
1 
 

Streams and riparian forests depend on each other: a review with a special focus on 1 

microbes 2 

 3 

Mari J. Tolkkinen1*, Jani Heino1, Saija H.K. Ahonen2, Kaisa Lehosmaa2, and Heikki Mykrä1, 2 4 

1 Finnish Environment Institute, Freshwater Centre, P.O.Box 413, FI-90014, University of Oulu, Finland 5 

2 Ecology and Genetics Research Unit, P.O.Box 8000, FI-90014, University of Oulu, Finland 6 

*Corresponding author, e-mail: mari.j.tolkkinen@gmail.com 7 

Highlights 8 

• The two-way dependency of streams and their riparian forests is reviewed 9 

• We focus on biodiversity and ecosystem functions, including microbial processes 10 

• Land use and climate change effects on riparian and stream ecosystems are discussed  11 

• Potential management and protection practices are overviewed 12 

• Future research questions are drawn together 13 

Abstract 14 

In this review, we draw together the research on the two-way connection of streams and their riparian 15 

forests of the boreal zone from ecological points of view. Although the knowledge about stream-riparian 16 

interactions has increased considerably recently, in practice, riparian zones are still mainly seen as 17 

buffers for nutrient and sediment loading. However, recent research has shown that riparian forests 18 

disproportionately foster regional biodiversity and maintain stream ecosystem functions and diversity. 19 

On the other hand, streams contribute to riparian diversity and ecosystem functions. Microbes are key 20 

drivers of global biochemical cycles, and they also interact with plants and animals. The knowledge on 21 

microbial communities and understanding of processes they drive has considerably increased due to 22 

recent development in microbial profiling methods. However, microbes have been largely neglected in 23 

former reviews. Thus, this overview has a special focus on the role of microorganisms in controlling 24 
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stream-riparian interaction. We also review the land-use pressures that are threatening biodiversity and 25 

ecosystem processes of riparian zones in forested landscapes. In addition, we review the possible effects 26 

of climate change on stream-riparian interactions.  Finally, we outline the research gaps that call for 27 

future research. 28 
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 33 

1. Introduction 34 

Understanding the tight interlinkage between boreal streams and their riparian forests is necessary in 35 

order to preserve or improve the biodiversity of surface waters.  The interaction needs to be 36 

acknowledged to manage forests in an ecologically sustainable manner near streams. Streams are 37 

sources of rivers (Vannote et al. 1980), thereby providing services to rivers by contributing to water 38 

quality and providing energy resources and enabling spawning grounds for fish (Freeman et al. 2007, 39 

Wipfli et al. 2007, Gomi et al. 2002, Wipfli & Gregovich 2002). Although small in size, streams contribute 40 

considerably to regional species pool and may act as reservoirs for river and lake organisms (Besemer et 41 

al. 2013, Clarke et al. 2008, Meyer et al. 2007). Riparian forests are transition zones which connect 42 

streams to upland forests (Naiman et al. 2005). Given that their occurrence is limited to near-stream 43 

locations, the area of riparian forests is small compared to that of upland forests. However, they have a 44 

disproportionate influence in maintaining biodiversity and ecosystem processes. First, streams are 45 

closely associated with their riparian forests, and the two ecosystems depend on each other 46 

hydrologically and ecologically. This is especially true for small headwater streams that rely on riparian-47 

based energy sources. Second, riparian forests often have distinct assemblages of plants and 48 

invertebrates, which differ in their composition from upland forest assemblages, increasing regional 49 
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biodiversity (Kuglerová et al. 2014a, Selonen et al. 2011, Rykken et al. 2007a, Sabo et al. 2005). In 50 

addition, streams and their riparian zones serve as dispersal routes and corridors for many terrestrial 51 

and aquatic taxa, being integral parts of the landscape in augmenting organisms’ movements between 52 

sites (Ament et al. 2014, Tonkin et al. 2018). 53 

 54 

The interest in stream-riparian interactions in forested landscapes dates back to 1970´s when it was 55 

realized that forest management based on clear-cutting severely impacted surface waters and forest soil 56 

(e.g. Brown 1973). Although the knowledge about stream-riparian interactions has increased, and the 57 

multiple ecosystem services provided by riparian forests are now being acknowledged by scientists, 58 

forest managers still mainly see riparian zones as buffers for nutrient and sediment loading. Riparian 59 

forests of small streams are not included in international directives and we still lack common protocols 60 

for their management. The use of stream riparian areas in some countries is restricted by national acts, 61 

yet there is huge variation among nations on how and to what extent riparian forests are considered in 62 

legislation (Ring et al. 2017, Lee et al. 2004). Because legislation acknowledges only a small proportion 63 

of riparian sites as conservation units, if any, the protection of streamside forests depends heavily on 64 

land owners´ will. Some countries (e.g. Finland) offer a monetary incentive for the land owner for 65 

leaving a predefined stripe of a near-natural riparian forest uncut to enhance the protection of 66 

woodland key habitats (Timonen et al. 2010). In addition, forest certificates guide riparian forest 67 

management of small streams and even define the width of buffers, but also these buffers vary a lot 68 

among countries (Piirainen et al. 2017).  69 

 70 

The close interactions between streams and riparian forests make the two inseparable. In this overview, 71 

we aim to highlight the two-way connection of streams and their riparian forests from an ecological 72 

point of view. We focus on the boreal zone, although many aspects apply also to temperate streams. By 73 

“streams” we mean fluvial channels with up to 100 km2 catchment area and which have permanent 74 

water-flow. We assumed that a catchment of 100 km2 would equal approximately to stream orders 1 to 75 



4 
 

3 (Strahler 1957). We refer to orders 1-2 as headwaters and to order 3 as mid-sized streams. These 76 

approximately resemble stream mean width under 2.5 and 7.5 meters, respectively (Downing et al. 77 

2012). Some variation, however, may exist in stream order and width depending on regional features 78 

(such as the presence of headwater lakes). Large streams from order 4 onward are not considered in 79 

this review. Research on stream-riparian interactions has mostly focused on exchange of nutrients and 80 

material from land to streams and vice versa. In this overview, we include other processes and aspects 81 

of diversity that are important in shaping stream-riparian interactions, such as those including microbes 82 

and environmental forces.  Although microbial community structure and processes largely drive the 83 

diversity and functioning of higher organisms, former reviews about streams or riparian interface have 84 

largely neglected the microbial point of view (e.g. Richardson 2019, Wohl 2017, Richardson & Danehy 85 

2017, Hjältén et al. 2016). Particularly, a holistic understanding of the drivers of microbial community 86 

dynamics and the relationship between biodiversity and functioning of microbes is lacking (e.g. Ledesma 87 

et al. 2018). We aim to draw together the main points of stream-forest association and underline the 88 

importance of protecting streams and their riparian forests and maintaining the linkage between the 89 

two. We further describe in more detail the drivers of riparian biodiversity and how it is affected by 90 

anthropogenic pressures. Finally, we draw together the main aspects that should guide riparian 91 

management and protection and define future research needs. 92 

 93 

2. Ecosystem services provided by riparian forest to streams 94 

In the boreal zone, riparian forest floor is often peat dominated, but the thickness of the peat layer 95 

varies due to climate and small-scale environmental variation. Peat layer thickness and vegetation affect 96 

the processes on the riparian forest that are the drivers of ecosystem services provided by riparian 97 

zones to streams. Sediment, organic matter, nutrient (Pinay et al. 1992) and metal (Lidman et al. 2014) 98 

retention capacity of riparian zone depends on soil type, vegetation, topography and hydrology of the 99 

riparian area. Streams are hydrologically connected by three-dimensional water flux: within the 100 

channels (longitudinally), between riparian zones and channels (laterally) and between surface water 101 
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and groundwater (vertically; hyporheic flow), all of which affect the fluxes of material in to stream 102 

network. In this review, we focus on describing fluxes across the lateral dimension. Riparian zones are 103 

situated on low elevation areas in the end of terrestrial hydrological flow paths. They receive and 104 

process considerable amounts of water, organic matter (OM), organic carbon (OC), nutrients and 105 

elements from the catchment, thus, they are considered as hotspots for biochemical processes (McClain 106 

et al. 2003). Microbes are key drivers of biochemical cycles metabolizing elements and organic 107 

compounds, which may be stored into plant biomass and bulk soil or carried to the stream channel. 108 

 109 

2.1 Sediment retention and erosion prevention by riparian zone 110 

Sedimentation is caused by bank erosion or transportation of sediments from riparian or upland forest. 111 

Sedimentation may reduce the survival of stream organisms and alter community composition 112 

(Tolkkinen et al. 2016), biodiversity (Annala et al. 2014, Izagirre et al. 2009) and productivity (Annala et 113 

al. 2014, Cardinale et al. 2002, Parkhill & Gulliver 2002). Roots of plants in the riparian zone stabilize the 114 

ground and thus prevent erosion. In forests, natural sedimentation of stream beds is usually low 115 

compared to that of less vegetated landscapes, although streams with riparian zones that have thin peat 116 

layer can also be sandy in the boreal zone. Further, drought or spring snow melt may significantly 117 

increase bank erosion (Wood & Armitage 1999, Naiman 1982). 118 

 119 

2.2 Organic matter and carbon retention capacity of riparian zone 120 

On a global scale, carbon processing rates in the riparian forests and streams are determined by 121 

temperature and precipitation (Tiegs et al. 2019). The hydrology of the riparian zone has a key role in 122 

determining the flux of OM and associated OC to the stream (Fiebig et al. 1990). OM may leach to a 123 

stream due to land use near the stream or in the catchment. High loads of OM my cause brownification 124 

of waters, which may further impair invertebrate diversity (Astorga et al. 2011), microbial community 125 

composition and functions (Wagner et al. 2015), and fish abundance (Hedström et al. 2017) locally or at 126 
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downstream reaches. Therefore, the OM retention capacity of riparian soil, i.e. the capacity to prevent 127 

organic substances draining to the stream, is an important ecosystem service needed to maintain 128 

stream functioning and biodiversity in a natural state.  129 

 130 

OM retention capacity is maintained by vegetation forming OM traps together with soil microbes and 131 

invertebrates decomposing OM into simple particles, which eventually forms soil. Decomposition rate is 132 

controlled by soil moisture and temperature (Coûteaux et al. 1995, Singh and Gupta 1977), soil texture 133 

(van Deen & Kuikman 1990) and litter quality (Coûteaux et al. 1995). Fungi are often considered as the 134 

dominant decomposers on land, especially in acid soils and soils experiencing frequent drying-wetting 135 

dynamics (Bapiri et al. 2010, Yuste et al. 2011), while bacteria may overtake decomposition in 136 

circumneutral-alkaline and arid soils (Rousk et al. 2010). However, this pattern is not self-evident (see a 137 

review by Strickland & Rousk 2010). In riparian forests lower soil carbon:nitrogen (C:N) ratio may give 138 

competitive advantage to decomposer bacteria over fungi (Högberg et al. 2007, Fierer et al. 2009, 139 

Brockett et al. 2012), although this likely depends on the overall nutritional status of the habitat 140 

(Kyaschenko et al. 2017b). In addition to environmental factors, soil fungal community composition has 141 

been identified as an important controlling factor of OM storage in humic soil (Kyaschenko et al. 2017a). 142 

 143 

The net balance of C along a stream network depends on terrestrial C gains, biological consumption of C, 144 

and inorganic processes such as outgassing of CO2 (Dawson et al. 2004). Because groundwater table is 145 

shallow near headwater streams, these small streams likely receive terrestrial OC from riparian zone via 146 

subsurface pathways rather than from upland sites (Mei et al. 2012). However, upland sites may be 147 

principal sources of OC for headwater streams with adjacent hillslopes and those that have shallow 148 

bedrock near the channel (Gannon et al. 2015). The amount of OM fluxes may also depend on 149 

catchment type as shown by a long-term study from northern Sweden, where fluxes of terrestrial OM at 150 

baseflow were positively correlated with the proportion of wetlands in the catchment (Laudon et al. 151 

2011). Increased discharge, due to for example heavy rain events, may further increase the flux of 152 
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riparian OC to streams (Lambert et al. 2011). Differences exist also in inorganic C sources of low and high 153 

order streams.  Headwater streams may receive most of their inorganic carbon, namely CO2, from the 154 

riparian zone, where it is formed by soil respiration (Winterdahl et al. 2016). Higher order streams, in 155 

turn, more likely gain inorganic C from in-stream processes, where DOC is turned into CO2 in aquatic 156 

mineralization processes (Moody et al. 2013). 157 

 158 

2.3 Riparian-based organic matter in streams 159 

In streams, benthic microbial communities (Kreutzweiser & Capell 2003) together with benthic 160 

invertebrates may utilize OM effectively, controlling the flux and concentration of terrestrial OM and OC 161 

further downstream (Dawson et al. 2001). Terrestrial OM is important for the biodiversity and 162 

ecosystem functions of streams. As implicated by the River Continuum Concept (Vannote et al. 1980), 163 

headwater stream invertebrate communities usually depend on allochthonous energy resources 164 

(Cummins et al. 1989), which end up to the stream as dissolved and particulate organic matter (DOM 165 

and POM, respectively). Main source of coarse POM (CPOM) from riparian forest is leaf litter, but also 166 

pieces of other plants and terrestrial invertebrates enter the stream. Benthic invertebrate shredders are 167 

the main macroscopic consumers of leaf litter in streams (Cummins et al. 1989, Hieber & Gessner 2002). 168 

The major product of decomposition is fine POM (FPOM), which is then carried downstream where it is 169 

further consumed by microbes and invertebrates (Webster et al. 1999).  170 

 171 

In addition to shredders, microbes, especially hyphomycete fungi, are important consumers of leaf litter 172 

in streams (Hieber & Gessner 2002, Gessner et al. 1999, Bärlocher 1992). Microbial processing is 173 

thought to be an essential phase of litter decomposition, because it is assumed to make leaves more 174 

palatable for invertebrate consumption due to changes in leaf matrix composition (Graҫa 2011, Rossi 175 

1985).On the other hand, microbes can be seen as potential competitors for shredders as they use same 176 

the energy resource (Gessner et al. 1999).  177 

 178 
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Moreover, endophytic fungi, which colonize living leaves before abscission, may contribute to litter 179 

decomposition on land (Voříšková & Baldrian 2013, Koide et al. 2005) and in streams (Koivusaari et al. 180 

2019, Wolfe et al. 2019, Mustonen et al. 2016, LeRoy et al. 2011). This may also hold true for endophytic 181 

bacteria, because they too can carry glycoside hydrolases genes, which encode enzymes required for 182 

decomposition of OM (Berlemont & Martiny 2016). The contribution of hyphomycete fungi to litter 183 

decomposition in streams may depend on hydrological factors. Mustonen et al. (2016) showed that 184 

endophytes were the main decomposers of stream litter in slow-flow experimental outdoor channels. 185 

Similarly, Wolfe et al. (2019) found litter infected by the endophyte Rhytisma decay faster than lesion-186 

free litter in a third-order stream in a mixed conifer and hardwood forest. On the other hand, 187 

endophytes have ability to slow down decomposition rates on land (Omacini et al. 2004) and in streams 188 

(LeRoy et al. 2011) depending on endophyte identity and/or stream flow velocity. There are various 189 

possible ways how endophytes may control litter decomposition (e.g. by inhibiting other microbes), yet 190 

the underlying mechanisms are not currently well understood. 191 

 192 

Decomposing biota primarily control decomposition rates, but their efficiency is codetermined by 193 

environmental factors such as litter quality (Cornut et al. 2015, Ferreira & Chauvet 2011a, Leroy & Marks 194 

2006), trophic state of the stream (Ferreira et al. 2015, Ferreira & Chauvet 2011b), water chemistry 195 

(Mykrä et al. 2019, Tolkkinen et al. 2015, Suberkropp & Chauvet 1995) and temperature (Martínez et al. 196 

2014, Ferreira & Chauvet 2011a, 2011b). Riparian diversity may affect leaf breakdown rates in streams 197 

because litter species composition and quality influences leaf processing rates (Fernandes et al. 2012, 198 

Schindler & Gessner 2009, Swan & Palmer 2006, Swan & Palmer 2004). This impact can be mediated 199 

through changes in invertebrate (Leroy & Marks 2006) and microbial (Fernandes et al. 2013) diversity or 200 

due to differences in riparian forest composition (Kominoski et al. 2011). 201 

 202 
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2.4 Metal retention capacity of riparian zone and toxicity of metals 203 

Drainage of OC and elements to streams are often related, because many elements have high affinity 204 

with organic compounds (Lair et al. 2007, Mierle & Ingram 1991). Peat soils may prevent the fluxes of 205 

trace metals to streams more effectively than mineral soils (Lidman et al. 2014). Stream water chemistry 206 

determines bioavailability and toxicity of metals to organisms. In general, the more acidic and softer 207 

(lower concentration of calcium and magnesium) the water is, the lower concentrations of metals are 208 

needed to produce toxic effects on organisms (Paquin et al. 2000). Dissolved and particulate OC (DOC 209 

and POC, respectively) bind metals decreasing their bioavailability. Thus, in humic streams, organisms 210 

may not be as prone to toxic effects as in streams acidified due to, for example, acid sulfate soils or 211 

sulfate-rich bedrock. The latter can also decrease water pH more than OC. Ultimately, whether metals 212 

produce toxic effect on organisms or not, depends on organisms` sensitivity to metals. Metal 213 

contamination due to land-use changes may affect aquatic communities (Tolkkinen et al. 2016) and 214 

food-webs (Hogsden & Harding 2012).  215 

 216 

Trace metals, draining from upland or flushing with flood, may accumulate on riparian zone, potentially 217 

making the riparian soil toxic for some plants. On the other hand, high affinity of metals with OM may 218 

decreases their bioavailability in the riparian zone (Lidman et al. 2017). Some plants, with the help of 219 

microbial symbionts, have the ability to accumulate metals in their shoots, thus avoiding toxic effects 220 

(Khan et al. 2000). Further, mychorrizal fungi, which form symbiotic relationships with their host plant, 221 

have ability to either inhibit (Hildebrandt et al. 2007) or exacerbate (Killham & Firestone 1983) toxicity 222 

of metal-polluted soil on the host plant. An example of such metal-tolerant fungus is Suillus Gray, 1821 223 

from order Boleatus, a common genus in Northern Hemisphere, which contribute to the survival of their 224 

host trees (Pinaceae) on metalliferous soils (Colpaert et al. 2011). Forest soil bacterial communities may 225 

be able to adapt to metal pollution, presumably via changes in community composition (Pennanen 226 

2001), yet their functional activity may decrease despite adaptation (Frey et al. 2006). However, 227 

relatively little is known how changes in microbial communities affect their processes. 228 
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 229 

2.5 Nutrient retention capacity of riparian zone 230 

Because of their position between stream and upland sites, riparian zones play a major role in chemical 231 

processing (Ledesma et al. 2013) and controlling stream nutrient status and pH. Because riparian soil in 232 

boreal forests is usually rich in OM, it also tends to accumulate nutrients and trace metals. However, as 233 

the riparian zone can be a source of OM for streams, especially for small streams, it may be a source of 234 

those nutrients that tend to bind with OM (Lidman et al. 2017). The input of alkaline elements may 235 

prevent stream from acidification. 236 

 237 

Vegetation and microbes are the primary consumers of soil nitrogen (N) and phosphorous (P), which are 238 

the main nutrients controlling ecosystem productivity in terrestrial and freshwater ecosystems (Aerts & 239 

Chapin III 1999). Denitrification, is often higher near river channels compared to upland forests (Hill et 240 

al. 2000, see also a review by Hill 1996), because the anerobic conditions in the wet ground enable the 241 

reduction of nitrate to nitrite and, eventually, to gaseous N forms (Tiedje 1988). Hill (1996) suggests that 242 

in watersheds with low drainage of nutrients, riparian forests may act as a nutrient source or sink to the 243 

stream depending on the potential redox conditions. In watersheds with relatively high nutrient 244 

drainage, riparian zone may act as a nutrient sink (Mulholland 1992).  245 

 246 

Hedin et al. (1998) identified narrow near-stream zone as functionally the most important location for 247 

denitrification in riparian zone despite low DOC levels. This may be a consequence of, for example, 248 

unexceptionally high root mass in the soil. In their review of microbial “hotspots” and “hot moments” 249 

Kuzyakov & Blagodatskaya (2015) go further to microscale and point out that soil microbial activity is 250 

highly heterogenous in space and time. In hotspots, such as rhizosphere and detritusphere, microbial 251 

activity can be two to 20 times higher than in the bulk soil (Blagodatskaya et al. 2009, Blagodatskaya et 252 

al. 2014). Also, seasonal variation may affect the effectiveness of riparian forest to retain nutrients 253 

(Pinay et al. 1993), thus studies conducted at different seasons may produce highly variable results. 254 
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BOX 1. Microbial community profiling with molecular methods 

Microbial communities can be extensively studied with modern molecular methods, so-called ‘omics’ (see Franzosa et al. 

2015 and Knight et al. 2018). In this review we will concentrate on nucleic acid-based methods, i.e. marker gene, 

metagenome and metatranscriptome sequencing, which can be used for taxonomic and functional microbial community 

profiling answering questions: “who is there?” (using genomic DNA as a template), “who is active?” (ribosomal RNA; rRNA) 

and “what are they doing?” (messenger RNA; mRNA). Taxonomic studies are usually based on DNA, while functional 

genomics include both functional potentials (DNA-based metagenomics) and functional activities (RNA-based 

metatranscriptomics). 

Shotgun and amplicon-based marker gene, metagenomic and metatranscriptomic sequencing studies involve 

extraction of total DNA and/or RNA from the community samples. In RNA-based studies, this is generally followed by mRNA 

enrichment to remove rRNA (which is around 80% of total RNA) and synthesis of RNA to complementary DNA (cDNA). 

Typically, amplicon sequencing is based on single gene such as the bacterial 16S and fungal ITS or 18S rRNA gene region, 

which is amplified in PCR with specific primers. Shotgun sequencing instead gives millions of random genomic fragments 

from a studied microbial community that can be assembled into longer sequence reads (contigs). Acquired amplicon and 

shotgun sequence reads are then matched to reference databases and used for downstream analyses. 

Challenges in molecular methods: In amplicon-based marker gene analysis, selecting primers that target all the 

taxa of interest is a challenge, while in shotgun-based studies the challenge is building contigs from complex environmental 

samples. In both, amplicon and shotgun-based methods, very short sequence reads may not be reliably matched. Still, the 

biggest problem with the ‘omics’ is the incomplete databases suffering from the missing reference species and functional 

genes, as for example 30-50% of the encoded proteins by any given genome are still unknown or incorrectly annotated, 

especially for taxa found from less well-studied environments. The problem may be even larger with the methods relying on 

whole genome reference databases or in pathway-reconstruction depending on species-specific databases. 

Recommendations for the future: Combining different ‘omic-methods’ (including also proteomics and 

metabolomics) gives enhanced and more reliable results, e.g. by covering some of the weaknesses of the others. These 

‘multi-omics’ studies can be used to acquire a more profound biological understanding and can be used to support new 

hypotheses.  Also, combining traditional cultivation and modern molecular methods could provide new insights into life of 

microorganisms.  However, microbiome studies with molecular methods acquire a careful planning all the way from the 

study setup, sampling, choosing the most appropriate ‘omic-methods’ (e.g. primer selection and sequencing platforms) to 

bioinformatics and statistical analyses. 

 255 
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2.6 Riparian control on stream microbial diversity 256 

Although the development of molecular methods (Box 1) have made microbial profiling much easier, 257 

faster and cheaper than before, our knowledge on freshwater bacteria (Zwart et al. 2002) and fungi 258 

(Grossart et al. 2006) is still rather scarce compared to that of some other biotic groups, for example, 259 

benthic invertebrates. Especially microbial studies linking the aquatic and terrestrial ecosystems are 260 

lacking. However, there is evidence that the type of soil-originating DOM can affect aquatic microbial 261 

productivity (Berggren et al. 2009), which may be mediated through shifts in bacterial community 262 

compositions (Judd et al. 2006). Possibly also aquatic fungi are affected, but they have not been studied 263 

in this regard. DOM from the riparian soil originates mostly from plants (Wang et al. 2014). As OM 264 

quality and quantity depend on the quality (identity) and quantity of terrestrial plants, riparian 265 

vegetation potentially has a strong control of aquatic microbial communities. In addition, genetic 266 

variation affects the variability of phenotypic traits in plants having ecosystem-level effects (Hughes et 267 

al. 2008). For example, genetic variation can be realized as effects on community structure, species 268 

interactions, recovery from disturbance, primary production and decomposition (Hughes et al. 2008, 269 

Whitham et al. 2006), and can be detected also in streams (LeRoy et al. 2006).  270 

 271 

Microorganisms originating from land can contribute significantly to richness, and possibly composition, 272 

of microbial communities in aquatic ecosystems, especially in streams, which are highly connected to 273 

land (Ruiz-Conzales et al. 2015). The relationship between riparian and stream microbial communities is, 274 

however, still poorly understood. Plant species (Carney & Matson 2006, Marchner et al. 2001, Borga et 275 

al. 1994) and soil properties, such as pH (Moon et al. 2016), can select for certain microbes in terrestrial 276 

habitats, and this may also hold true for aquatic environments. For example, certain terrestrial plants 277 

can favor fungi over bacteria (Bardgett & Walker 2004), which in turn may play a role in structuring 278 

aquatic microbial communities.  279 

 280 
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2.7 Terrestrial invertebrates in stream food-webs 281 

The amounts of terrestrial invertebrates entering the stream are determined by riparian tree 282 

composition, especially to the amounts of deciduous trees in riparian forest. Deciduous forests support 283 

significantly greater fluxes of invertebrates from land to stream compared to coniferous forests (Inoue 284 

et al. 2013, Wipfli 1997). Terrestrial prey input is relevant for stream fish and predatory invertebrates, as 285 

they may depend nutritionally on terrestrial subsidies. Food consumed by stream fish may comprise 30-286 

90% of terrestrial invertebrates (Inoue et al. 2013, Wipfli 1997), with a positive feedback on their growth 287 

(Gustafsson 2011). The effect may cascade further down the food-web due to predatory-release of 288 

aquatic invertebrates. For example, Nakano et al. (1999) experimentally prevented terrestrial 289 

invertebrate fluxes to stream, which shifted fish to feed on aquatic grazers, consequently leading to 290 

increased periphyton production. England and Rosemond (2004) showed that even a small reduction in 291 

riparian forest tree cover may significantly alter the food-web of aquatic consumers that are dependent 292 

on terrestrial subsidies.  293 

 294 

2.8 Physical effects of riparian forest to stream 295 

Riparian forests affect stream biodiversity and functions also physically. Because headwater streams are 296 

narrow, they are more shaded than rivers due to more closed canopy cover. Riparian trees thus have a 297 

great control on stream water temperature (Richardson & Danehy 2007, Moore et al. 2005). Also, 298 

groundwater input from hyporheic zone or the upland forest cools down stream water (Boulton & 299 

Hancock 2006). Canopy cover may affect stream diversity by controlling primary production (Mosisch et 300 

al. 2008, Hawkins et al. 1982, Murphy et al. 1981), water temperature (Moore et al. 2005) and litter 301 

input (Melody & Richardson 2004, Wallace et al 1997). The proximity of trees near streams enable 302 

falling of branches and trunks in to the channel. In-stream deadwood originating from riparian forests 303 

contributes to decomposition efficiency by trapping and accumulating leaves on the stream bed (Flores 304 

et al. 2011), thus extending the retention time of leaves in the stream. Accumulation of leaf litter to the 305 
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stream bottom may be particularly relevant in northern streams, where ice sheet and snow in the 306 

riparian zone prevent fluxes from land to water during winter. 307 

 308 

3. Riparian forest diversity depends on the stream  309 

Streams can shape riparian diversity by forming a disturbance regime on the riparian zone, by assisting 310 

the dispersal of riparian species and by offering subsidies for riparian food-web. Also, groundwater 311 

affects riparian diversity and although it is not strictly a mechanism caused by the stream, it is 312 

characteristic for stream riparian zones due to their low topographic position in the catchment. We first 313 

explain, why riparian diversity differs from that of upland forest and then describe in more detail the 314 

mechanisms by which the stream affects riparian diversity. Finally, we discuss the effects of the stream 315 

on riparian microbiome. 316 

 317 

3.1 An overview of riparian diversity 318 

Riparian zones may support more species than the upland landscapes. Studies have shown riparian 319 

habitats to be important at least for bird (Bennet et al. 2014, Mosley et al. 2006, Whitaker & 320 

Montevecchi 1999, Darveau et al. 1995) and plant (Pollock et al. 1998, Kuglerova et al. 2014a) diversity 321 

and dispersal. Even if riparian species richness does not exceed that of upland sites, the biotic 322 

communities differ in their composition (Sabo et al. 2005). Riparian zones support species that either 323 

prefer or withstand moist conditions, thereby increasing regional species richness (Kuglerová et al. 324 

2014a, Selonen et al. 2011, Dynesius et al. 2009, Rykken et al. 2007a, Zinko et al. 2005). Soil can be 325 

moist due to groundwater input from upland sites or shallow groundwater table near the stream, or due 326 

to inundation by flooding waters. While the role of groundwater is usually more evident in headwater 327 

streams, flooding is more important in medium sized streams. In both cases, soil moisture tends to 328 

increase near-stream biodiversity, because different species inhabit wetted ground compare to drier 329 

sites. The mechanism is different, though. The proximity of groundwater wets the ground year-round 330 
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and increases pH and N availability (Kuglerová et al. 2014a), thus favoring some species of bryophytes 331 

and vascular plants over others. Flooding, on the other hand, causes disturbance and temporal 332 

inundation offering habitat for moisture dependent or resistant species that may be poor competitors in 333 

more stable conditions. While upland forest may consist of only one to few tree species, riparian zones 334 

of typically support a high species richness of trees, especially deciduous ones, which tend to form a 335 

zonation from reach to upper forest (Ward et al. 2002), especially in medium-sized streams.  336 

 337 

3.2 Effects of stream flooding and ice on riparian forest 338 

Stream flooding shapes riparian diversity by creating a disturbance regime in the riparian zone. Climate, 339 

stream channel morphology, bank slope, groundwater discharge, and proximity of lakes determine the 340 

extent of stream flooding, which is typical for medium-sized (and bigger) streams. Precipitation and 341 

seasonal shifts in temperature affect the magnitude and duration of floods and the formation and 342 

melting of ice and snow. The effect of floods and ice on riparian zone is significantly different in a V-343 

shaped stream valley with steep bank slopes compared to U-shaped valley with only moderate slope. 344 

Flooding can be an important, even fundamental, mediating factor of the diversity of riparian vegetation 345 

(Garssen et al. 2015, Lind & Nilsson 2015). As initially hypothesized by Connell (1978), intermediate 346 

disturbances should maintain highest biodiversity by promoting competitive release. In theory, 347 

intermediate flooding should thus create space for stress-tolerant species with low-competitive abilities 348 

and for pioneer species (Lind et al. 2014b). Accordingly, some field studies have found species richness 349 

to peak at intermediate flooding (Pollock et al. 1998, Townsend et al. 1997). However, local conditions, 350 

especially site productivity, determine the response of communities to disturbances, and thus 351 

environmental gradients should be considered when evaluating disturbance effects on diversity (Huston 352 

2014). Furthermore, the scale at which diversity effect is evaluated should be considered carefully, 353 

because positive diversity effects at intermediate levels of flooding may be detectable more readily on 354 

large (hectares) than on small (square meters) scale (Pollock et al 1998). Due to flooding, riparian 355 

ecosystems are often highly variable in space and time. Because of frequent disturbances, riparian 356 
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communities can be considered highly resilient to natural perturbations, but it does not automatically 357 

make them resistant or resilient to anthropogenic disturbances, which are usually fundamentally 358 

different from natural ones.  359 

 360 

In the northern hemisphere, ice is an important factor mediating riparian diversity (Lind et al. 2014a, 361 

Lind et al. 2014b, Engström et al. 2011). About 60% of the major river basins north of the equator 362 

experience ice processes during winter (Allard et al. 2011). Thus, the ecological importance of ice cannot 363 

be neglected. In small boreal streams, the formation of anchor ice promotes flooding (Beltaos 2008), 364 

which in turn can increase riparian vegetation diversity. While detrimental to individual plants, ice 365 

creates space for early successional species by ripping off vegetation during ice melt; thus, its effect is 366 

similar to that of flooding. 367 

 368 

3.3 Stream as a dispersal corridor for riparian species 369 

Species richness and assemblage composition in a given stream or riparian location is determined by the 370 

sum of environmental preferences, dispersal ability and other traits of the species (Tonkin et al. 2018, 371 

Heino et al. 2015, Leyer and Pross 2009, Hérault and Honnay 2005). Stream channel is an important 372 

dispersal corridor for passive dispersal of plants and their seeds (Kuglerová et al. 2015, Nilsson et al. 373 

2010). Some studies suggest that seeds of riparian plants are more often adapted to floating than 374 

upper-forest species (Johansson et al. 1996, Lopez 2001), which implies that their dispersal success may 375 

be dependent on the transport capacity of the stream (Merritt & Wohl 2002, Jansson et al. 2000). The 376 

potential for transporting seeds and vegetative parts varies among streams due to differences in 377 

channel morphology and vegetation cover (van Leeuwen et al. 2014, Riis and Sand-Jensen 2006), 378 

magnitude of discharge (Nilsson et al. 2010) and water level (van Leeuwen et al. 2014). Jansson et al. 379 

(2005) and Merrit et al. (2010) showed in their studies in Swedish rivers that dispersal by water 380 

significantly increased the diversity of riparian plant species. However, hydrochory may be more 381 

important for the occurrence of species in larger streams compared to the smallest headwater streams 382 



17 
 

(Kuglerová et al. 2015), presumably because headwater populations do not have source populations 383 

upstream, and because they must rely on dispersal modes other than hydrochory. Water dispersal may 384 

be also relevant for other riparian organisms (e.g. fungi) as shown by a recent study (LeBrun et al. 2018). 385 

 386 

3.4 Subsidies from stream to riparian forest 387 

While terrestrial-to-aquatic subsidies concern mainly the flux of detritus, emerging aquatic insects 388 

dominate subsidies from water to riparian zone (Bartels et al. 2012). Insects emerging from the streams 389 

are consumed by riparian insectivores, and they are also a nutrient source for riparian plants and micro-390 

organisms (Dryer et al. 2005). Although benthic production of streams exceeds that of lakes, streams 391 

and rivers can support significantly lower fluxes of prey to land compared to ponds and lakes (Gratton & 392 

Vander Zanden 2009). That said many studies have shown that bottom-up effects initiated by aquatic 393 

prey can have major impacts on riparian ecosystems, contributing 25 to 100% of energy sources to 394 

spiders, lizards, birds and bats (Baxter et al. 2005). However, most studies are from the temperate zone, 395 

and it would thus be beneficial to gain more knowledge from the boreal zone. 396 

 397 

3.5 Stream effects on riparian microbiome and related processes 398 

Literature about the effects of stream hydrology and ecology on microbial process rates in the riparian 399 

zone is scarce, and riparian zones are widely variable regarding to, for example, moisture and nutrient 400 

status, which makes generalization difficult. However, biochemical processes in the riparian zone may 401 

be more stable than in the upland forest due to closeness of a permanent stream and associated 402 

relatively stable microclimate conditions, although we did not find any studies related on the subject.  403 

On the other hand, changing hydrology due to land-use change can have unpredictable effects on 404 

riparian processes, which may become detectable only in the long term (e.g. Bardgett et al. 2001). 405 

Further research is needed on how protecting stream flooding regimes, groundwater discharge and 406 

natural vegetation could contribute to the maintenance of biochemical processes in the riparian zone. 407 
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 408 

Figure 1. Main reciprocal effects in a stream and its riparian forest. Boxes with arrows indicate the direction of the 409 

effect, either from the riparian forest to the stream (light green boxes) or from the stream to the riparian forest 410 

(light blue boxes).  411 

 412 

4. Human impact on riparian and stream ecosystems 413 

Extensive land use and modification of stream channels have led to dramatic decline of natural riparian 414 

habitats (Richardson et al. 2007). Multiple pressures due to land management are threatening 415 

biodiversity and ecosystem processes in riparian zones. These pressures include forestry, drainage 416 

ditching, agriculture, grazing and invasion by alien species. Land use has been identified as the most 417 

influential pressure affecting biodiversity (Sala et al. 2000). Streams may be the most sensitive aquatic 418 

ecosystems towards human impact, given their topographically low position in the catchment 419 

(Richardson 2019). Channelization and damming of streams and rivers can affect freshwater and riparian 420 

zone diversity. Anthropogenic land use near streams can change riparian microclimate conditions and 421 

enable invasion by alien species, which translate into changes in species composition and may 422 
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subsequently affect ecosystem functions. If ecosystem functions are changed, it is possible that the 423 

consequences accumulate downstream and extend into riparian forest. 424 

 425 

4.1 Effects of riparian land use on stream and riparian diversity and ecosystem functions  426 

In this review, we only consider forestry-associated land use effect, and thus urban and agricultural 427 

impacts are beyond our consideration, for example. Forestry associated impacts include physical and 428 

chemical modification of streams and riparian forests, potentially leading to changes in biotic 429 

communities, and eventually to depauperate ecosystem functions.  430 

 431 

4.1.1 Stream warming 432 

Removing mature trees from riparian zone predisposes streams to warming directly and through 433 

warming of exposed spring waters (Kreutzweiser et al. 2009, Brown & Krygier 1970). Possible warming 434 

of the stream water depends on the site characters and the weather conditions following the time of 435 

logging. Headwater streams that rely on direct input of groundwater may not be as prone to warming 436 

(Mellina et al. 2002) as larger streams. On the other hand, wider streams are naturally less shaded than 437 

narrow ones, thus the temperature of headwater streams may be more susceptible to forest harvesting 438 

compared to higher order streams. The recovery from possible warming following forest harvesting 439 

varies a lot among streams and can take up to ten years (Moore et al. 2005). Warming may change the 440 

structure of stream communities (Piggott et al. 2015, Ryan & Ryan 2006, Quinn et al. 2004) and 441 

eventually the function of the stream. For example, increasing solar radiation accelerates primary 442 

production (Kiffney et al. 2004, Boothroyd et al. 2004, Feminella et al. 1989) and decomposition 443 

(Ferreira & Canhoto 2015, Ylla et al. 2014, Ferreira & Chauvet 2011), and can result in eutrophication 444 

and emission of CO2 from streams (Acuña et al. 2008).  445 

 446 
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4.1.2 Stream water chemistry 447 

Stream water quality is compromised in forest harvesting, because extensive cutting and site 448 

preparation often increase stream DOC levels in headwaters (Schelker et al. 2012). Clear-cutting leads to 449 

rapid increase in spring snow melting and runoff potentially increasing nutrient, element and sediment 450 

flow to streams (Schelker et al. 2013). In addition, drainage of even-aged peatland forests is a common 451 

practice in northern countries. It lowers the groundwater table enhancing tree growth, but at the same 452 

time it causes nutrients, suspended solids and sediment load to streams (Nieminen et al. 2017, Stenberg 453 

et al. 2015, Marttila & Kløve 2010) leading to depauperate biotic communities due to simplification of 454 

habitat structures (Vuori et al. 1998, Vuori & Joensuu 1996), brownification (Hayden et al. 2019, Haaland 455 

et al. 2010, Evans et al. 2005) and eutrophication (Hayden et al. 2019, Marttila et al. 2018). 456 

Furthermore, ditch network maintenance poses similar threats to streams as new ditches (Nieminen et 457 

al. 2018a, Joensuu et al. 2002). 458 

 459 

4.1.3 Aquatic diversity and functions 460 

Removing trees, especially deciduous ones, from the riparian zone decreases the input of leaf litter and 461 

wood to the stream, which means less energy sources for decomposers, less traps for leaf retention and 462 

less variable habitat for microbes, algae, plants and invertebrates. These may lead to a decline in 463 

diversity, abundance and/or biomass of decomposer communities (Johnson et al. 2003, Wallace et al. 464 

1997). Community changes may further decrease ecosystem stability (see the discussion in Bengtsson et 465 

al. 2000 and Cardinale et al. 2012) and lead to impaired stream functions, for example, decreased 466 

decomposition. In-stream decomposition can be extremely sensitive to land use in the riparian forest 467 

(Lecerf & Richardson 2010), but also upland land use changes can be detectable in such processes 468 

(Kreutzweiser et al. 2008a). On the other hand, clear-cutting near a stream can increase in-stream 469 

decomposition rate with a time lag if it leads to increased deciduous tree abundance in the riparian 470 

zone, increased nutrient load to the stream and/or increased mechanical fragmentation of litter due to 471 

higher sediment loads (Benfield et al. 2001, McKie & Malmqvist 2008).  472 
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 473 

Because riparian plant diversity affects stream microbes (Judd et al. 2006), any change in riparian 474 

vegetation – species composition, biomass, age structure and/or species ratio of riparian trees – may 475 

change stream assemblage compositions and functions through bottom-up effects on the food-web 476 

(Bartels et al. 2012, Inoue et al. 2013, Kominoski & Rosemond 2012, Kominoski et al. 2011, Sweeney et 477 

al. 2004). 478 

 479 

4.1.4 Dispersal of aquatic species with terrestrial adult stages 480 

Catchment-scale vegetation loss may also limit stream-organism dispersal, especially for species that 481 

have terrestrial adult stages (Smith et al. 2009), although there is no firm evidence of such from forested 482 

catchments. Headwater streams are situated at the top of the river network and suitable source 483 

populations are not always found upstream, thus populations may rely on dispersal via land or from 484 

source populations downstream (Tonkin et al. 2018). Their colonization success depends on their 485 

dispersal abilities and on distance between suitable habitats (Sarremejane et al. 2017). Particularly, the 486 

dispersal of caddisflies, stoneflies and mayflies is mostly dependent on adult flying stages (Bunn & 487 

Hughes 1997); hence forest habitat fragmentation may impact their population dynamics. Especially 488 

populations depending on nearby source populations and dispersal over-land, may be in jeopardy if 489 

dispersal is restricted due to land use changes (Heino et al. 2017).  490 

 491 

4.1.5 Riparian diversity 492 

In theory, riparian organisms may be more adapted to disturbances than upland-dwelling ones, and they 493 

may be more effective in re-colonization and re-establishment, because they can more readily take 494 

advantage of water-assisted dispersal (Johansson et al. 1996, Lopez 2001). This is especially the case if 495 

suitable source populations exist upstream. However, if species disappear after anthropogenic 496 

disturbance, they may not be able to recolonize denuded locations (Dynesius et al. 2009). For example, 497 

species depending on old-growth forest may not have suitable source populations in nearby areas. 498 
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Moreover, riparian vegetation removal may be too severe disturbance to overcome, because it reduces 499 

suitable habitat for riparian and semi-aquatic species. For example, riparian vegetation loss is a threat to 500 

web-spinning spider abundance and diversity because it reduces habitat for web sites (Laeser et al. 501 

2005). 502 

 503 

Tree removal in or near the riparian forest leads to drying of microclimate due to exposure to sun and 504 

wind (Oldén et al. 2019). Such changes in microclimatic conditions may affect especially species that are 505 

specialized to occur in moist riparian habitats, yet this likely depends on species` ecology and site 506 

characters. Species attracted to convex surfaces (e.g. logs, stumps or boulders) can have high mortality 507 

in uncut buffers due to edge effect caused by clear-cutting (Oldén et al. 2019, Hylander et al. 2005). On 508 

the other hand, some riparian organism groups may be more tolerant toward disturbance at sites with 509 

rough ground, which have concave surfaces (e.g. stony sites). Species attracted to concave surfaces may 510 

be unaffected by edge effect, because of the ability of the uneven ground to maintain moist conditions 511 

(Dynesius et al. 2009, Hylander et al. 2005, Hylander et al. 2004). However, in other cases species of 512 

concave surfaces have decreased due to logging (Oldén et al. 2019). If soil tillage is practiced in the 513 

riparian forest, the potentially beneficial effect of concave forest floor is lost. 514 

 515 

4.1.6 Riparian microbes and microbial processes 516 

Forest harvesting, especially clear-cutting, may affect microorganisms via changes in nutrient 517 

availability, microclimate conditions and root dynamics. Although most research has been conducted in 518 

upland forest rather than in the riparian zone, here-in we assume, that the microbial processes are 519 

pretty much similar in upland and riparian forests, if the differences in environmental conditions (such 520 

as soil moisture and microclimate) are considered. Logging impacts on soil nutrient cycling and flux to 521 

streams depends on soil type, site conditions, catchment hydrology, post-logging weather patterns, and 522 

type and season of harvesting (Kreutzweiser 2008b). Often soil N, P and possibly potassium (K) are 523 

increased after harvesting, because of decreased/ceased tree root nutrient uptake, increased erosion 524 
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and leaching, and increased mineralization and nitrification rates (Hynes & Germida 2013).  However, 525 

removing logging residual may lead to negative effects on soil productivity and decrease in soil nutrient 526 

pools compared with stem-only harvesting and decrease decomposition (Thiffault et al. 2011). Also, 527 

clear-cutting effects on microbial dynamics vary among sites. While microbial biomass may not be 528 

directly affected by forest harvesting (Taylor et al. 1999), it may decrease due to reduced litter input and 529 

changes in microclimate (Hassett & Zak 2005) and soil moisture (Taylor et al. 1999) following clear-cut 530 

harvest. Furthermore, microbial community composition may change after harvesting (Hynes & 531 

Germida 2013, Lazaruk et al. 2005, Hagerman et al. 1999). Presumably fungi are more sensitive to forest 532 

harvesting than bacteria (Bååth et al. 1999), because the changes in root dynamics affect root-533 

associated (mycorrhizal) fungi (Kyashcenko et al. 2017b, Bååth 1980). This contradicts to natural 534 

disturbances, such as wildfires, which usually act above ground rather having little or no effect 535 

underground (Jonsson et al. 1999). Moreover, wildfire and forest harvesting have distinct impact on soil 536 

chemical composition, which potentially induces differing microorganismal responses (Thiffault et al. 537 

2008). However, as Hynes & Germida (2013) point out, changes in microbial composition, or even 538 

biomass, do not necessarily resemble changed microbial functions - rather it may reflect ability of the 539 

community to adjust to changed conditions and keep up functions. 540 

 541 

Harvesting-induced changes in soil moisture can affect microbiota. Soil moisture can either decrease or 542 

increase due to forest harvesting depending on the hydrological connectivity of the stream and the 543 

catchment (Smerdon et al. 2009). Typically, boreal streams are in the receiving end of groundwater flow 544 

path, and thus groundwater table more likely rises near the stream reach rather than decreases. 545 

Groundwater level tends to rise due to removal of trees, which absorb water from the ground. This may 546 

make the soil more wet in places, where groundwater table is shallow, for example, near streams, 547 

especially headwaters. When the forest begins to regenerate, groundwater table may decrease back or 548 

close to basic level (Smerdon et al. 2009). Site preparation for a new tree generation can override 549 

harvesting effects on groundwater level. Full-cutting in peatlands may be accompanied with drainage 550 
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ditching, which is intended to lower the groundwater level, and thus soil may not get wetter. In 551 

addition, removing shading trees leads to drying of microclimate (e.g. Oldén et al. 2019) including 552 

topsoil. Thus, the effect of forestry practices on microbial communities and processes may be very 553 

different depending on which soil profile is being considered. Disentangling the effects of forestry-554 

related changes in the soil is difficult, because tree harvesting affects simultaneously so many 555 

phenomena, which potentially induce changes to microbial biomass, composition and/or processes. 556 

These include, for example, soil moisture and chemistry, soil bulk density, organic matter content and 557 

fine root biomass. Also, the effect on soil properties may vary depending on the harvesting method (e.g. 558 

partial-cut harvesting, green tree retention patches and strip-cut corridors; Lindo & Visser 2003).  559 

 560 

4.2 Management of riparian forests and protection of streams 561 

Streams and riparian forests are important areas for biodiversity and ecosystem processes, and at the 562 

same time they are sensitive to land-use changes needing special attention in management. We now 563 

discuss potential ways to protect streams and riparia from harmful effects of forestry. We use the terms 564 

“protection” and “preservation” interchangeably to mean the protection of near-natural habitats and 565 

species (but not necessarily to restrict all human use of the habitat). By “conservation” we mean 566 

ecologically sustainable use of nature and natural resources. 567 

   568 

Riparian communities are highly dependent on the microclimatic conditions of near-stream forest 569 

(Pollock et al. 1998, Kuglerová et al. 2014a). Higher resilience of riparian compared to upland 570 

communities can occur if flooding and groundwater discharge maintain moist conditions (Dynesius et al. 571 

2009). Promoting flooding by adding wood and boulders in the stream (Turunen et al. 2017) or by 572 

allowing colonization by beaver (Pollock et al. 2014) could mitigate harmful effects of catchment land-573 

use, at least in given locations. However, if flooding significantly increases nutrient input to the riparian 574 

forest, it may pose a threat to riparian diversity (Lamers et al. 2006). This could happen if, for example, 575 
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nutrients from a heavily ditched catchment drain to the stream and are flushed on to the riparia by 576 

floods. To our knowledge this is a novel idea and we are no aware of any research studying this aspect 577 

of flooding. Also, due to their disturbance regime, riparian habitats may be easily invaded by alien 578 

species (Catford & Jansson 2014, Richardson et al. 2007, Planty-Tabacchi et al. 1996). 579 

 580 

There are only few means of reducing harmful effects of ditch maintenance (Nieminen et al. 2018a). 581 

Integration of drainage with biodiversity conservation (Lõhmus et al. 2015), and a site-specific 582 

evaluation of the real need for ditch maintenance coupled with careful planning (Hasselquist et al. 583 

2018), should be the primary approaches to avoid unnecessary disturbance to waters. In addition, 584 

considering continuous cover forestry in peatland sites (Nieminen et al. 2018b) and near streams could 585 

be a way to overcome the problem that ditches pose. Leaving trees and/or the shrub layer on the 586 

riparian zone mitigates heating of the stream (Mellina et al. 2002, Brosofske et al. 1997), although in 587 

some cases even partial harvesting of riparian trees may result in significant warming of water (Moore 588 

et al. 2005). Other potential management practices reducing the need for ditches include, for example, 589 

gap canopy harvesting and strip felling (see also Kuglerová et al. 2017). 590 

 591 

If intensive land management is practiced in the watershed, a buffer is usually needed to prevent 592 

nutrient and sediments draining to stream. No ground-disturbance should be practiced on the buffer, 593 

but partial tree-harvesting may be allowed. Riparian forests have been acknowledged as effective 594 

nutrient sinks in agricultural watersheds (Lowrance et al. 1984, Peterjohn & Corell 1984), and at the 595 

same time they are able to maintain stream biodiversity (Turunen et al. 2019). They also have a great 596 

stream protection potential with forestry-associated land fertilization (Vowell & Frydenborg 2004). In 597 

order to function effectively, the buffer needs to be wide enough. Today, riparian researches 598 

recommend varying-width buffers (Kuglerová et al. 2017, Richardson et al. 2017). This is because 599 

riparian forest itself is varying width, if it is defined by its most important characters: microclimate and 600 

soil moisture. Also, the nutrient and sediment retention capacity of riparian forest is site specific 601 
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depending on soil characters and topography (Gundersen et al. 2010). However, in practice buffers are 602 

still usually designed as fixed-width. This is probably because fixed-width buffers were formerly the 603 

center of research (e.g. Pinay et al. 1993) and management tend to change slowly, and because fixed-604 

widths are easier to design and implement compared to varying-width buffers. Nature-caring forest 605 

management would benefit from considering new ways of implementing riparian buffers. 606 

 607 

Buffers can also be used for biodiversity protection, but it is essential to define what the protection is 608 

targeted for (see Gundersen et al. 2010 and references therein). While relatively narrow buffer strip 609 

may (or may not; Vuori & Joensuu 1996) protect the stream from sedimentation, few rows of trees 610 

unlikely provide effective protection for natural values on the riparian zone. Furthermore, forestry-611 

associated ground disturbance can affect aquatic food webs despite buffers (Erdozain et al. 2019). If the 612 

aim is to develop a dispersal corridor, then the buffer zone should be long and continuous, but not 613 

necessarily wide (see Gundersen 2010). The width of effective dispersal corridor depends on the target 614 

species: in general, the larger the target species is the wider the buffer should be. If the aim is to protect 615 

moisture-dependent species or certain habitat types, the buffer zones should be set wide enough where 616 

the targeted conditions prevail. This can be achieved by incorporating variable width buffers with wider 617 

buffers left where specific natural values occur and narrower buffers elsewhere (Kuglerová et al. 2014b). 618 

In general, however, wider buffer strips are usually better than narrow ones from the ecological point of 619 

view (Sweeney et al. 2004). The exception to this rule may be sites that have changed significantly 620 

because of former land-use practices, for example, riparian forest, which have become spruce-621 

monocultures. Such sites may benefit from partial harvesting or management that emulates natural 622 

disturbances on the riparian forest (Sibley et al. 2012), because making space for other species can 623 

foster biodiversity and direct the plant communities towards more natural-like assemblages.  624 

 625 

Leaving riparian forests uncut may benefit most forest species because they can use riparian zones as 626 

refuges from clear-cutting and as dispersal corridors. Preserving natural riparian forests can also benefit 627 
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stream biodiversity and red-listed aquatic species (Suurkuukka et al. 2014). Particularly, protecting 628 

natural riparian and stream habitats could secure aquatic, semi-aquatic and terrestrial insects whose 629 

abundance has declined dramatically in the past decades (e.g. Hallman et al. 2017). In addition, 630 

preserving the functional diversity of the microbial community may sustain long-term timber and soil 631 

production, and diversity of plants, by retaining the capacity of symbiotic fungi and decomposing 632 

microbes. It is not clear, though, whether refugees cause unintended pressures on riparian buffers, for 633 

example due to increased rate of herbivory. Introduction of small herbivorous mammals, for example, 634 

may cause changes in the vegetation community composition and affect nutrition dynamics in riparian 635 

forest (Sirotnak & Huntly 2000). 636 

 637 

Intermediate disturbances may increase functional diversity in the riparian forest (Biswas & Mallik 638 

2010). It has been suggested that selective logging could be practiced on riparian buffers to emulate 639 

natural disturbances (Kuglerová et al. 2017). However, because clear-cutting itself is such a big 640 

disturbance that fundamentally differs from natural disturbances (Bergeron et al. 1999), more research 641 

and careful landscape-level planning is needed before any additional disturbance can be recommended. 642 

Overall, protection should not aim to increase local biodiversity, but rather the natural-like habitats and 643 

associated species. For example, harvesting riparian trees increases light availability and temperature, 644 

decreases near-ground air humidity and creates open space. Such environmental changes are likely to 645 

initiate community changes by allowing the establishment of pioneer species and species adapted to 646 

more open forest and concurrently losing species adapted to moist and/or shadow habitats. Especially 647 

communities colonizing moist parts of riparian forest are at risk (Oldén et al. 2019, Kuglerová et al. 648 

2014b). While partial logging may promote local biodiversity, at the same time, it can decrease or 649 

increase beta diversity (Anderson et al. 2011) among sites, depending on the identity and number of 650 

winners and losers. Regional (gamma) diversity will decrease if species specialized to riparian habitats 651 

are lost. Considering the intensity of current forestry, gaps (clear-cuts) are well established in forests. It 652 

is the old-growth forest and associated species that need protection, that is, species typically found in 653 
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undisturbed natural forests, for example those associated to dead wood, but at the same time forest 654 

management needs to consider species of all successional stages (Spence 2001). However, it is not clear 655 

how different management practices affect rare or endangered species, which most urgently need 656 

protection.  657 

 658 

The impact of selective logging on diversity depends on the width of the buffer, because the edge effect 659 

causes additional warming and drying of riparian microclimate (Oldén et al. 2019, Steward & Mallik 660 

2006). Thus, some logging might be allowed in buffers, that are wide-enough to overcome the edge 661 

effect, without jeopardizing natural values. In boreal forests, a 30-45 m buffer without selective logging 662 

on both sides of the stream is needed to prevent changes in microclimate (air humidity, temperature) 663 

and moss communities in riparian forest that are considered hotspots of diversity (Oldén et al. 2019, 664 

Selonen et al. 2013, Rykken et al. 2007a, Steward & Mallik 2006). Similarly, a >30 m forested buffer is 665 

needed in between the stream and the clear-cut to prevent the stream from significant warming and 666 

biological changes (Sweeney & Newbold 2014). Continuous cover forestry near streams could be one 667 

way to dodge the issue of wide buffers. Currently, there is no research on how combining continuous 668 

cover forestry and selective logging in riparian forest affects riparian or stream populations and 669 

communities. 670 

 671 

As much as riparian forests need protection, it is not an easy task if the forest must be deployed for 672 

timber production at the same time. In most forests, riparian habitats cannot be wholly preserved 673 

without any economic losses to forest owners. Therefore, effective and extensive riparian protection 674 

requires that the forest owners understand the value of biodiversity and riparian ecosystem services. 675 

However, even awareness of natural values may not be enough, because forest owners may have a 676 

conflict of interest, for example, among biodiversity, climate change mitigation and economic values 677 

(Eriksson & Klapwijk 2019, Norlund & Westin 2011) and because the demand of forest products forces 678 

to more extensive logging. On the other hand, sustainable forestry makes sense not only from 679 
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ecological, but also from economical point of view (Balmford et al. 2002). Thus, efforts should be put 680 

into finding a sustainable compromise between biodiversity protection and forestry. This can be 681 

achieved by targeting additional protection to biodiversity hotspots, such as riparian forests, while 682 

guaranteeing large enough forest areas for preserving overall biodiversity. 683 

 684 

Especially nature prioritizing forest management would benefit from further research, but also 685 

economic gains from tree harvest and other ecosystem services depend on nature-caring forestry. It is 686 

important to maintain diversity of both micro- and macroorganisms at a level that enables communities 687 

to reject perturbations and adjust to changing conditions, that is, maintain the resilience potential of 688 

communities. For example, extensive clear-cutting has a negative effect on ectomycorrhizal fungal 689 

abundance (Kyashcenko et al. 2017b) and diversity (Lazaruk et al. 2005, Hagerman et al. 1999), 690 

decomposition (Ussiri and Johnson 2007), and the community of decomposing microbes through 691 

changes in organic carbon pool (Bååth et al. 1995) and vegetation (De Graaff et al. 2010). Thus, in the 692 

long run, alternative forest management practices (e.g. Lazaruk et al. 2005, Hagerman et al. 1999) could 693 

be beneficial for the maintenance of biodiversity and ecosystem services in riparian forests. 694 

 695 

4.3 Climate change effects on stream and riparian ecosystem processes  696 

Mitigation of climate change on rivers and their watersheds is a challenge that calls for optimized 697 

management practices. Climate change models predict increasing mean annual temperatures, more 698 

frequent drought and extreme rainfall events, decreasing water table levels, and in the boreal zone 699 

elongated thawed time and more frequent freezing-thawing cycles (Pachauri et al. 2014). Overall, wet 700 

areas become wetter and dry areas drier (Dore 2005). Streamflow dynamics may change, for example, it 701 

is predicted to increase in the winter and decrease in the summer in the northern hemisphere (Fortsieri 702 

et al. 2013, Stahl et al. 2010, Wilson et al. 2010, Zhang et al. 2001). It is likely that biotic communities 703 

and processes on streams and riparian areas will be affected due to changes in hydrology and 704 

environmental factors related to warming (Heino et al. 2009). 705 
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 706 

Nilsson et al. (2013) reviewed climate change effects on riparian vegetation on the boreal zone. Shortly, 707 

they conclude that decreased area of moist riparian zone due to increased summer-time drought and 708 

smaller spring floods may decrease local species richness. It is worth noting, that climate change can 709 

increase hydrological drought (van Loon 2015) due to increased evaporation, even if meteorological 710 

drought does not increase (an Lanen et al. 2013, Wong et al. 2013, Wong & Beldring 2011). The rate of 711 

formation and melting of ice in boreal streams has accelerated during recent decades and as the climate 712 

keeps warming the ice formation will become rarer (Tolonen et al. 2019). Increased ice dynamics may 713 

promote the formation of more species rich communities. Dead wood in streams creates similar 714 

flooding effects (Turunen et al. 2017) as ice (Prowse & Beltaos 2002) and, on the other hand, wood 715 

enhances the formation of anchor ice (Lind & Nilsson 2015). Promoting the amounts of dead wood 716 

could thus keep up the ice-like dynamics in streams under climate change. The dispersal of invasive 717 

species to higher latitudes will increase with climate warming, which poses further thread to native 718 

plant communities (Nilsson et al. 2013).  719 

 720 

Microbes play a key role in immobilizing C from atmosphere to soil and biomass. Thus, understanding 721 

drivers of microbial processes are essential for climate change mitigation. Because water drains from 722 

upland area to riparian zones, their soils receive and process remarkable proportion of C and N from the 723 

drainage area, and they can be considered hotspots of C and N cycling and transformation (Vidon et al. 724 

2010). Accelerated freezing-thawing, increased thawed time, and a decrease in water table and/or 725 

frozen soil depth may affect C (Groffman et al. 2001) and N (Groffman et al. 2001, Mitchell et al. 1996, 726 

Goodroad & Keeney 1984) cycling. Although decomposition relates to soil temperature on a local scale 727 

(Kirschbaum 2006), increased decomposition rates at higher temperatures and at increased freezing-728 

thawing dynamics seems to relate to changes in soil moisture and substrate quality rather than warming 729 

per se (Giardina & Ryan 2000). Changes in decomposition rates occur through changes in microbial 730 

community composition (Haei et al. 2011, Nielsen et al. 2011, Zogg et al. 1997). Decomposition 731 
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efficiency may be related, for example, to the differences in the C processing or growth efficiency of the 732 

microbial species (Zogg et al. 1997).  733 

 734 

There is the possibility that climate change will cause a positive feedback that would increase the 735 

emissions of greenhouse gases from riparian soils (Davidson & Janssens 2006) and drying stream beds 736 

(Shumilova et al. 2019). When soils dry and then become rewetted, there is a burst of decomposition, 737 

mineralization and release of inorganic N and CO2 (Jarvis et al. 2007). Also, decreased snow cover can 738 

change C and N cycling, for example increase the fluxes of N2O from forests (Groffman et al 2006). Given 739 

the extent of streams and their riparian areas and the fact that a relatively modest change in soil C 740 

stocks are assumed to have major consequences for atmospheric CO2 concentrations and climate 741 

change (Nielsen et al. 2011), changes in the decomposition of riparian areas can have major 742 

consequences on C cycling. Further, N-cycling is predominantly determined by soil condition (Brenzinger 743 

et al. 2017), and significant emissions of N2O from the soil due to climate change induced changes in 744 

microbial communities and/or their functions (Chen et al. 2015, Baggs 2011) would further enhance 745 

climate warming.  746 

 747 

Global change is modifying microbial composition and functional potential in soil ecosystems (Amend et 748 

al. 2016). Based on the hypotheses of Wallenstein and Hall (2012) microbial communities are better able 749 

to adapt to changing temperature and precipitation condition in regions and habitats that naturally 750 

experience relatively rapid temporal temperature and moisture variation. In line with this theory, 751 

aquatic microbial communities would be less capable adapting to climate change than terrestrial 752 

communities, because temperature changes are typically more subtle in aquatic than in terrestrial 753 

habitats. Following this reasoning, biological communities in high latitudes would be more conservative 754 

towards climate change impacts than those at temperate regions. This is because natural temperature 755 

changes during a year are more pronounced in high compared to low latitudes. However, this is only 756 

theoretic, and the actual realization of climate change impacts on biotic communities can be 757 
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unpredictable. Furthermore, adaptation at the community level does not mean that processes do not 758 

change. In fact, adaptation of microbial communities to changing climate can have major impacts on 759 

biochemical processes (Wallenstein & Hall 2012).  760 

 761 

According to Ferreira & Chauvet (2011a) water temperature is the major environmental factor 762 

controlling the structure of aquatic hyphomycete communities. Increase in water temperature due to 763 

climate change may thus affect species composition of and decomposition by aquatic hyphomycetes 764 

(Ferreira & Chauvet 2011b). Bacteria may be affected similarly. Reason may be the fact that microbial 765 

processes are driven by enzymes (Berlemont & Martiny 2016), the performance of which depends on 766 

temperature or that biomass production increases with temperature in both stream fungi and bacteria 767 

(Suberkropp & Weyers 1996). Significant changes may be detectable only after a substantial stream 768 

warming (e.g. 10 °C). On the other hand, warming may interact with increased nutrient loads (due to 769 

climate change or land use) exacerbating the effects on microbial communities and processes (Ferreira 770 

& Chauvet 2011b). Climate induced increase in flood dynamics also may increase the export of detrital 771 

material downstream. Thus, only little material may be left for decomposer consumption, which may 772 

lead to food depletion especially for invertebrate shredders (Buzby & Perry 2000). 773 

 774 

Due to their high diversity, microbes can be expected to have higher functional redundancy compared 775 

to most other biotic groups (but see Mayfield et al. 2010). However, their communities consist of high 776 

proportions of rare species, which may make microbial processes vulnerable to climate or land use 777 

change because rare species can disproportionally increase functional diversity (Jousset et al. 2017, 778 

Mouillot et al. 2013). If low temperatures become less important in constraining decomposition, others, 779 

such as soil moisture and substrate quality, will become more important (Giardina & Ryan 2000). 780 

Therefore, prioritizing the protection efforts on maintaining natural hydrological conditions and riparian 781 

vegetation would benefit mitigation of climate change effects on streams and riparian zone microbial 782 

related processes. 783 
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 784 

5. Future research 785 

In the world of increasing anthropogenic impacts, we need to evaluate the state of habitats and to point 786 

out the pressures threatening biodiversity and ecosystem functions of streams and riparian forests. In 787 

order to be able to mitigate the harmful effects on ecosystems, research should focus on comparing 788 

“what is there” to “what should there be”. This means, that the reference sites should represent the 789 

natural state of the studied ecosystem as well as possible. As the footprint of anthropogenic actions can 790 

be nowadays seen everywhere on the Earth, researchers must define what is “a pristine enough” 791 

reference site to cover their study questions. For example, in Finland, almost all forests have been clear-792 

cut at some point of history, and even if not recently clear-cut (e.g. 100 years), they often have been 793 

partially harvested and/or their drainage basin has been ditched. Furthermore, climate crisis is now 794 

affecting all ecosystems around the world, thus we must accept that our new “reference” is forced 795 

under anthropogenic pressure. From conservation point of view, “what should there be” may also refer 796 

to future conditions rather than the past. Should we aim to protect the species and habitats as they 797 

have occurred before human interventions or should we conserve and restore for the future (Choi et al. 798 

2008)? If the latter is the aim, long-term ecological studies (“knowledge of the past”) may be needed to 799 

set future conservation goals (Willis et al. 2007).  800 

 801 

Furthermore, headwater streams are often highly variable, and soil and forest types differ according to 802 

the geographical and topographical position. Thus, it can be difficult to control for among stream 803 

variation in statistical tests and interpretation of results. Studies focusing on biodiversity are needed to 804 

detect the effects of land management along riparian corridors and streams. Both qualitative and 805 

quantitative criteria should be used to evaluate biodiversity. Including multiple biological groups may 806 

enhance the detection of responses that can be seen in some organism groups but not the others 807 

(Mykrä et al. 2017, Annala et al. 2014, Williams et al. 2014). In addition, beta diversity should be 808 

included in biodiversity studies, but with a caution because habitat fragmentation or degradation may 809 
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lead to increased beta diversity (Mykrä et al. 2017, Hawkins et al. 2015). We now draw together main 810 

gaps in knowledge on riparian ecosystems that call for future research (Table 1.). 811 

 812 

The interaction between terrestrial and aquatic microbiome is poorly understood. Deep understanding 813 

of circulation of energy and substances requires detailed knowledge of the interaction of different 814 

microbial processes. The role of endophytic fungi and bacteria on decomposition in streams should be 815 

studied more carefully. For example, the functional potential of decomposer microbes, including 816 

prokaryotes and eukaryotes, and the impact of interactions between fungi and bacteria on 817 

decomposition deserve further attention. Research would benefit from studying fungi and bacteria 818 

simultaneously, because responses may be detectable in one group but not the other and interaction 819 

between fungi and bacteria likely affect their functioning but are poorly understood.  Environmental 820 

filtering strongly determines microbial community composition, and co-occurrence patterns among 821 

microbial groups are weak (Mykrä et al. 2017, Williams et al. 2014), which further emphasizes the 822 

importance of including multiple biological groups in studies. Furthermore, some microbial groups, such 823 

as archaea and fungi (e.g. Horner-Devine et al. 2007), are underrepresented in ecological studies and 824 

the relationship between riparian and stream microbial communities is still imperfectly understood. 825 

Simultaneous research on aquatic and terrestrial communities is necessary to understand the diversity 826 

and functioning of and the linkage between streams and riparian forests. 827 

 828 

Riparian forests often contribute to OM cycling (McClain et al. 2003) and storage (Sutfin et al. 2016, 829 

Hazlett et al. 2015, Jaramillo et al. 2003) relatively more than upland forest. Further research is needed 830 

on how preserving stream flooding regimes, groundwater discharge and natural vegetation contribute 831 

on maintaining OM cycling on riparian zone. Also, most brownification studies are from lakes, and 832 

effects of brownification on lotic waters should thus be studied. As drainage ditching is a common 833 

practice in peatland-dominated forests, a question rises whether nutrient loads due to intensive 834 

drainage ditching at an upstream site can impact riparian diversity at downstream sites, if floods pass 835 
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nutrients to riparian forest. Furthermore, as the studies on the sensitivity of riparian zones towards 836 

disturbances are scarce and inconsistent, more research is needed to clarify the sensitivity of riparian 837 

zones to human disturbance and their importance as dispersal corridors (Gundersen et al. 2010). 838 

 839 

The effect of habitat-specific microbial communities on OM decomposition and nutrient cycling 840 

deserves further studying. Especially fungi are an understudied group. Different fungal guilds have 841 

differing functional potential, which can be studied with novel sequencing techniques and applying 842 

analysis tools such as FUNGuild (Nguyen et al. 2016; and correspondingly PICRUSt2 for bacteria, Douglas 843 

et al. 2019; see Box 1.). For example, ectomycorrhizal fungi may compete for N with free-living 844 

decomposer microbes decreasing C cycling rate (Averill & Hawkes 2016) and increasing soil C storage 845 

(Averill et al. 2014, Orwin et al. 2011). Also, fungi have greater potential for stocking C in their biomass 846 

than bacteria (Godbold et al. 2006) and they are considered the main decomposers in aquatic 847 

ecosystems (Fabian et al. 2017). Functional potential (DNA-based) and activity (RNA-based) of stream-848 

riparian microbiome can be studied, for example, with metatranscriptomics and metagenomics, 849 

respectively (see Box 1.). However, if the aim is to study the active fraction of microbiome, relic DNA 850 

should be taken into consideration when planning the sampling and analyses. Relic DNA, which can exist 851 

in high amounts in soil (Fierer et al. 2017, Carini et al. 2016), can obscure the detection of active vs. 852 

inactive microbes. Thus, it should be removed from the samples or optionally RNA-based methods can 853 

be used instead or together with DNA-based methods. 854 

 855 

Preserving shading vegetation in the riparian zone could be one way to prevent warming of surface 856 

waters by maintaining shading trees and shrubs near streams and around groundwater discharge spots. 857 

Almost every permanent stream is somewhat dependent on groundwater hydrologically (Boulton & 858 

Hancock 2006), but groundwater discharge is also important for riparian diversity (Jansson et al. 2007, 859 

Zinko et al. 2005). However, the role of groundwater in mitigating harmful effects of forest harvesting, 860 

climate change and their interactions call for further research (Dwire et al. 2018). 861 
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 862 

While the importance of riparian forest to species diversity of many organism groups is relatively well 863 

established, there are many biological groups uncovered. What is the meaning of riparian zones to 864 

mammals, reptiles, frogs, insects, mollusks, fungi, bacteria and others and how does forest management 865 

affect them? The implementation of forest buffers is still a question of debate: how should they be 866 

planned and what management practices can or cannot be conducted in or near them if the aim is to 867 

protect the riparian ecosystem as well as the stream? It is not clear how riparian zones respond to 868 

different kinds of anthropogenic pressures, interactions of stressors, and which aspects of biological 869 

diversity are most sensitive or resistant towards disturbances. And further, how sensitive are different 870 

kinds of riparian zones to anthropogenic pressures and what kind of protection do they need? 871 

Addressing these questions would further help the development of better forest management practices 872 

that consider simultaneously the protection of the streams and their riparian forests. 873 

 874 

  875 
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Table 1. Future research needs concerning streams and their riparian forests, and the interaction of the two. 876 

Ecosystem Subject Specific research question/approach 

Streams 

Ecosystem 

functions 

Role of endophytic micro-organisms in aquatic decomposition and underlying 

mechanisms 

Symbiosis of differing microorganism groups in aquatic decomposition 

Ecosystem 

functions and 

diversity 

Effects of brownification 

Stream-

riparian 

linkage 

Diversity and 

ecosystem 

functions 

Reciprocal exploration of aquatic and terrestrial communities: e.g. to what 

extent does terrestrial microbial diversity drive the diversity and ecosystem 

functions of streams and vice versa? 

Variation in beta diversity and community composition 

Importance of functional and phylogenetic diversity 

Riparian forest 

Diversity 

Combined effect of drainage ditching and flooding on riparian diversity 

Sensitivity to human induced disturbance 

Sensitivity of headwater riparian forests to invasions by alien species 

Effect of forest management practices (buffer widths, selective logging on 

upland and riparian forests, continuous cover forestry) 

Importance for regional diversity (especially for groups other than birds and 

plants) 

Ecosystem 

functions 

Contribution of flooding on carbon cycling 

Contribution of groundwater discharge on carbon cycling 

Contribution of natural vs. non-natural vegetation on carbon cycling 

The stability of biochemical processes in the riparian zone compared to upland 

forest 

Other ecological 

relevance 
Meaning of headwater riparian forests as dispersal corridors 
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