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Abstract:  

After extensive research and development over the past three decades, a range of techniques 

have been proposed and developed for online continuous measurement of multiphase flow. In 

recent years, with the rapid development of computer hardware and machine learning, soft 

computing techniques have been applied in many engineering disciplines, including indirect 

measurement of multiphase flow. This paper presents a comprehensive review of the soft 

computing techniques for multiphase flow metering with a particular focus on the measurement 

of individual phase flowrates and phase fractions. The paper describes the sensors used and the 

working principle, modelling and example applications of various soft computing techniques 

in addition to their merits and limitations. Trends and future developments of soft computing 

techniques in the field of multiphase flow measurement are also discussed. 
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Nomenclature 

a                     Bias 

b                      Bias 

C                     User-specified parameter 

Cb               Concentration of biomass 

Cc                 Concentration of coal 

Cj                  The centre vector for the jth hidden node 

d                   A constant 

f(x)                   Transfer function 

Hi                     The ith hidden neuron 

L                    Number of hidden nodes 

m                   Number of input variables 

n                     Number of training samples 

O               Node in the adaptive neuro-fuzzy inference system 

qm                Mass flow rate of the mixture 

qmg                    Mass flow rate of gas flow 
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qml                 Mass flow rate of liquid flow 

qmo                    Mass flow rate of oil flow 

qms                 Mass flow rate of solid flow 

qmw                     Mass flow rate of water flow 

qv,g                  Volumatic flow rate of gas flow  

qv,l                   Volumatic flow rate of liquid flow 

ti                The vector of outputs from the ith tree 

v                  Velocity of the mixture 

vg                     Velocity of gas flow 

vl                               Velocity of liquid flow 

vo                   Velocity of oil flow 

vs                           Velocity of solid flow 

x                     Input vector 

xi                   The ith element in the input vector x 

X*                      The matrix of training samples 

y                 The desired output 

Y                The vector of desired output 

αi               The ith Lagrange multiplier 

               The approximation accuracy 

θ               A constant 

μ(x)          A membership function 

i              A slack variable  

i
*             A slack variable 

σ2                     The variance of the Gaussian function 

Φ(x)           Transfer function  

ф               A constant 

ωi                The ith weight 

ω               The vector of weights 

 

 

1. Introduction 

Multiphase flow is defined as a simultaneous flow of materials with two or more different 

phases (i.e. gas, liquid or solid) or unseparated components (e.g. water and oil) [1]. Multiphase 

flow (including two-phase flow which is a common example of multiphase flow) is widely 

seen in many industrial processes. Oil/gas/water mixtures are perhaps the most common gas-

liquid and liquid-liquid two-phase or three-phase flows during the processes of production, 

transportation and custody transfer in the oil and gas industry. Meanwhile, air entrainment is 

unavoidable when marine fuel is transferred from a bunker barge to a receiving ship, 

particularly during the start and stop processes of the bunkering. For the fiscal purpose, 

accurate mass flow metering of marine fuel is essential in bunkering centres. Pneumatically 
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conveyed pulverized fuel (coal, biomass or mixture of both) in power plants forms gas-solid 

two-phase or three-phase flow. Individual flowrates and fractions of biomass and pulverized 

coal provide the information of co-firing ratio, which is useful to improve the combustion 

efficiency and reduce emissions of NOx and COx. In some circumstances hydraulic transport 

of solids, such as sand, iron concentrates and phosphate matrix, in the type of slurry flow is 

employed in the mining, chemical, pharmaceutical and food industries. In such industrial 

processes accurate measurement of multiphase flow is highly desirable to realize flow 

quantification, operation monitoring, process optimization, and product quality control. It must 

be noted that multiphase flow is not restricted in industrial processes and covers many other 

application areas such as regional particle deposition and airflow in human tracheobronchial 

airways [2, 3] in the medical area. However, this review focuses primarily on the measurement 

of multiphase flow in the process and related industries. 

 

Individual flowrates (volumetric flowrate or mass flowrate) and phase fractions are most 

important parameters to characterize a multiphase flow. Over the past three decades substantial 

progress has been made to develop new techniques that may offer solutions to the industrial 

measurement challenges. Thorn et al. [4,5] and Falcone et al. [6] have reviewed the 

developments of three-phase flowmeters, particularly for the petroleum industry. Possible 

techniques for the measurement of gas-solid flow in pneumatic conveying pipelines and 

circulating fluidized beds have been discussed in detail by Yan [7], Zheng and Liu [8], and Sun 

and Yan [9]. Albion et al. [10] have reviewed the intrusive and non-intrusive measurement 

techniques for monitoring slurry transportation in horizontal pipelines. Among these 

techniques, on-line multiphase flowmeters are the devices to measure the mixed flow without 

any separators and sampling lines. They can be classified into direct and indirect measurement 

groups according to measurement strategies deployed. The direct measurement of a phase 

flowrate is often realized using a Venturi flowmeter, Coriolis flowmeter and cross-correlation 

techniques etc., whilst a phase fraction is usually determined from radiation absorption, 

electrical impedance and microwave techniques etc. An indirect measurement method 

determines the individual phases through the analysis of the time variant signals acquired from 

a set of sensors. In general, the relationship between the sensor outputs and the flowrate or 

fraction of each phase cannot be deduced theoretically. In this case, empirical models are 

commonly developed from experimental data using statistical methods. With the recent 

development of artificial intelligence and machine learning, soft computing techniques provide 

alternative approaches to traditional statistical methods and extend the capabilities of empirical 

models.  

 

This review focuses on the indirect methods incorporating soft computing techniques to 

measure the individual phase flowrates and fractions of multiphase flow. Section 2 outlines the 

principal constituents of soft computing techniques and provides a brief description of some 

techniques which are already applied in multiphase flow measurement, i.e. artificial neural 
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network (ANN), support vector machine (SVM), genetic algorithm (GA), genetic 

programming (GP) and adaptive neuro-fuzzy system (ANFIS). Section 3 presents the example 

applications of soft computing techniques in two-phase or three-phase flow measurement. 

Section 4 summarizes the findings of the review and discusses the trends and future 

developments of soft computing techniques in the field of multiphase flow measurement. 

Section 5 concludes this review and likely future development.  

 

2. Soft Computing Techniques 

Soft computing is a collection of methodologies that aim to exploit the tolerance for 

imprecision and uncertainty to achieve tractability, robustness and low solution cost [11]. It is 

sometimes referred as computational intelligence, covering a range of computational 

techniques in computer science, artificial intelligence and machine learning. Sometimes, the 

term ‘soft computing’ is used interchangeably with soft sensors or virtual sensors. Soft sensor 

is a common name for a piece of software which is used to derive desirable information from 

available measurements. Soft sensors are especially useful in data fusion, where measurements 

of different characteristics and dynamics are fused and combined. Well-known software 

algorithms that are used in soft sensors include Kalman filters [12]. Recently neural networks 

or fuzzy computing have been used to implement soft sensors. To some extent, the software 

developed based on soft computing techniques for the purpose of monitoring or measurement 

can be regarded as a soft sensor.  

As shown in Fig.1, the principal constituent techniques of soft computing include machine 

learning (neural network, support vector machine and deep learning, etc.), evolutionary 

computation (evolutionary programming, genetic algorithm, evolution strategy and genetic 

programming etc.), fuzzy logic and probabilistic reasoning (Bayesian belief net and Dempster-

Shafer theory, etc.). Machine learning and evolutionary computation are data-driven search and 

optimization approaches while fuzzy logic and probabilistic reasoning techniques are based on 

knowledge-driven reasoning. Each technique can be used independently whilst a combination 

of several techniques constitutes hybrid models. 
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Fig.1 Principal constituents of soft computing techniques 

 

In recent years soft computing has become a promising tool in resolving engineering challenges   

due to its ability to handle highly complex, dynamic and non-linear problems and 

computational simplicity over analytical methods. For these reasons, soft computing 

techniques have been widely used in many fields, in particular, computer engineering, 

environmental engineering, material engineering and medical diagnosis [13]. In the case of 

multiphase flow metering, soft computing techniques are used to extract useful information 

from sensor outputs to predict or estimate the flow rates and fractions of multiphase flow or 

identify flow patterns. 

 

2.1 Artificial Neural Network 

ANN models are developed by training a network to represent the relationships or processes 

that are inherent within the data. Being essentially non-linear regression models, they perform 

an input-output mapping using a set of interconnected nodes or neurons. Each neuron takes in 

inputs either externally or from other neurons and passes them on through an activation or 

transfer function.  

 

In general, ANNs have three kinds of topology: multilayer, single-layer and recurrent. A 

multilayer ANN normally consists of an input layer, one or more hidden layers and an output 

layer. For a single-layer ANN, there is no hidden layer. A recurrent ANN includes at least a 

feedback loop in the network. Another way to classify ANNs is dependent on the learning 

strategy: supervised or unsupervised. In supervised learning, the training data set consists of 

both input objects and desired outputs while in the unsupervised learning the data are 

unlabelled. A variety of ANN models have been developed and used for a range of applications 
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such as pattern recognition, associative memory, optimization, function approximation, 

modelling and control, image processing and classification [14].  

 

Table 1 summarizes the topology, learning strategy and function of the commonly used ANNs 

in engineering, including MLP (Multi-Layer Perception), RBF (Radial Basis Function), WNN 

(Wavelet Neural Network), ELM (Extreme Learning Machine), Elman, Hopfield, Kohonen, 

PNN (Probabilistic Neural Network), CNN (Cellular Neural Network), ART (Adaptive 

Resonance Theory), CMAC (Cerebellar Model Articulation Controller) and CM (Committee 

Machine) [15,16]. 

 

Table 1 Topology, learning strategy and function of the commonly used ANNs 

As MLP and RBF neural networks have been applied to multiphase flow measurement, a brief 

introduction to these two kinds of ANN is given in this section. 

 

2.1.1 MLP 

Fig.2 depicts a typical m-input-1-output three-layer ANN. x=(x1,x2, …, xm)T is an input sample 

and y is the desired output. Assume y is the linear output of the hidden neurons and a transfer 

function f(x) is used on the neurons, the ANN is modelled as [16]: 

ANN                   Topology Learning strategy                 Function 

MLP                                                                                               multilayer feedforward       supervised Pattern recognition, function 

approximation, modelling and control, 

classification 

RBF three-layer feedforward      supervised Function approximation, classification 

WNN three-layer feedforward      supervised Forecast, classification, function 

approximation 

ELM three-layer feedforward      supervised Function approximation, classification 

Elman recurrent supervised Time-series forecast, pattern recognition   

Hopfield recurrent supervised Pattern recognition, associative memory, 

optimization, image processing                                    

Kohonen single layer unsupervised Pattern recognition, associative memory, 

classification 

PNN four-layered feedforward    supervised Pattern recognition, classification 

CNN   multilayer supervised Optimization, classification 

ART    recurrent unsupervised Optimization, classification 

CMAC multilayer supervised Function approximation, modelling and 

control 

CM multiple NNs (experts)      supervised / 

unsupervised 

Pattern recognition, function  

approximation, modelling and control, 

classification              
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where m and L are the numbers of input variables and hidden nodes, respectively. ωj is the 

weight connecting the jth hidden node and the output node, ωij is the weight connecting the ith 

input node to the jth hidden node. aj and b are the biases on the jth hidden node and the output 

node, respectively. The weights (ωij and ωj) and biases (aj and b) between the layers are 

obtained through a training process. 

 

 

Fig.2 Structure of an m-input-1-output three-layer ANN 

 

The performance of a neural network depends on the choice of its structure and learning 

algorithm. Design considerations of the ANN structure include the number of inputs, outputs, 

hidden layers and hidden neurons. The network inputs can be any combination of variables that 

are thought to be significant for predicting the output. Therefore, some knowledge of the 

problem and the procedures of input variable selection are very important. The number of 

hidden layers is determined according to the complexity of the problem. In general, the more 

complex the problem, the more hidden layers are required to achieve a good approximation 

level. Meanwhile, a trade-off between the approximation level and computational cost should 

be compromised. The number of neurons (L) in the hidden layer can be determined using some 

guidelines [17] such as  

                                                                  12  mL                                                                (2) 

                                                                   
1


m

n
L                                                                 (3) 

where m and n are the numbers of input variables and training samples, respectively. However, 

these rules only give the range of L. The exact L for the model should be selected through trial-

and-error to compromise between minimizing errors and achieving good generalization 

capability. The number of nodes in the output layer is equal to the number of desired output 

variables. 
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The transfer function between the layers can be sigmoid, hyperbolic tangent sigmoid, linear, 

Gaussian and exponential etc., which is determined according to the performance of the 

network. Backpropagation (BP) algorithm is one of the most popular and robust tools in the 

training process. It is a variation of the gradient descent optimisation algorithm that minimises 

the error between the predicted and actual output values. The weights between neurons are 

adjusted after each training cycle until the error in the validation data set begins to rise.  

 

2.1.2 RBF 

As shown in Fig.3, RBF-ANN has a fixed three-layer structure and applies a type of radial 

basis function as an activation function to the hidden nodes. The output of the network is a 

linear combination of radial basis functions of the inputs and neuron parameters. The radial 

basis function measures the distance between the input vectors and weight vectors and is 

typically taken to be the Gaussian function. The output of the network is given by [16] 

                                            
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where Cj is the centre vector for the jth hidden node and determined by the K-means clustering 

method. jCx  is the Euclidean norm and 
2  is the variance of the Gaussian function.  

An RBF network with enough hidden nodes can approximate any continuous function with 

arbitrary precision. Moreover, as a local approximation network, the RBF neural network has 

the advantages of simple structure, less adjective parameters and efficient training. 

 

 

Fig.3 Structure of an RBF-ANN. 

2.2 Support Vector Machine 

SVM was developed by Vapnik in 1995 to solve the classification problem based on the 

statistic learning theory and structural risk minimization [18]. Since then, this method has been 

extended to the domain of regression and prediction problems [19]. As shown in Fig.4, SVM 

maps the data x from the input space to a feature space through the nonlinear mapping )(x . 

Constrained-optimization methods are used to identify the separating hyperplane which 

maximizes the separating margins of two different classes in the feature space [18]. 
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Fig.4 Structure of an SVM 

 

2.2.1 SVM for Classification  

Given n training samples X*=(x1, x2,…, xn)  and the corresponding desired output Y=(y1,y2, 

…, yn), each input sample is a vector x=(x1,x2, …, xm)T consisting of m variables. The input 

vectors are mapped into an L-dimensional feature space using a transfer function )(x [17]. 

The distance between two different classes in the feature space is 


2 . To maximize the 

separating margin and to minimize the training errors i  is equivalent to [20] 
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where i is the slack variable and C is a user-specified parameter and provides a trade-off 

between the distance of the separating margin and the training error. 

 

Based on the Karush-Kuhn-Tucker (KKT) theorem, the problem is equivalent to solve the 

following dual problem: 
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where each Lagrange multiplier i corresponds to a training sample ),( ii yx . 

)(),(),( jijiK xxxx  is a kernel function. The decision function of the SVM classifier is 

described as  

                                                      













 



bKysignfy

n

i

iii

1

),()( xxx                                         (7) 



10 

 

 

There are some optional kernel functions for SVM, for example: 

 

Linear kernel: iiK xxxx ,),(                                                                                                     (8) 

Polynomial kernel: 0,),(),(  pmdpK d
ii xxxx                                                            

(9) 

RBF kernel: 
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Sigmoid kernel: 0,0),tanh(),(   iiK xxxx                                                                                      

(11) 

 

2.2.2 SVM for Regression 

SVM regression performs a linear regression in the high dimensional feature space using ε-

insensitive loss and tends to reduce the model complexity by minimizing 
2

 [17]. This can be 

described by introducing slack variables i  and 
i   (i=1,2,…,n) to measure the deviation of 

training samples (X*, Y) outside ε-insensitive zone. Regression estimates can be obtained by 

minimizing the empirical risk on the training data and thus the optimization problem is 

formulated as [20] 
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where n is the number of training samples,    is the approximation accuracy that can be 

violated by means of the slack variables   and  for the non-feasible case. C is a positive 

constant as a regularization parameter that allows tuning the trade-off between the flatness of 

the function f(x) and the tolerance of deviations larger than ε.  The parameter b can be computed 

by exploiting the Karush-Kuhn-Tucker (KKT) conditions.   

      

The problem is transferred into a dual problem by the Lagrangian function: 
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where i , 
i 0 are Lagrange multipliers. According to Mercer’s condition, the inner product 

)(),( ixx   can be defined through a kernel ),( iK xx , so the final product of a training process 

in the SVM method can be presented by: 
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),()()( xxx                                              (14) 

Support vector machines are supervised learning models with associated learning algorithms 

that analyse data for classification and regression analysis [21]. The original formulation is 

presented with a set of labelled data instances and the SVM training algorithm aims to find a 

hyperplane that separates the dataset into a discrete predefined number of classes in a fashion 

consistent with the training examples. In recent years, some optimized models of SVM, such 

as least squares SVM [22], twin SVM [23], multi-kernel SVM [24] and fuzzy SVM [25], have 

been developed to improve the computational efficiency and generalization ability. They have 

been successfully applied to a variety of real-world problems like particle identification, facial 

recognition, text categorization, bioinformatics, civil engineering and electrical engineering 

[26]. 

 

2.3 Evolutionary Computation 

Evolutionary computation is inspired by the principles of genetics and natural selection. The 

core constituents of evolutionary computation or evolutionary algorithms include genetic 

algorithms (GA), evolution strategies (ES), evolutionary programming (EP) and genetic 

programming (GP) [27]. These evolutionary approaches provide alternative solutions to the 

problems where heuristic solutions are not available or unsatisfactory. Due to the advantages 

of simplicity, flexibility and robustness, evolutionary algorithms have been successfully 

applied to various problems in different areas, including optimization, automatic programming, 

machine learning, operations research, bioinformatics and social systems etc. GA and GP are 

two of the most representative approaches in evolutionary computation. 

 

2.3.1 GA 

Genetic algorithms are commonly used to generate high-quality solutions to optimization and 

search problems by applying bioinspired operators such as mutation, crossover and selection. 

As shown in Fig.5, the evolution usually starts from a population of randomly generated 

individuals. In each generation, the fitness of every individual in the population is evaluated 

with an objective function. The fitter individuals are stochastically selected from the current 

population and each individual’s genome is modified to form a new generation. The new 

generation of candidate solutions is used in the next iteration of the algorithm. Commonly, the 

algorithm terminates when either a maximum number of generations has been produced, or a 

satisfactory fitness level has been reached. 

 



12 

 

 

Fig.5 Flowchart of GA algorithm 

 

2.3.2 GP 

Genetic programming is a method for evolving equations by taking various mathematical 

building blocks such as functions, constants and arithmetic operations and combining them into 

a single expression. It was originally developed by Koza in 1992 [28]. The main difference 

between genetic programming and genetic algorithm is the representation of the solution. GP 

as an advanced evolutionary computation technique is an extension of genetic algorithms and 

is widely applied to symbolic data mining (symbolic regression, classification and 

optimization) [28,29]. Unlike traditional regression analysis, GP based symbolic regression 

automatically evolves both the structure and parameters of the mathematical model from the 

available data. Meanwhile, it is superior to other machine learning techniques in terms of the 

ability to generate an empirical mathematical equation without assuming prior form of the 

existing relationships. Fig.6 shows the structure of a multigene symbolic regression model. 

 

Fig.6 Structure of a GP model 

 

The GP model can be regarded as a linear combination of lower-order nonlinear 

transformations of the input variables. The output yGP is defined as a vector output of n trees 

modified by the bias term b0 and scaling parameters b1,…, bn: 

                                                          nnGP tbtbby  ...110                                                   (15) 

where ti (i=1,…, n) is the (m×1) vector of outputs from the ith tree comprising a multigene 

individual. The evolutionary process starts with initial population by creating individuals 

containing GP trees with different genes generated randomly. The evolutionary process 
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continues with an evaluation of the fitness of the new population, two-point high-level 

crossover to acquire and delete genes and low-level crossover on sub-trees. Then the created 

trees replace the parent trees or the unaltered individual in the next generation through mutation 

operators. The best program that appeared in any generation, the best-so-far solution, defines 

the output of the GP algorithm.    

 

2.4 Fuzzy Logic 

The theory of fuzzy logic was formulated by Zadeh in 1965 [30]. Fuzzy logic provides 

inference mechanism that enables approximation reasoning, models human reasoning 

capabilities in the knowledge-based systems and deals with imprecision and uncertainty. It 

consists of fuzzy sets, membership functions and rules set for solving various computational 

problems. In the fuzzy system theory, an element can belong to a set with a certain degree 

(partial membership). The degree of membership is referred to as the membership value, and 

is commonly represented by a real value in [0,1]. Fuzzy set, therefore, provides a powerful 

computational paradigm for extending the capability of binary logic in ways that enable a much 

better representation of knowledge in a specific application.  

 

Fuzzy logic has been applied in diverse areas, such as control systems, pattern recognition, 

forecasting, reliability engineering, signal processing, monitoring and medical diagnosis [31].  

 

2.5 Probabilistic Reasoning 

A Bayesian network (belief network) is a probabilistic graphical model that represents a set of 

variables and their probabilistic dependencies. Formally, Bayesian networks are directed 

acyclic graphs whose nodes represent random variables in the Bayesian sense: observed 

quantities, latent variables, unknown parameters or hypotheses. Edges represent conditional 

dependencies. Unconnected nodes represent variables that are conditionally independent of 

each other. Each node is associated with a probability function that takes a particular set of 

values for the node’s parent variables and gives the probability of the variable represented by 

the node. 

 

Bayesian networks are used for modelling beliefs in computational biology and bioinformatics 

medicine, biomonitoring, document classification, information retrieval, semantic search, 

image processing, data fusion, decision support systems, financial and marketing informatics, 

and risk analysis [32]. 

 

2.6 Hybrid Models 

Hybrid models integrate two or more soft computing techniques to solve a problem, such as 

neural network combined with GA (neuro-genetic) [33], neural network combined with fuzzy 

logic (neuro-fuzzy) [34], fuzzy logic system incorporating GA (fuzzy-genetic) [35] and neural 
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network incorporating fuzzy logic and GA (neuro-fuzzy-genetic) [36]. In a neuro-genetic 

model, the neural network calls a genetic algorithm to optimize its structural parameters and 

hence a model with better performance. In a neuro-fuzzy model, ANN develops acceptable if-

then rules and membership functions for a fuzzy logic system from the given input-output 

information pairs. The hybrid system takes advantage of both neural network and fuzzy logic 

system. The integration of soft computing techniques provides complementary reasoning and 

searching methods, which are combined with domain knowledge and empirical data to develop 

flexible computing tools and solve complex problems. Hybrid soft computing models have 

been applied to a large number of classification, prediction and control problems and have the 

potential to act as more efficient and intelligent models. 

 

A typical hybrid model is adaptive neuro-fuzzy inference system (ANFIS), in which a fuzzy 

inference system is implemented in the framework of adaptive networks. It has the advantages 

of the learning property of ANN and the expert knowledge of the fuzzy inference system 

[37,38]. The ANFIS model is a multilayer neural network-based fuzzy system which has a total 

of five layers. The structure of ANFIS with two inputs is illustrated in Fig.7. The input and 

output nodes represent the input states and output response, respectively. In the middle layers, 

there are nodes functioning as membership functions and rules.   

 

Fig.7 Structure of the ANFIS model  

As shown in Fig.7, the node iO ,1 in layer 1 is an adaptive node with a membership function

)(x : 
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                                                        )( 22,1 xO Bii    , i=3, 4                                                   (18) 

where μAi and μBi-2 are the degree of membership functions for the fuzzy sets Ai and Bi, 

respectively. {ai, bi, ci} is the parameter set, referred as the premise parameters.   
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The node 
iO ,2
 in layer 2 multiply the incoming signals and send the product out. Each node 

output represents the firing strength of a rule. 

                                                  )()(,2 yxwO BiAiii  ,  i=1, 2                                               (19) 

 

The node iO ,3  in layer 3 is a fixed node and calculate the normalized firing strengths iw . 
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The node iO ,4  in layer 4 is an adaptive node with a node function and compute the contribution 

of the ith rule towards the model output:  

                                                                   )(,4 iiiiiii ryqxpwfwO  , i=1, 2                                           

(21) 

where iw  is the output of layer 3 and {pi, qi, ri} is the parameter set, referred to as the 

consequent parameters. 

 

The single node 5O  in layer 5 is a fixed node and computes the overall output as the summation 

of all incoming signals: 
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                                                (22) 

 

3. Applications of Soft Computing Techniques 

The applications of soft computing techniques to multiphase flow measurement are mainly 

concentrated on the estimation of phase flowrates and phase fractions and the identification of 

flow regime. The estimation of phase flowrates and phase fractions is equivalent to solve a 

problem of function approximation while the identification of flow regime is a classification 

problem. As the review focuses on the measurement of phase flowrates and phase fractions, 

the research purely on flow regime identification using soft computing techniques is out of the 

scope of this review. The following section reviews indirect multiphase measurement systems 

combining traditional sensors and soft computing techniques. 

 

3.1 Ultrasonic Sensors 

Figueiredo et al. [39] made use of four ultrasonic sensors incorporating an ANN to identify the 

flow pattern and obtain the gas volume fraction of two-phase flow, respectively. It can be seen 

from Fig.8 that the input of the ANN is comprised of energy ratios from four acoustic sensors. 

There are two hidden layers, including five and two hidden neurons respectively in the ANN 

model. The output layer generates the identified flow pattern or the estimated gas volume 

fraction. Experimental work with air-oil flow was conducted on 1-inch and 2-inch vertical test 

sections, respectively. During the experimental tests, dispersed bubbles, intermittent flow, 
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churn flow and annular flow were observed with the liquid velocity ranging from 0.1 to 0.3 

m/s and the gas volume fraction from 0 to 85%. Experimental results showed that the overall 

successful recognition rate of flow pattern was 98.3% while the overall variation of the 

estimated gas volume fraction was ±4.2. 

 

 

Fig.8 Measurement system based on ultrasonic sensors and ANN [39] 
 

3.2 Differential Pressure Devices 

Xu et al. [40] proposed a novel approach to the measurement of wet gas flow using a throat-

extended Venturi meter and soft computing approximation techniques. The measurement 

system is shown in Fig.9. A backpropagation ANN (BP-ANN) model and a SVM model were 

developed to estimate the gas flowrate and liquid flowrate through the static and dynamic 

features of differential pressures. Experimental tests were carried out with natural gas and water 

two-phase flow on a 2-inch test rig. The gas flowrate was between 0.0139 and 0.0444 m3/s and 

liquid flowrate ranging from 3.0556 ×10-4 to 0.0015 m3/s. It was found that both ANN and 

SVM models were valid in the approximation of the complex relationship between the signal 

features and the two-phase flowrates. With the usage of the BP-ANN, the mean prediction error 

and standard deviation were 3.14% and 4.22% for gas flowrate, respectively, whereas the mean 

and standard deviation were 4.77% and 6.33% for water flowrate, respectively. Through the 

SVM model, the mean and standard deviation of the relative prediction errors were 2.86% and 

4.39%, respectively, for gas flowrate, whereas the mean and standard deviation were 4.25% 

and 6.09%, respectively, for water flowrate. In Comparison with the ANN model, the SVM 

model was clearly of merit as the means of the relative prediction errors of the gas and water 

flowrates were improved by 8.9% and 10.9%, respectively. 
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Fig.9 Measurement system based on a throat-extended Venturi meter with ANN/SVM [40]  
 

Shaban and Tavoularis [41] proposed a method for the measurement of gas and liquid flow 

rates in a vertical upward pipe using differential pressure (DP) signals. As shown in Fig.10, the 

probability density function and the power spectral density of the normalized DP signals were 

obtained and processed by principle component analysis (PCA) and independent component 

analysis (ICA). The two-phase flow regime was firstly identified through the application of the 

elastic maps method on the probability density function of the DP signals. Then a multi-layer 

BP-ANN taking the extracted features as inputs was developed for each flow regime (slug, 

churn and annular) to produce phase flow rates. Experimental tests were conducted with air-

water in a vertical pipe of diameter 32.5mm with air superficial velocity between 0.014 m/s 

and 22 m/s and liquid velocity from 0.04 m/s to 0.4 m/s. Experimental results suggested that 

the average relative errors of liquid flowrates for slug, churn, annular flow regimes were -0.3%, 

-0.1% and -0.4%, respectively, and the average relative errors of gas flowrate were 5.5%, 0.5% 

and 0.6%, respectively. 

 

 

Fig.10 Measurement system based on a differential pressure transducer with elastic maps, 

PCA-ICA and ANN [41]  
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3.3 Electrical Sensors 

Fan and Yan [42] presented an ANN based method to obtain gas and liquid flowrates of two-

phase air-water slug flow in a 50 mm bore horizontal pipe through conductance probes. It can 

be seen from Fig.11 that five characteristic parameters of the mechanistic slug flow model, 

including translational velocity, slug holdup, film holdup, slug length and film length were 

extracted from the conductance signals and taken as inputs to the neural network. A feed 

forward neural network with ten hidden nodes was adopted to predict gas and liquid flowrates. 

Experimental assessment of the measurement system was conducted with air superficial 

velocity from 0.58 to 1.86 m/s and water superficial velocity between 0.35 to 1.62 m/s. Results 

suggested that the overall performance was within ±10% of full scale for the prediction of both 

liquid and gas flow rates. 

Fig.11 Measurement system based on two ring-type conductance probes and ANN  

Yan et al. [43] proposed a novel approach to measure the velocity and mass flowrate of 

pneumatically conveyed solids using a single ring-shaped electrostatic sensor and BP-ANNs. 

As shown in Fig. 12, a total of nine feature parameters of the electrostatic signals were extracted 

in the time and frequency domains. Through feature selection with PCA, two three-layer BP 

ANNs was developed to estimate the solid velocity and mass flowrate, respectively. 

Experimental tests were conducted with salt particles on a 50 mm bore test rig. The expected 

velocity was ranging from 10 to 30 m/s. Results demonstrated that the relative errors for both 

particle velocity and mass flowrate measurements were mostly within ±15%. The standard 

deviations of the relative errors for both measurements are 7.7% and 6.8%, respectively. 
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Fig. 12 Measurement system based on an electrostatic sensor and ANN [43] 

 

3.4 Optical Sensors 

Li et al. [44] applied a laser source, a 12×6 photodiode array sensor and an SVM model to 

quantify the void fraction of gas-liquid two-phase flow in small channels. As shown in Fig.13, 

the extracted features from the mean value and standard deviation of the 72 measured signals 

were taken as inputs of the SVM model. Through experimental tests with Nitrogen-water flow 

on a horizontal pipe with inner diameters of 4.22, 3.03, 2.16 and 1.08 mm, the flow patterns, 

including bubble flow, slug flow, stratified flow and annular flow, were observed. The 

maximum absolute error of the void fraction was found to be 7%. 

 

 

Fig.13 Measurement system based on a laser source, photodiode array sensor and SVM [44]  
 

3.5 Combination of Multiple Sensors 

Zheng et al. [45] proposed a measurement system using a turbine flowmeter, conductance 

sensors and SVM to identify the flow pattern and obtain the water cut of air-water two-phase 

flow in a vertical upward pipe with an inner diameter of 18mm. As shown in Fig.14, the flow 

pattern was identified through chaotic attractor morphologic analysis of the conductance 

signals. The total flowrate of the mixture was obtained from the rotating speed of the turbine 

through polynomial regression. To estimate the water cut of the mixed flow, a total of 10 

features, extracted from fluctuant conductance signals in both time and frequency domains 
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together with the average of rotating speed of the turbine were taken as inputs of the SVM 

model. The total flowrate of gas-water flow ranged from 0.1 to 2.5 m3/h during the tests. 

Experimental results suggested that the success rate of the flow pattern identification was 

higher than 96% and the average errors of the water flowrate and gas flowrate measurements 

were 7.36%. 

 

 

Fig.14 Measurement system based on conductance sensors, a turbine flowmeter and SVM 

[45]  
 

Meribout et al. [46] integrated impedance measurements with ultrasonic measurements to 

provide the volumetric flowrate of oil-water flow with the water-cut ranging from 0 to 100%. 

As shown in Fig.15 (a), a pattern recognition algorithm based on an ANN was implemented. 

In the first stage, a feedforward three-layer ANN was developed with the signals extracted from 

the conductance, capacitance, ultrasonic and Venturi probes and an output of the mixture 

density. With the usage of the ANN, the water cut can be interpreted by the sensor signals. In 

the second stage, another three-layer ANN was established to obtain oil and water flowrates by 

combining the estimated water-cut from the first stage and the differential pressure and Venturi 

outputs. Experimental work was conducted on a two-inch oil-water test rig and the results 

showed that, for both water-cut and total flow rate determinations, the relative error was less 

than 5% for any flow regimes. In subsequent research, they applied the same measurement 

method to oil-gas-water three-phase flow [47]. As shown in Fig.15 (b), two rings of high and 

low frequency ultrasonic sensors were used for low and high gas fractions, respectively. In this 

case, an ANN was developed in the first stage with the signals from capacitance, conductance, 

ultrasound, pressure and Venturi sensors. Then the flow rate of the mixture was obtained using 

the estimated total density, differential pressure and Venturi outputs. The experimental results 

demonstrated that the average relative errors were 3.91% for water flowrate, 4.68% for gas 

flowrate and 6.2% for oil flowrate. 
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(a) Measurement system for oil-water two-phase flow measurement 

 

 

(b) Measurement system for oil-air-water three-phase flow measurement 

Fig.15 Measurement system based on capacitance, conductance, ultrasonic, DP sensors and a 

Venturi flowmeter [46,47]  

 

Wang et al. [48] proposed a data fusion method by combining capacitive and electrostatic 

sensors to realize online volumetric concentration measurement of pulverized coal/biomass 

fuel flow in co-fired power plants (Fig.16). An adaptive network based fuzzy inference system 

(ANFIS) was developed through training with gradient descent method and hybrid method by 

combining the Kalman filter algorithm with a gradient descent algorithm. Experimental results 

on a  36 mm bore horizontal quartz glass pipe showed that the ANFIS based on the hybrid 

learning rule outperformed the system based on the gradient descent learning rule and the 

fiducial errors of biomass and pulverized coal flows were 1.2% and 0.7%, respectively. 

Following this research, an extreme learning machine (ELM) based on the electrostatic 

fluctuation signals was applied to identify the flow regime of coal/biomass/air three-phase flow 

and an adaptive wavelet neural network (AWNN) based on electrostatic and capacitance 

sensors was created to predict the volume concentration of each phase [49]. Experimental work 

was carried out on a 94 mm bore horizontal quartz glass pipe. This method yielded 2.1% 

fiducial error for biomass and 1.2% for pulverized coal. It was claimed that the training time, 

identification time and prediction time were much less than other methods. 
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(a) Measurement system based on ANFIS 

 

 

(b) Measurement system based on ELM and AWNN 

Fig.16 Measurement system based on capacitive and electrostatic sensors  

 

3.6 Coriolis Flowmeters 

Liu et al. [50] used a neural network to estimate the mass flow error of a 1-inch Coriolis mass 

flowmeter on a horizontal pipe. As shown in Fig.17, the multi-layer perceptron and radial basis 

function networks accept four inputs, including temperature, damping, density drop and 

flowrate to estimate the mass flow error. Then the mass flow readings from the Coriolis 

flowmeter are corrected with the estimated mass flow error. Experimental tests were conducted 

with the liquid mass flowrate ranging from 1.5 to 3.6 kg/s and density drop up to 35%. Although 

most of the mass flow errors were reduced to within ±2%, the gas entrainment was not 

quantified and other installation conditions were not considered. 

 

 

Fig.17 Measurement system based on Coriolis flowmeter and ANN  
 

Using a Coriolis mass flowmeter and a similar correction model, Mattar et al. [51] and Henry 

et al. [52] reported a case study of two-phase flow metering of heavy oil. Trials were carried 

out on a 75 mm bore flowmeter with a mass flowrate between 1 kg/s and 10 kg/s and gas void 

fraction up to 80%. Experimental results demonstrated that the corrected measurements were 

typically within 1-5% of the nominal mass flow and density for both steady and slugging two-

phase flows. 
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Subsequently, the field tests using Coriolis flowmeters incorporating the ANN correction 

model were conducted to measure slugging two-phase CO2 flow [53]. Due to the pressure 

losses through the pipeline network, the well-heads received the CO2 at the pressure of 5.52-

7.03MPa and the temperature of 4-32°C. The significant variations in pressure and temperature 

resulted in gas-liquid two-phase CO2 flow. In this case, the comparison results showed a 5% 

difference between the Coriolis flowmeters and the Pecos station sales meter.   

 

Apart from two-phase flow tests, Henry et al. [54] described another empirical method by 

combining a Coriolis mass flowmeter with a commercial water cut meter (Weatherford Red 

eye MP water cut meter) to achieve three-phase flow measurement. The water cut meter was 

used to indicate the proportion of water in the liquid flow. Experimental tests were undertaken 

on a 50 mm bore test rig with the total liquid flowrate ranging from 2.4 kg/s up to 11 kg/s, the 

water cut from 0% to 100% and gas volume fraction between 0% and 50%. Results 

demonstrated that the total liquid mass flow error was reduced within ±2.5% and the gas mass 

flow error within ±5%. The oil mass flow error limit was ±6% for water cut less than 70% and 

±15%, for water cut between 70% and 95%.  

 

A method based on fuzzy inference was proposed to correct the mass flow error of a Coriolis 

mass flowmeter for two-phase flow measurement [55]. The system accepted damping, density 

drop and apparent mass flowrate as inputs to the fuzzy inference system to generate the 

corrected mass flowrate. Lari and Shabaninia [56] applied a neuro-fuzzy algorithm to correct 

the error of a Coriolis mass flowmeter for air-water two-phase flow measurement. However, 

the experimental data and results were not explained in detail in their reports.  

 

In order to maintain the flow tube oscillation under two-phase flow conditions, Hou et al. [57] 

developed a digital Coriolis flow transmitter and tested on a commercial 1-inch Coriolis 

flowmeter. The measurement errors under gas-liquid two-phase flow conditions were corrected 

using a feed-forward neural network with two inputs - apparent liquid mass flowrate and 

observed density drop. The online correction results showed that, when water flowrate varied 

from 3 to 15 kg/min with gas volume fraction up to 25%, the flowrate errors were within ±3.5% 

while density errors were within ±1.5%.  

 

A 25 mm bore Coriolis mass flowmeter together with SVM algorithms was applied by Ma et 

al. [58] to measure the overall mass flowrate of oil-water two-phase flow. The oil flowrate 

ranged from 0.27 to 5 m3/h and water flowrate between 0.2 and 7 m3/h. Experimental results 

showed that the relative error of the total mass flowrate was within ±1% while the individual 

mass flowrate had the maximum error of ±8%.  

 

Further investigations into the application of soft computing techniques to multiphase 

measurement were conducted by Wang et al. [59]. A 25 mm bore Coriolis mass flowmeter was 
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tested with air-water flow on horizontal and vertical pipe sections. Different data-driven models 

based on ANN, SVM and GP were developed, respectively, to estimate the liquid mass flowrate 

and gas volume fraction. The inputs of the data-driven models are determined through input 

variable selection methods [60]. For the estimation of liquid mass flowrate, the input variables 

take apparent mass flowrate, observed density, damping and DP, while for the gas volume 

fraction (GVF) prediction, the apparent mass flowrate, density and DP are taken as inputs. 

Experimental tests were conducted with liquid mass flowrate from 700 kg/h to 14500 kg/h and 

gas volume fraction between 0 and 30%. The performance of the data-driven models was 

assessed with air-water two-phase flow and the results demonstrated that SVM outperformed 

ANN and GP. For liquid mass flowrate measurement with the SVM models, 93.49% of the 

experimental data yield a relative error less than ±1% on the horizontal pipeline, while 96.17% 

of the results are within ±1% on the vertical installation. The SVM models predict the gas 

volume fraction with a relative error less than 10% for 93.10% and 94.25% of the test 

conditions on the horizontal and vertical installations, respectively. 

 

 

Fig. 18 Measurement system based on Coriolis flowmeter and ANN/GP/SVM 

 

Afterwards, Wang et al. [61] applied a 15mm bore Coriolis mass flowmeter together with a 

BP-ANN model to the measurement of gas-liquid two-phase carbon dioxide flow. The ANN 

accepts two inputs including apparent mass flowrate and observed density drop and output total 

CO2 mass flowrate. Experimental evaluation was conducted with the liquid mass flowrate 

between 300 kg/h and 3050 kg/h and gas mass flowrate from 0 to 330 kg/h. Experimental 

results have suggested that the Coriolis flowmeter with the developed correction method is 

capable of providing the mass flowrate of gas-liquid CO2 flow with errors mostly within ±2% 

and ±1.5% on horizontal and vertical pipelines, respectively. 

3.7 Summary 

This section has reviewed the indirect multiphase measurement systems incorporating 

traditional sensors and soft computing techniques for the measurement of phase flowrates and 

phase fractions. The main characteristic of soft computing techniques is to provide solutions to 

real world problems which cannot be modelled or are too difficult to model mathematically. 

Multiphase flow is very complex and difficult to understand and model due to the simultaneous 

presence and interactions between different phases or components in the same stream.  For this 

reason, a range of soft computing techniques such as ANN, SVM, ANFIS and GP have been 



25 

 

applied to estimate the flow rates or phase fractions. Experimental studies have been conducted 

to evaluate the validity of soft computing techniques for the measurement of gas-liquid, gas-

solid two-phase or three-phase flows. 

 

4. Trends and Future Developments 

4.1 Sensor Fusion 

Traditional sensors incorporating soft computing techniques provide an effective solution to 

the measurement of phase flowrates and phase fractions. Table 2 summarizes the sensors used, 

soft computing methods, experimental conditions and measurement errors of the indirect 

measurement systems discussed in this review. It should be noted that ‘GVF variation’ in Table 

2 represents the absolute error of the measurement from the reference value while the rest of 

the results is the averaged relative error in the measurements from the reference values. Among 

these measurement systems, it is obvious that multi-sensors are capable of estimating more 

parameters with higher accuracies. For example, conductance sensors incorporating an ANN 

can measure the air-water flow with an error less than ±10% while conductance sensors 

together with a Turbine flowmeter are able to obtain the velocity of individual phase with an 

error no greater than 7.36%. A combination of conductance, capacitance, ultrasonic, DP 

sensors and a Ventrui meter may be applied to measure oil-air-water three-phase flow. Sensor 

fusion is an effective solution to extending the measurement range and applicability of 

conventional flow instruments. In addition, it is clear that Coriolis mass flowmeters provide 

more accurate mass flowrate measurement in comparison with other flowmeters. Coriolis mass 

flowmeters in combination with sensor fusion are expected to have much potential for future 

multiphase flow measurement [62].    
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Table 2 Indirect measurement approaches using traditional sensors and soft computing techniques

Sensors   Soft computing method     Multiphase flow        Pipe diameter (mm)             Average error 

Ultrasonic sensor [39]                                                                                            ANN   air-oil   25, 50   GVF variation: ±4.2 

Throat-extended Venturi [40]                                                                     ANN natural gas-water                50    qv,g: 3.14%, qv,l: 4.77%                                                          

Throat-extended Venturi [40]                                                                   SVM      natural gas-water                50 qv,g: 2.86%, qv,l: 4.25% 

DP sensors [41]                                              ANN   air-water                             32.5                          vg:2.4%, vl: -0.3% 

Conductance sensors [42]                                                                      ANN air-water                             50 vg, vl: <±10% 

Laser diode, photodiode array [44]                                                     SVM nitrogen-water 4.22, 3.03, 

2.16,1.08 

GVF variation <7% 

Conductance+Turbine flowmeter [45]                                                       ANN air-water                              18 vg, vl: 7.36%                                                                                   

Capacitance+Conductance+Ultrasonic+DP+Venturi[46]       ANN oil-water 50 v: <5% 

Capacitance+Conductance+Ultrasonic+DP+Venturi[47] ANN oil-air-water   50 vo: 6.2%, vg: 4.68%, vl:3.91% 

Coriolis flowmeter [50]                                                                                  ANN   air-water                              25 qm,l: <±2%       

Coriolis flowmeter [52]                                                                              ANN air-heavy oil                        75   qm,l: <1%~5% 

Coriolis flowmeter [53]                                                                                                    ANN gas-liquid CO2 - qm,l: 5% 

Coriolis flowmeter+water cut meter [54]                                                   ANN oil-air-water 50 qm,l: ±2.5%, qm,g: ±5%, qm,o: ±6%, ±15% 

Coriolis flowmeter [55]                                                                              Fuzzy system                 air-water -    - 

Coriolis flowmeter [56]                                                                                  Neuro-Fuzzy air-water                              - -   

Coriolis flowmeter [57]                                                                                ANN    air-water                             25   qm,l: <±3.5% 

Coriolis flowmeter [58]                                                                                 SVM oil-water                             25 qm:<±1%, qm,o,qm,w:<±8% 

Coriolis flowmeter+DP [59]                                      
ANN / SVM 

/GP             
air-water                             25 qm,l: <±2%, GVF:<±10%       

Coriolis flowmeter [61] ANN gas-liquid CO2  qml:<±2% 

Electrostatic sensor [43]                                                                                ANN salt-air                                50 vs, qm,s <±15% 

Capacitance+Electrostatic sensor [48]                                                   ANFIS coal-biomass-air                 36 Cb: 1.2%, Cc: 0.7% 

Capacitance+Electrostatic sensor [49]                                                   ELM coal-biomass-air                 94     Cb: 2.1%, Cc: 1.2% 
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4.2 Soft Computing Techniques 

MLP neural networks have been widely used for the estimation of individual phase flowrate 

and phase fraction. However, the structure parameters of neural networks are required to be 

adjusted during the training process and normally determined through trial-and-error. Due to 

the fixed structure and less adjustable parameters, RBF neural networks were employed in 

some research to improve high training efficiency. Although neural networks have provided 

effective solutions to multiphase flow measurement, ANN is based on empirical risk 

minimization and all the parameters are tuned iteratively, so that ANN may suffer from 

overfitting. In this case, SVM based on structural risk minimization offers an alternative option. 

Some research work [40, 59] has proven that SVM achieved better performance than ANN in 

terms of generalization ability. As for evolutionary algorithms, GA has been widely used to 

optimize the internal parameters of ANN. In comparison with ANN and SVM, there are less 

applications of fuzzy logic and probabilistic reasoning to multiphase flow measurement. In 

addition, some knowledge based systems combing ANN and fuzzy logic such as ANFIS have 

been developed [56,48]. This kind of hybrid system takes the advantages of ANN and fuzzy 

logic systems. Soft computing approaches are preferable to the conventional methods for 

solving problems which are difficult to describe by analytical or mathematical models. The 

successful applications suggest that soft computing techniques will have an increasingly greater 

impact on multiphase flow metering in the coming years. Hybrid models by exploiting the 

strength and advantages of each technique offer a new dimension in the field of multiphase 

flow measurement. In addition, deep learning is a set of machine learning algorithms that model 

high-level abstractions in data using architectures consisting of multiple nonlinear 

transformations [63,64]. Deep learning has been successfully applied in the fields of computer 

vision, speech recognition and social network filtering [64]. Using deep learning for flow 

pattern recognition has recently been attempted [65,66]. It is expected that more applications 

of deep learning to multiphase flow measurement would emerge over the next few years. 

 

From the description in Section 3, it is clear that a number of sensing components incorporating 

soft computing techniques have been applied for the measurement of individual flowrate and 

phase fraction in gas-liquid and liquid-liquid flows. Some research focuses on the measurement 

of individual solid phase concentration in gas-solid three-phase flow. However, the individual 

flowrate has not been quantified. There are few reports on the measurement of phase flowrates 

or phase fractions of slurry flow using soft computing techniques. However, the parameters for 

considerations of pipe design, such as pressure drop [67], hold-up [68,69] and critical velocity 

[70,71] have been predicted with soft computing techniques. It is anticipated that more progress 

in developing the measurement systems incorporating traditional sensors and soft computing 

techniques would be achieved for the measurement of gas-liquid, gas-solid and liquid-solid 

flows in the next few years. 
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4.3 Data-Driven Modelling 

An empirical model developed with soft computing methods is normally regarded as a data-

driven model. Data-driven models would be useful in solving a practical problem or modelling 

a particular system or process if a considerable volume of data describing this problem is 

available, provided that there are no significant changes to the modelled system during the 

period covered by the model [72]. However, the primary challenge in real-world applications 

of the data-driven models lies in that the models established from experimental data under 

limited laboratory conditions may not be applicable to the process conditions where the flow 

metering systems are installed. Factors that may affect the performance of the models under 

real-world conditions include pipe diameter, pipeline orientation, ranges of flow rates and 

phase fractions, temperature, pressure and viscosity of the fluids being measured. Certain in-

field training of the data-driven models may be undertaken, provided that there are reliable 

reference data or history data are available.  

 

In order to develop an optimal model for the desired output and enhance the generalization 

ability of the model, two aspects should be taken into consideration, namely, input variable 

selection and model evaluation. Input variable selection is to extract useful information from 

the available data and identify suitable input variables which are able to well explain the desired 

output for a data-driven model. Through input variable selection to eliminate the irrelevant or 

redundant variables, the complexity of the models structure is simplified and the computational 

efficiency is improved. The models [40,41,43,44,60] include feature selection or variable 

selection and hence yield better performance. Hereby, input variable selection is an important 

step in data-driven modelling. The comprehensive review of input variable selection methods 

for artificial neural networks by May et al. [73] offers useful guidance.  

 

Data-driven modelling is a process to find connections between the input variables and the 

desired outputs through analysing the available data, even without any explicit knowledge of 

the physical behaviour of the system. Once the model is trained, it can be tested using an 

independent data set to determine how well it can generalise to unseen data. It can be seen from 

Xu et al. [40] and Wang et al. [59] that different models with the same experimental data 

perform differently. Even though the model structure is determined, different model parameters 

also affect the performance of the data-driven models. In the case of an ANN the parameters 

such as weights, biases and transfer functions have significant influences on the outputs of the 

ANN. Similarly, the performance of an SVM model depends on the penalty parameters and 

kernel functions used. For this reason, several optimization algorithms such as GA [74], 

response surface method [75] and central composite design [76], are used to obtain the optimal 

parameters for data-driven models. In order to achieve a better solution to the problem, model 

evaluation is also an important process. Therefore, it is suggested that input variable selection 

methods and model evaluation should be carefully considered in the developing process of 

data-driven models for multiphase flow measurement or other applications.  
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4.4 Product Enhancement and New Applications 

Soft computing techniques extend the usability of traditional sensors from single phase to 

multiphase flow measurement. Such techniques are superior to conventional methods to solve 

challenging problems which are difficult to describe by analytical or mathematical models. By 

incorporating soft computing techniques, ultrasonic sensors, Venturi flowmeters, conductance 

sensors and Coriolis flowmeters are capable of measuring the individual flowrates or phase 

fractions in two-phase or three-phase flow. The techniques provide an efficient, intelligent and 

cost-effective approach to developing multiphase flowmeters. It is thus expected that the 

measurement systems combining conventional sensors and soft computing techniques will be 

applied to multiphase flow metering in the oil and gas sector, CCS systems, coal/biomass fired 

power plant, slurry processes and bunkering centres.  

 

It should be pointed out that calibration of multiphase flowmeters incorporating soft computing 

models is a changeling issue. In order to achieve the same performance of the flowmeters in 

practical applications as in the training process, this method requires primary calibration on a 

flow test facility and in-situ adjustment of the outputs during field operations. 

 

5. Conclusions 

This review has attempted to present the applications of soft computing techniques to 

multiphase flow measurement and define the state-of-the-art in the development of multiphase 

flowmeters incorporating such techniques. This review covers the research which have been 

conducted within the past 15 years and focuses on the measurement of phase flowrates and 

phase fractions using conventional sensors incorporating soft computing techniques.  

 

Multiphase flow measurement is a complex and difficult problem for engineers, practitioners 

and academics. Although extensive research has been conducted on sensor design, signal 

processing and development of test facilities, it is still a long way to develop an ideal 

multiphase flowmeter. With advances of soft computing techniques in handling imprecise, 

uncertain, ambiguous, incomplete and subjective data and information, data-driven models and 

hybrid models based on soft computing techniques provide effective solutions to the 

measurement problems. It is envisioned that soft computing techniques will have a more 

important part to play in multiphase flow measurement. 
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