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Abstract

This paper presents an investigation of a ssimple generic hyper-heuristic approach upon a set of
widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyper-
heuristic framework, a Tabu Search approach is employed to search for permutations of graph
heuristics which are used for constructing timetables in exam and course timetabling problems. This
underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a
different number of graph heuristics in two stages. We study this graph-based hyper-heuristic
approach within the context of exploring fundamental issues concerning the search space of the
hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in
other hyper-heuristic research. These approaches are tested on both exam and course benchmark
timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The
results are within the range of the best results reported in the literature. The approach described here
represents a significantly more generally applicable approach than the current state of the art in the
literature. Future work will extend this hyper-heuristic framework by employing methodologies

which are applicable on awider range of timetabling and scheduling problems.
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1.Introduction

1.1 Timetabling Problems

Timetabling has attracted the attention of the Operational Research and Artificial Intelligence
research communities for more than 40 years. The genera timetabling problem comes in
many different guises including nurse rostering (e.g. Cheang et a, 2003, Burke et a. 2004),
sports timetabling (e.g. Easton, Nemhauser and Trick, 2004), transportation timetabling (e.g.
Kwan, 2004) and university timetabling (Schaerf, 1999, Burke and Petrovic, 2002, Petrovic
and Burke, 2004), etc. Further examples of papers dealing with these kinds of problems can
be found in (Burke and Ross, 1996, Burke and Carter, 1998, Burke and Erben, 2000, Burke
and De Causmaecker, 2002, Burke and Trick, 2004). Perhaps the most widely studied class of
timetabling problem is that of educationd timetabling. A wide variety of papers describing a
broad spectrum of educationa timetabling methodologies has appeared in the literature over
the years. Overviews of the literature can be found in the following papers (Carter and
Laporte, 1996& 1998, Bardadym, 1996; Burke, Jackson et a, 1997, Schaerf, 1999, Burke and
Petrovic, 2002, Petrovic and Burke, 2004).

In ageneral educational timetabling problem, a set of events (e.g. courses and exams, €etc)
need to be assigned into a certain number of timeslots (time periods) subject to a set of
congtraints, which often makes the problem very hard to solve in rea-world circumstances.

Consgtraints can usually be divided into two types:

¢ Hard constraints have to be satisfied under any circumstances. For example, in exam
timetabling, two exams with common students involved cannot be scheduled into the
same timeslot. Timetables with no violations of hard constraints are called feasible

solutions.

« Soft congraints need to be satisfied as much as possible. For example, in exam
timetabling, exams taken by common students often need to be spread out over the
timeslots so that students do not have to sit in two exams that are too close to each

other. Due to the complexity of the real-world timetabling problem, the soft constraints
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may need to be relaxed since it is not usually possible to generate solutions without
violating some of them. Soft constraints are usually within the cost evaluation function

to evaluate how good the solutions are.

1.2 Approaches and Techniques in Timetabling Problems

The early days of research in educational timetabling investigated such approaches as graph
heuristics (see de Werra, 1985, Burke, Kingston and de Werra, 2003) and integer linear
programming (see Carter, 1986). Some of the early techniques are either impractical or too
simple to solve complex or large timetabling problems. Constraint based techniques have
been employed over the years to address timetabling problems (e.g. Deris et a, 1997, Banks,
Beek and Meisels, 1998, Nonobe and lbaraki, 1998). Recently, metaheuristic search
techniques (see Glover and Kochenberger, 2003) have been investigated and seem to have
been very successful in solving a variety of timetabling problems. These include Tabu Search
(e.g. Costa, 1994, Di Gaspero and Schaerf, 2000), Simulated Annealing (e.g. Dowsdland, 1998,
Abramson, Krishnamoorthy and Dang, 1999) and Evolutionary Algorithms (e.g. Burke,
Newall and Wesare, 1996& 1998, Burke and Newall, 1999, Erben, 2000, Lewis and Paechter,
2004, Co6té, Wong and Sabourin, 2005). Other new approaches and methodologies for
timetabling problems have aso been studied as more problem solving experience is collected
and new technologies provide new breakthroughs. These include Case-Based Reasoning
(Leake, 1996) on educational timetabling (Burke, MacCarthy et a. 2000, 2001, 2003& 2005,
Burke, Petrovic and Qu, 2006) and on nurse rostering (Beddoe and Petrovic, 2005), fuzzy
methodol ogy on exam timetabling (Asmuni, Burke and Garibaldi, 2004), and hyper-heurigtics
on timetabling (Burke, Kendall and Soubeiga, 2003, Gaw, Rattadilok and Kwan, 2004, Burke,
Dror et a, 2005, Burke, Petrovic and Qu, 2006, Qu and Burke, 2005).

The present work concerns educationa timetabling including both exam and course
timetabling problems (Carter and Laporte, 1996, Carter and Laporte, 1998). The state-of-the-
art approaches in educationa timetabling usually employ specialy tailored heuristic/meta

heuristic approaches (e.g. Carter, Laporte and Lee, 1996, Di Gaspero and Schaerf, 2000,
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Caramia, Dell’ OIlmo, and Italiano, 2001, Burke and Newall, 2002, Merlot et a, 2002, Socha,
Knowles and Sampels, 2002, Asmuni, Burke and Garibadi, 2004, Abdullah et al, 2004,
Burke, Bykov et al, 2004). These approaches invest a significant amount of development
effort in the production of “fine tuned” techniques that are specialy built for the particular
problems in hand. The objective of the present paper isto develop an approach which is more
widely applicable and fundamentally more general than the approaches mentioned above. Our
goal is not to “beat” them but to obtain comparable results by only employing general and

simple techniques which can be applied to awider range of scheduling problems.

1.3 Hyper-heuristics on Scheduling and Timetabling Problems

The development of hyper-heuristics is motivated by the goa of aiming at an increased level
of generality for automatically solving arange of problems (see Burke, Kendall et a. 2003).
A hyper-heuristic can be seen as an agorithm (on a higher level) which “picks’ appropriate
heuristics (at a lower level) to be applied to the problems in hand. A hyper-heurigtic is
concerned with the exploration of a search space of heuristics instead of dealing directly with
solutions to the problem. In hyper-heuristic research on timetabling and scheduling, different
techniques have been investigated as the low level and high level search strategies in solving
the problems. We can categorize the work in hyper-heuristics (in terms of the “low level”

heuristics employed) into two groups. improvement techniques and constructive techniques.

1.3.1 Improvement Techniques within Hyper-heuristics

In a hyper-heuristic, move strategies are usually employed as the low level heuristics to search
for solutions to timetabling and scheduling problems. Kendall, Cowling and Soubeiga (2002)
employed choice functions by which appropriate low level heuristics (moving strategies) can
be chosen and combined adaptively to search the solutions. Good results on project
presentation problems were presented compared with the solutions generated by a random
hyper-heuristic. A distributed choice function method was proposed by Gaw, Rattadilok and

Kwan (2004) within a hyper-heuristic for timetabling and scheduling problems.
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Burke, Kendall and Soubeiga (2003) employed a Tabu Search as the high level heuristic to
search through a space of moving strategies for university course timetabling and nurse
rostering problems. Good results on both of the problems tested indicated the generality and
efficiency of the hyper-heuristic approach. This approach is adopted and extended in (Burke,
Landa Silva and Soubeiga 2005) with the aim of investigating the learning of low level
heuristics that are suitable and effective for individua objectives in multiple-objective space
dlocation and course timetabling problems. Promising results are obtained compared with the
state-of -the-art approaches. A genetic agorithm methodology was employed as the high level
approach by Han and Kendall (2003) and was tested on simulated course scheduling and
student project presentation problems. Dowsland, Soubeiga and Burke (2005) introduced the
Tabu Search hyper-heuristic, which was investigated in (Burke, Kendall and Soubeiga 2003),
within a Simulated Annealing in search of a set of low level heuristics (both neighborhood
structures and sampling policies within the solution space) to determine the shipper sizes in
transportation problems.

Burke, Petrovic and Qu (2006) employed a Case-Based Reasoning methodology as a
heuristic selector for solving course timetabling problems. Problem information is modeled
with the corresponding good meta-heuristics and stored in the Case-Based Reasoning system.
The new problems are solved by using the suggested meta-heuristics which worked well on

solving previous similar problems.

1.3.2 Congtructive Techniques within Hyper-heurigtics

There are only a few papers which employ constructive techniques as low level heuristics
within hyper-heuristics for timetabling and scheduling problems. Terashima-Marin, Ross and
Vdenzuela-Rendon (1999) investigated employing Genetic Algorithms to evolve the
configurations of constraint satisfaction methods on constructing problem solutions. The non-
direct representations were suggested for Genetic Algorithms to solve large and complex
exam timetabling problems.

Ross et a (2003) investigated a genetic-based hyper-heuristic employing 4 basic
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constructive heuristics on one dimensiona bin packing problems. Optimal or near optimal
results have been found and potentia research issues were a so discussed.

Another technique was studied by Asmuni, Burke and Garibaldi (2004) who employed
fuzzy rules to combine graph heuristics to construct exam timetables.

Burke, Petrovic and Qu (2006) employed Case-Based Reasoning as a heuristic selector for
solving exam timetabling problems. Problem solving situations and the corresponding
constructive heuristics were stored in the Case-Based Reasoning system. Solutions for new
problems were constructed by repeatedly using the constructive heurigtics suggested by the
system. Benchmark exam timetabling problems were tested and the results were within the

range of those generated by using the state-of -the-art approaches.

The graph based hyper-heuristic (GHH) described in this paper is a constructive approach that
employs different graph heuristics during the process of constructing the solution according to
the different problem solving situations that might occur at particular times. The next section
presents the GHH approach upon graph heuristics and a random ordering method. Some
fundamental issues concerning the search space and solution space are also addressed. The
investigation and experimenta study of GHH and of a multi-stage GHH that are developed
for both exam and course timetabling problems are presented in section 3. Our conclusions

and potential extensions of thiswork are presented in the final section.

2.The Graph Based Hyper-heuristic (GHH) Approach
2.1 Graph Heuristics

Graph heurigtics are widely studied methods which were developed during the early days of
research on timetabling problems (eg. Welsh and Powell, 1967, Brelaz, 1979). For an
introduction to such approaches see (Burke, Kingston and de Werra 2004). They are used in
sequential (or constructive) solution methods to order the events that are not yet scheduled

according to the difficulties of scheduling them into a feasible timedlot (without violating any
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hard constraints). The difficulties are represented by the degrees of the vertices in the graph,
which mode the timetabling problem by representing the events as vertices and conflicts by
edges. We say two events in timetabling problems have a conflict if they involve the same
students. The difficulty of an event is represented by the number of conflicts it has with the
others. The objective is to construct a timetable by scheduling the most conflicting events one
by one into feasible timeslots, satisfying as many of the soft constraints as possible.

Within our graph-based hyper-heuristic, we employ graph heuristics to schedule a number
of events at each step during the construction of the solution. The work presented in this paper
investigates the following 5 low level heuristics, with and without randomness (introduced by

arandom ordering method):

¢ least Saturation Degree first (SD). Events are ordered (in an increasing order) in terms
of the number of feasible timedots available in the partia solution at that time. The
priorities (degrees) of events to be ordered and scheduled are changed dynamically as

the solution is constructed.

* largest Color Degree first (CD). Events are ordered (in a decreasing order) in terms of
the number of conflicts (events with common students involved) that they have with
those aready scheduled in the timetable. The degrees of the events not yet scheduled
are changed according to the situations encountered a each step of the solution

construction.

e Largest Degree first (LD). Events are ordered decreasingly by the number of conflicts
they have with other events. This heuristic aims to schedule first those events which

have the most conflicts.

e Largest Enrollment first (LE). Events are ordered (in a decreasing order) by the number
of students enrolled. This heuristic schedules first those events with the largest numbers

of students.

¢ Largest Weighted Degree first (LWD). Events are ordered (in a decreasing order) by

the number of conflicts, each of which is weighted by the number of students involved.
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Among events with the same degree, this heuristic gives higher priority to those with a

larger number of studentsinvolved.

* Random Ordering (RO). Events that are not yet scheduled are ordered randomly. This
basic heuristic brings some randomness into the scheduling, which sometimes produces

better resultsin timetabling problems as it increases the exploration of the search space.
2.2 The Graph Based Hyper-heuristic Framework

In the hyper-heuristic framework that we present in this paper, Tabu Search is employed to
search for the list of low level heuristics (permutations of graph heuristics and a random
ordering method), which are used to construct the complete solutions for timetabling
problems. Tabu Search has been widely employed for solving complex scheduling and
optimization problems (Glover and Kochenberger, 2003). The basic approach searches the
search space of the solutions by iteratively moving to the best neighborhoods of the current
solution, whilst keeping arecord of recently visited solutions which it cannot re-visit again for
acertain number of steps (known as the tabu tenure).

Figure 1 presents the pseudo-code of the Tabu Search within the hyper-heuristic approach
we have devel oped. The search space of the Tabu Search (as the high level heuristic) consists
of al of the possible permutations of the low level heuristics described in section 2.1. A move
in Tabu Search is to pick anew heuristic list that is obtained by randomly changing two of the
heuristics in the previous heuristic list. The newly visited heuristic lists are added into the tabu
list (which has alength of 9. i.e. the tabu tenureis 9). The determination of this valueis based
on our experiments and upon the value recommended from the literature (Reeves, 1996). of
course, what this means is that when the Tabu Search selects a heuristic list, that list cannot be
re-visited within 9 steps of the search. The objective of the Tabu Search isto find the heuristic
list that generates the best quality solution for the timetabling problem under consideration.
The search process of Tabu Search within the hyper-heuristic approach stops after a pre-
defined number of iterations (i in Figure 1), which we adapt according to the problem size.

We set it as 5 times the number of events to keep the computationa time low. Of courseitis
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possible to perform more iterations if computational time is not a key issue in the problem
being solved.

Each heuristic list selected by a move of the Tabu Search is used to construct a complete
solution, whose penalty is fed back to the Tabu Search as a guide to the search in the
following stages. As each heuristic in the heuristic list is employed to schedule a number (ein
Figure 1) of eventsinto the timetable (the reason for doing this is explained below), the length

of the heuristic list (kin Figure 1) isthen set as (number of events)/e.

INSERT FIGURE 1 SOMEWHERE HERE.

To reduce the size of the search space of the hyper-heuristic and thus reduce its computationa

time, we added three mechanisms:

1) As the low level heuristics are graph heuristics which are used to construct the
solutions, a list of them may not guarantee to generate a feasible solution (see more
detail in Section 2.3). To reduce the time spent on implementing heuristic lists that
generate unfeasible solutions, we construct a ‘failed list’, which represents a flat
memory, to store the parts of heuristic lists that generate unfeasible schedules during the
solution construction (in the hyper-heuristic approach). The initial “failed list” is set as
empty and is updated after each step of the Tabu Search to store any new heuristic lists
that cannot generate feasible solutions. When a new heuristic list is selected by a move
of Tabu Search in the hyper-heuristic, it will be checked (before it is applied to
construct the solution) to see if it matches those stored in the ‘failed list’ that led to
unfeasible schedules. For example, if a part of the heurigtic list ‘h1h2h3.." (where hl,
h2 and h3 are low level heuristics) is stored in the ‘failed list’ because h3 cannot
generate a feasible schedule at that step, al of the heuristic lists selected later such as
‘h1h2h3h4 . or ‘hlh2h3h5.." can be ignored before being applied to construct a

solution. This mechanism cuts away a large section of the search space by ignoring the
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2)

3)

non-vaid heuristic lists before applying them to solve the problems and reduces

significantly the computational time of the hyper-heuristic.

At each step of the solution congtruction employing a list of heuristics, a number of
events (set to 2 in our experiments because our initial testing indicated that this was an
appropriate value) are scheduled by the current heuristic in the list (rather than
scheduling just one event with the heuristic). This is motivated by the observation by
Burke, Petrovic and Qu (2006) that, when scheduling one event by a heuristic at each
step of the solution construction, the heuristics in the best heuristic list found by the
hyper-heuristic stay the same after a certain number of steps of scheduling. That is, the
best heuristic lists found tend to appear in the form of ‘h2h2h2...h2h1hl... hl...".
Scheduling a number of events at each step reduces the size of the search space of the

hyper-heuristic without losing much quality in the solutions generated.

The initial heuristic list of the hyper-heuristic approach contains only the Saturation
Degree heurigtic, in order to have a good starting point in the hyper-heuristic. Thisis
because the Saturation Degree heuristic orders the events not yet scheduled according
to the number of available timed ots, which changes dynamically during the search. Itis
potentially (and experimentally tested to be) more effective (more often) than the other
heuristics that order the events in static ligts. It is expected that the density of the
appearance of Saturation Degree in the best heuristic list will be higher than that of the

other low level heuristics.

2.3 Fundamental 1ssueswithin the Hyper-heuristic Approach

Hyper-heuristics have been attracting recent attention in timetabling research (see Burke and

Petrovic, 2002, Burke, Kendall et a. 2003, Petrovic and Burke, 2004). However, some

fundamental underlying issues have not been addressed in depth in the literature. Before

presenting the analysis of our experiments, we would like to discuss some of these issues.

As mentioned before, hyper-heuristics operate at a higher level than most meta-heuristic

approaches in the literature. They operate on heuristics rather than directly on the solutions by

10
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indirectly choosing a certain low level heuristic which then operates on the events (which
either moves the events in the timetable if the low level heuristics are moving strategies, or
assigns the events chosen to timedlots if the low level heuristics are constructive heuristics —
which is the approach studied here). Thus, it is necessary to distinguish between the search
space of the hyper-heuristic and the solution space of the problem.

Figure 2 presents the relationship between the search space of hyper-heuristics and the
solution space of the problem. Note that the search space of the hyper-heuristic (on the left
side of Figure 2) represents a space of heuristics and the solution space of the problem (on the
right side of Figure 2) represents a space of potential actua solutions (timetables). The
heuristics in the search space of the hyper-heuristic correspond to certain solutions of the
problem. Of course, the heuristics (which are constructive heuristics studied here) selected by
amove in the high level searching method may not guarantee the construction of a feasible
solution. This is because the moves in the hyper-heuristic search concern the change of
heuristics and not the actual assignment of the events. For example, in Figure 2 we can see
that heuristic A moves to heuristic B, or heuristic A moves to heuristic C (within the search
space of hyper-heuristic). The corresponding solutions (b or ¢ in the solution space that are
constructed by B or C) in the solution space are not guaranteed to be feasible. The search
space of the hyper-heuristic (which consists of permutations of heuristics) isvery large, with a
large number of heuristics that generate unfeasible solutions in the solution space of the
problem. In the figure, A and C generate feasible solutions, while B generates an infeasible

solution.

INSERT FIGURE 2 SOMEWHERE HERE.

In Figure 2 solutions a and b (which correspond to heuristics A and B that are in the same
neighborhood in the search space of the heuristics), may not be in the same neighborhoods in
the search space of solutions. This gives the hyper-heuristic the ability of jumping (not

moving) within the problem solution space by moving among the neighborhoods defined at a

11



In press. European Jour nal of Operational Resear ch, 2006

higher level of search in the heuristic search space. In Figure 2, neighborhood moves are
represented as solid arrows and jumping moves are represented as dashed arrows. The
correspondences between the heuristics and actual solutions are represented by dotted lines.
Also note that in Figure 2, the solution space of the problem consists of al of the possible
solutions that may be obtained by neighborhoods moves, while they may not correspond to
any heuristic list in the search space of the hyper-heuristic. For example solution d may be
within the neighborhood of solution a in the search space of solutions. However d may not
have a corresponding heuristic in the search space of heuristics. Based upon the above
observations, we propose a hypothesis here: the hyper-heuristic (which operates at a higher
level of problem solving - solving the problems indirectly) may not be able to reach al of the

solutions in the solution space of the problem.

A deepest descent local search method is employed within the hyper-heuristic after each
move in the high level search. The degpest descent search tries to move the events to other
timedlots in the timetable that is generated by a heuristic (searched for by the high level
heuristic), aiming at improving the quality of the timetable as quickly as possible. This
process terminates as soon as no events can be moved to improve the timetable. The high
level heuristic will then make a move to another heuristic, which is used to construct another
timetable. An illustrative example is presented in Figure 3 in conjunction with the example
shown in Figure 2, where solution d in the search space of actua solutions might not
corresponds to any heuristic in the search space of heuristic lists, while it might be in a

neighborhood of solution a and thus may be visited by the deepest descent local search.

INSERT FIGURE 3 SOMEWHERE HERE.

The deepest descent locd search method is a simple but robust method, which does not
introduce extra domain knowledge within the hyper-heuristic framework. The motivation for

thisis twofold: Firstly, the degpest descent in the search space of solutions tries to exploit the

12



In press. European Jour nal of Operational Resear ch, 2006

local areas (bringing the solutions obtained to their local optimum quickly), whilst the high
level heuristic in the hyper-heuristic tries to explore the search space; Secondly, the GHH thus

is potentialy able to explore more of the possible solutions for the problem.

3.GHH on Exam and Course Timetabling Problems

3.1 Real-World Exam Timetabling Problems

We investigate our hyper-heuristic approach upon a set of graph heuristics by applying it to
the benchmark exam timetabling problems that are presented in (Carter, Laporte and Lee,
1996). These are real-world problems that have been tested by many state-of-the-art
approaches. The size of the problems ranges from 81 to 682 exams and from 611 to 18419
students. The density of the conflict matrix, which gives the ratio of the number of conflicting
exams over the overall number of exams, ranges from 0.06 to 0.42. The characteristics of the

problems are presented in Table 1.
INSERT TABLE 1 SOMEWHERE HERE.

The hard constraints considered in these problems are represented by the “conflicts’ of
scheduling two exams with common students into the same timedot. The soft constraint is
concerned with spreading out the students' exams over the timetable so that students will not
have to sit exams that are too close to each other. The objective, which is the same as that
presented in (Carter, Laporte and Lee, 1996), is to schedule al of the examsinto the timeslots,
while minimizing the cost on the violations of the soft constraint per student. The objective
function of GHH which calculates the cost of violations C(t) within solution t is presented in

formula (1) below:

CM=(SwxN)/S )

where

13



In press. European Jour nal of Operational Resear ch, 2006

ws=2%s=0,1, 2,3, 4, istheweight that represents the importance of scheduling exams with
common students either 4, 3, 2, 1, or 0 timeslots away in timetablet.
Ng, s=0, 1, 2, 3, 4, isthe number of studentsinvolved in the violation of the soft constraint.
Sisthe number of studentsin the problem.

The lower the cost, C(t), the better the timetable is. We do not consider any infeasible

solutions (i.e. those with violations of hard constraints).

3.11 A Graph Based Hyper-heuristic upon a Different Number of Low Level Heuristics

We investigate here the effect of different low level heuristics on the behavior of the GHH for
exam timetabling problems. This helps us to gain a deeper understanding about general
hyper-heuristics which are applicable for awider range of problems. The combinations of low
level heuristics employed are based on the Saturation Degree heuristic with a different
number of other heuristics with and without randomness. For al of the 11 problems presented
in (Carter, Laporte and Lee, 1996), 3 runs with distinct seeds are carried out and the costs of

the best solutions are presented in Table 2.

INSERT TABLE 2 SOMEWHERE HERE.

The va ues shown under the column “SL” and “SLR”, “SCL” and “SCLR”, and “SCLx” and
“SCLXR” in Table 2 are the costs of solutions obtained by GHH upon two, three and al graph
heuristics, with and without Random Ordering.

We assume that the larger the number of low level heuristics employed in the GHH, the
larger the size of the search space (of the GHH) will be. This implies that it is possible to
indirectly explore alarger part of the solution space of the problem (possibly containing more
and better results). For example, the search space of GHH upon SCLXR should include the
search space of GHH upon SCLR. This is apparent from Table 2, where the best results (in
bold) are mostly obtained by GHH with alarger number of low level heurigtics.

Although employing a larger number of low level heuristics in GHH tends to obtain a

14
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better performance, thisis not always the case. For example, GHH upon “SCLx” outperforms
“SCLxR”, which employs a larger number of low level heuristics, on 10 out of 11 problems.
The reason that GHH, when employing a smaller number of low level heuristics, sometimes
outperforms the approach with alarger number of low level heuristicsis precisely because the
latter has a much larger search space. Some parts of the larger search space may not be
explored within the same search time (i.e. number of iterations). To clarify this issue we
carried out another set of experiments on “SCLXR” with a higher number of iterations (10 *
number of events). The results obtained are presented in the last column entitled
“SCLXR(*10)” in Table 2. We can observe that GHH upon “SCLXR” obtained better results
(on 5 out of 11 problems than that of “SCLXx") by being given more searching time. As the
search space of GHH upon “SCLX" is a subset of that of GHH upon “SCLXR”, it is possible
to say that, given enough search time, the results obtained by GHH upon “SCLXR” will be at
least not worse than that of GHH upon “ SCLx".

We can aso see that GHH upon “SL” and “SCL” with random ordering outperforms the
same GHH without randomness, which is not the case for GHH upon “SCLx". When more
searching time is given, GHH upon “SCLxR” performs much better, meaning that GHH
employing heuristics with random ordering performs better than without randomness. We
may then conclude, from the above observations, that the larger the number of low level
heuristics in GHH, the better it may perform, provided a large enough amount of search time

is given (but thisisan important proviso).

3.1.2 Multi-stage GHH

The observations above provide the motivation for proposing a multi-stage GHH which
employs a different number of heuristics in two stages. The multi-stage GHH employs
“SCLR” in the first stage and “SCLXR” in the second stage to explore its search space as
much as possible (based on the heuristic list obtained in the first stage). The reason for
employing “SCLR” in the first stage of GHH is not only because it performs best, but also

because it employs the four distinct low level heuristics (while the LE, LD and LWD are

15
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based on the same heuristic and may contribute similarly to LD).

The results obtained for the multi-stage GHH are presented in Table 3, together with the
best results of the single-stage GHH in the last sub-section. We aso present the state-of-the-
art approaches reported in the literature (Carter, Laporte and Lee, 1996, Di Gaspero and
Schaerf, 2000, Caramia, Dell’ Olmo, and Italiano, 2001, Burke and Newall, 2002, Merlot et al,
2002, Asmuni, Abdullah et a, 2004, Burke and Garibaldi, 2004). They are reported as the
best results obtained by the corresponding approaches. We have not included an entry for the

corresponding computational time because they are not reported in severa of these papers.

INSERT TABLE 3 SOMEWHERE HERE.

We can observe that the multi-stage GHH does not outperform the single-stage hyper-
heuristic presented in the last sub-section, although it obtains results that are not worse than
that of GHH upon “SCLR". The reason may be that it starts from a smaller search space and

thismay limit the search towards a certain region of the search space.

3.1.3 Summarizing Comments Concerning GHH for Exam Timetabling Problems

For all of the problems tested, GHH upon graph heuristics and random ordering obtained very
good results that are within the range of the best results reported in the literature. By
searching (on a higher level) the heuristic space, the GHH is capable of jumping (not moving)
among the solution space of the problem by moving among the heuristic lists in its search
space. We believe that this makes it a very efficient approach on difficult problems that have
complex, especially digjointed, solution spaces.

Also note that except for (Carter, Laporte and Lee, 1996) where a number of different
constructive methods with backtracking were employed, and (Asmuni, Burke and Garibaldi,
2004) where constructing, un-scheduling and rescheduling are performed, al of the other

approaches operate by improving on the initid complete solutions obtained beforehand. For
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the complex problems tested here, it is observed that no feasible solutions can be obtained by
the use of pure constructive graph heuristics. In contrast, the proposed hyper-heuristic method
is congructive, starting from an empty solution. It is not dependent on initial solutions, which
may sometimes affect the behavior of the other approaches. Most importantly, it is aso
effective for course timetabling problems (see below). Yet, the proposed method obtained

competitive results with all state-of-the-art approaches for exam timetabling problems.

We have found that deepest descent local search after each move of the Tabu Search
within the GHH approach often improves the solutions obtained and occasionally obtains a
better find solution than that obtained by the Tabu Search aone. This may indicate that,
during the problem solving, GHH sometimes reaches a point in the solution space (such as
solution ain Figure 2 and Figure 3) and cannot go further to itslocal optimal (such as solution
din Figure 2 and Figure 3) unless moves upon the actual solutions are made. However, it is
difficult to check this hypothesis thoroughly, due to the size of the search space for the
solutions of complex timetabling problems. This is because the hypothesis concerns the

coverage of the solution space by the search space of the hyper-heuristic (see Section 2.2).

3.2 University Course Timetabling Problems

The proposed GHH method was aso tested on eleven benchmark course timetabling
problems, proposed by the Metaheuristic Network®. This problem description is taken from
(Socha, Knowles and Sampels, 2002). The problems? need to assign 100-400 courses into a
timetable of 5 days, 9 timeslots a day, while satisfying room features and capacity constraints.
They are grouped into small, medium and large problems. The hard constraints that must be

satisfied are:

1. no students can be scheduled to more than one event a atime

2. theroom meets all features required by the event

! http://www.metaheuristics.net/
2 http://iridia.ulb.ac.be/~msampel s/ttmn.data/
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3. room capacity is respected

4. no more than one event is alowed per room and per timeslot

Soft constraint violations are equally weighted and summed up within the cost function. They

are presented below:

1. astudent hasaclassin thelast timedot of the day

2. astudent has more than two classesin arow

3. astudent has only one class on a day

321 GHH upon All Low Level Heuristics

We employ exactly the same GHH approach with the same low level heurigtics tested on the
exam timetabling problems. The only changes made, in order to dea with these different
problems, are the cost function which also evaluates the room constraints. The best results by
5 runs of GHH with distinct seeds upon all of the low level heuristics are presented in Table
4, which also presents the results of 3 approaches (Socha, Knowles and Sampels, 2002, and
Burke, Kendall and Soubeiga, 2003) reported in the literature for comparison. For the “Hyper-
heuristic” the best results out of 5 runs obtained are presented, for the “Loca Search” and
“Ant Algorithm” the average results out of 50 runs on small problems, 40 runs on medium
problems and 10 runs on large problems are reported. We test our gpproach with the same
number of runs as that of the “Hyper-heuristic” from (Burke, Kendall and Soubeiga, 2003) to
make a more fair comparison. The term “x% Inf” in Table 4 indicates the percentage of runs

which failed to obtain feasible solutions.

From Table 4 we can observe that our GHH approach obtains competitive results with the
other 3 approaches on these course timetabling problems. For problem “Medium5”, it
obtained the best results among al approaches. It outperforms the “Loca Search” method on
dl of the problems except “Mediuml”’, “Medium2” and “Medium4”. And for dl of the

problems tested it finds feasible solutions with al the 5 distinct seeds tested, which the “Tabu
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Search Hyper-heuristic” and “Loca Search” approachesfailed to obtain.

INSERT TABLE 4 SOMEWHERE HERE.

3.22 Summarizing Comments Concerning GHH on Course Timetabling Problems

The experimental results on GHH for course timetabling problems demonstrate its ability to
work well on hard problems. We can observe that for problems “Medium5” and “Large”,
which are the hardest (highest costs obtained by the other approaches), GHH obtained the best
and second-best results. The reason may be that the GHH is capable of jumping (while not
moving) within the solution space by the moves within the search space of heuristic lists. This
enables it to deal well with a broad range of hard problems (with a complex, and probably
digoint, solution space).

The deepest descent local search after each move of the Tabu Search improves the solution
in most cases during the search of GHH. The best final results are sometimes from the
improvement made by deepest descent local search on the solutions obtained by Tabu Search.
This may strengthen our hypothesis about the coverage of the solution space vs. search space

within our GHH approach.

For all the other approaches compared, initia solutions are required before the algorithms
are performed. Our GHH solves the problem by starting from an empty solution in each move
of Tabu Search. For the course timetabling problems tested here, the violations of soft
congtraints 2 (more than 2 consecutive courses) and 3 (single course assigned in one day)
cannot be evaluated accurately until a complete solution is obtained. This is not true for the
other approaches compared here, since complete solutions exist. In our GHH approach the
evauation can only be made approximately during the construction of the solution. This may
limit the search of GHH when searching for globally optimal solutions, athough the deepest

descent loca search method upon the complete solution after each step of Tabu Search can
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improve the timetabl es concerning these soft constraints.

4.Conclusions

The overal goa of this paper was to investigate a hyper-heuristic which operates a a higher
level of generdity than most of the current approaches studied in timetabling. Current state-
of-the-art approaches are the result of a significant investment of effort in developing
sophisticated and elaborate heuristics, which are “tailor made” for their particular problems.
In our hyper-heuristic framework both the Tabu Search and graph heuristics are genera
methods that are widely applicable. We have presented a general constructive approach which
is not dependent on theinitia solution that the other approaches need to generate.

By employing simple and general heuristics in an intelligent way, the hyper-heuristic is
capable of generating comparable results to those of special purpose approaches. The hyper-
heuristic has the ability of selecting genera heuristics, picking up the events that are most
difficult to schedule (by different heuristics), in any given solution construction state.
Although the goal of the present study is not to beat the specific approaches in the literature,
the GHH works well on al of the problems and for one of the benchmark course timetabling
problems, the hyper-heuristic we developed actually obtained the best result among dl those
reported in the literature. It is a simple, robust and very effective general approach that does
not use any domain knowledge except in the cost function that ded s with different constraints
in different problems.

Experimental results indicate that the hyper-heuristic works more efficiently when using a
larger number of low level heuristics. However, the size of the search space of GHH increases
as well, which aso increases the computational time. The multi-stage GHH was studied with
the aim of getting good results in the first stage of GHH employing less low level heurigtics
and improving the results in the second stage employing more low level heuristics based on
the heuristic lists obtained from the first stage. However the experimental results presented
were worse than the single stage GHH due to the limitation of the starting points for the

search of GHH.
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Our hypothesis on the coverage of the solution space of the problem by searching within
the search space of the hyper-heuristic is experimentally strengthened for both the exam and
course timetabling problems. This hypothesis needs to be tested on a larger range of

timetabling and scheduling problems.

5.FutureWork

Future work could use other simple heuristics or approaches, instead of Tabu Search, in
exploring the search space of heuristics. A larger number of low level general heuristics can
aso be added to the hyper-heuristic framework to explore a larger section of the solution
space of the problems. It might aso be interesting to consider more than one low leve
heuristic when choosing the events to be scheduled at each step of the solution construction.
Combining different low level heuristics at a single step of the solution construction may find
more appropriate events to be scheduled. Due to the large search space of the hyper-heuristic,
future work will also need to investigate the impact of additiona low level heuristics on
computational time.

The hyper-heuristic approach described here represents a general and simple framework
equipped with little domain knowledge, and may be easily applied to many other timetabling
and scheduling problems with little effort. Future work should extend the same framework to

other problems.
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initial heuristic list hl = {h; h, hs ... h}
/1 Begi n of Tabu Search

for i =0to i =(5* the nunmber of events) //nunber of iterations

h = change two heuristics in hl //a nmove in Tabu Search

if h does not match a heuristic list in ‘failed list’

if hisnot inthe tabulist //his not recently visited

for j =0toj =k //his used to construct a conplete solution
schedule the first 2 events in the event |ist ordered using h;

if no feasible solution can be obtai ned

store hinto the ‘failed list’ //update “failed list”

else if cost of solution ¢ < the best cost ¢, obtained
save the best solution,

cg = ¢ //keep the best solution

add h into the tabu list

remove the first itemfromthe tabu list if its length > 9

hl = h

/lend if

Deepest descent on the conpl ete sol ution obtained

/1 end of Tabu Search

out put the best solution with cost of cg4

Figure 1 Pseudo-code of Tabu Search within the graph based hyper-heuristic
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: |
unfeasible
N .
< solutions, 7
~N—_

search space of hyper-heuristic solution space of the problem

— aneighbourhood move ----== a“jump” move in the solution space
------------------ a correspondence between a heuristic list and the actual solution it generates

Figure 2 The relation between the search space of the hyper-heuristic and solution space of the problem
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search of hyper-heuristic leads
(indirectly) to the following
solutions (ato b and ato c)

the deepest descent then
leads to solution d

Figure 3 Anillustration of how the deepest descent local search could lead to solutions that are not represented by

the heuristic lists (searched by the high level search)
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Table 1 Characteristics of Benchmark Exam Timetabling Problems

car9l car92 ear83 hec92 kfu93 se91 sta83 tre92 uted2 utad3  york83

exams 682 543 190 81 461 381 139 261 184 622 181
students 16925 18419 1125 2823 5349 2726 611 4360 2750 21266 941
timeslots 35 32 24 18 20 18 13 23 10 35 21

matrix density

0.13 014 027 042 0.6 06 014 018 08 0.13 0.29
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Table 2 Costs of solutions obtained by GHH upon a different number of heuristics (S: saturation degree,

L: largest degree, C: color degree; R: random ordering, Lx: largest weighted, largest enrollment and

largest degree)

Problem SL SLR SCL SCLR | SCLx SCLxR | SCLxR(10%)
car9l 5.73 5.55 5.51 5.41 5.78 6.13 5.67
car92 5.01 4.79 4.89 4.84 4.88 4.93 491
ear83 4054 391 | 4047 39.17 | 3819  40.37 40.23
hec92 1341 1286 | 13.03 1311 | 13.89 12.72 12.55
kfu93 16.63 1583 | 1576 16.01 | 1591 17.03 15.83
Ise91 1371 1388 | 14.12 1346 | 13.15 13.88 13.11
sta83 150.22 1433 | 14854 143.75 | 141.08 142.83 142.03
tre92 9.19 9.38 8.85 9.27 8.97 9.27 9.15
ute92 3271 3201 | 3203 32.01 | 3165 32.1 31.83
uta93 4.07 418 4.0 3.54 3.75 3.77 3.65

york83 | 46.21 44.0 | 4505 4451 | 40.13  48.78 46.03
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Table 3 Results from the GHH, multi-stage GHH and the best results reported in literature on benchmark exam

timetabling problems

car9l car92 ear83 hec92 kfu93 Ise91  sta83  tre92 ute92 uta93  york83
GHH (best) | 541 484 3819 1272 1576 1315 14108 885 3201 354 4013
M”g;f'age 541 484 3884 1311 1599 1343 14219 92 3165 354 4451
Abdullahetal | 521 436 3487 1028 1346 1024 15028 813 2421 363 3611
Asmunietad | 520 452 3702 1178 1581 1209 16042 867 27.78 357  40.66
Burke 46 40 3705 1154 139 1082 16873 835 2583 32 368
&Newall 2002
B”;‘;' SZOEOV 42 48 34 108 137 104 1591 83 257 34 367
Caamiaeta | 66 60 293 92 138 96 1582 94 244 35 362
Casey &
Trompson | 54 44 348 108 141 147 1347 87 254 Inf 375
Carter et al 71 62 364 108 140 105 1615 96 258 35 417
Di Gapero
& Sehoort 62 52 457 124 180 155 1608 100 290 42 410
Merloteta | 51 43 351 106 135 105 15/.3 84 251 35 374
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Table 4 Results of the GHH, multi-stage GHH and the other 3 approaches in literature on benchmark course
timetabling problems

GHH Tabu Search Hyper-Heuristic Local Search Ant Algorithm
upon 6 Burke, Kendall Socha, Knowles  Socha, Knowles
heuristics & Soubeiga 2003 & Sampels2002 & Sampels 2002
Smalll 6 1 8 1
Small2 7 2 11 3
Small3 3 0 8 1
Small4 3 1 7 1
Small5 4 0 5 0
Mediuml 372 146 199 195
Medium2 419 173 202.5 184
Medium3 359 267 77.5% Inf 248
Medium4 348 169 1775 164.5
Medium5 171 303 100% Inf 219.5
Large 1068 80% Inf 1166 100% Inf 851.5
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