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Abstract 

Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different 

organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule 

therefore also depends on its ability to pass cellular membranes. The propensity of the 

membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed 

controversially. In this essay, we challenge the recent proposal that the ER membrane 

constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample 

H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin 

channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper 

experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 

permeation in signal transduction and organelle biology.  

Principles of reduction-oxidation signaling 

The life of a multicellular organism is organized in a complex network of intercellular 

communication. In this vein, individual cells react to external cues such as hormones or other 

receptor-based agonists by the activation of signal transduction cascades, which faithfully 

transfer the extracellular signals to the intracellular addressees. Similar processes are activated 

also in single cell organisms in response to pheromones or nutrient signals. The single steps of 
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these signaling cascades are designed to proceed by optimized spatial and temporal dynamics 

[1].  

An important element in intracellular signal transduction is the transient formation of 

diffusible second messengers, which allow amplification of the signal due to their multiple 

places of action. Amongst many other second messengers, hydrogen peroxide (H2O2) is now 

widely being recognized to serve as such a mobile signaling molecule [2, 3]. H2O2 is one of 

the reactive oxygen species that are produced upon reduction of molecular oxygen and is 

itself an oxidant. It primarily acts by specifically oxidizing target proteins on specialized, 

sensitive cysteine residues to modulate their function [4]. Therefore, H2O2-mediated signaling 

is referred to as reduction-oxidation (redox) signaling. Of note, H2O2 is a relatively poorly 

reactive oxidant, which allows it to travel further from its site of generation than can 

superoxide (O2  ) or hydroxyl radical, before it encounters a peroxidase, catalase or 

signaling target [4, 5].  

A prime example of redox signaling is the role of H2O2 during growth factor-stimulated signal 

transduction [6, 7]. Here, the binding of extracellular growth factor ligands to receptor 

tyrosine kinases (RTKs) on the cell surface frequently co-activates members of the NADPH 

oxidase (Nox) family [8-10]. Nox family members locally produce O2 , which rapidly 

dismutates to H2O2. This increase in O2  and H2O2 generation is required for sustained 

receptor tyrosine phosphorylation and downstream signaling events, because H2O2 inactivates 

protein tyrosine phosphatases (PTPs) on a reactive cysteine in their active site [11, 12]. 

Membrane topology is a critical aspect in this process. The O2  -producing active sites of 

Nox complexes are located on the exoplasmic side of the membrane, whereas PTPs localize to 

the cytosol. This topological problem is solved by membrane-embedded aquaporin channels 

(AQPs). By serving as H2O2 pores they facilitate the formation of local areas with an elevated 

H2O2 concentration on both sides of the plasma membrane [13-16].  
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H2O2 can readily permeate through the endoplasmic reticulum membrane 

RTK signaling is not restricted to the plasma membrane. For instance, epidermal growth 

factor (EGF) receptor can be internalized upon stimulation by endocytosis and brought into 

proximity with the endoplasmic reticulum (ER) membrane [17]. As a notable consequence, 

ER-associated proteins such as Nox4 [18, 19] and the phosphatase PTP1b [20-22] play 

important roles during EGF receptor signaling by acting in analogy to their cognate signaling 

components at the plasma membrane [17]. Nox4, which can directly, i.e. irrespective of a 

dismutase, generate H2O2 in the ER lumen [23-27], is coupled to the transient oxidative 

inactivation of PTP1b on the cytosolic side of the ER membrane [17]. This sequence of events 

premises that H2O2 must be able to pass the ER membrane at a time scale that copes with 

EGF receptor signaling.  

While observations of redox signaling at the ER are relatively scarce at this stage, it is clear 

that H2O2 is widely utilized as a signaling molecule in vivo [28] and it is quite predictable that 

further mechanisms specific to the ER will be uncovered in the future [18]. Other examples, 

which are connected to H2O2 transit across the ER membrane, are granulocyte colony-

stimulating factor receptor signaling [29], oxidative DNA damage in response to cellular 

stresses [30-32], activation of survival pathways upon H2O2 generation in the ER [33, 34], and 

the regulatory roles of ER-luminal peroxidases in various settings of cytosolic signal 

transduction [29, 35-38]. These findings clearly indicate the permeability of the ER 

membrane for H2O2.  

Ample H2O2 permeability at the ER membrane has additionally been demonstrated by 

studying over-expressed ER oxidoreductin 1  (Ero1 ). This ER-luminal oxidase produces 

H2O2, which is immediately detoxified by the Ero1 -associated peroxidase GPx8 [18]. 

Depletion of GPx8, however, leads to the overflow of H2O2 to the cytosol [39]. By contrast, 
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depletion of the ER-luminal high-abundance-high-affinity-high-turnover-peroxidase 

peroxiredoxin 4 [40, 41] does not cause similar leakage of Ero1 -derived H2O2 into the 

cytosol [39]. Thus, the shielding of the cytosol against Ero1 -derived H2O2 takes place at the 

Ero1 -GPx8 interface through catalytic elimination [42]. If hindered diffusion of H2O2 at the 

ER membrane was to provide an additional shielding mechanism, Ero1 -derived H2O2 would 

certainly be eliminated by peroxiredoxin 4 already within the ER and not found in the cytosol 

upon depletion of GPx8.  

 

Aquaporins regulate the permeability of the ER membrane to H2O2 

Is the transport of H2O2 at the ER facilitated by AQPs in analogy to the situation at the plasma 

membrane? AQP8 fulfills a major function in the transport of H2O2 at the plasma membrane 

[13]. In addition, knockdown of AQP8 strongly diminishes the entry of exogenous H2O2 into 

the ER of plasma membrane-permeabilized cells [13]. This indicates that AQP8 can 

accelerate the transit of H2O2 also across the ER membrane when expressed at physiological 

levels. Since cell surface AQP8 is synthesized at the ER before trafficking to the plasma 

membrane, a physiological function in the ER is conceivable. This is also supported by its 

steady-state localization both at the plasma membrane and in “intracellular vesicles” [43]. In 

addition, AQP8 appears to be involved in the transit of H2O2 from mitochondria in certain cell 

types [44].  

AQP8 and other AQPs show specific tissue distributions. The rich collection of human AQPs 

enables a versatile regulation of transmembrane permeation of water throughout the body by 

harboring specific differences in transcriptional regulation, post-translational modification, 

protein stability, water permeability, and subcellular distribution [43]. Accordingly, it is likely 

that AQPs other than AQP8 play complementary, tissue- and context-specific roles with 
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regard to H2O2 transport at the ER. One obvious candidate is AQP11, the subcellular 

localization of which is strongly shifted to the ER [45, 46]. AQP11 loss-of-function causes 

destructive symptoms of ER stress, which mainly manifest in the proximal tubular epithelial 

cells of the kidney [45-47] but also in other organs such as the liver [48]. The failure of 

AQP11-deficient cells is accompanied by elevated levels of intracellular H2O2 [45]. Whether 

or not ER stress and H2O2 dysregulation are linked to a change in H2O2 permeability of the 

ER membrane remains to be shown.  

In addition to the tissue-specific expression level of ER AQPs, the H2O2 permeability of the 

ER membrane is likely regulated by post-translational modifications. For instance, the 

permeability of AQP8 is reversibly inhibited in response to diverse stress conditions through 

the targeting of cysteine 53 (Iria Medraño-Fernandez, Stefano Bestetti, and R.S.; unpublished 

observations) and the overproduction of ER-luminal H2O2 appears to stimulate its own 

passage through the ER membrane in liver cells of living mice [49].  

Based on biophysical and structural data, it has been deduced that all AQPs that are able to 

transport water can also transport H2O2 [50]. Thus, not only the highly conducting 

aquaammoniaporin AQP8 but also the water-permeable AQP11 is predicted to serve as a 

bona fide H2O2 channel.  

 

The ER membrane is not refractory to rapid H2O2 diffusion 

In a recent publication, the ER membrane was postulated to comprise a significant barrier to 

H2O2 diffusion [51]. This postulate was based on an experiment, in which oxidation of 

intracellular H2O2 probes in response to increasing concentrations of extracellular H2O2 were 

recorded. As already worked out elsewhere [39], the H2O2-dependent oxidation of the 

genetically encoded probe HyPer [52] was recorded upon concomitant addition of the 
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disulfide reductant dithiothreitol (DTT). In this setup, ER-targeted HyPer was less readily 

oxidized than cytosolic HyPer [51]. This appears to be a trivial observation though, as 

exogenous H2O2 on its way to the ER must cross the cytosol, which is equipped with a 

plethora of powerful peroxidases. In a comparable experimental setup, most H2O2 was 

consumed before it could reach the depth of the cell [53]. Konno et al. addressed this issue by 

using a cell line that expresses relatively low levels of some cellular antioxidant enzymes 

[51], a measure that can modulate but not eliminate the problem of cytosolic dissipation of 

H2O2. The less efficient oxidation of ER-targeted HyPer compared to cytosolic HyPer 

therefore cannot only be interpreted to reflect hampered permeability of the ER membrane to 

H2O2.  

In addition to cytosolic and ER-targeted HyPer, Konno et al. used mitochondrial HyPer, 

which showed similar H2O2-induced fluorescence changes as cytosolic HyPer [51]. This is 

surprising, because, as for the ER, mitochondria can only be reached via the cytosol, which 

would be expected to decrease the H2O2-sensitivity of mitochondrial HyPer below the 

sensitivity of cytosolic HyPer (see above). How can this be explained? HyPer is not only 

sensitive to oxidation but also to alkalinisation [52], which is typically controlled for by also 

analyzing the response of cysteine-mutant HyPer [54]. Of potential relevance, treatment of 

cells with H2O2 induces the transient alkalinisation of the mitochondrial matrix [55]. 

Furthermore, we note that the responses to extracellular H2O2 of chemical, pH-independent 

H2O2 sensors are similarly slow in mitochondria and ER and slightly faster in cytosol and 

nucleus [56]. Apart from pH, other organelle-specific differences in the handling of HyPer 

could also be relevant. It is possible, for example, that the rich collection of thiol-disulfide 

isomerases in the ER (for review see [23, 57]) catalyzes the reduction of ER-targeted HyPer 

by DTT particularly well. This in turn would decrease the net steady-state oxidation of ER-

targeted HyPer as compared to mitochondrial HyPer at the lower doses of H2O2, as has been 

observed [51]. Although these explanations are yet hypothetical, we suggest that some 
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mitochondrion-specific feature rather than the relative impermeability of the ER membrane 

causes the more pronounced response to H2O2 of mitochondrial HyPer compared to ER-

targeted HyPer.  

In summary, all published data strongly support the notion that facilitated permeability to 

H2O2 is a designated and likely regulated feature of the ER membrane, which is in line with 

the central signaling role of this fascinating organelle.  
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Highlights 

 Ample H2O2 permeability of the ER membrane is critical for signal transduction 

 Aquaporins facilitate the transmembrane permeation of H2O2 

 The ER H2O2 pool appears not to be isolated from other cell compartments 

 




