQF-program P that maintains Q in a unary
relation denoted by the designated symbol Q. The program uses two unary
functions Succ and Pred that shall encode a successor and its corresponding
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predecessor relation on the domain. For simplicity, but without loss of general-
ity, we therefore assume that the domain is of the form D = {0, . . . , n− 1}. For
every state S, the function SuccS is then the standard successor function on D
(with SuccS(n− 1) = n− 1), and PredS is the standard predecessor function
(with PredS(0) = 0). Both functions are initialized accordingly. In the fol-
lowing, when we talk about a number, we mean the element whose position in
Succ is that number. The program has constants that represent the numbers
0 and 1.

The program P maintains two unary functions #edges and #nodes. The
function #edges counts, for every node a, the number of outgoing edges of a;
more precisely #edges(a) = b if and only if b is the number of outgoing edges
of a. The function #nodes counts, for every number a, the number of nodes
with a outgoing edges; more precisely #nodes(a) = b if and only if b is the
number of nodes with a outgoing edges. A constant Max shall always point to
the number i such that i is the maximal number of outgoing edges from some
node in the current graph.

When inserting an outgoing edge (u, v) for a node u that already has a outgo-
ing edges, the counter #edges of u is incremented from a to a+1 and all other
edge-counters remain unchanged. The counter #nodes of a is decremented, the
counter of a+1 is incremented, and all other node-counters remain unchanged.
The number Max increases if, before the insertion, u was a node with maximal
number of outgoing edges. This yields the following update terms:

t
#edges
ins E (u, v;x)

def

= ite
(

¬E(u, v) ∧ x = u,Succ(#edges(x)),#edges(x)
)

t
#nodes
ins E (u, v;x)

def

= ite
(

¬E(u, v) ∧ x = #edges(u),Pred(#nodes(x)),

ite
(

¬E(u, v) ∧ x = Succ(#edges(u)),Succ(#nodes(x)),

#nodes(x)
)

)

tMax
ins E(u, v)

def

= ite
(

Max = #edges(u) ∧ ¬E(u, v),Succ(u),Max
)

The ITE-construct chooses, depending on the predicate in its first argument,
either the second or the third argument as result term.

The update formula for the designated query symbol Q is as follows:

φ
Q
ins E(u, v;x)

def

= t
#edges
ins E (u, v;x) = tMax

ins E(u, v)

The update terms and and the update formula for deletions are very similar.

6.1 Lower Bounds for Unary Functions

In this section we generalize the lower bounds obtained so far as follows.

Theorem 6.1. (k+2)-Clique (k ≥ 1) cannot be maintained under insertions
by a k-ary DynProp-program with unary auxiliary functions.

17



Theorem 6.2. There is a ∃∗∀∗FO-definable query which cannot be maintained
by a DynProp-program with unary auxiliary functions.

The proofs are along the same lines as the proofs of Theorem 5.3 and The-
orem 5.8. Instead of the Substructure Lemma for DynProp a correspond-
ing lemma for DynQF from [11, 21] is used. This Substructure Lemma is
slightly more involved as it requires to exhibit isomorphic substructures that,
additionally, have similar neighbourhoods. Before stating the Substructure
Lemma forDynQF and proceeding with the proof we repeat some useful notions
from [11, 21].

For the following definitions we fix two structures S and T with domains S
and T over schema τ . Here, and in the rest of this section, all auxiliary schemas
are the disjoint union of a set τrel of relation symbols and a set τfun of function
symbols. Denote by Termsmτ the set of terms of nesting depth at most m with
function symbols from τfun.

The m-neighborhood Nm
S (A) of a set A ⊆ S is the set of all elements of S

that can be obtained by applying a term of nesting depth at most m to a vector
of elements from A. More precisely Nm

S (A) is the set

{JtK(S,β) | t ∈ Termsmτ and β(x) ∈ A, for every variable x in t}.

While for the Substructure Lemma for DynProp it is sufficient to consider
two isomorphic substructures, the Substructure Lemma for DynQF also takes
their neighborhoods into account. The neighborhoods need to be similar in the
following sense. Two subsets A ⊆ S, B ⊆ T are m-similar, if there is a bijection
π : Nm

S (A) → Nm
T (B) such that

• the restriction of π to A is a bijection of A and B,

• π satisfies the equation π(tS(~a)) = tT (π(~a)) for all t ∈ Termsmτfun and all
~a over A, and

• π preserves τrel on Nm
S (A).

We write A ≈π,S,T
m B to indicate that A and B are m-similar via

π in S and T . Two tuples (a1, . . . , ap) and (b1, . . . , bp) are m-similar if
{a1, . . . , ap} ≈π,S,T

m {b1, . . . , bp} via the isomorphism π that maps ai to bi, for

every i ∈ {1, . . . , p}. Note that if A ≈π,S,T
0 B, then S ↾ A and T ↾ B are

τrel-isomorphic by the first and third property.

Lemma 6.3 (Substructure lemma for DynQF [11, 21]). Let P be a DynQF
program and let ℓ be some number. There is a number m ∈ N such that for all
states S and T of P with domains S and T ; and all subsets A and B of S and

T , respectively, the following holds. If A ≈π,S,T
m B, then A ≈

π,Pα(S),Pβ(T )
0 B,

for all π-respecting modification sequences α and β on A and B of length at
most ℓ.

The lemma is slightly rephrased in comparison to [21]. Here, the number m
is independent of the states S and T . However, this follows immediately from
the proof of the lemma in [21].
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In order to apply the Substructure Lemma, it is necessary to find
similar substructures. To this end the following analogon of Corol-
lary 5.7 for structures with unary functions can be used. Recall that
log(k)(n) denotes log(log(. . . (logn) . . .)) with k many log’s.

Lemma 6.4. Let τ be a k-ary schema whose function symbols are of arity
at most 1; and let m ∈ N be an arbitrary number. Then there is a function
g ∈ Ω(log(k−1)(n)) such that for every τ-structure S with domain S and every
linear order ≺ on S, there is a subset S′ ⊆ S of size g(|S|) such that all ≺-
ordered k-tuples over S′ are m-similar.

Proof. The idea is to construct, from the structure S, a purely relational struc-
ture T such that the type of a tuple ~a in T encodes the type of the whole
m-neighborhood of ~a in S. Then Corollary 5.7 is applied to the structure T in
order to obtain S′.

For the construction of T we need some notions from the proof of
Theorem 5.4 in [21]. Let t1, . . . , tℓ be the lexicographic enumeration of Termsmτ
with respect to some fixed order of the function symbols. Let the m-
neighborhood vector ~Nm

S (c) of an element c in S be the tuple (c, t1(c), . . . , tl(c)).

For a tuple ~c = (c1, . . . , cp), the m-neighborhood vector ~Nm
S (~c) of ~c is the tuple

( ~Nm
S (c1), . . . , ~Nm

S (cp)).
The m-similarity type of a k-ary tuple ~a is the (quantifier-free) τ -type of the

m-neighborhood tuple ~Nm
S (~a) of ~a. Observe that for fixed m, k and τ there are

only finitely many similarity types. Denote the set of all such similarity types
by Γ. Further observe that two tuples ~a and ~b with the same m-similarity type
are m-similar. This is certified by the bijection that maps ~Nm

S (~a) to ~Nm
S (~b)

component-wise.
For the construction of T we assume, without loss of generality, that the

schema of S contains the equality symbol =. The structure T is over the same
domain as S and uses the schema τΓ which contains a k-ary relation Rγ for
every k-ary similarity type γ ∈ Γ. A relation RT

γ contains all tuples ~a whose
similarity type in S is γ.

Then, by Corollary 5.7, T contains an ≺-ordered τ -clique S′ of size
Ω(log(k−1)(|S|)). We show that all ≺-ordered k-tuples over S′ are m-similar

in the structure S. Therefore let ~a and ~b be two such tuples. By definition of
S′ they have the same type in T and therefore, by definition of T , their neigh-
borhood vectors ~Nm

S (~a) and ~Nm
S (~b) have the same type in S. Hence, by the

observation from above, the tuples ~a and ~b are m-similar.

Proof (of Theorem 6.1 and Theorem 6.2). The proofs are along the same lines
as the proofs of Theorem 5.3 and Theorem 5.8. The only difference is that here
we use Lemma 6.4 in order to obtain the set A′. The contradiction is then
obtained by using the Substructure Lemma for DynQF and the modification
sequences (α) and (β) from Theorem 5.3 and Theorem 5.8, respectively.
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6.2 Discussion of Binary Auxiliary Functions

A natural question is whether the lower bounds transfer to k-ary auxiliary func-
tions with k ≥ 2. We conjecture that they do, but we will argue that the
techniques used so far are not sufficient for proving lower bounds for binary
auxiliary functions.

The fundamental difference between unary and binary auxiliary functions is
that, on the one hand, unary functions can access elements that depend either
on the tuple that has been modified in the input structure or on the auxiliary
tuple under consideration but not on both. On the other hand binary functions
can access elements that depend on both tuples.

A consequence is that binary DynQF can maintain every boolean graph
property when the domain is large with respect to the actually used domain.
We make this more precise. In the following we assume that all domains D are a
disjoint union of a modifiable domainD+ and a non-modifiable domain D−, and
that modifications may only involve tuples over D+. Auxiliary data, however,
may use the full domain. A dynamic complexity class C profits from padding if
every boolean graph property can be maintained whenever the non-modifiable
domain is sufficiently large in comparison to the modifiable domain3.

Above we have seen that DynProp with unary auxiliary functions does not
profit from padding.

Theorem 6.5. Binary DynQF profits from padding.

Proof. First we show that ternary DynQF profits from padding. Let Q be
an arbitrary boolean graph property. In the following we construct a ternary
DynQF program P which maintains Q if 2|D

+|2 = |D−|. The idea is to identify
D− with the set of all graphs over D+, that is D− contains an element cG for
every graph G over D+. A unary relation RQ stores those elements of D− that
correspond to graphs with the property Q. Finally the program maintains a
pointer p to the element in D− corresponding to the current graph over D+.
The pointer is updated upon edge modification by using ternary functions fins
and fdel initialized by the initialization mapping in a suitable way.

The program P is over schema τ = {Q, p, fins, fdel, RQ} where p is a con-
stant, fins and fdel are ternary function symbols, RQ is a unary relation symbol
and Q is the designated query symbol.

We present the initialization mapping of P first. The initial state S for a
graph H is defined as follows. The functions fins and fdel are independent of
H and defined via

fS
ins(a, b, cG) = cG+(a,b)

fS
del(a, b, cG) = cG−(a,b)

for a, b ∈ D+ and cG ∈ D−. For all other arguments the value of the functions is
arbitrary. Here G+ (a, b) and G− (a, b) denote the graphs obtained by adding

3Note that this type of padding differs from the padding technique used by Patnaik and
Immerman for maintaining a PTIME-complete problem in DynFO [17].
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the edge (a, b) to G and removing the edge (a, b) from G, respectively. The
relation RS

Q contains all cG with G ∈ Q. Finally the constant pS points to cH .
It remains to exhibit the update formulas. After a modification, the pointer p

is moved to the node corresponding to the modified graph, and the query bit is
updated accordingly:

tpins(u, v) = fins(u, v, p) tQins(u, v) = RQ(fins(u, v, p))

tpdel(u, v) = fdel(u, v, p) tQdel(u, v) = RQ(fdel(u, v, p))

Now we sketch how to modify this construction for binary DynQF. The
binary DynQF program maintains Q on an extended non-modifiable domain
that contains

• an element cG for every graph G over D+, and

• elements cG,a,ins and cG,a,del for every graphG overD+ and every a ∈ D+.

The intuition is that when an edge (a, b) is inserted into the graph G then
the pointer p is moved from cG to the element cG+(a,b) using the intermediate
element cG,a,ins.

For insertion modifications the binary DynQF program maintaining Q uses
two binary functions fins and sins that are initialized as

fS
ins(a, cG) = cG,a,ins

sSins(b, cG,a,ins) = cG+(a,b)

for a, b ∈ D+ and cG, cG,a,ins ∈ D−. For all other arguments the value of the
functions is arbitrary.

When an insertion occurs, the pointer and the query bit are updated via

tpins(u, v) = sins(v, fins(u, p))

tQins(u, v) = RQ(sins(v, fins(u, p)))

The update formulas and terms for deletions are analogous.

Hence the ability to profit from padding distinguishes binary DynQF and
DynProp extended by unary functions. Although the proof of the preceding
theorem requires the non-modifiable domain to be of exponential size with re-
spect to the modifiable domain, the construction also explains why the lower
bound technique from the previous sections cannot be immediately applied to
binary DynQF. In the lower bound construction only tuples over the set A
are modified, while tuples containing elements from C = [a]k are not modified.
Thus, by treating C as a non-modifiable domain, it can be used to store infor-
mation as in the proof above. As the modification sequences used in the lower
bounds are of length k2, finding similar substructures in structures with binary
auxiliary functions becomes much harder.
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7 Conclusion and Future Work

In this work we exhibited a precise dynamic descriptive complexity characteriza-
tion of the k-clique query when only insertions are allowed. The characterization
implies an arity hierarchy for graph queries for DynProp under insertions. Fur-
ther we exhibited a very simple ∃∗∀∗FO-property which is not maintainable in
DynProp. We also discussed the limit of our proof methods.

While proving lower bounds for full DynFO — a major long-term goals
in dynamic descriptive complexity — might be really hard to achieve, we be-
lieve that the following goals are suitable for both developing new lower bound
methods and for further improving the current methods.

Goal 1. Prove general quantifier-free lower bounds for insertions and deletions
for the reachability query and the k-clique query.

It is known that both queries cannot be maintained in binaryDynProp [21].
We conjecture that neither the 3-clique query nor the reachability query can be
maintained in DynProp under deletions.

Goal 2. Find a general framework for proving quantifier-free lower bounds.

Goal 3. Find a query that cannot be maintained in binary DynQF.

In this and previous work on lower bounds in the dynamic descriptive com-
plexity setting, the theorems of Ramsey and Higman played an important role
for lower bound proofs. Therefore it appears to be promissing to study the
applicability of other combinatorical tools in this context.
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[8] Paul Erdős, András Hajnal, and Richard Rado. Partition relations for
cardinal numbers. Acta Mathematica Hungarica, 16(1):93–196, 1965.

[9] Paul Erdös and Richard Rado. Combinatorial theorems on classifications
of subsets of a given set. Proc. London Math. Soc. (3), 2:417–439, 1952.

[10] Kousha Etessami. Dynamic tree isomorphism via first-order updates. In
Alberto O. Mendelzon and Jan Paredaens, editors, Proceedings of the Sev-
enteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages 235–
243. ACM Press, 1998.

[11] Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic
complexity of formal languages. ACM Trans. Comput. Log., 13(3):19, 2012.
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