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Abstract

The evolution of electricity grids into a smart grid requires the inclusion of control systems to control load, flatten peaks and ensure
the distribution of electricity. In parallel, the building sector will also be incorporating more control technology and put emphasis
on sustainability issues such as reducing CO2 emissions associated with the buildings electricity consumption. This article aims at
modelling the residential sector and assesses the different levels of technology deployment to control the electricity consumption
of household appliances. The number of inhabitants and their habits are also considered, and the response levels of users towards
control systems are simulated. For this matter, a Markov-chain algorithm was developed for synthesising the electric load and
introducing Home Energy Management System (HEMS). The emission levels from electricity consumption were assessed based
on hourly CO2 emission data from electricity production in Finland. Numerous electricity pricing models were also included, to
assess the economic impacts of HEMS. The article suggests that a fully deployed HEMS may not be profitable for households with
a low number of inhabitants. This is because the power consumption of appliances in stand-by mode offsets the positive impacts of
HEMS on the electricity consumption profile.

Keywords: Simulation, Electricity usage, Smart building, Home Energy Management System (HEMS), Occupancy,
User-response, Technological impact, Electricity pricing, Markov-chain, Sustainability

1. Introduction

The energy sector is under a vast change driven by legisla-
tion, aiming at reducing energy use and associated environmen-
tal impacts [1]. In the electrical sector, the smart grid represents
the future, by allowing the integration of intermittent renewable
energy sources into the energy mix [2]. Smart grid integrates a
vast amount of disciplines including the communication field,
Internet of Things, power engineering, control system engineer-
ing, and environmental engineering. Therefore, areas of focus
and applications are multiple.

The European Union (EU) has enforced a set of legisla-
tions to tackle energy and environmental challenges driven by
the change of infrastructure. The Renewable Energy Directive
(RED) [3] establishes an overall policy for renewable energy,
sets mandatory targets for the share of energy from renewables
by 2020 and provides sustainability criteria for biofuels. Fur-
ther, the objectives for 2020 also include a strategy for smart
and sustainable growth, including energy system [4]. The three
dimensions of sustainability are environmental, economic and
social, which are defined together as the triple bottom line [5].
For firms, the triple bottom line means that they must balance
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(Eva Pongrácz)

their environmental, and social bottom lines in addition to their
financial bottom line [6]. The sustainability of energy produc-
tion should expand beyond the 2020 targets to all forms of en-
ergy [7]. The sustainability framework of RED only consid-
ers environmental indicators such as CO2 emissions and land-
use impact. In this research, we included all three aspects of
sustainability by considering also economic and social impacts
of technology deployment, in addition to CO2 emissions from
electricity production.

The EU building sector consumes 28% of the total primary
energy consumption, of which around 30% is for electricity
generation [8]. Within the building sector, the residential sec-
tor is responsible for 60% of the total energy consumption [8]
and has the best potential to impact on peak demand, charac-
terised by the unpredictability of energy usage [9]. Smart build-
ings are an integral part of smart grids and their full potential
is yet to be achieved. Smart buildings integrate a wide span
of functions from health assistance, multimedia, everyday-life
handling assistance, and energy management. In this research,
we focused only on the energy management side, specifically
on electricity consumption. In this context, the subject of our
study is the Home Energy Management System (HEMS), com-
prised of sensors, computing systems, and a communication
network. Whilst smart buildings can tackle energy consump-
tion and peak shifting [10], the issue of concern is the impact of
demand-side management and the response of end-users [11].
Modelling and pilot tests have earlier focused mainly on the
benefits of automation technologies in homes, whilst the energy
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used to run the system was disregarded. Research has recently
been carried out to evaluate the impact of the automation system
by extending the scope of studies and including the electricity
consumption required by the system [12]. Van Dam et. al. [12]
have found that energy management devices must reduce their
energy consumption before they become economically and en-
vironmentally viable. However, their evaluation has been car-
ried out in a static manner. There is need to carry out dynamic
modelling, which integrates user specificities, different house-
hold sizes and levels of technology deployment.

For the modelling of the electrical demand profiles of
dwellings, two distinct modelling techniques exist: the top-
down and the bottom-up approach[13]. The top-down approach
is more suitable for studying the general behaviour on a country
level, whilst the bottom-up approach allows for a more detailed
and flexible way of modelling the electricity consumption of in-
dividual users. The latter approach was used to model multiple
dwellings where individual appliances were first aggregated to
produce individual profiles, followed by an aggregation of the
generated profiles to a large sample of electrical load under one
node [14]. Appliance usage models rely either on the aggre-
gation of measured data from multiple dwellings [15, 16], or
on databases compiled for a specific country representing the
overall market [17, 18, 19]. The advantage of using a database
is that it bypasses the need for an extensive and exhaustive work
of data collection. Once a database is compiled, statistical in-
formation are extracted and will serve as a basis to build the
electrical demand profile of the system. Further, these statis-
tics are traditionally used in probability distribution function,
in support of stochastic methods for generating electricity load
profiles [20, 21].

The end-use of the models lie in the technological influ-
ence on the electric load [22], and in the development of pric-
ing models to enhance demand-side management (DSM) [23].
In addition, the environmental impacts associated with elec-
tricity consumption of the residential sector have been studied
[24, 25, 26, 27], and the CO2 emissions due to electrical appli-
ance usage evaluated [28]. The limiting factor in these studies
is that they are using fixed emission factors representing the
overall yearly emissions of electricity production. More recent
studies have included the hourly variation of the electricity pro-
duction at the network level, however, still using fixed emission
factors [29, 30]. The main drawback in using fixed emission
factors is the lack of accuracy of emissions especially during
peak load times, as well as in disregarding the feedstock price
variations and their impact on the energy mix. Therefore, there
is a need for a tool that can generate meaningful results evaluat-
ing technological influence, pricing models and environmental
impacts of energy consumption in buildings. This tool must be
able to interact with the different parameters that define a sus-
tainable system. Appliance use also depends on the weather
[31] and their impact on the house load varies based on their
time of use and power ranking [32].

In this paper, we developed a Markov-chain model that al-
lows creating artificial load consumption in dwellings in Fin-
land. The outputs of the model include the electrical demand
profile from the dwelling, the impact of pricing systems on the

HEMS and, consequently, on the electricity demand and, fi-
nally, the CO2 emissions linked to electricity consumption.

This study aims at creating a synthetic profile of electricity
consumption in the residential sector including multiple tech-
nology level implementations for smart buildings. The out-
put of the model will be compared with the daily and seasonal
profile variations, as described in the Finnish Metering Decree
(66/2009). Ultimately, the model can be used for generating
scenarios of smart building impacts on the distribution net-
work and to enhance micro-grid development in a sustainable
manner. The developed methodology is described in Section
2 including the description of the inputs and the mathematical
model, and Section 3 will discuss the results of the model.

2. Methodology

The model can be split into three categories: the inputs,
the processes, and the output. The inputs include data of ap-
pliance use daily profiles, end-users characteristics, electricity
grid state and electricity price, weather information, and the
energy mix on an hourly basis. The model considered 21 appli-
ances. Appliance characteristics such as power demand, iden-
tification number (ID) and the possibility of postponing use are
listed in Table 1. Once the data are gathered, they will be used
to create stochastic events. These events are further handled
by the HEMS, including a simulation of user response. The
HEMS relies on statistical information of household electricity
consumption. Occupancy is considered as an output/input to
the model considering also weather information and generated
events. The two main outputs of the model are the power de-
mand and the CO2 emissions from the electricity consumption
of the modelled house. Fig. 1 represents the workflow of the
model and the sections where they will be further discussed.

2.1. Setting up appliance profiles

Appliances usage depends on multiple factors such as coun-
try habits, age and activity level of inhabitants [33]. In this pa-

Table 1: List of appliances used in the model with their related ID number and
control options

House zone Appliance ID
Delay in use
not possible

Short-term
delay possible

Long-term
delay possible

Kitchen

Washing machine 1 X X
Dishwasher 2 X X
Electric cooktop 3 X
Kettle 4 X
Electric oven 5 X
Micro-wave 6 X
Coffee machine 7 X
Toaster 8 X
Waffle iron 9 X
Fridge 10 X

Bedroom
Radio 11 X
Laptop 12 X
Telephone charger 20 X

Bathroom

Electric heater 13 X X
Shaver 14 X
Hair dryer 15 X
Sauna stove 21 X

Living room Television 16 X
Stereo/Hi-Fi 17 X

Cleaning tools Iron 18 X
Vacuum cleaner 19 X
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Figure 1: Box diagram of the model steps for simulating residential homes.

per, a reference profile of Danish and Norwegian appliance us-
age was used, as set up by the REMODECE project [34]. . The
REMODECE project collected energy consumption data from
multiple European countries to decrease energy use and car-
bon emissions in Europe. The hourly load profiles of Finnish
households are taken from type load curve examples given in
the Finnish Government decree on determination of electric-
ity supply and metering 66/2009 (Metering decree). The load
curve examples are given for three week-segments: weekdays
(Monday–Friday), Saturdays, and Sundays for every month of
the year. To generate daily and weekly appliance profiles, an
algorithm was developed, and usage profiles (Γ) for all appli-
ances were set based on the data of the REMODECE database
as well as the Metering decree.

Further, daily energy consumption profiles (Kr) were defined
based on REMODECE data. Kr is an n-by-m matrix profile [%]
which is the daily statistical profile of the average power P̄, av-
erage time usage t̄, and average number of use Ūw of a given
appliance n within a week as shown in Eq.(1). The values of
Uw,for each appliance, was defined following the Best Avail-
able Technology (BAT) defined in the EuP research tasks [35].

KR = Kr × P̄ t̄ Ūw
52

365.25
(1)

where KR is an n-by-m matrix of the mean energy profile within
a year [kWh/d], P̄ is the mean power [kW], t̄ is the mean cycle
time usage [h], and Ūw is the average number of use of a specific
appliance in a week ['].

The daily energy consumption profile influences the daily
distribution of energy Kp, , for a given hour and appliance. Kp

is an n-by-m matrix [%], and it can be evaluated using Eq.(2).

Kp = KR/S KR (2)

where S KR is an n-by-m matrix representing the hourly sum of
all appliances of the mean electricity profile KR [kWh/d].

Furthermore, the difference of variation between the refer-
ence daily load profiles Kv given in the Metering decree and
the profiles created for one appliance must be known in order
to correct the primary daily distribution profile. For this mat-
ter, the reference daily profile distribution of a given time slot
(weekday, Saturday or Sunday) in a given month is multiplied
by the daily electricity profile of the appliance.

Dvar = Kv

m∑
h=1

S KR,h (3)

where Dvar is a vector representing the difference variations
considering the raw distribution function of each appliance
[kWh/d], Kv is a vector representing the percentage variations
between the REMODECE profile and the profile given in the
Metering decree. Note that the sum of S KR,h equals the total
daily electricity consumption. Therefore, Dvar is represented as
the daily variation of electricity demand.

Consequently, the percentage variation between the daily dis-
tribution profile Kr and the reference profile is found as:

Πvar = Dvar/S KR − 1 (4)

where Πvar is the percentage variation between both profiles
[%].

The profile given in the Metering decree is higher than the
one recorded for the REMODECE project. To reflect the differ-
ence between the two profiles, each appliance weighted in the
profile is re-calculated according to the difference Kp,tot. 2.

Kp,tot = (1 + ΠVar) · Kp (5)

where Kp,tot is a n-by-m matrix of the total variation between Kr

and the reference profile [%].
It will finally define the distribution function (PDF) of usabil-

ity for each appliance described in the model (Fig.2). Finally,
the daily profile for each appliance can be found in terms of
electricity consumed and is defined as the normalised diagonal
of the product between the difference of profile Kp,tot and the
cumulative sum of the hourly electricity profile as Eq.(6) illus-
trates.

K = diag(Kp,tot · S T
KR

) · Kr/KR (6)

where K is an n-by-m matrix representing the combined daily
profile for each appliance [%], and Γ is its internal sum [%]. Γ

is evaluated for each week segment and month of the year.
It is therefore possible to have the daily electricity distribu-

tion pattern for each appliance using this method. This will be
used further in the model to trigger events at different time of
the day.
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Figure 2: Probability distribution function (PDF) Γ for each appliance for week-
days in January.

2.2. Pricing system
In the Nordic countries, the price of electricity is subject to a

tendering process where each electricity producer puts bids on
the market. The bidding system closes at 18:00 and the hourly
prices are fixed for the next 24 h. Furthermore, price signals
are sent to electricity producers when the consumption or the
production of electricity is too high, known as up and down
regulating prices. Dynamic pricing on the distribution grid is
provided by the Transmission System Operator (TSO) and is
appearing and available for individual users. Therefore, three
types of contracts are available for households: fixed price (FP),
time of use tariffs (ToU), and real time pricing (RTP) based on
the spot price [36].

The FP and ToU tariffs are restricted to only a few values
as electricity providers set their price at different levels. In
this article, three types of contracts were used: “Vihreävirta”,
“Tuulivirta”, and “Varmavirta”. These contracts are offered by
Oulun Energia Power Company. Vihreävirta is a carbon neutral,
green option, based mainly on hydropower. Tuulivirta offers
wind power, and is also zero carbon, Varmavirta is the cheapest
option, and the electricity is produced mainly by Oulu´s peat-
powered CHP power plant [37].

The popularity of the RTP system is growing rapidly and
there are multiple commercial schemes available. Therefore,
the model accepts lower and higher thresholds for limiting peak
pricing with the possibility of implementing a fee based con-
tract. As the price generation is a black box feeding to the
HEMS, it is possible to implement other types of dynamic pric-
ing that would include geographic location, network conges-
tion, renewable energy penetration in the node, or any other
influencing factor. Our earlier research investigated different
schemes for billing individual consumers [36]. In this research,
the spot price is used as the primary pricing system, to reflect
real time fluctuation of electricity generation. The real time

price ph,h can further be framed for every house in the model as
ph,h ∈

[
ph,h−min, ph,h−max

]
.

The pricing model integrates the ToU pricing system, which
is available for private consumers. Additionally, the model has
information about the peak price periods in each season. The
HEMS would suggests postponing device use during peak price
periods. The likelihood that private consumers would comply
(θprice) is expressed with Eq.(7).

θprice = 0.9 ∀ pn > p (7)

where pn is the current price of electricity [Euro-cents], and p
is the peak price of electricity [Euro-cents].

2.3. Generating events

In this section, each appliance that was selected as part of
the household in the simulation is going to be processed. All
the appliances that define the building are processed one by one
iteratively. Multiple subtasks must be performed in order to
generate an action. A simplified flowchart diagram, as drawn
in Fig.3, describes the main steps of the algorithm. The algo-
rithm is available as complementary information to this article.
The first step requires getting statistical data from the processed
appliance that includes the total activity throughout the simula-
tion period, and its mean daily and weekly activity. The last
two are input data into the simulation. Then, by extracting the
limitations of usability of the appliance, the daily and weekly
allowances for using the appliance are set. The usage will be
further balanced for the weekdays and weekends acceptance
variable. An hourly acceptance factor is set based on appliance
profiles defined previously. Finally, an action can be generated
for the processed appliance depending on if the above accept-
ability conditions are met. Nonetheless, the algorithm looks at
the use-state of the appliance during the current iteration. In
case the appliance is free to be used, the algorithm set the pro-
gramme to be used by the appliance and will be reported to the
next iterations.

The algorithm works based on the statistical previous usage
of a given appliance. Therefore, the average usage of the stud-
ied appliance must be known to evaluate the weekly and daily
usage. The purpose of knowing the activity frequency is to set
allowance factors that will enhance the use of a given appliance.

2.4. Synthesising user responses

Three feedback strategies were implemented in the model in-
cluding self-comparison, inter-comparison, and the electricity
consumption target, each influencing the HEMS and the end-
users in their decision-making [38]. The HEMS integrates the
decision-making of the private consumers as well as the avail-
ability of devices and the possibility of postponing use.

Once the metering point aggregates all the information, it is
possible to retrieve statistical data regarding end-user habits.
In order to implement the decision-making process, four time
levels will be used: mean daily, weekly, monthly, and yearly
electricity consumption rates.
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Figure 3: Flow chart diagram for generating events.

2.4.1. Self-comparison of historical consumption
The first type of comparison is between the actual electric-

ity consumption and the average of historical consumption on
the four time levels previously described. Depending on the
case, two types of responses may occur. When the real-time
consumption is smaller than the average, the user may not be
convinced to reduce their energy consumption or to shift the
load (Response = 0). When the real-time consumption has gone
over the average, the end-user response will likely be positive
(Response = 1). The response value does not mean that the end-
user will always accepts or denies action, but affects the likeli-
hood to carry out an action. The end-user’s response also varies
on different time levels; depending on average daily, weekly,
monthly or yearly consumption. Monthly and yearly data are
updated once a year at the end of the calendar year; however,
monthly data are season-dependent. The equation expressing
user willingness (χsel f−i) for all four time periods is:

χsel f−i = 1 ∀ Ei > Ēi (8)

where i is the time period (daily, weekly, monthly or yearly),
E is the electricity consumption during the studied time period
[kWh/i].

In case the meter used is analogue, the user does not have ac-
cess to the information of their electricity consumption, there-
fore the response is assumed to be zero (χsel f−i = 0).

Once the self-comparison is carried out, the overall value of
user willingness that will influence the end-user is evaluated.
Three types of users are defined; “Green” users have a 70% pos-
itive response, “Orange” users 50%, and “Brown” users 30%.
The response means that the likelihood the user implements the
action recommended is on average between 30–70%. Depend-
ing on the feedback given by the HEMS, end-users’willingness

level may be further amended by ± 2.5, 5, 7.5 or 10%. There-
fore, a 70% average positive response rate is in reality in be-
tween 46% to 96%. The raise of awareness due to the knowl-
edge on consumption θsel f can be quantified with the following
equation.

θsel f = Ur

 4∑
i=1

χsel f−i

 (9)

where Ur is a 4-by-1 matrix representing the raise of willing-
ness ['].

2.4.2. Comparison with other users
The second type of feedback is inter-comparison, when

own consumption is compared with the neighbours’.While this
method has received debated results, recent researches tend to
support the fact that social influence impacts the energy con-
sumption by motivating end-users to reduce their energy con-
sumption [39]. Ayres et.al. [40] studied the impact of peer-
comparison on a large scale using different feedback methods.
Their results suggest that inter-comparison may decrease elec-
tricity consumption up to 2.5% from the baseline consumption.
In our model, inter-comparison feedback method exists only if
connections are made between buildings. Currently, the model
requires that the houses have ID numbers in order to partici-
pate. However, they could also be grouped by location as all
buildings have geographical coordinates. In case there is an ag-
gregator in the simulation, it can disseminate the information
to houses to similar profiles. Although the electricity consump-
tion could be known and exchanged in real-time, it is not sen-
sible as it involves a large bias and allows misinterpretation of
the information; only monthly average electricity consumption
is considered. In case the personal monthly average is over a
given threshold, the likelihood of positive response increases.
The raise of awareness due to inter-comparison (θinter−m) is ex-
pressed as:

θinter−m = 1 ∀ Einter < csĒm

θinter−m = 1 + ra ∀ Einter > csĒm
(10)

where ra is the raise of awareness [%], cs is the threshold from
which the awareness increases [%]. In the model, cs is fixed to
1.2.

2.4.3. Target-based feedbacks
The third option implemented to influence user behaviour is

the electricity consumption target setting. Although the effi-
ciency of this method has shown to be lower [38, 41], it can
enhance the user’s motivation to reduce their electricity con-
sumption by up to 5% [42]. It is possible to send signals to
the end-users to warn them about overconsumption; the cur-
rent concept is a fix daily limit when a warning is sent once the
consumption goes above the defined limit [43]. This means that
warnings would always occur towards the end of the day, whilst
the limit should be changing and adapting to real time variation,
to make use of potential savings made throughout the day. The
first step to insert limitations and set goals to the end-user, it
to define a referent percentage (τre f ), by which the electricity
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Figure 4: Referent percentage variations for setting electricity consumption tar-
get over a defined period of time, here for 1-day period % with a time step tsl of
1 hour.

consumption could be decreased. The referent percentage is
a function of time as shown in Eq.(12) and Eq.(13). The target
system always makes a reference to the time period in which the
end-users see their target set. For this matter, the period studied
must be defined as a time fraction (τn)between 0 and 1, which
represents the beginning and the end of the period studied.

ζ = τn−1 +
tsl

1440%
τn = ζ − bζc

τ =


τ0
...
τn

 .
(11)

where τn is the time fraction of the studied period [%], tsl is the
time slot by which the target is revised [min], % is the period
[Day], τ is expressed as a (1440%)/tsl-by-1 matrix.

While the time fraction τ could be used for fragmenting the
target electricity consumption, a linear approach is inappropri-
ate and more amplitude should be given throughout the tar-
geted period. Therefore, a second-degree polynomial is used
for defining the referent percentage τre f that will be used to set
intermediary targets, updated for each time slot tsl. A represen-
tation of the different radius of curvature of τre f is illustrated in
Fig.4.

τre f = −ξvaτ
2 + (1 + ξva) τ (12)

where τre f is the referent fraction of electricity consumption for
every time slot [%], ξva is the feasibility of the system [%].

The target electricity consumption for the given period is fur-
ther evaluated depending on historical consumption. In case the
target reference period is set for each day of the week, a com-
parison is made using the historical consumption of the same
day in past weeks. A ratio is set for each time slot tsl de-
fined previously over the targeted period %. This ratio varies
depending on the capability of the end-users to stay below the
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Figure 5: Cumulative electricity consumption over the day for a given appliance
of a particular day in comparison with the threshold θ.

target. Finally the end-of-the-day targeted electricity consump-
tion level $ [kWh/d], for the period % is:

$ = ηĒ%τre f (13)

where η is the ratio by which the average daily electricity con-
sumption can be reduced and depends on whether the user is
able or not to reduce their electricity consumption [%], and E%

is the average electricity consumption for the same day of the
previous week [kWh/d].

In case the ratio between the target electricity consumption
and the average electricity consumption of a particular day is
smaller than the ratio they should have reached, then the re-
sponse from the user is not likely to change. If, however, the
current electricity consumption is greater than the target, it will
provide additional motivation and, concurrently, the targeted
electricity consumption is reset to a lower expectations. The
response level on target based study, θtarget−%, is defined as:

θtarget−% = 1.1 ∀
$

Ē%

> τre f (14)

where E% is the mean electricity consumption on the studied
period [kWh].

Consequently, the electricity consumption of end-users will
be closing the targeted level to the degree of user response level.
Fig.5 is an example of the cumulative daily electricity consump-
tion of a simulated house compared to the target imposed on the
end-users.

Finally, once all the variables defining the response level de-
pending on the chosen feedback method are quantified, they
will be integrated to the end-user definition Ur set for the three
user types (“Green”, “Orange”, “Brown”). The user-response
is therefore influenced by the feedback system. It implies that
the behaviour of the private consumers can be modified depend-
ing on the feedback strategies. The change of behaviour varies
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from 0 to 33%of the original willingness towards influencing
reduction in electricity consumption. It results in the evaluation
of a dimensionless figure of the private consumer’s willingness
θ.

θ = Ures · θtarget−%θinter−mθsel f θprice (15)

where Ur is the basic user response defined in Section 2.4.1.
θprice was defined in Eq. (7).

While the acceptance of the private consumers could increase
or decrease depending on the feedback given on their electricity
consumption, there is always a certain probability that the pri-
vate consumer would refuse to undertake the action. Therefore,
the willingness of undertaking an action is placed in perspective
with a random number that will adjust the final response of the
private consumer. The final response θ f will be in the form of a
Boolean:

θ f = 1 ∀ Rh ∼ (0, 1) > θ (16)

where Rh is a random number generated between [0,1].

2.5. Home Energy Management System (HEMS)
The HEMS includes multiple components for managing the

energy consumption/production of households. One of the
HEMS’components is the controller, which will evaluate the
possibility to postpone events depending on the control options
of appliances (as listed in Table 1), and integrate end-user pref-
erences. In our model, the controller will integrate time stamps,
generated events, the metering system, user type, user response,
and the electricity pricing system. The controller is aware of
the electricity contract used, which will determine the price of
electricity and provide price forecasts.

There are multiple types of metering systems available on
the market. Each of them have targeted functions and gen-
eral functionalities as summarised in the CEN/CLC/ETSI/TR
50572:2011 technical report on functional reference architec-
ture for communication in smart metering system [44]. These
functionalities range from simple reading system to HEMS en-
ablement. In our model, the following four options are used:

– Option 1: A basic metering system that does not provide any
information to the end-user, only reports periodically elec-
tricity consumption information to the electricity producers
or the DSO;

– Option 2: A smart meter that integrates only the Function-
ality 1 and 2 of the smart metering system as defined by
CEN/CENELEC/ETSI standard [44];

– Option 3: A smart metering system that is able to provide
feedback to the end-user and integrates F1, F2, F3, F5, and
F6 functionalities. However, it does not include functionality
F4 for home energy management;

– Option 4: Integrates all functionalities F1––F6, as defined by
the standard, so it also includes direct control of appliances.

The appliances can be controlled in three ways:

(i) Delaying an action to another time slot based on selected
criteria i.e. economic, environmental;

(ii) Reducing the power demand (for instance in case of a ket-
tle, we are influencing the resistance of the boiler);

(iii) One-hour delay in case long term shifting is not available.
For instance, it is unlikely that sauna use would be post-
poned with several hours.

The time slot where an action can be postponed depends on
the electricity price and environmental emissions. For example,
when using the ToU or FP systems, the primary factor for post-
poning an action would be reducing CO2 emissions. In contrast,
in case of RTP system, price is the primary factor for postpon-
ing an action. In case of RTP, the number of hours td by which
an action can be postponed is defined as:

td = min
[
Fph,h

]h2

h1
(17)

where Fph,h is a vector of 1-by-n representing the forecasted
price vector, and h1 is the starting hour and h2 the ending hour
[h] that will frame the search.

While the decision about postponing an action is largely de-
pendent on end-users willingness, in case it is not a critical ac-
tion, in option 4, the HEMS can make the postponing decision.
The number of time periods dh,l, when an action can be delayed
is defined as:

dh,l = θ f td (18)

where td is defined in Eq. (17), and θ f in Eq. (16).
Postponing device use on a long-term does not necessarily

apply when there is no automation, neither when there is no
smart metering system.

In the following sections, variables DS and Dρ will be
Booleans given for each appliance, DS represents the short-
term delay, and Dρ long-term delay.

2.5.1. No Delay Case
In case of no delay or when an action is already on-going

for the given appliance, the final action Υ f inal,n equals the time
usage of the appliance ta,n.(

DS = 0 ∨ Dρ = 0
)
∧ (vc = 1)→ Υ f inal,n = ta,n (19)

where vc is a Boolean representing the use state of an appliance.

2.5.2. Short-term delay case
Short-term delay means not more than one hour and it is a

factor of appliance type and user acceptance. The likelihood of
short-term delay is a variable of the knowledge accumulated,
and signal from the grid if it is a sensitive time for the electric
network. Whether and how long the use of a device can be
postponed is defined as follows:

DS ,n = DS · dh,s (20)

where dh,s is the number of time period by which an application
can be postponed.

When delay is possible (DS = 1), condition g1 and g2 will
need to be ascertained. At first, it is necessary to check whether
the current iteration has triggered an action for the given ap-
pliance as seen in Eq. (21). If an action has been triggered
during the previous iteration, the new action that represents the
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remaining action from the previous iteration is postponed to its
right time.

g1 = (DS , 0) ∧
(
ta,n > 0

)
g2 = (DS , 0) ∧

(
DS ,n−1 > 0

)
∧

(
ta,n−1 > 0

)
g1 →


g′1

(
ta,n−1 = 0

)
g′1 → Υ f inal,n+DS ,n = ta,n
∼ g′1 → Υ f inal,n+DS ,n−1 = ta,n

(21)

In case the first condition is not met, then the algorithm is
looking at whether or not an action has been triggered in the
previous iteration and if the previous had a short term post-
pone action. In this case, the current action to be triggered is
moved to the previously postponed time. If none of the above-
mentioned conditions are met, then the final action will be ei-
ther equal to an action that has been triggered without delay or
no action at all (Eq. (22)).

∼ g1 → g2 → Υ f inal,n+DS ,n−1 = ta,n
∼ g1 →∼ g2 → Υ f inal,n+DS ,n = ta,n

(22)

2.5.3. Long-term delay case
Some appliances, such as the dishwasher or the washing ma-

chine, may be postponed by a longer time.
In the following section, we want to offset an action in case

the automatic controller has been engaged. Three variables
need to be defined in order to locate in the array the position
where the simulation is and where it should shift the action de-
pending on the situation. Dp,n represents the number of steps
forward that an action is to be delayed, and tn is the appliance
programme chosen.

First of all, we want to know if there is an existing pro-
gramme that has already been re-scheduled by evaluating h. If
an action has already or just been triggered and no future sched-
ule has been planned, then the time to which the appliance is to
be re-scheduled follows the time dh,l set by the controller.

h =
(∑∞

i=n Υ f inal,n = 0 ∧ ta,n > 0
)

h→ Dρ,n = n + dh,l

∼ h→ Dρ,n = 0
(23)

Furthermore, the system will also evaluate υ the sum of ac-
tions between the time to which an appliance could be post-
poned and the related time of use of this appliance that has been
previously programmed.

υ =

Dρ,n+dta,ne∑
n=Dρ,n

Υ f inal,n (24)

where n is the simulation step starting from 0, υ evaluates if the
appliance has not been already switched to the evaluated time
['].

Thus, υ is positive if an action for the studied appliance has
already been re-scheduled and equal to 0 if the time slot is
empty.

It is now possible to evaluate the time period to which an
action should be postponed. The general algorithm would post-
pone the action to the appropriate time slot, however a series

of exceptions occur while operating the algorithm. Four condi-
tions must be checked ending up to different consequences on
the action schedule as presented in Eq. (25). The first condi-
tion i1 is checking if no actions have been scheduled forward.
The second condition i2 is checking whether the long-term de-
lay variable is active or not and whether the current iteration
has triggered an action to be eventually postponed. The third
condition i3 is looking at the previous postpone statements and
at the previous action triggered. Finally, the fourth condition
i4 checks whether the studied appliance has already a reserved
time period for later use.

i1 = (υ , tn)
i2 =

(
dh,l > 0 ∧ ta,n > 0

)
i3 =

(
Dρ,n−1 > 0 ∧ ta,n−1 > 0

)
i4 =

(
Υ f inal,n > 0

) (25)

The combination of conditions checked as presented in Eq.
(26), Eq. (27), and Eq. (28) define the value where the action is
going to be postponed and therefore redefines the action vector
that will serve as a base for determining the value of the action
Υ f inal,n.

i1 → i2 →


i′2 =

(
ta,n−1 = 0

)
i′2 → Υ f inal,Dρ,n−1 = ta,n
∼ i′2 → Υ f inal,Dρ,n = ta,n

(26)

i1 →∼ i2 →
{

i3 → Υ f inal,Dρ,n−1 = ta,n
∼ i3 → Υ f inal,Dρ,n = ta,n

(27)

∼ i1 →
{

i4 → Υ f inal,n = ta,n
∼ i4 → Υ f inal,n = 0 (28)

The power output from the studied appliance can be evalu-
ated once the action Υ f inal,n has been evaluated. The nominal
power Pi,a of the appliance is determined by the EuP Directive
[45]. Further, the electricity used during the elapsed time pe-
riod, which is calculated by multiplying the nominal power of
the appliance with the time step chosen for the simulation, is
calculated as: (

Υ f inal,n = 0
)
→ Eh = Pi,a · Υ f inal,n (29)

where Pi,a is the power output of the appliance in active mode
depending on the power rank of the appliance used [kW] and Eh

is the electricity consumption of the studied appliance [kWh/h].
If an action does not occur at t = n, the appliance may be

in a different state such as in stand-by or off-mode. In order
to evaluate the state the appliance is currently in, the use of
statistical information is integrated into the model. Indicative
data from the eco-labelling reports are used with a normalized
random number Rs (R ∼ ([0, 1])) that will, at each iteration,
evaluate the state in which the appliance is:

(Rs < ϕs)→ Eh = Pi,s (30)

where ϕs is a variable defining the percentage of time spent
in stand-by mode compared to the off-mode [%], and Pi,s is the
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Figure 6: Occurrence of the appliance usage per week for 96 simulated houses
compared to the maximum usage allowance set as an input in the simulation
model.

power output in stand-by mode depending on the power ranking
of the appliance [kW].

If the appliance is not in an active use and is found to be in
stand-by mode, then the power output will be the appliance’s
power rating in stand-by mode. If the appliance is in an off-
mode, then the power output takes the value of the off-mode
power Pi,o f f (Eh = Pi,o f f ). In every other situation, the output
power of the appliance is set to zero. The occupancy scenario
is deduced from the power output of the house.

Ultimately, the model outputs multiple results such as the
detailed usage of each appliance as a function of maximum
weekly usage. Fig. 6 illustrates the statistical spread of the
appliance usage for a given house. It can be observed that the
mean weekly usage per appliance converges with the maximum
weekly usage (Uw) given as an input to the model. Some of the
appliances such as the hair dryer or the television are used half
of the maximum allowed time while most of the appliances are
in a range of +5% use over the maximum allowed weekly us-
age. This figure stays in the uncertainty set in the model as
+10%.

2.6. Occupancy

The occupancy scenario is not given as an input to the simu-
lation tool as the model relies on the appliances usage based on
probability distribution functions. Nonetheless, occupancy may
be crucial when studying the heat load and ventilation accord-
ing to humidity variation within a building [46]. In our model,
occupancy is defined by the appliance usage profile. Depend-
ing on whether or not a set of appliance is considered active,
the occupancy is deduced from it and the lighting scenario is
set accordingly. Therefore, the input data of the simulation are
the standby power PS tb,the type of light bulbs (incandescent or
low-energy), and the building area ABuil. To evaluate if artifi-
cial light is required, we calculate the relative illuminance E as
follows:

E =
Ev − Emin

2
3 · Emax

+ Xmin (31)

where Ev is the external illuminance [lux], Emin and Emax are
the minimum and maximum levels of natural light [lux], and
Xmin defines the minimum probability of using artificial light
for a given illuminance ['].

Occupancy VOcc is a Boolean and is determined by compar-
ing the actual electricity consumption to standby power.

VOcc = (PTot > PS tb) ∧ ((1 − E) ≥ Rl ∼ U(0, 1)) (32)

The output power of the lighting system (Pl) is defined by
the type of light bulbs and the building area.

Pl = VOcc × ABuil × PTech (33)

where PTech is the installed power of the lighting system
[W/m2], and ABuil is the building area [m2].

In case the actual consumption equals the base load, the
dwelling is considered empty and the output power of the light-
ing system equals zero. If the consumption is higher than the
standby, the house is considered occupied and the relative illu-
minance E is used.

2.7. CO2 emissions from electricity production

One of the novel inputs of this simulation model is the in-
clusion of CO2 emissions related to the electricity consumption
of the house. Traditionally, in such models, fixed emissions
factors are used based on yearly averages. This is an impre-
cise method as the type of power generation and fuels varies
seasonally and even within a day. Additionally, Finland as in-
sufficient capacity for satisfying overall demand, therefore 16%
of electricity demand is imported from neighbouring countries.
If HEMS is to reduce peak time emissions, we need to have
a more accurate information of actual CO2 emission profile.
For this purpose, in this article we use a dynamic model pre-
viously developed by the author [47]. This dynamic model cal-
culates CO2 emissions on an hourly basis, using actual statis-
tics of power plant use from Fingrid Oyj (the Finnish TSO) and
their primary use of fuel reported to Finnish Energy. Real-time
CO2 emissions reflect the variation of fuel used in electricity
production. Additionally, we consider not only the primary en-
ergy sources from domestic electricity production but also the
emissions from the electricity of trading countries. The latter is
defined using the electricity profile provided by the Nord Pool
Spot power market. This means that the CO2 emissions impact
of household electricity consumption varies hourly, therefore,
the HEMS is better adapted for providing feedback on actual
environmental impact and reducing peak time emissions.

3. Results and discussions

Simulations have been carried out under multiple conditions,
including multiple types of users, numbers of inhabitants and
energy efficiency levels of appliances, and user quality. In order
to validate the model, the profiles generated need to meet the
constraints set in the inputs of the model such as the frequency
of appliance usage, overall profile variation and seasonal elec-
tricity demand variation.

The output of the model is a set of indicators reflecting on
the performances of buildings:

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.enbuild.2016.03.012


This is the final manuscript author version. ©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi:10.1016/j.enbuild.2016.03.012

Table 2: Electricity consumption and emissions for houses with different num-
ber of inhabitants.

inhabitants Emissions Energy
[’] [KgCO2/y] [KgCO2/kWh] [KgCO2/kWh/p] [KgCO2/y/p] [kWh/y] [kWh/y/p]
1 234.72 0.12641 0.13 234.72 1851.56 1851.56
2 322.84 0.12602 0.06 161.42 2570.47 1285.23
3 501.54 0.12420 0.04 167.18 4034.89 1344.96
4 706.48 0.12539 0.03 176.62 5637.59 1409.40
5 838.09 0.12364 0.02 167.62 6774.82 1354.96

• Overall electricity consumption of the simulated house on
an hourly basis - this is due to the fact that most metering
systems have a time step of 1 h for transferring information,
while some intend to have a sampling period of 15 min;
• Occupancy of the house;
• Related electricity price–used by energy retailers for billing

the end-user;
• CO2 emission levels of the simulated house.

Each indicator is used as an input to the house for decision-
making purpose of the HEMS.

3.1. The profile Generated

The objective of the modelling was to match the reference
profile to that of the Metering Decree (66/2009). Further, we
evaluated the percentage variation of the generated profiles
from the reference profile for different household sizes and the
four levels of automation. The mean of the percentage vari-
ations are compared with the reference profile as summarized
in Fig. 7. Four time periods can be distinguished in the re-
sults. During 00:00–5:00, there is an overestimation of 7.3%
compared to profile given in the Metering Decree. The abso-
lute difference is 0.15% for the same slot. During 6:00–14:00,
there is a relative under-estimation of approximately 15.6%, or
0.65% in absolute values. During 15:00 –21:00, the average
over-estimation is 10.5%, and the 0.66% absolute value. Fi-
nally, during 22:00–00:00 the under-estimation is 10.3% on av-
erage, or 0.39% in absolute values. This is considered to be
an acceptable margin of uncertainty bearing in mind that the
variation in the daily profile is small.

The seasonal variation of electricity consumption is to be
highlighted; Figs. 7 (b) and (c) detail the daily profiles in De-
cember and June, over 3 weekly segments: the weekday, Satur-
day, and Sunday. While the evening peaks are more pronounced
due to the use of sauna-stoves, the electricity consumption pro-
files generated show an evenly distributed use of appliances
among the weeks and months.

CO2 emissions reduction is one of the main drivers for im-
plementing new technologies in the residential sector. To this
effect, hourly emission data were aggregated weekly to evalu-
ate the emissions level of the dwellings as illustrated in Fig. 8.
While the emissions present a similar profile at different levels,
this is due to the fact that the simulated houses had the same
profile input.

When considering the emissions in terms of inhabitants, the
larger the number of inhabitants, the lower the yearly emission
factor becomes as shown in Table 2.

As Table 2 indicates, the lowest impact occurs for two-
persons households while the highest for households with a

Table 3: Annual consumption variations
Metering System Number of inhabitants

1 Person 2 Persons 3 Persons 4 Persons 5 Persons
Option 1 0.00% 0.00% 0.00% 0.00% 0.00%
Option 2 0.08% -0.32% -1.04% -2.72% -2.12%
Option 3 15.93% 12.07% 7.45% 3.52% 3.75%
Option 4 15.90% 12.00% 7.30% 3.26% 4.15%

single inhabitant. Considering the growing number of sin-
gle inhabitants in attached houses (43.45%) and block of flats
(58.88%) added with the 1% yearly increase of surface area per
inhabitants in Finland, these mount up to an alarming trend of
growing household related CO2 emissions [48, 49].

3.2. The influence of HEMS
In order to assess the impact of HEMS, three criteria must be

compared: the annual electricity consumption, the daily load
profile, and the CO2 emissions impact. To evaluate the impact
of different technologies on the annual electricity consumption,
a comparison with the standard metering system is necessary.
Table 3 summarises the influence of the 4 metering systems on
the annual electricity consumption.

It can be noted that the higher the technology level, the
greater its impact on annual electricity consumption. The rea-
son is that the smart metering system and the (automation of
the) appliances must exchange information on a regular basis.
The power consumption from the sensing network was inte-
grated using 3 modes: active (transmitting or controlling the
plug), stand-by (collecting data only), off-mode (inactive). In
case of the smart meter, a data transfer every 25 min is con-
sidered, meaning that the rest of the time the smart meter col-
lects electricity consumption data or is in low power consump-
tion mode. The sensors exchange information with the central
unit every 10 s. While the power demand during the commu-
nication period is high, the transmission time is 200 ms. This
means that the majority of electricity consumption occurs when
the devices are in low consumption mode. The smart meter is
rated at 20 W in active mode and around 5 W in idle mode
(when recording the data but not sending information). Ev-
ery sensor is rated at 4 W in active mode and <1 W in idle
mode. Depending on the number of sensors in the network, the
yearly consumption of the HEMS can go up to 350 kWh/y. Sec-
ondly, the number of inhabitants affects the overall electricity
consumption of the deployed technology. A one-person house
may see its overall annual electricity consumption raise by over
15.9% when a fully automated system is deployed compared to
a regular metering system without automation. In contrast, a
five-person household will experience a 4.1% annual electricity
consumption rise in the same configuration. When consider-
ing only smart metering option 2, which what is already be-
ing deployed across Europe, the annual overall electricity con-
sumption of a one-person dwelling will raise by 0.08%, while
of three-person households the electricity consumption will de-
clining up to 1.04%. This shows that the impact is mainly due
to automating the entire pool of appliances within the home,
and adding sensors to all appliances. Our results are consistent
with van Dam et. al [12]. Most research focuses on the absolute
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Figure 7: Average daily profiles expressed as a percentage change for non-controlled simulated households compared to (a) the average daily profile set as an input
in the simulation model, and (b) to measured houses. Detailed load profiles for (c) June and (d) December.
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Figure 8: Weekly cumulated CO2 emissions and related electricity consumption
for 5 types of houses.

benefits of HEMS and excludes its energy need for running. In
order to benefit from the improved monitoring system, we need
to implement more automation. However, when we have more
advanced control and feedback systems, the overall energy de-
mand also increases. In our model, the assumption was made
that every appliance was monitored. Consequently we see an
increased energy demand due to the HEMS.

Another aspect that must be evaluated is the impact of the
technology on the average daily load profile of the dwellings.
The first way to look at it is by evaluating the relative changes
in the daily load profile as illustrated in Fig. 9.

It can be observed that no matter the number of inhabitants in
the house, the average daily load profile is getting flatter while
the technology level deployed is raising. The transfer of power

demand contributes to the flattening of the daily load from the
evening period to the night period. While the statement of the
power shifting is true in any case in terms of relative change in
the power demand on the daily load profile, the absolute daily
profiles, as presented in Fig. 9, suggest that load decrease occur
for households of three persons or more, while with households
with two inhabitants or less will have an increased power de-
mand. It can be hypothesized that while smaller households
have lower electricity consumption rates, they have lower flex-
ibility due to lower ownership level of appliances. It is corre-
lated by Ippolito et al. [50]who found that automation systems
have a greater impact when the original energy consumption is
high and the energy class is lower. Therefore, it can be con-
cluded that the HEMS affects positively the shape of the load
profile, no matter the number of inhabitants in the house, by
shifting load from evening to night times. However, the HEMS
increased the overall power demand for single person house-
holds.

3.3. User response sensitivity

User response to technological deployment is integrated into
the model as expressed in Section 2.4. The user response index
simulates end-users interaction with the HEMS and, therefore,
defines to what degree the automation system can impact on
electricity consumption and related CO2 emissions. Three types
of user response levels were set in the model: “Green” house-
holds are positive responders, with an average positive response
level of 70%, “Orange”households have 50% response level,
and “Brown” households 30%. Fig. 10 illustrates electric-
ity consumption and CO2 emission levels for these three user
types, depending on the number of inhabitants and the level
of technology deployment. Additionally, the difference of re-
sponse levels is expressed as percentage variation of emissions
and electricity savings achieved.
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Figure 9: Relative daily profile variation for 4 metering systems for (a) 1, and (b) 5 persons; absolute daily profile variation for 4 metering systems for (c) 1, and (d)
5 persons.
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Figure 10: Electricity consumption for three household types, and four levels
of the technology deployment by the number of inhabitants.

On average, the electricity consumption difference between
“Green” and “Brown” housheolds is 2.27% (σ = 0.0037) and
for CO2 emissions the difference is 2.31% (σ = 0.0036).

Recent research highlighted the importance of feedbacks to
end-users and their effect on load shifting and electricity con-
sumption [30, 51]. Our simulation results are consistent with
the finding of Nilsson et al. [30]: the impact of information
system on load shifting allowed shifting peak load to off-peak
period by 5% on average. Notwithstanding, feedback on its
own did not impact the electricity consumption significantly.

3.4. Price variation
The model includes eight main contracts that can be selected

as an input to the simulation. The pricing is used as an input
to the HEMS for controlling the appliances. Therefore, each

contract influences (the HEMS) in a different manner the elec-
tricity usage, CO2 emissions levels, and the electricity bill. In
addition to the eight contract types, three types of HEMS sys-
tems and five types of household sizes were considered. The
indicators are further categorised between the annual electricity
consumption, the annual variation of the electricity bill, and the
related annual CO2 emissions. The indicators weigh the vari-
ation of the impact from each contract type on one to another
and are further summed up to form I as Eq. (34) illustrates.

I =

∑y
n=1

(
x−xmax

xmin−xmax

)
n

y
(34)

where x is the variation of a specific variable [%], and y is the
number of indicators considered ['].

The global indicator I is summarised for every type of con-
tract in Fig. 11. Fig. 11 illustrates the cross-comparison of
different contracts by types of electricity bills, number of in-
habitants, and metering system on the annual electricity con-
sumption, bill and CO2 emissions.

Real time pricing (RTP) had the greatest impact on the an-
nual electricity bill compared to other pricing mechanisms.
RTP without price limitation decreases the electricity bill by
28.5% on average, while the RTP with a limitation at 8.6
Euro-cents/kWh reduces the electricity bill by 21.3% on aver-
age. Furthermore, the difference between the limited and non-
limited RTP is around 5.8%.

The influence of the RTP on the annual electricity bill can be
noticed in any kind of configurations, from no smart metering
system to fully deployed HEMS, and for any number of inhab-
itants.

The average value of I for RTP without limitation is 0.538,
which is the best alternative when considering annual electric-
ity consumption, price and emissions. RTP with a limitation
of 8.6 Euro-cents/kWh and the three types of Time of Use
(ToU) tariffs “Varmavirta”, “Tuulivirta”, and “Vihreävirta” fol-
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Figure 11: Cross-comparison of the different contracts, by number of inhabitants and by metering system on the annual electricity consumption, annual electricity
bill, and annual CO2 emissions.

low closely with indices of 0.484, 0.459, 0.447, and 0.444 re-
spectively. The contracts using Fixed Price (FP) have the lowest
indices, 0.330, 0.293, and 0.197 respectively. Despite the fact
that the RTP has a great positive impact on the annual electric-
ity bill, it had the fourth and fifth best score for its impact on
electricity and annual CO2 emissions with indices of 0.429 and
0.368 respectively. As the indicators' weighs are identical, the
impact on the annual electricity bill balanced the average re-
sults of the RTP without limitations, thus the high index levels.
Finally, the contract that shows the most stable results is the
ToU tariffing system from “Varmavirta”, as it ranked highest
for its impact on the annual electricity consumption and its re-
lated CO2 emissions, but only third for its impact on the annual
electricity bill.

4. Conclusions

In this paper, a simulation tool was developed for evaluating
the influence of technology level deployment, pricing models,
and CO2 emissions related to the electricity consumption on
an hourly basis. The model included a simulated house, with
twenty-one individual appliances that can be replicated multiple
times, and three types of end-user profiles. The inputs of the
model were appliance daily load profiles, end-user profiles and
electricity prices. The model also generated events based on
daily load profiles, simulated different levels of HEMS options
and user responses.

The model was successful in generating valid profiles
that matched the input values from appliances and occu-
pants’requirements. The profile generated also showed consis-
tency in the daily variation of the load depending on the number
of inhabitants. Seasonal, and weekly variations based on the
demand and the weather conditions were included as well.

The simulated HEMS impacted positively on the overall load
profile by flattening the demand, through postponing appliances

usage throughout different time slots. The CO2 emissions as-
sociated with electricity consumption showed to be dependent
on the number of inhabitants; the per capita emissions were
lowest for two-person households and highest for one-person
dwellings. Nonetheless, the impact of the technology on the
electricity consumption, the CO2 emissions and the pricing
model increased. This is mainly due to the fact that all ap-
pliances are connected with smart plugs, which have a rather
high energy consumption and therefore impact negatively the
overall electricity load. Therefore, until highly energy efficient
sensing technologies come into the market, the fully monitored
and automated homes for electricity consumption management
cannot be seen as an option to reach European energy efficiency
targets.

The pricing model tends to favour RTP without limitations,
as its impact on the yearly electricity bill is greater than any
other pricing model. On the other hand, RTP performed worst
in terms of reducing net CO2 emissions. The integration of
the environmental component into the RTP model needs to be
further investigated. However, the indices for ToU tariffs are
more uniform for the three indicators.

The model presented in this paper can have multiple impli-
cations in terms of policy and technology development strate-
gies. For the future, it would be useful to have a tool that sim-
ulates microgrids by including a number of houses and their
inter-communication. It is foreseen that this model will be fur-
ther used for microgrid model development. The model did not
aim at synthesising the electricity load for network development
and, therefore, it may not be useful for analysing fast change in
the electricity network. Currently, only a limited number of
appliances were included into the library, however, the model
allows including more appliances. One of the advantages of the
model is that it is flexible and can be adapted to all residential
building types. The thermal load of dwellings was not included
in the scope of this model; in the future, the district heating
system will be integrated to evaluate the synergetic relationship
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between multiple energy vectors. In this paper, we have not
considered how end-user characteristics (e.g. childrens age, in-
come level, employment, health, etc.) influence their electricity
consumption. These variables could be further integrated in or-
der to extend the panel of end-users. Finally, the ultimate goal is
to develop a sustainability index for evaluating the energy man-
agement system of dwellings that includes wider considerations
of environmental, social and economic impacts.
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