Elsevier

Geobios

Volume 39, Issue 3, May–June 2006, Pages 426-442
Geobios

Ammonite fauna from uppermost Bajocian (Middle Jurassic) calcitic concretions from the Polish Jura—biogeographical and taphonomical implicationsLa faune d'ammonites des concrétions calcitiques du Bajocien terminal (Jurassique moyen) du Jura Polonais—implications biogéographiques et taphonomiques

https://doi.org/10.1016/j.geobios.2005.02.001Get rights and content

Abstract

Uppermost Bajocian (Parkinsoni Zone, Bomfordi Subzone) calcitic concretions from the epicratonic basin in South-Central Poland (Polish Jura) contain numerous, well-preserved ammonites unique for this area. Characteristic of the assemblages is the presence of small, juvenile specimens. Associated with dominant parkinsoniids (Parkinsonia (Parkinsonia) aff. dorni Arkell) are lytoceratids [Nannolytoceras tripartitum (Raspail)], lissoceratids [(Lissoceras (Lissoceras) oolithicum (d'Orbigny) and Lissoceras (Microlissoceras) solitarium Zatoń and Marynowski nov. sp.)], leptosphinctids (Vermisphinctes sp.) and strigoceratids [(Strigoceras (Strigoceras) sp. juv. gr. strigifer/pseudostrigifer)], as well as fragments of phylloceratids (Phylloceras sp.). Parkinsoniids (the most numerous) are considered here as host fauna. Other ammonites, especially phylloceratids and nannolytoceratids, are supposed migrants from the Mediterranean area into the shallow epicratonic Polish Basin during the Late Bajocian sea-level rise. N. tripartitum, which has a broad geographical range probably drifted as a plankton-feeder in the upper water column and, together with phylloceratids, are considered to be unsuccessful immigrants which did not adapt to the new environment. It seems that the whole fauna, inclusive of plant remains, was accumulated by bottom currents in randomly situated depressions on the sea-floor, where carcasses became ideal nucleation sites for concretion genesis. Early diagenesis, which played an important role, resulted in well-preserved ammonite assemblages close to the original biological assemblage. Most of described ammonites (nannolytoceratids, lissoceratids, strigoceratids and leptosphinctids) are reported from the Upper Bajocian epicratonic deposits of Poland for the first time. This makes the concretions a true “taphonomic window” into latest Bajocian census biocenosis. The organic geochemistry results suggest predominance of terrestrial organic matter in both concretions and surrounding clays, with well oxygenated conditions in the sedimentary basin. The large concentrations of Δ13(17)diasterenes in the analysed carbonate concretions indicates that these compounds must have been formed by contact with clay minerals before formation of the carbonate concretions. The processes described may have followed early stage of diagenesis, but certainly under tens of cm to even a few meters of burial. The high negative δC13 values in the inner zone of the concretions suggest that concretion growth began in the sulphate reduction zone and may have continued in the methanogenesis zone.

Résumé

Les concrétions calcitiques du Bajocien terminal (zone à Parkinsoni, sous-zone à Bomfordi) du bassin épicratonique du sud de la Pologne centrale (Jura polonais) contiennent des ammonites nombreuses, bien préservées et uniques pour la région. La présence de spécimens petits, juvéniles est caractéristique de ces assemblages. Les parkinsoniidés (Parkinsonia (Parkinsonia) aff. dorni Arkell) dominent, associées à des lytocératidés [Nannolytoceras tripartitum (Raspail)], des lissocératidés [(Lissoceras (Lissoceras) oolithicum (d'Orbigny) et Lissoceras (Microlissoceras) solitarium Zatoń et Marynowski nov. sp.)], des leptosphinctidés (Vermisphinctes sp.) et strigocératidés [(Strigoceras (Strigoceras) sp. juv. gr. strigifer/pseudostrigifer)], ainsi que des fragments de phyllocératidés (Phylloceras sp.). Très nombreuses, les parkinsoniidés sont considérées ici comme la faune hôte. D'autres ammonites, en particulier les phylloceratidés et les nannolytoceratidés, ont probablement immigré depuis le domaine Méditerranéen vers les bassins peu profonds de Pologne lors de la transgression du Bajocien supérieur. N. tripartitum, de large répartition biogéographique, en tant que planctonophage de la tranche d'eau supérieure a probablement dérivé, et avec les phyllocératidés il est considéré comme immigrant infructueux qui ne s'est pas adapté au nouvel environnement. Il semble que l'assemblage paléontologique, incluant des restes de plantes, s'est formé par accumulation dans les dépressions du fond marin, sous l'action des courants. Les cadavres ont servi de site de nucléation pour le développement de concrétions. La diagenèse précoce a joué un rôle important dans la préservation d'assemblages d'ammonites proches des associations biologiques originelles. La plupart des ammonites décrites (nannolytocératidés, lissocératidés, strigocératidés et leptosphinctidés) sont mentionnées pour la première fois pour ces dépôts épicratoniques de Pologne. Ceci fait des concrétions une véritable « fenêtre taphonomique » sur les biocénoses du Bajocien terminal. La géochimie organique suggère la prédominance de la matière organique d'origine continentale à la fois dans les concrétions et les argiles encaissantes, et des conditions plutôt euxiques dans le bassin sédimentaire. Les fortes concentrations de 13(17) diastérènes dans les concrétions carbonatées analysées indique que ces composées doivent avoir été formés au contact avec des minéraux argileux avant la formation des concrétions. Les processus décrits ont pu suivre les stades précoces de diagenèse, sous une colonne de quelques dizaines de centimètres à quelques mètres de sédiments. Les valeurs très négatives du δC13 dans la partie interne des concrétions suggèrent que leur croissance pourrait avoir été initiée dans la zone de réduction des sulfates puis avoir continué dans la zone méthanogène.

Introduction

Middle Jurassic deposits in South-Central Poland are well known for their content of carbonate concretions, which yield a well-preserved macrofauna, especially ammonites. Although there are many outcrops, exposing mainly Bathonian strata, there is just one—“Sowa” brick-pit at Kawodrza Górna (Fig. 1)—which contains numerous calcitic concretions of Late Bajocian in age with an abundant, well-preserved ammonite fauna. This type of concretions does not occur elsewhere in the Polish Jura. Recently, amongst abundant parkinsoniids, a few phylloceratids and several lytoceratids as well as representatives of Haplocerataceae have been collected by Majewski (1997) during his M.Sc. fieldwork, and by one of us (M.Z.).

From the Polish Middle Jurassic epicratonic deposits, phylloceratids, as well as some representatives of Haploceratacea have been described and illustrated only by Kopik (1976) from the condensed Lower and Upper Callovian. Three years later Kopik (1979) found uncertain ?Tragophylloceras bathonicum Westermann in the Upper Bathonian deposits of Central Poland (Bełchatów Region). Earlier, Rehbinder (1913) only mentioned the occurrence of Lytoceras sp. from Upper Bajocian, and Phylloceras heterophylloides Oppel from the Upper Bajocian and Bathonian, but they have been neither described nor illustrated. Additionally, phylloceratids and lytoceratids are generally considered to have been inhabitants of open-oceanic environments and, together with representatives of Haplocerataceae, are largely restricted to the Tethyan Realm, being adapted to deep-water environments (Donovan et al., 1981; Page, 1996; Sandoval et al., 2001).

The whole assemblage from the Częstochowa area, compared with other Polish Bajocian and Bathonian concretions, is best preserved and the ammonite fauna is most abundant and diverse. The main purpose of the present paper is to describe the ammonite fauna from these carbonate concretions, to discuss the causes of such a sporadic immigration event of these taxa into the Polish epicontinental sea, to reconstruct the taphonomical processes responsible for faunal accumulations and to present the diagenetic environment using geochemical analysis as well.

Section snippets

Geological setting

In the Jurassic, the Polish Basin was the easternmost part of the Mid-European Epicontinental Basin (Dadlez, 1989). It was bordered by the Baltic Shield to the north, the Belorussian High and Ukrainian Shield to the east and the Bohemian Massif to the south-west. To the south, the Basin was separated by less specified barriers from epicontinental basins bordering the Western Tethys, as well as from Tethyan oceanic basins (Fig. 1A). During Middle Jurassic time, the deposits of the epicontinental

Material and methods

Several concretions were broken up (Fig. 2) and the ammonite fauna was separated as carefully as possible. All ammonites retrieved (complete and large fragments) were counted and percentage values calculated. The specimens are housed in the Faculty of Earth Sciences of University of Silesia, Sosnowiec (abbreviated GIUS). Specimens from the Institute of Geology, University of Warsaw (abbreviated IGPUW) were also borrowed for temporary study. Before being photographed all specimens were powdered

Fossils

Calcitic concretions from between levels A and B are oval or spherical in shape, small to medium sized (ca. 10–16 cm in diameter). They are divided into two zones: the outer-2 cm thick, grey in colour and impoverished in fossils; and the inner one dark-grey in colour which is the main source of fossils. They consist of abundant, well-preserved but small-sized (mostly juvenile) ammonite fauna. There are numerous parkinsoniids [Parkinsonia (Parkinsonia) aff. dorni Arkell], lytoceratids [(

Systematic palaeontology

Abbreviations used: D – shell diameter; U – umbilicus diameter; Wb – whorl breadth; Wh – whorl height; Pr – number of primary ribs per half whorl; Wb/D – whorl breadth to shell diameter ratio; Wh/D – whorl height to shell diameter ratio; U/D – umbilicus diameter to shell diameter ratio. Whorl expansion rate (WER) following Klug, 2001, Klug, 2002). The suture nomenclature follows that recently proposed by Korn et al. (2003). All measurements are given in millimeters.

Order AMMONOIDEA Zittel, 1884.

Ammonite immigration into the Polish Basin

In the uppermost Bajocian epicratonic deposits of South-Central Poland phylloceratids and lytoceratids do not represent the demic populations (see Callomon, 1985; Fernández-López and Meléndez, 1996 for further explanation). Their greatest diversity and abundance are confined to the Mediterranean Province (Galácz, 1980). Therefore, they seem to be immigrants which came from the deeper southern province into the shallower (see Hallam, 1994) Submediterranean one. It is well illustrated by

Taphonomy

All fossils, and ammonites in particular, in the concretions are well-preserved, occurring as calcareous shells with sculptural structures finely preserved. Some specimens, or parts of them are pyritised. The ammonites are neither crushed nor deformed, although they often lack parts of the body chamber. Only some specimens from the outer part of the concretions have crushed phragmocones. This is in strong contrast to other Polish ammonites, especially Bathonian in age, which often possess

Source of organic matter and remarks on diagenetic environment

Values of CPI(25–31) higher than 1 in concretions and clays, together with perylene, fichtelite, cadalene, dehydroabietane, simonellite and retene occurrence suggests predominance of terrestrial organic matter in both concretions and surrounding clays. Marine input to the organic matter is indicated by occurrence of C3013(17)diasterenes (20R i 20S epimers).

Organic matter (OM) in the host sediments and carbonate concretions of the Middle Jurassic of the Częstochowa region is thermally

Conclusions

The ammonites from the uppermost Bajocian (Bomfordi Subzone) carbonate concretions from Kawodrza Górna are unique in Middle Jurassic Epicontinental Polish Basin in their state of preservation, density and taxonomic composition.

The ammonite fauna is dominated by parkinsoniids, emphasising a northern habitat but a minority of phylloceratids, strigoceratids and leptosphinctids, of Mediterranean habitat origin suggests immigration from the Tethys during episodes of sea-level rise.

Acknowledgments

Professor dr hab. Ryszard Marcinowski (University of Warsaw) is greatly acknowledged for loaning the part of the ammonite fauna. Dr. John W.M. Jagt (Natural History Museum, Maastricht) kindly read the previous draft of the manuscript and improved the English language. We thank Professor M.O. Jędrysek (University of Wrocław) for isotopic analyses and Cezary Grelowski (Petrogeo, Piła) for TOC analyses. Special acknowledgments are due to Dr. Marc Philippe (University of Lyon) and Dr. Loïc Villier

References (82)

  • M. Bradshaw et al.

    Australasia

  • K. Birkenmajer et al.

    Przyczynek do stratygrafii doggeru i malmu Pienińskiego Pasa Skałkowego

    Roczniki Polskiego Towarzystwa Geologicznego

    (1953)
  • D.S. Brandt

    Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology

    Palaios

    (1989)
  • C.E. Brett et al.

    Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation

    Palaios

    (1986)
  • J.H. Callomon

    The evolution of the Jurassic family Cardioceratidae

    Special Papers on Palaeontology

    (1985)
  • F. Cecca

    Ammonite habitats in the Early Tithonian of Western Tethys

    Lethaia

    (1992)
  • J.A. Chamberlain et al.

    Post-mortem ascent of Nautilus shells: implications for cephalopod paleobiogeography

    Paleobiology

    (1981)
  • P.A. Clari et al.

    Il Rosso Ammonitico Inferiore (Baiociano-Calloviano) nei Monti Lessini settentrionali (Verona)

    Rivista Italiana di Paleontologia e Stratigrafia

    (1984)
  • M.L. Coleman et al.

    Reduction of Fe(III) in sediments by sulphate-reducing bacteria

    Nature

    (1993)
  • R. Dadlez

    Epikontynentalne baseny permu i mezozoiku w Polsce

    Kwartalnik Geologiczny

    (1989)
  • K. Dayczak-Calikowska et al.

    Middle Jurassic

  • K. Dayczak-Calikowska et al.

    Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland (in Polish with English summary)

    Kwartalnik Geologiczny

    (1988)
  • G. Dietl et al.

    Zur stratigraphie des Ober-Bajocium (Braunjura δ/ε-Grenzschichten) am Plettenberg bei Balingen, Württemberg

    Stuttgarter Beiträge zur Naturkunde

    (1978)
  • D.T. Donovan et al.

    Classification of the Jurassic ammonitina

  • P. Dorn

    Die Ammonitenfauna der Parkinsonienschichten bei Thalmässing (Frankenalb)

    Jahrbuch der Preußischen Geologischen Landesanstalt

    (1927)
  • A. El Albani et al.

    The role of diagenetic carbonate concretions in the preservation of the original sedimentary record

    Sedimentology

    (2001)
  • A. Feldman-Olszewska

    Depositional architecture of the Polish epicontinental Middle Jurassic basin

    Geological Quarterly

    (1997)
  • S. Fernández-López

    El Bajociense en la Cordillera Ibérica

    (1985)
  • S.R. Fernández-López et al.

    The Middle Jurassic eastern margin of the Iberian platform system (eastern Spain). Palaeogeography and biodispersal routes of ammonoids

    Rivista Italiana di Paleontologia e Stratigrafia

    (2004)
  • A. Galácz

    Bajocian and Bathonian ammonites of Gyenespuszta, Bakony Mts., Hungary. Geologica Hungarica

    Series Palaeontologica

    (1980)
  • M.D. Geraghty et al.

    Origin of Jurassic ammonite concretions assemblages at Alfeld, Germany: a biogenic alternative

    Paläontologische Zeitschrift

    (1994)
  • W. Hahn

    Die Parkinsoniidae S. Buckman und Morphoceratidae Hyatt (Ammonoidea) des Bathoniums (Brauner Jura ε) im südwestdeutschen Jura

    Jahresbericht Geologische Landesamt Baden-Würtemberg

    (1970)
  • A. Hallam

    An Outline of Phanerozoic Biogeography

    (1994)
  • M.O. Jędrysek et al.

    Air-pollution effect and paleotemperature scale versus delta C-13 records in tree rings and in a peat core (Southern Poland)

    Water Air and Soil Pollution

    (2003)
  • S.M. Kidwell

    Time-averaging in the marine fossil record: overview of strategies and uncertainties

    Geobios

    (1998)
  • S.M. Kidwell et al.

    Taphonomy and time-averaging of marine shelly faunas

  • C. Klug

    Life-cycle of some Devonian ammonoids

    Lethaia

    (2001)
  • C. Klug

    Conch parameters and habitats of Emsian and Eifelian ammonoids from the Tafilalt (Morocco) and their relation to global events

  • J. Kopik

    Amonity bajosu z warstw kościeliskich okolic Przystajni (Jura Krakowsko-Wieluńska)

    Biuletyn Instytutu Geologicznego

    (1967)
  • J. Kopik

    O przedstawicielach rodzin Phylloceratidae Zittel, 1884, Haploceratidae Zittel, 1884 i Oppeliidae Bonarelli, 1894 (Ammonoidea) w keloweju Jury Częstochowskiej

    Biuletyn Instytutu Geologicznego

    (1976)
  • J. Kopik

    Stratigraphy of the Middle Jurasic of the Bełchatów Region (in Polish with English summary)

    Kwartalnik Geologiczny

    (1979)
  • Cited by (39)

    • Re-examination of Dashanpusaurus dongi (Sauropoda: Macronaria) supports an early Middle Jurassic global distribution of neosauropod dinosaurs

      2023, Palaeogeography, Palaeoclimatology, Palaeoecology
      Citation Excerpt :

      Additionally, the sea level was globally low throughout almost the entire Middle Jurassic until the disconnection of Laurasia and Gondwana (Poropat et al., 2016; Haq, 2017). It echoes with vast tectonic and sedimentological evidence such as widespread emergence, erosion, and localized deposition in the early Middle Jurassic of Europe (Zatoń and Marynowski, 2006; Zatoń and Taylor, 2009; Nielsen et al., 2010; Cortés and Gómez, 2018; Zohdi et al., 2021), as well as changes in invertebrate diversity patterns (e.g. Marcinowski and Gasiński, 2002; Ruban, 2007; Zatoń, 2011; Jain and Abdelhady, 2020). This spurred the development of large epicontinental basins around Pangaea (Dercourt et al., 1994).

    • Concentrations of silicified cephalopods within upper Frasnian carbonate concretions from the Holy Cross Mountains, Poland

      2016, Palaeogeography, Palaeoclimatology, Palaeoecology
      Citation Excerpt :

      Early diagenetic carbonate concretions with perfectly preserved fossil assemblages are a very important source of palaeobiological information, since fossils in surrounding sediments are often impoverished and more poorly preserved (e.g. Maples, 1986; El Albani et al., 2001; Zatoń and Marynowski, 2004; Landman and Klofak, 2012). Concretions with very rich cephalopod assemblages are common in the fossil record, described from e.g. the Carboniferous of the United States (Zangerl et al., 1969; Mapes and Dalton, 2002) and England (Scott et al., 1997); the Triassic of Siberia (Dagys and Weitschat, 1993); the Middle Jurassic of Germany (Geraghty and Westermann, 1994) and Poland (e.g. Makowski, 1952; Zatoń and Marynowski, 2004, 2006); the Upper Jurassic of Mexico (Schumann, 1988); and the Upper Cretaceous of Japan (Maeda, 1987, 1991; Wani, 2003; Tajika and Wani, 2011), Sakhalin (Yazykova, 2002), Morocco (El Albani et al., 2001), and the United States (Landman and Klofak, 2012; Stephen et al., 2012). In fact, well-preserved cephalopods in concretions are often helpful in deciphering important issues in palaeobiology, such as the numerous, extremely well-preserved ammonoids Czekanowskites rieberi in a Middle Triassic concretion which enabled Dagys and Weitschat (1993) to study the intraspecific variability of this species.

    • Palaeobiogeography of the Bajocian-Oxfordian macrofauna of Gebel Maghara (North Sinai, Egypt): Implications for eustacy and basin topography

      2015, Palaeogeography, Palaeoclimatology, Palaeoecology
      Citation Excerpt :

      However, endemic genera such as Magharaina, “Ermoceras” and Thamboceras were recorded only from G. Maghara and/or from Saudi Arabia. Zatoń and Marynowski (2006) suggested migration of Mediterranean ammonites toward the shallow epicratonic Polish Basin during the late Bajocian sea-level rise. By the Callovian, Madagascar and India plot near Spain and China (North Tethys Province) and away from the Northern Ethiopian Subprovince (Middle East; Fig. 4B), however, these provinces have no clear boundaries, and also the northern and southern Tethys provinces overlapped, probably due to a sea-level highstand during this time.

    View all citing articles on Scopus
    View full text