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been asymmetric for most of the spreading history. This asymmetry is evident in crustal thickness
along the present-day ridge system and anomalously shallow seafloor of ages ~49-25 Ma created at
the Reykjanes Ridge (RR), SSW of the hotspot center, compared to deeper seafloor created by the now-
extinct Aegir Ridge (AR) the same distance NE of the hotspot center. The cause of this asymmetry is

Keywords: explored with 3-D numerical models that simulate a mantle plume interacting with the ridge system
North Atlantic using realistic ridge geometries and spreading rates that evolve from continental breakup to present-day.
mantle plumes The models predict plume-influence to be symmetric at continental breakup, then to rapidly contract
mid-ocean ridges along the ridges, resulting in widely influenced margins next to uninfluenced oceanic crust. After this
;Ort‘ﬁ“etmal rifting initial stage, varying degrees of asymmetry along the mature ridge segments are predicted. Models in
otspots

which the lithosphere is created by the stiffening of the mantle due to the extraction of water near
the base of the melting zone predict a moderate amount of asymmetry; the plume expands NE along
the AR ~70-80% as far as it expands SSW along the RR. Without dehydration stiffening, the lithosphere
corresponds to the near-surface, cool, thermal boundary layer; in these cases, the plume is predicted to
be even more asymmetric, expanding only 40-50% as far along the AR as it does along the RR. Estimates
of asymmetry and seismically measured crustal thicknesses are best explained by model predictions of
an Iceland plume volume flux of ~100-200 m3/s, and a lithosphere controlled by a rheology in which
dehydration stiffens the mantle, but to a lesser degree than simulated here. The asymmetry of influence
along the present-day ridge system is predicted to be a transient configuration in which plume influence
along the Reykjanes Ridge is steady, but is still widening along the Kolbeinsey Ridge, as it has been since
this ridge formed at ~25 Ma.

dehydration

© 2014 Elsevier B.V. All rights reserved.

1. Introduction day. For example, residual basement depth (bathymetry corrected
for sediment loading and subsidence with crustal age), which com-

The North Atlantic region has been influenced by anomalously monly correlates with crustal thickness, is anomalously shallow for
profuse magmatism associated with the Iceland hotspot to varying >2000 km along the margins of Greenland and Norway, as well as
degrees from before the time of continental breakup until present- most of the basin surrounding Iceland (Fig. 1, Ito and van Keken,
2007). This shallow seafloor comprises most of the North Atlantic

Igneous Province (e.g. Coffin and Eldholm, 1994; Holbrook et al.,
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Fig. 1. Residual basement topography of the North Atlantic (Ito and van Keken, 2007) highlighting areas of inferred hotspot influence. Narrow dashed lines mark the 25 Ma
isochrons (Miiller et al., 2008), approximately when seafloor spreading ceased at the Aegir Ridge (AR) and shifted to the Kolbeinsey Ridge (KR). Black outlines enclose areas
with >1.8 km residual topography and the approximate area of hotspot influence (Mjelde et al., 2005; Nielsen and Hopper, 2004). The dashed red line marks the transition
between smooth seafloor created by the part of the Reykjanes Ridge (RR) spreading obliquely in the north without any prominent transform faults, in contrast to the rougher
seafloor to the south created by orthogonal spreading along segments separated by transform faults (White, 1997). The solid white lines show seismic Profile 1-03 of Breivik
et al. (2006) and the seismic line of Rai et al. (2012). Blue arrows show approximate plate spreading directions relative to the RR. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

hotspot heavily influenced the areas west, east, and south of the
basin, but had much less influence on the AR basin itself. Also pe-
culiarly, the Iceland hotspot influence appears to extend less far
north along the Kolbeinsey Ridge (KR) than south along the Reyk-
janes Ridge (RR) relative to Vatnajokull (e.g. Hooft et al., 2006;
Schilling, 1999; Schilling et al., 1983), which marks the center of
the Iceland hotspot, as confirmed by upper mantle tomography
(Allen et al., 2002; Wolfe et al., 1997). (Shorttle et al., 2010 argue
for a symmetric variation in bathymetry, but place their hotspot
center south of the tomographic center of the hotspot.) Thus, the
influence of the Iceland hotspot along the Mid-Atlantic Ridge ap-
pears to have been asymmetric throughout much of the history of
seafloor spreading in the North Atlantic.

Constraints on the tectonic evolution provide more evidence for
this asymmetry and clues to the possible causes. The breakup of
Greenland and Norway began ~55-54 Ma (e.g. Torsvik et al., 2001)
and was accompanied by extensive flood basalt volcanism and ig-
neous intrusions along the continental margins to form a major
magmatic phase of the North Atlantic Igneous Province (e.g. White
and McKenzie, 1989). Seismic studies document igneous crustal
thicknesses of up to ~35 km along both continental margins near
the center of the Iceland hotspot track, and thicknesses >15 km
extending >1000 km along the margins to the north and south
(Breivik et al., 2006; Holbrook et al., 2001; Mjelde et al., 2008;
Voss et al., 2009). Shortly after breakup (~54-52 Ma), oceanic
crust began forming along three main spreading centers, the RR,
AR, and Mohns Ridge (MR) (Fig. 2). Average half-spreading rates
(29-33 km/Myr) and crustal thicknesses at this time were at
their highest observed values (Fig. 3, Breivik et al., 2006, 2009;
Smallwood and White, 2002; Voss et al., 2009). For example,
oceanic crustal thickness was ~8 km along the early AR (Breivik
et al.,, 2006), as thick or thicker along much of the RR, and signifi-
cantly thicker (>30 km) along the Iceland-Greenland and Iceland-
Faeroe volcanic ridges (e.g. Holbrook et al., 2001; Smallwood et al.,

1999). Shortly after continental breakup, the relative location of
the hotspot center was likely near the margin of east Greenland
(Fig. 2), although the lack of a documented age progression along
the presumed hotspot track leads to large uncertainties in the rel-
ative location of the hotspot through time (e.g. Lawver and Miiller,
1994; Mihalffy et al., 2008; Steinberger, 2000). In pre- and early-
breakup history, hotspot influence was widespread, with no clear
asymmetry.

During ~52-43 Ma, the average seafloor half-spreading rate
along the RR, KR, and AR slowed to ~12 km/Myr, and the in-
fluence of the hotspot on the AR, evident in crustal thickness,
decreased significantly (Fig. 3). During 43-28 Ma, seafloor spread-
ing at the AR was probably slower than at the RR and MR by as
much as 30% (Breivik et al., 2006; Mosar et al., 2002; Smallwood
and White, 2002; Voss et al., 2009), likely related to lithospheric
stretching or the very earliest stages of rifting at the KR. Crustal
thickness generated from 43 to 28 Ma along the middle and north-
ern portions of the AR was only 3.5-5.5 km (Breivik et al., 2006),
similar to that of normal (not hotspot influenced) oceanic crust
at the same ultra-slow spreading rate of ~7 km/Myr (Dick et al.,
2003; White et al., 2001). Along the 33 Ma isochron, crustal thick-
ness is ~4 km in the northern part of the AR and thickens to
~7 km in the southernmost ~250-300 km of the AR (Rai et al,,
2012). Thicker crust with the slightly slower spreading to the south
is opposite the correlation for normal ridges (Dick et al., 2003;
White et al., 2001), and therefore suggests a modest degree of
hotspot influence, restricted to the southern portion of AR.

By ~30-28 Ma, seafloor spreading had begun migrating from
south to north along the KR, separating the Jan Mayen
microcontinent (JMMC) from Greenland (Fig. 2); by ~25 Ma
the AR was extinct and spreading was completely transferred
to the KR (Nunns, 1983; Vogt et al, 1980). Plume influence
along the RR at this time is inferred from smooth basement
topography created by the part of the RR spreading obliquely
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Fig. 2. Plate reconstructions and paleo-basement depth (Miiller et al., 2008) showing the tectonic evolution of the study area. Filled circles mark estimated center of hotspot
relative to Greenland by Lawver and Miiller (1994) (red) and Mihalffy et al. (2008) (purple). Dashed circles show corresponding (like colors) areas of influence of the Iceland
plume for perfectly circular plume pancakes when the Aegir Ridge became extinct ~25 Ma, based on the distance to the rough-smooth boundary in seafloor fabric created
at the Reykjanes Ridge at 25 Ma. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Modeled spreading rate evolution for the North Atlantic. Geological estimates
of the spreading rates at MR (Breivik et al., 2009; Voss et al., 2009), RR (Smallwood
and White, 2002), AR (red, Breivik et al., 2006), and KR (yellow, Mosar et al., 2002)
were averaged to create a mean North Atlantic spreading rate through time (black).
Since 33 Ma, spreading rates by Mosar et al. (2002) for all four ridges are incorpo-
rated. The mean spreading rate (black) was used to model all of the active ridges
at times when the geological estimates of their spreading rates were very simi-
lar (deviating by <2 mm/yr). However, during times marked by shaded bands, the
model Aegir and Kolbeinsey Ridges were assigned the low rates defined by the
geological estimates, and the model Reykjanes and Mohns Ridges shared the same
(faster) spreading rate, determined by the average (black) of their individual geolog-
ical rates. The blue line shows the time evolution of seismically measured crustal
thickness across the AR (Profile 1-03, Breivik et al., 2006). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

in the north without any prominent transform faults, in con-
trast to the rougher seafloor to the south, created by orthogonal
spreading along segments separated by transform faults (Vogt
and Avery, 1974; White, 1997). This “rough-smooth” boundary
is interpreted to delineate the maximum extent of plume in-
fluence along the RR, and was 600-1200 km SSW of the Ice-
land hotspot. The same distance northeast from the projected
hotspot center would encompass a large portion, if not all, of
the AR (Fig. 2). The lack of thickened crust along most of the
AR during all but the first 2-3 Myr of its spreading history in-
dicates that the plume influence was asymmetric starting near
~49-47 Ma, influencing the RR further SSW than the AR to
the NE.

When considering the tectonic evolution, two hypotheses can
be formulated as to the cause of the long-term asymmetry in the
Iceland hotspot. (1) The asymmetric geometry of the ridges rela-
tive to each other and to the hotspot center leads to asymmetric

hotspot influence. (2) Variations in lithospheric thickness, includ-
ing the conduit-like, “inverted troughs” which form beneath the
ridge axes, and thick lithosphere of the JMMC, promote plume
expansion SW along the RR and impede plume expansion NE to
the AR.

To test the above hypotheses about the comparatively restricted
hotspot influence in the AR basin and to address the cause of
asymmetric Iceland hotspot influence overall, we use 3-D numer-
ical models that simulate a plume interacting with rifting conti-
nents and spreading ridges. The models simulate ridge geometries
and spreading rates based on geological estimates from the time
of continental breakup until present-day. Varied model parameters
are plume volume flux, mantle viscosity, and rheology of the litho-
sphere, which controls the structure of the lithosphere. In one set
of models, the lithosphere corresponds to the cool thermal bound-
ary layer near the surface. In another set of models, the rheology
is controlled by water content, and partial melting removes water
from the solid leaving a stiff, dehydrated lithosphere, independent
of the thermal boundary layer. We quantify the effects of the above
variables on the asymmetry of a plume interacting with the ridge.
Finally, we compare model predictions with observations to infer
the volume flux of the Iceland plume and rheology of the litho-
sphere.

2. Methods
2.1. Model setup

We employ Citcom, a finite element code widely used to sim-
ulate mantle convection (e.g. Moresi and Gurnis, 1996; Zhong et
al.,, 2000). Citcom solves the equations describing conservation of
mass, conservation of momentum, and conservation of energy in a
Cartesian coordinate system for a fluid with zero-Reynolds number
and infinite Prandlt number (see supplementary material). The ex-
tended Boussinesq approximation is used to simulate the adiabatic
temperature gradient and latent heat loss due to melting (Bianco
et al., 2011). Model dimensions are 2400 x 2800 x 400 km, with
289 x 257 x 65 elements of size 8 x 11 x 6 km in the x, y, and z
directions, respectively (Fig. 4).

The structure of the stiff part of the plate, or lithosphere,
is controlled by the rheology. One set of models simulates a
“thermal lithosphere”, which develops because viscosity varies
as a standard Arrhenius function of temperature and pressure
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Fig.4. Model setup and diagrams showcasing the two rheologies used. Example predictions (a) from Model 3a at a model time corresponding to present-day. Green lines show
the imposed ridge geometry, the red isosurface envelops mantle with temperature >55°C above the ambient mantle potential temperature, the gray isosurface surrounds
regions of melting, the boundary walls show temperature (colors: lithosphere in light blue, asthenosphere in yellow), with arrows representing material velocities. Some
details of the recent ridge and hotspot configuration are neglected; the eastward jumps in the Eastern Rift Zone on Iceland (Hardarson et al., 1997) are replaced by a straight,
fixed RR. Also, the plume is centered on the modeled RR, which is appropriate for much of the spreading history, but is offset ~200 km WNW from the present-day center
imaged with mantle tomography (Allen et al., 2002; Wolfe et al., 1997). See text for further justification. Cartoons illustrate the mantle plume (red) rising and expanding
beneath a (b) “thermal lithosphere” (blue), the base of which corresponds to the thermal boundary layer and a (c) “dehydrated” lithosphere (blue, purple), the base of which
corresponds to the dry-solidus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(see supplementary material). The thermal lithosphere corresponds
to the cool thermal boundary layer near the surface (Fig. 4(b))
and is therefore directly coupled to the geometry of the plates:
it is thinnest beneath the ridges, thicker away from the ridge,
and thickest beneath continents and the JMMC. In another set of
models, viscosity also depends inversely on the fractional amount
of water dissolved in the solid (Hirth and Kohlstaedt, 2003). The
extraction of water at the base of the melting zone leads to a
rapid increase in viscosity by two orders of magnitude, forming a
thick “dehydrated” lithosphere (Hirth and Kohlstaedt, 2003). In this
case, the dehydrated lithosphere is thickest near the plume cen-
ter where the solidus is deepest and thins away from the plume
center (Fig. 4(c), Ito et al., 1999), but the thickness variations are
small compared to those of thermal lithosphere and do not relate
directly to the shape of the plates.

The plume source is imposed as a hot circular patch on the
bottom boundary of the model, with a peak excess temperature of
AT =150 K at the plume center, decaying as a Gaussian function
of radial distance, characterized by radius r, at which the tempera-
ture anomaly has decreased by a factor of e. The plume is centered
on the Mid-Atlantic Ridge at all times. This simplification is con-
sistent with the Greenland-Iceland and Faeroe-Iceland volcanic
ridges, representing the hotspot tracks on both plates, with the
hotspot being very near or at the ridge since continental breakup
(Vink, 1984; White, 1988, 1997; Wilson, 1973).

Plate geometry is imposed with horizontal velocity boundary
conditions on the top model surface, diverging at the ridge axes
and constant in the plate interior (Fig. 4(a), plate motion is in the
x direction). The geometry is obtained from a polar projection of
the North Atlantic rotated into the average spreading direction of
the region. The plate separation rate is simulated as being spatially
uniform, therefore the decrease in opening rate from north-to-
south along the AR is not simulated. The RR, AR, and MR are ap-
proximated with straight segments, with transforms parallel to the
spreading direction. The straight segment that approximates the
RR extends through Iceland, so the very recent (~8 Ma, Garcia et

al., 2008) eastward offset of the Northern Rift Zone is neglected for
simplicity. The average North Atlantic spreading rate as it changes
through time is used for all ridges, except at the AR when spread-
ing rates significantly diverge from the average during ~43-33 Ma,
and at the KR, which spreads slower than average before the death
of the AR (Fig. 3).

The initial conditions simulate the pre-rifted, continental litho-
sphere as a ~100-km-thick, cool thermal boundary layer (Breivik
et al., 2009). The surface is held motionless to allow the plume
to rise from the base to the top of the model, and for it to begin
spreading like a “pancake” beneath the lithosphere. Once the pan-
cake expands to a diameter of ~2400 km—the approximate extent
of influence along the Greenland continental margin (Holbrook et
al., 2001)—continental rifting and the seafloor spreading sequence
initiates.

2.2. Mantle melting and crustal accretion

To investigate how the evolving mantle plume affects igneous
crustal thickness, we solve for melt production and compute
crustal thickness. Melting rate is calculated as the time rate of
change of extent of melt depletion, F, using the parameterization
of Katz et al. (2003) and by advecting F with passive tracers (see
Bianco et al,, 2011 for details). The melt produced is assumed to
instantaneously migrate directly opposite the spreading direction
to the nearest ridge segment, where it is incorporated into the
crustal accretion zone, which is 30 km wide across the ridge axis,
for numerical stability. Crustal thickness, T, is computed at each
point by solving the time-dependent advection equation in the La-
grangian reference of each spreading plates, using explicit forward
differencing in time,

DT,
Dt

={c- (1)
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The left hand side is the material time derivative of T, and g, is
the volume flux of melt delivered from the mantle per unit area
within the crustal accretion zone.

2.3. Tracking plume material

For measurements of the lateral extent of plume influence,
we use passive markers to track the advection of plume material.
The markers were introduced at a depth of 200 km wherever ex-
cess mantle temperature is >AT /e, then advected with the mantle
flow. We use “width” to describe the extent of the plume pan-
cake along the ridge axis (e.g., Ribe et al., 1995). This width is
formally defined as the along-axis distance from the plume cen-
ter to which the plume material contributes >50% to the model
crust. The widths along the Reykjanes and Aegir Ridges (Wgg and
Wag, respectively) are measured at ~30 Ma, which is near the
time the AR became extinct and close to the isochron along which
the Rai et al. (2012) seismic refraction profile ran. In addition, the
total radial distances of plume influence at 30 Ma, Rgg and Rgag,
are the distance from the plume center to the most distal extent
of plume influence along the RR and AR, respectively. The ratios
War/Wgr and Rar/Rgg measure the asymmetry of plume influ-
ence along the AR compared to the RR. Ratios of unity represent
perfect symmetry; lower values represent greater asymmetry. The
ratio of radial extents Rar/Rgr characterizes the asymmetry of the
plume pancake, whereas Wsg/Wpgg addresses the apparent asym-
metry in width along these ridges and does not include the offset
between the plume center and the AR as part of the measurement.

2.4. Model parameters

Several properties are likely to influence along-axis widths.
Plume volume flux Q is known to be one primary control on
the steady-state (symmetric) width W to which a plume expands
along a straight ridge, spreading at a rate of U; W o (Q/U)!/?
(Ribe et al., 1995). Plume volume flux Q may also modulate the
asymmetry of the plume pancake by influencing the strength of
the part of mantle flow that is driven by plume buoyancy, which
alone should be radially symmetric, relative to the part of the flow
driven by the spreading plates, which, due to the asymmetric ridge
geometry, should be asymmetric. Finally, variations in Q as well
as viscosity n change the characteristic thickness of the hot plume
pancake beneath the lithosphere S (Ribe et al., 1995), where

1
5=<@> , @)
gAp

in which g is gravitational acceleration, and Ap is the density
contrast between the plume and the ambient mantle. When cal-
culating S, we defined 7 to be the lowest viscosity in the ponding
plume pancake. The ratio of S to the characteristic amount that
the lithosphere thickens off-axis, Ah, is predicted to control the
degree to which lithosphere structure influences the lateral expan-
sion of the plume pancake (Ribe et al., 1995). If S/Ah > 1, then
the pancake expands much like it would against a flat lithospheric
base, whereas if S/Ah ~ 1, the expansion can be perturbed by a
sloping base of the lithosphere (Ribe et al., 1995). In models in
which the lithosphere is controlled by dehydration, the lithosphere
does not thicken systematically away from the ridge axis, S/Ah
is always very large (>>1), and therefore the asymmetric ridge
geometry should have a smaller influence on making the plume
asymmetric. If the lithosphere is thermally controlled, then S/Ah
is variable and can approach unity, in which case the asymmet-
ric ridge geometry can have a larger influence on the shape of the
plume pancake.

To modulate Q, n, and S/Ah, we vary three model input pa-
rameters: plume radius, r, Rayleigh number, Ra (higher Ra sim-
ulates lower plume viscosities), and water-independent versus
water-dependent rheology (details given in Table 1). Ambient man-
tle potential temperature (1325 °C-1338 °C) is varied with Rayleigh
number to produce reasonable (5.5-6.5 km) crustal thicknesses for
non-plume influenced, slow-spreading ridges (Dick et al., 2003;
White et al., 2001). A range of plume volume fluxes are investi-
gated (95-446 m?/s) by varying plume radius (65-180 km) at four
Rayleigh numbers (5 x 10°-2 x 108). About half of the calculations
simulate a thermal lithosphere without the effects of dehydration
stiffening, while the other half consider a dehydrated lithosphere
that does include these effects. Model outputs are presented as
maps of crustal thickness, volume fraction of plume-contributed
crust and model seafloor ages, along with the widths (Wgg and
Wg) and radial distances (Rgg and Rag) of plume influence along
the Aegir and Reykjanes Ridges.

3. Model results
3.1. General temporal behavior of the plume

The evolution of the plume in an example model (Model 3a,
Table 1) is shown in Fig. 5. Again, the plume is first allowed
to expand beneath a stationary, thick continental plate; once it
spans a diameter of 2400 km, continental rifting begins. Right
after continental breakup (54 Ma), the initially wide plume pan-
cake quickly contracts as plume material fills the inverted trough
(pseudo-triangular conduit) created in the rifted, thick continental
lithosphere, and plate motion draws plume material away from the
ridge axis. In the case shown, the pancake is nearly half its original
radius at ~47 Ma. The pancake is also already asymmetric: it ex-
tends further along the RR than along the AR, and has withdrawn
completely from beneath the MR (Fig. 5).

From just after the model time of ~47 Ma until ~30 Ma, the
plume pancake widens slightly along the ridges (Fig. 5), largely due
to a factor of ~3 reduction in spreading rate (Fig. 3). By 30 Ma, the
pancake in this model is more than twice as wide along the RR as
it is along the AR. The slow widening along the ridges continues
in this model to ~27 Ma (not shown).

From 28-25 Ma, rifting at the KR begins in the south and prop-
agates north at the expense of spreading at the AR. At 25 Ma
(not shown), the AR is fully extinct. The widening of the plume
along the RR stagnates as plume material that would otherwise
feed the RR now flows toward the KR (see 23 Ma, Fig. 5). From
25-15 Ma, the plume contracts along the KR in response to con-
tinental rifting, much like the initial plume contraction event at
54 Ma. Starting ~10 Ma, the plume widens slightly along the KR.
At the model time representing present-day, the plume pancake is
still widening along the KR, but has reached a minimum in width
along the RR.

3.2. Record of plume influence on the seafloor

The predicted evolution is recorded in maps of crustal thickness
and fractional contribution of the plume to the crust for mod-
els with two different plume fluxes, for both rheologies (Fig. 6).
The model of high plume flux and thermal lithosphere is the same
model presented in Fig. 5 (Model 3a, Fig. 6(a), (c)). The initial con-
traction of the pancake immediately following continental breakup
results in long (tapered) bands of plume-influenced crust along
the continental margins adjacent to uninfluenced crust (Fig. 6(a)).
From the minimum plume width after the initial contraction, near
seafloor age of ~49 Ma, the extent of plume influence increases
toward the 25 Ma isochron along both ridges, although more ex-
tensively southward along the model RR than north along the AR.
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Table 1

Model parameters varied (all other parameters were kept constant).
Parameter Ra Tp r Q
Definition Rayleigh number Mantle potential temperature Plume radius Plume volume flux Rheology
Units (Dimensionless) (°0) (km) (m3/s)
Model 1a 0.5 x 108 1338 0 0 no dehydration
Model 1b 0.5 x 106 1338 0 0 dehydration
Model 2a 0.5 x 108 1338 95 114 no dehydration
Model 2b 0.5 x 106 1338 95 95 dehydration
Model 3a 0.5 x 108 1338 130 232 no dehydration
Model 3b 0.5 x 106 1338 130 178 dehydration
Model 4 0.5 x 108 1338 149 226 dehydration
Model 5a 0.5 x 106 1338 180 446 no dehydration
Model 5b 0.5 x 108 1338 180 303 dehydration
Model 6a 1.0 x 108 1332 105 272 no dehydration
Model 6b 1.0 x 108 1332 120 275 dehydration
Model 7a 1.5 x 108 1328 89 263 no dehydration
Model 7b 1.5 x 108 1328 102 289 dehydration
Model 8a 2.0 x 108 1325 65 146 no dehydration
Model 8b 2.0 x 108 1325 65 128 dehydration
Model 9a 2.0 x 108 1325 82 276 no dehydration
Model 9b 2.0 x 108 1325 88 268 dehydration
Model 10a 2.0 x 108 1325 130 840 no dehydration
Model 10b 2.0 x 106 1325 130 597 dehydration

30 Ma Z

23 Ma Z 15 Ma 7 0 Ma
I~

1000 km

Fig. 5. Snap shots at different times of Model 3a (Table 1), which has a relatively
high flux (Q =232 m3/s), low Rayleigh number (0.5 x 108), and the lithosphere
is thermally controlled (no dehydration rheology), illustrating the evolution of a
typical model plume pancake of a hotspot centered beneath the yellow circles.
Red isosurface envelops mantle with excess temperature >55°C; yellow isosurface
marks melt production; gray isosurface marks material melting that originated in
the plume stem. Active spreading centers are marked with black lines. To show
how the plume pancake changes between panels, the dashed black line outlines
the plume pancake from the previous panel. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The slight retraction in influence in the model KR basin near 23 Ma
is seen as narrow bands of plume influenced crust along the mar-
gins at the northern end of the basin next to small patches of
uninfluenced seafloor. After this retraction, plume influence widens
toward the present-day KR and recedes along the RR.

A lower plume flux (Model 8a, Fig. 6(b), (d)) yields a width of
influence on the seafloor that is overall less than in the high flux
case (Model 3a) after the initial contraction. Between the 47 and
25 Ma isochrons, plume influence is seen to widen along RR while
receding slightly (rather than widening as in Model 3a) along AR.
The KR basin shows streaks of wide plume influence near the
rifted margins, which are less pronounced than the solid bands
of influence in Model 3a. Plume influence has widened along the
KR from the minimum width near the continental margin to its

present-day width, which is still increasing. In the RR basin, the
width of influence decreases between the 25 Ma isochron and
present-day, similar to Model 3a.

In both of the models shown with a thermal lithosphere, crustal
thickness (Fig. 6(c), (d)) is slightly enhanced near the continental
margins (7-9 km) and greatest (90-140 km) along the volcanic
ridge east and west of the plume center. However, the predicted
crustal thickness at the continental margins is not overly thick (i.e.,
prior to ~50 Ma), primarily because there is a predicted time lag
between when rifting is first imposed and when the lithosphere is
thin enough to allow for substantial decompression melting. This
effect was shown to be overcome in previous numerical models
by imposing the lithosphere to be (~50%) thinner beneath the rift
zones than elsewhere in order to simulate rifting prior to the main
continental breakup event (Nielsen and Hopper, 2004). On younger
seafloor, shorter-wavelength variations in crustal thickness, 2-5 km
in amplitude, are evident and extend 2-3 times further along RR
in the high flux, compared to the low-flux case. These variations
are caused by spatio-temporal variations in buoyancy-driven plume
flow in the melting zone. Crust at the southern AR and KR is
thickened by plume influence (11-14 km). Plume-thickened crust
is present for about half the length of AR in the high-flux case
(Model 3a), but is restricted to the southern quarter of the ridge in
the low-flux case (Model 8a).

Relative to the above models with a thermal lithosphere (Mod-
els 3a, 8a), models with a dehydrated lithosphere and comparable
plume fluxes (Models 4, 8b) predict a more dramatic initial con-
traction in plume influence during continental break-up, resulting
in longer bands of plume-influenced margins adjacent to uninflu-
enced seafloor (Fig. 6(e), (f)). Between the 47 Ma isochrons, the
overall width of plume influence is less with dehydrated litho-
sphere than with thermal lithosphere, with the largest difference
occurring at the RR. The widths at the RR are more compara-
ble to those at the AR indicating that the relatively flat base of
the dehydrated lithosphere leads to a more symmetric plume pan-
cake.

Models with a dehydrated lithosphere produce crustal thick-
nesses (Fig. 6(g), (h)) slightly thinner at the continental margins
(<8 km) and much thinner along the east-west trending vol-
canic ridges (17-21 km), and lack the short-wavelength varia-
tions in crustal thickness seen in the thermal lithosphere cases,
as buoyancy-driven flow in the dehydrated melting zone is sup-
pressed by its high viscosity. Thickened crust extends a similar
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Fig. 6. Model output maps of fractional plume contribution to the crust and crustal thickness, highlighting the effects of plume flux and rheology on the modeled seafloor.
(a)-(d) Maps of two models without dehydration effects on viscosity (i.e., thermal lithosphere, outlined in red). (a), (b) Fraction of melt contributed by the plume, and
(c), (d) model-melt thickness. First column shows Model 3a (same as in Fig. 5) of a high plume volume flux, Q =232 m?3/s. Second column shows Model 8a of a low plume
volume flux, Q = 146 m3/s. Color scale for melt thickness is saturated at 20 km; maximum thickness for the two cases are 138 km (column one), and 90 km (column two).
(e)-(h) Maps of two models with dehydration effects on viscosity (i.e., dehydrated lithosphere). Third column shows Model 4, of a higher plume volume flux, 226 m3/s;
fourth column shows Model 8b, of a lower plume volume flux, 128 m3/s (right). Color scale for melt thickness is saturated at 20 km; maximum thickness for the two cases
are 21 km (column 3), and 17 km (column 4). Arrows on (f) illustrate measurements of widths of plume extent, and reflect the relative location of the plume and AR at a
model time of 30 Ma, when the measurements were taken. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

distance along the AR and KR for the two rheologies, but the mod-
els with a dehydrated lithosphere yield a smaller maximum crustal
thickness (<9 km) at the AR.

3.3. Dependence of plume asymmetry on plume volume flux, viscosity,
and rheology

The radial asymmetry of the plume pancake, measured by the
ratio of radial distances of influence along the two ridges, Rar/Rgg,
does not appear to change with plume flux, Q, and Rayleigh num-
ber, which is inversely proportional to plume viscosity (Fig. 7).
Thus, the radial asymmetry does not seem to be influenced by
the characteristic thickness, S, of the pancake (Eq. (2))—which
again varies with Q and/or n—over the range of thicknesses tested
(80-180 km). The biggest difference in Rag/Rgr occurs between
cases with and without dehydration. With a dehydrated litho-
sphere, the radial extent of influence along the AR is 70-80%
that of the RR (Rar/Rgg is ~0.7-0.8). Thus, even when the litho-
sphere is relatively flat, models show asymmetry in the radial
extents of the plume pancake. This result is likely due to west-
ward shear from the model North American Plate inhibiting NE
plume flow to the AR, with no such inhibition SSW along the RR.
This result strongly supports that the asymmetric geometry of
the ridges, alone, leads to asymmetric hotspot influence (Hypothe-
sis 1). With a thermal lithosphere, Rag/Rgg is ~0.4-0.5, indicating
even greater asymmetry. In these cases, plume influence to the AR
is inhibited not only by plate shear, but also by the large difference
in lithospheric thickness across the transform between the RR and
AR and the relatively thick thermal lithosphere of the JMMC, which
has long been predicted to inhibit mantle flow between ridges (e.g.
Vogt and Johnson, 1975). These results strongly support Hypoth-
esis 2, that variations in lithospheric thickness can enhance the
asymmetry of plume influence.

In contrast to the apparent insensitivity of Rar/Rggr to changes
in Q, the ratio of widths along the ridges, Wag/Wgr changes
appreciably with plume volume flux, Q (Fig. 7(b)). Wagr/Wpgg in-
creases with Q due to the geometric effects of the gap between
the plume center and the southern boundary of the Aegir Ridge.
In a hypothetical case in which Q is low enough that Rag is equal
to the gap, War and Wagr/Wgr would be zero. The proportional
increase in Wyg from zero with Q is more rapid than the propor-
tional increase in Wgg. The rate that War/Wgg increases with Q
is less in models with a thermal lithosphere than in models with
a dehydrated lithosphere, reflecting a tendency of the former to
promote a more asymmetric plume pancake. Rayleigh number (or
viscosity) still has little, or no, effect on the asymmetry as mea-
sured by War/Wgg.

4. Discussion: Comparison of model predictions with
observations

4.1. Asymmetry and plume influence

Several aspects about the extents of plume influence as inferred
from residual bathymetry in the North Atlantic (Fig. 1) can be in-
terpreted based on our model predictions of plume-contributed
crust. The residual bathymetry shows shallow continental margins,
and thus plume-influenced thick igneous crust, which transitions
to deeper seafloor, and thinner crust, over short seaward distances
of ~100 km. We predict this transition to occur due to the rapid
reduction in width of plume influence during continental rifting
(Fig. 6). An observed minimum width of inferred plume influ-
ence is evident seaward of the continental margins in contours of
residual bathymetry and, in the RR basin, by the appearance of
rough basement topography created by orthogonal spreading of a
segmented RR (White, 1997). From this minimum width, the influ-
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Fig. 7. Results of models run at two Rayleigh numbers describing the dependence
of asymmetry ratios on plume flux, Q. (a) Ratio of radial extent of the plume along
the Aegir Ridge, Rag, relative to that along the Reykjanes Ridge, Rgg (see Fig. 6(f))
and (b) the ratio of width of plume influence along the Aegir Ridge axis, Wag, to
that along the Reykjanes Ridge axis, Wgrgr (see Fig. 6(f)). Open and solid shapes
represent cases with and without a dehydration rheology, respectively. Shaded blue
bands show estimates for the same ratios with uncertainties for the Iceland hotspot
as described in the text. Pink bands show estimates for Iceland plume flux that
span values used over a range of studies (e.g. Ito et al., 1999; Ribe et al., 1995;
Ribe and Delattre, 1998). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

ence of the plume appears to have extended farther south along
the RR from ~47-25 Ma, which is seen as the southward prop-
agation along-axis of the rough-smooth boundary (Fig. 1). This
southward plume expansion is another behavior predicted by the
models (Fig. 6).

Near 25 Ma, which corresponds to the time that the AR be-
comes extinct and the KR is fully active, the rough-smooth ax-
ial topographic transition began to propagate SW along the RR.
In contrast, the models predict the plume influence to retract back
north along the RR as more plume material is drawn toward the
KR during this time. The observed continued southward propaga-
tion of the rough-smooth boundary could signal an increase in
the flux of the Iceland plume not simulated in the current mod-
els. This suggests that our models best represent the period when
the AR was spreading (~55-25 Ma). In the basin formed by the
KR, shallow residual topography (and thus inferred plume influ-
ence) is observed along the margins of Greenland and the JMMC
(Fig. 1), much like the bands of plume-derived crust predicted in
the models (Fig. 6).

To address the actual asymmetry of the Iceland hotspot along
the Mid-Atlantic Ridge, we estimate Ragr/Rgr and Wagr/Wgr us-
ing the same criteria as the model analysis, applied to the recon-
structed geometry (Miiller et al., 2008) of the RR and AR at 30 Ma,
again, the approximate age of oceanic crust along which Rai et
al. (2012) seismic refraction profile ran. Distances of plume influ-
ence along the RR are found using the rough-smooth boundary

in oceanic basement topography, and along the AR are based on
where the seismically measured crustal thickness (Rai et al. (2012)
is seen to abruptly increase. Uncertainties in the widths (Wag,
Wgr) and radial distances (Rag, Rgr) include the uncertainty in
the location of the center of the plume using the possible loca-
tions shown in Fig. 2. An additional uncertainty of ~150 km in the
width along the AR (marked in Fig. 8) arises from two locations
where seismically determined crustal thickness increases abruptly
from NE to SW.

Our estimates of Ragr/Rgg and W g/ Wppg for the Iceland hotspot
at 30 Ma are 0.54-0.67 and 0.18-0.40, respectively (Fig. 7). When
considering the model predictions for how War/Wpggr changes with
volume flux, Q, the estimated War/Wgg of the Iceland hotspot
suggests a plume flux between ~100-420 m3/s for a thermally
controlled lithosphere, and ~100-200 m3/s for a dehydration-
controlled lithosphere. Both flux ranges are consistent with the
flux (200 m3/s) simulated by Ito et al. (1999) and the preferred
flux (193 m?3/s) simulated by Ribe et al. (1995) for a ridge centered
Iceland plume, which were based on predictions of the along-axis
width (1400-1600 km) of the anomalously shallow topography
and thick crust. The current flux estimates are greater than the
published estimates (30-45m?/s) based on the narrower width of
the geochemical anomaly of ~920 km (Ribe and Delattre, 1998;
Schilling, 1991). Our estimates of Rar/Rgr for the North Atlantic
fall between model predictions for cases with and without de-
hydration stiffening (Fig. 7). This finding suggests that the rheol-
ogy of the mantle is intermediate between the temperature- and
dehydration- (plus temperature) dependent rheology simulated.

4.2. Crustal thickness

Seismically measured crustal thickness near the AR is compared
with model predictions in Fig. 8. The first comparison is along the
SE to NW seismic refraction transect from the Norwegian margin
to the central portion of the AR (Fig. 3, Breivik et al., 2006, loca-
tion marked in Fig. 1). As noted earlier, the models do not predict
the large crustal thickness near the onset of rifting due to initially
thick continental lithosphere inhibiting melting. From ~50 Ma on-
ward, however, the models generally match the overall trend of the
observed decreasing crustal thickness with time. Cases with higher
versus lower Rayleigh numbers (lower versus higher average vis-
cosity) produce thicker versus thinner crust at a similar plume
volume flux. The models with a dehydrated lithosphere produce
thinner crust and a more subtle decrease in crustal thickness over
time compared to models with a thermal lithosphere. Cases with
higher plume volume flux predict a wider plume pancake and thus
produce thicker crust than those with lower flux. For both types
of rheologies, models with a lower plume flux (114-146 m3/s)
predict crustal thicknesses qualitatively similar to those observed.
This result supports those based on Wag/Wpgg for plume fluxes of
100-200 m3/s (Fig. 7).

Fig. 8(c)-(d) shows model predictions of seismically derived
crustal thickness (Rai et al.,, 2012) from south to north along
the ~30 Myr isochron on the SE side of AR (location marked
in Fig. 1). The seismic profile shows crustal thickness increasing
southward in the southern half of AR, where spreading was slow-
est, and a more-or-less uniform crustal thickness in the northern
half of the AR. Model calculations without a plume show no long-
wavelength change in crustal thickness along the AR (black curves,
Fig. 8(c)-(d)), in contrast to what is observed, which is further
evidence for plume influence in the southern portion of the AR.
Models with a dehydrated lithosphere produce thinner crust and
a smaller southward increase in crustal thickness than the mod-
els with a thermal lithosphere. For both rheologies, models with
the highest plume flux predict the plume to influence the whole
AR and crust that is much thicker than observed. Models with
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Fig. 8. Comparison of seismically measured and modeled crustal thickness along and across the AR axis, for different rheologies and plume fluxes. (a), (b) Profile of crustal
thickness vs. age (gray) along a SE-to-NW profile starting at the Mgre Margin and extending towards the Aegir Ridge, after Breivik et al. (2006). Colored curves show
prediction for models with a (a) thermal lithosphere and (b) dehydrated lithosphere. (c), (d) Profile of crustal thickness vs. distance along the Aegir Ridge (gray) along the
south-to-north profile of Rai et al. (2012) for cases with a (c) thermal lithosphere and (d) dehydrated lithosphere. In (c), (d) large arrows show the predicted extent of model
plume influence on the ridges. The gray box shows the range of plausible observed plume influence inferred from the seismically measured crustal thickness variations.
Models and their key parameters are labeled in the legend. Black solid and dashed lines are predictions of models without a plume.

lower plume flux predict the plume to influence only the southern
part of the AR and crustal thicknesses similar to those observed.
These results further support a plume with relatively low flux
(95-128 m3/s).

Crustal thickness measurements along the present-day Mid-
Atlantic Ridge, starting at the KR in the north, extending south
across Iceland and then along the RR, as presented by Hooft et al.
(2006), are compared with model predictions in Fig. 9. In agree-
ment with the seismic results, models show peaks in crustal thick-
ness over the center of the plume on Iceland, a sharp decrease
~200 km north and south of the peak, and gradual decreases
in crustal thickness further from the plume center. Hooft et al.
(2006) noted an asymmetry in the observed crustal thickness, with
the crust along the KR, 200-500 km north of the plume cen-
ter being 1-2 km thinner than that at the same distances south
along the RR. The models with a dehydrated lithosphere predict
the same sense of asymmetry, although slighter greater asymme-
try than observed: the model crust is thinner by ~2 km along
the KR 200-350 km north of the plume center than the same
distance south along the RR. The models with a thermal litho-
sphere do not predict this sense of asymmetry. In terms of maxi-
mum crustal thickness, the models with a dehydrated lithosphere
predict thinner crust than observed, whereas the models with
a thermal lithosphere predict significantly thicker crust than ob-
served.

Our model predictions for the peak crustal thickness on Ice-
land, the asymmetry in crustal thickness along the present-day
Mid-Atlantic Ridge, as well as the degree of radial asymmetry,
measured by Ragr/Rgg, at 30 Ma all suggest the actual rheology
is intermediate between the two rheologies simulated. This result
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Fig. 9. A comparison of model predictions and observations along the present-day
Mid-Atlantic Ridge. Curves are for the same models as in Fig. 8; solid and dashed
lines depict models with and without dehydration stiffening, respectively. Filled
circles represent seismic measurements presented by Hooft et al. (2006); colored
curves show crustal thickness of model predictions versus distance from the center
of the plume along the ridges. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

supports those of Reudas et al. (2004) whose models included a
higher average viscosity than in our models without dehydration
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and produced better fits to Iceland’s crustal thicknesses. We sug-
gest that a viscous, dehydrated lithosphere is present at the Iceland
hotspot, but is less viscous than we have simulated. An interme-
diate behavior may arise if the ambient viscosity of the North
Atlantic upper mantle is even lower than that modeled, so that
the dehydrated material too is less viscous. Alternatively, it is pos-
sible that non-Newtonian rheology leads to lower viscosities in the
dehydrated layer, where strain rates are higher, such as above the
plume or near the ridge axis (Ito et al., 2010). Another possibility
is that the presence of even a small amount of melt in the man-
tle substantially reduces viscosity to partially negate the effects of
dehydration strengthening (Takei and Holtzman, 2009).

5. Conclusions

Numerical models of plume-ridge interaction are used to study
the cause of variations in the influence of the Iceland hotspot along
the Mid-Atlantic Ridge and determine the origin of the NE-SW
asymmetry evident in the residual topography and crustal thick-
ness. Models initially simulate a plume pancake that spans the full
width of the Greenland margin at the time of continental breakup.
The pancake is then predicted to contract rapidly as some mate-
rial is advected away from the newly formed ridge axis and the
rest draws into the axial, sublithospheric trough, providing a sim-
ple explanation for the observed rapid narrowing of Iceland plume
influence near the continental margins. Following this initial con-
traction, the plume pancake is predicted to widen southward along
the Reykjanes Ridge (RR), resembling the observed southward-
trending, rough-smooth boundary east and west of the RR. To the
northeast, the models with a lower plume flux predict the plume
pancake to extend along only the southern part of the Aegir Ridge
(AR), which is consistent with seismic measurements of crustal
thickness along the AR. The observed southward convergence (east
and west towards the RR axis) of the two rough-smooth bound-
aries in basement topography on crust younger than 25 Ma, after
spreading shifted from the AR to KR, is not predicted by the mod-
els and could signal an increase in the Iceland plume flux since
this time.

All models predict the plume pancake to spread less far along
the AR than along the RR. The ratio of radial extents of plume
influence along the AR and RR (Rag/Rgg) is predicted to be insen-
sitive to changes in plume volume flux and viscosity, and varies
primarily with changes in rheology. When the lithosphere is con-
trolled by dehydration, the plume expands 70-80% as far along
the AR as it does along the RR (Ragr/Rgr = 0.7-0.8). This result
indicates that the asymmetry is caused partly by the asymmet-
ric configuration of the ridges relative to the plume center (ridge
geometry control, hypothesis 1). In models with a thermal litho-
sphere, Rar/Rgrr = 0.4-0.5. This enhanced asymmetry is associated
with the topography of the base of a thermal lithosphere (litho-
sphere thickness variation, hypotheses 2) that is not present with
a dehydrated lithosphere.

Models with Iceland plume volume fluxes of 100-200 m3/s
best explain observed ratios of the widths of plume influence along
the AR and RR (Wggr/Wyr), as well as crustal thickness along
the RR and AR at ~30 Ma. Comparisons of observed and mod-
eled asymmetry in radial distance of plume influence (Rar/RgR)
at 30 Ma and crustal thickness along the present-day Mid-Atlantic
ridge suggest that a there is a dehydrated lithosphere, but one that
is less viscous than simulated in models. The observed asymmetry
in crustal thickness along the present-day ridge is predicted to be
the result of the plume approaching a steady width along the RR,
while still widening (since rifting began ~25 Ma) along the Kol-
beinsey Ridge.

Acknowledgements

We owe our gratitude to the captain and crew of the R/V Hdkon
Mosby for their invaluable contributions to the ARGGH2010 cruise,
and to the University of Bergen for travel support. We extend
our appreciation to the editor Dr. Yanick Ricard and two anony-
mous reviewers for offering critical, thorough reviews of this pa-
per. This research was supported by NSF grants EAR-0855814 and
OCE-0852115.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.epsl.2014.02.020.

References

Allen, R.M., Nolet, G., Morgan, WJ., Vogfjord, K., Bergsson, B.H., Erlendsson, P., Foul-
ger, G.R., Jakobsdottir, S., Julian, B.R., Pritchard, M., Ragnarsson, S., Stefansson, R.,
2002. Imaging the mantle beneath Iceland using integrated seismological tech-
niques. J. Geophys. Res. 107. http://dx.doi.org/10.1029/2001JB000595.

Bianco, T.A,, Ito, G., van Hunen, J., Ballmer, M.D., Mahoney, ].J., 2011. Geochemical
variation at intraplate hot spots caused by variable melting of a veined mantle
plume. Geochem. Geophys. Geosyst.. http://dx.doi.org/10.1029/2011GC003658.

Breivik, A.J., Faleide, ].I, Mjelde, R., Flueh, E.R, 2009. Magma productivity
and early seafloor spreading rate correlation on the northern Vering Mar-
gin, Norway—Constraints on mantle melting. Tectonophysics. http://dx.doi.org/
10.1016/j.tecto.2008.1009.1020.

Breivik, AJ., Mjelde, R., Faleide, J.I, Murai, Y., 2006. Rates of continental breakup
magmatism and seafloor spreading in the Norway Basin-Iceland plume interac-
tion. J. Geophys. Res. 111, B07102.

Coffin, M.F,, Eldholm, O., 1994. Large igneous provinces: Crustal structure, dimen-
sions, and external consequences. Rev. Geophys. 32, 1-36.

Dick, H.J.B., Lin, J., Schouten, H., 2003. An ultraslow-spreading class of ocean ridge.
Nature 426, 405-412.

Garcia, S., Angelier, J., Bergarat, F., Homberg, C., Dauteuil, O., 2008. Influence of rift
jump and excess loading on the structural evolution of northern Iceland. Tec-
tonics. http://dx.doi.org/10.1029/2006TC002029.

Hardarson, B.S., Fitton, J.G., Ellam, R.M., Pringle, M.S., 1997. Rift relocation—a geo-
chemical and geochronological investigation of a paleo-rift in northwest Iceland.
Earth Planet. Sci. Lett. 153, 181-196.

Hirth, G., Kohlstaedt, D.L., 2003. Rheology of the upper mantle and the mantle
wedge: A view from the experimentalists. In: Eiler, J. (Ed.), Inside the Subduc-
tion Factory. In: Geophys. Monogr. Ser.. AGU, Washington DC, pp. 83-105.

Holbrook, W.S., Larsen, H.C., Korenaga, J., Dahl-Jensen, T., Reid, L.D., Kelemen, P.B.,
Hopper, J.R., Kent, G.M., Lizarralde, D., Bernstein, S., Detrick, R.S., 2001. Mantle
thermal structure and active upwelling during continental breakup in the North
Atlantic. Earth Planet. Sci. Lett. 190, 251-266.

Hooft, E.E., Brandsdottir, B., Mjelde, R., Shimamura, H., Murai, Y., 2006. Asymmetric
plume-ridge interaction around Iceland: The Kolbeinsey Ridge Iceland Seismic
Experiment. Geochem. Geophys. Geosyst. 7, 1-26.

Ito, G., Dunn, R, Forsyth, D.W., 2010. A study of short-period surface wave data,
geodynamic models, and the rheology and dynamics of the mantle beneath the
East-Pacific Rise. In: Fall Meeting. AGU, San Francisco, CA. Abstract DI34A-01.

Ito, G., Shen, Y., Hirth, G., Wolfe, C., 1999. Mantle flow, melting, and dehydration of
the Iceland mantle plume. Earth Planet. Sci. Lett. 165, 81-96.

Ito, G., van Keken, P.E., 2007. Hot spots and melting anomalies. In: Bercovici, D. (Ed.),
Mantle Dynamics. Elsevier, Amsterdam, The Netherlands, pp. 371-435.

Katz, RE, Spiegelman, M., Langmuir, CH., 2003. A new parameterization of hy-
drous mantle melting. Geochem. Geophys. Geosyst. 4, 173. http://dx.doi.org/
10.1029/2002GC000433.

Lawver, L.A., Miiller, R.D., 1994. The Iceland hotspot track. Geology 22, 311-314.

Mihalffy, P, Steinberger, B., Schmeling, H., 2008. The effect of the large-scale mantle
flow field on the Iceland hotspot track. Tectonophysics 447, 5-18.

Mjelde, R., Breivik, A.J., Raum Mittelstaedt E, T, Ito, G., Faleide, J.I., 2008. Magmatic
and tectonic evolution of the North Atlantic. J. Geol. Soc. 165, 32-42.

Mjelde, R., Raum, T., Myhren, B., Shimamura, H., Murai, Y., Takanami, T., Karpuz,
R., Nass, U, 2005. Continent-ocean transition on the Vering Plateau, NE At-
lantic, derived from densely sampled ocean bottom seismometer data. ]. Geo-
phys. Res. 110. http://dx.doi.org/10.1029/2004JB003026.

Moresi, L., Gurnis, M., 1996. Constraints on the lateral strength of slabs from three-
dimensional dynamic flow models. Earth Planet. Sci. Lett. 138, 15-28.

Mosar, J., Lewis, G., Torsvik, T.H., 2002. North Atlantic sea-floor spreading rates:
implications for the Tertiary development of inversion structures of the
Norwegian-Greenland Sea. J. Geol. Soc. Lond. 158, 503-515.

Miiller, R.D., Sdrolias, M., Gaina, C., Roest, W.R,, 2008. Age, spreading rates, and
spreading symmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9,
Q04006.


http://dx.doi.org/10.1016/j.epsl.2014.02.020
http://dx.doi.org/10.1029/2001JB000595
http://dx.doi.org/10.1029/2011GC003658
http://dx.doi.org/10.1016/j.tecto.2008.1009.1020
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4272656574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4272656574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4272656574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib436F66456C6431393934s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib436F66456C6431393934s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4469636574616C32303033s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4469636574616C32303033s1
http://dx.doi.org/10.1029/2006TC002029
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4861726574616C31393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4861726574616C31393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4861726574616C31393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4869724B6F6832303033s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4869724B6F6832303033s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4869724B6F6832303033s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6C6574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6C6574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6C6574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6C6574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6F6574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6F6574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib486F6F6574616C32303036s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F6574616C32303130s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F6574616C31393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F6574616C31393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F4B656B32303037s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib49746F4B656B32303037s1
http://dx.doi.org/10.1029/2002GC000433
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4C61774D756C31393934s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D69686574616C32303038s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D69686574616C32303038s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6A656574616C32303038s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6A656574616C32303038s1
http://dx.doi.org/10.1029/2004JB003026
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6F7247757231393936s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6F7247757231393936s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6F736574616C32303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6F736574616C32303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D6F736574616C32303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D756C6574616C32303038s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D756C6574616C32303038s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4D756C6574616C32303038s1
http://dx.doi.org/10.1016/j.tecto.2008.1009.1020
http://dx.doi.org/10.1029/2002GC000433

S.M. Howell et al. / Earth and Planetary Science Letters 392 (2014) 143-153 153

Nielsen, T.K., Hopper, J.R., 2004. From rift to drift: Mantle melting during con-
tinental breakup. Geochem. Geophys. Geosyst. 5, 7. http://dx.doi.org/10.1029/
2003GC000662.

Nunns, A.G., 1983. Plate tectonic evolution of the Greenland-Scotland Ridge and
surrounding regions. In: Bott, M.H.P,, Saxow, S., Talwani, M., Thiede, ]. (Eds.),
Structure and Development of the Greenland-Scotland Ridge: New Methods
and Concepts. NATO Advanced Research Institute/Plenum Press, New York, NY,
pp. 11-30.

Rai, AK, Breivik, AJ., Mjelde, R., Hanan, B.B,, Ito, G., Sayit, K., Howell, S., Vogt, PR.,
Pedersen, R.-B., 2012. Analysis of converted S-waves and gravity anomaly along
the Aegir Ridge: implications for crustal lithology. In: Fall Meeting. AGU, San
Francisco. Abstract T31B-2587.

Reudas, T., Schmeling, H., Marquart, G., Kreutzmann, A., Junge, A., 2004. Tempera-
ture and melting of a ridge-centred plume with application to Iceland. Part I:
Dynamics and crust production. Geophys. J. Int. 158, 729-743.

Ribe, N., Christensen, U.R., Theissing, J., 1995. The dynamics of plume-ridge interac-
tion, 1: Ridge-centered plumes. Earth Planet. Sci. Lett. 134, 155-168.

Ribe, N., Delattre, W.L,, 1998. The dynamics of plume-ridge interaction, 3: The ef-
fects of ridge migration. Geophys. J. Int. 133, 511-518.

Schilling, J.G., 1991. Fluxes and excess temperatures of mantle plumes inferred from
their interaction with migrating mid-ocean ridges. Nature 352, 397-403.

Schilling, J.-G., 1999. Dispersion of the Jan Mayen and Iceland mantle plumes in
the Arctic: A He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey,
Mohns, and Knipovich Ridges. ]. Geophys. Res. 104, 10,543-10,569.

Schilling, J.-G., Zajax, M., Evans, R., Johnston, T., White, W., Devine, ].D., Kingsley, R.,
1983. Petrologic and geochemical variations along the Mid-Atlantic Ridge from
29°N to 73°N. Am. J. Sci. 283, 510-586.

Shorttle, 0., Maclennan, J., Jones, S.M., 2010. Control of the symmetry of plume-
ridge interaction by spreading ridge geometry. Geochem. Geophys. Geosyst..
http://dx.doi.org/10.1029/2009GC002986.

Smallwood, J.R, Staples, RK. Richardson, K.R., White, RS., 1999. Crust generated
above the Iceland mantle plume: From continental rift to oceanic spreading cen-
ter. J. Geophys. Res. 104, 22,885-22,902.

Smallwood, J.R., White, RS., 2002. Ridge-plume interaction in the North Atlantic
and its influence on continental breakup and seafloor spreading. Special Publi-
cations, vol. 197. Geological Society, London, pp. 15-37.

Steinberger, B., 2000. Plumes in a convecting mantle: Models and observations for
individual hotspots. ]. Geophys. Res. 105, 11,127-11,152.

Takei, Y., Holtzman, B.K., 2009. Viscous constitutive relations of solid-liquid compos-
ites in terms of grain boundary contiguity: 1. Grain boundary diffusion control
model. ]. Geophys. Res.. http://dx.doi.org/10.1029/2008JB005850.

Torsvik, T.H., Van der Voo, R., Meert, ].G., Mosar, J., Walderhaug, H.J., 2001. Recon-
structions of the continents around the North Atlantic at about the 60th parallel.
Earth Planet. Sci. Lett. 187, 55-69.

Vink, G.E., 1984. A hotspot model for Iceland and the Voring Plateau. ]. Geophys.
Res. 89, 9949-9959.

Vogt, PR., Avery, E., 1974. Detailed magnetic surveys in the Northeast Atlantic and
Labrador Sea. ]. Geophys. Res. 79, 363-389.

Vogt, PR, Johnson, G.L., 1975. Transform faults and longitudinal flow below the mi-
doceanic ridge. ]J. Geophys. Res. 80, 1399-1428.

Vogt, PR, Johnson, G.L, Kristjansson, L., 1980. Morphology and magnetic anomalies
north of Iceland. J. Geophys. Res., 67-80.

Vogt, PR., Kovacs, L.C., Bernero, C., Srivastava, S.P., 1982. Asymmetric geophysical
signatures in the Greenland-Norwegian and Southern Labrador seas and the
Eurasia Basin. Tectonophysics 89, 95-160.

Vogt, PR, Perry, RK, Feden, RH., Fleming, H.S., Cherkis, N.Z., 1981. The Greenland-
Norwegian Sea and Iceland environment: Geology and geophysics. In: Nairn,
A.EM., Churkin Jr, M., Stehli, EG. (Eds.), The Ocean Basins and Margins: The
Arctic Ocean. Plenum, New York, pp. 493-598.

Voss, M., Schmidt-Aursch, M.C., Jokat, W., 2009. Variations in magmatic processes
along the East Greenland volcanic margin. Geophys. J. Int. 177, 755-782.

White, R.S., 1988. A hot-spot model for early Tertiary volcanism in the N Atlantic.
Geol. Soc. Spec. Publ. 39, 3-13.

White, R.S., 1997. Rift-plume interaction in the North Atlantic. Philos. Trans. R. Soc.
Lond. A 355, 319-339.

White, R., McKenzie, D., 1989. Magmatism at rift zones: The generation of volcanic
continental margins and flood basalts. ]. Geophys. Res. 94, 7685-7729.

White, R.S., Minshull, T.A., Bickle, M.J., Robinson, CJ., 2001. Melt generation at very
slow-spreading oceanic ridges: constraints from geochemical and geophysical
data. J. Petrol. 42, 1171-1196.

Wilson, ].T,, 1973. Mantle plumes and plate motions. Tectonophysics 19, 149-164.

Wolfe, C., Bjarnason, L.T., VanDecar, J.C., Solomon, S.C., 1997. Seismic structure of the
Iceland mantle plume. Nature 385, 245-247.

Zhong, S., Zuber, M.T., Moresi, L.N., Gurnis, M., 2000. The role of temperature depen-
dent viscosity and surface plates in spherical shell models of mantle convection.
J. Geophys. Res. 105, 11,063-11,082.


http://dx.doi.org/10.1029/2003GC000662
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4E756E31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4E756E31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4E756E31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4E756E31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib4E756E31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5261696574616C32303132s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5261696574616C32303132s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5261696574616C32303132s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5261696574616C32303132s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5265756574616C32303034s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5265756574616C32303034s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5265756574616C32303034s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5269626574616C31393935s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5269626574616C31393935s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib52696244656C31393938s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib52696244656C31393938s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53636831393931s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53636831393931s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53636831393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53636831393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53636831393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5363686574616C31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5363686574616C31393833s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5363686574616C31393833s1
http://dx.doi.org/10.1029/2009GC002986
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D616574616C31393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D616574616C31393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D616574616C31393939s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D6157686932303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D6157686932303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib536D6157686932303032s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53746532303030s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib53746532303030s1
http://dx.doi.org/10.1029/2008JB005850
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib546F726574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib546F726574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib546F726574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib56696E31393834s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib56696E31393834s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F6741766531393734s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F6741766531393734s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F674A6F6831393735s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F674A6F6831393735s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393830s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393830s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393832s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393832s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393832s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393831s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393831s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393831s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F676574616C31393831s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F736574616C32303039s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib566F736574616C32303039s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib57686931393838s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib57686931393838s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib57686931393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib57686931393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5768694D634B31393839s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5768694D634B31393839s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5768696574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5768696574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5768696574616C32303031s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib57696C31393733s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib576F6C6574616C31393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib576F6C6574616C31393937s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5A686F6574616C32303030s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5A686F6574616C32303030s1
http://refhub.elsevier.com/S0012-821X(14)00093-4/bib5A686F6574616C32303030s1
http://dx.doi.org/10.1029/2003GC000662

	The origin of the asymmetry in the Iceland hotspot along the Mid-Atlantic Ridge from continental breakup to present-day
	1 Introduction
	2 Methods
	2.1 Model setup
	2.2 Mantle melting and crustal accretion
	2.3 Tracking plume material
	2.4 Model parameters

	3 Model results
	3.1 General temporal behavior of the plume
	3.2 Record of plume inﬂuence on the seaﬂoor
	3.3 Dependence of plume asymmetry on plume volume ﬂux, viscosity, and rheology

	4 Discussion: Comparison of model predictions with observations
	4.1 Asymmetry and plume inﬂuence
	4.2 Crustal thickness

	5 Conclusions
	Acknowledgements
	Appendix A Supplementary material
	References


