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ABSTRACT
Automatic Age Estimation (AAE) has attracted attention due to the wide variety of possible
applications. However, it is a challenging task because of the large variation of facial ap-
pearance and several other extrinsic and intrinsic factors. Most of the proposed approaches
in the literature use hand-crafted features to encode ageing patterns. Deeply learned fea-
tures extracted by Convolutional Neural Networks (CNNs) algorithms usually perform better
than hand-crafted features. The main contribution of this paper is an extensive comparative
analysis of several frameworks for real AAE based on deep learning architectures. Different
well-known CNN architectures are considered and their performances are compared. MORPH,
FG-NET, FACES, PubFig and CASIA-web Face datasets are used in our experiments. The
robustness of the best deep estimator is evaluated under noise, expression changes, ”crossing”
ethnicity and ”crossing” gender. The experimental results demonstrate the high performances
of the popular CNNs frameworks against the state-of-art methods of automatic age estima-
tion. A Layer-wise transfer learning evaluation is done to study the optimal number of layers
to fine-tune on AAE task. An evaluation framework of Knowledge transfer from face recogni-
tion task across AAE is performed. We have made our best-performing CNNs models publicly
available that would allow one to duplicate the results and for further research on the use of
CNNs for AAE from face images.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Human face conveys a significant information about

identity, age, gender, emotion, and ethnicity. It is a key

demographic and a soft biometric trait for human identi-

fication. Ages are also important in the face-to-face com-

munication between humans. Facial features influence one

person’s attraction to another. They can signal cues to

fertility and health. Therefore, these factors can increase
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a person’s productivity and success.

Age is one of the facial attributes which plays a signif-

icant role in helping or hindering communication. Like

culture, beliefs, experience, language, age can affect both

how we say what we mean, as well as how we interpret

what others mean. It is a factor that influences how we

communicate with each other, and can act as a barrier,

along with many other factors. In a study which came out

of the university of Pennsylvania and which analyzes the

vocabulary of 75000 facebook users, researchers showed

that the vocabulary of a person can predict his/her age



ii

(Schwartz et al. (2013)).

Raising the ability of a machine to recognize and inter-

pret faces and facial traits such as age in real time can

improve the interaction between humans and machines.

Many researchers pay attention to the automatic interpre-

tation of face images. Consequently, systems to identify

faces and gender, estimate age and recognize emotions,

have been developed.

However, faces change with age: as we get older, the

skin becomes thicker and its color and texture change, the

tissue composition begin to be more sub-cutaneous and

the facial skeleton lines and wrinkles appear. The process

of ageing is very complicated and varies greatly for differ-

ent individuals.

Thus, Automatic Age Estimation (AAE) from face images

is a challenging topic because of the large facial appear-

ance variations. It is due to a mixture of extrinsic and

intrinsic factors. The extrinsic factors are mainly deter-

mined by living environment, health conditions, lifestyle,

etc., while intrinsic factors include physiological elements,

such as genes. Robust AAE systems based on facial im-

ages should deal with facial expressions and appearance

changes.

AAE systems have a wide range of applications in

Human-Computer Interaction (HCI), in surveillance and

web content filtering and in Electronic customer relation-

ship management (E-CRM). They are needed mainly be-

cause humans fail to perform age estimation accurately.

Thus, it is crucial to develop AAE systems that outper-

form human performance.

2. Motivations and paper organization

Different shallow learning surveys for AAE exist (Fu et

al., 2010; Ramanathan et al., 2009). In fact, to the best of

our knowledge, there is no comparative study that com-

bines the most popular deep learning models, with the

existing state-of-the-art CNN architectures for AAE. The

main contributions of this work are as follows:

• In this paper, an extensive comparative analysis of

several frameworks for real AAE based on deep learn-

ing architectures is given. Several well-known CNNs

and public datasets are used. The best configuration

for each architecture based on Morph dataset is stated

and different configurations are tested.

• The used CNNs are pre-trained on ImageNet to solve

object category classification. This first initializa-

tion leverages and transfers the knowledge from ob-

ject recognition domain to facial age estimation do-

main. An evaluation framework of knowledge transfer

from face recognition task across AAE is performed

to study the performance of knowledge transfer from

related tasks.

• The AAE from face images is a challenging topic be-

cause of a mixture of extrinsic and intrinsic factors.

Thus, the robustness of the best architecture is eval-

uated under expression changes, “crossing” ethnicity

and “crossing” gender.

The structure of our proposed work is organized as fol-

lows: the next section illustrates the related work. Sec-

tion 4 represents the global schema and the several studied

CNN architectures. In Section 5, more details about the

datasets and the different experiments are given. Then,

the performance of real age estimation of the several frame-

works are studied. After discussing the different results

and presenting a comparison with the existing approaches,

section 6 concludes the paper.

3. Automatic age estimation

3.1. Traditional shallow age learning

In this section, we briefly review automatic age estima-

tion (AAE) using traditional computer vision techniques.

These techniques refer to the use of hand-crafted features,

they lean towards a human-driven approach. Ageing pat-

terns extraction is the first step in AAE. In the second
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step, often these feature descriptors are combined with tra-

ditional machine learning classification or regression (Sup-

port Vector Machine, Random Forest, K-Nearest Neigh-

bors KNN, etc.). The second step concerns a shallow age

estimator of the extracted ageing patterns from the first

step.

Ageing patterns extraction: this step consists of

extracting a set of features to represent the age patterns of

the face. Many hand-crafted features have been proposed

to describe the shape and the texture patterns of the face

(Guo et al. (2009)). Geometric or shape-based ageing

patterns are sensitive to pose variations and insufficient

for age estimation in adults. Therefore, appearance models

have been proposed to capture texture information of the

face along with its shape (Georgopoulos et al. (2018)).

Global and local features have been used to describe

texture and shape in appearance models for automatic

age estimation (Fu et al (2010)). The appearance-based

methods include mainly the Local Binary Patterns (LBP)

(Gunay and Nabiyev (2008)), Biologically Inspired Fea-

tures (BIF) (Han et al. (2013)) and Active Appearance

Models (Lanitis et al. (2002)).

The texture characteristics of the face have been de-

scribed using the LBP (Gunay and Nabiyev (2008)). The

skin texture regularity determined based on the distribu-

tion shape of the LBP histogram is a good age descrip-

tor. The active appearance model (AAM) is also used for

face ageing by learning a linear model for shape and in-

tensity from images and a set of landmarks (Lanitis et al.

(2002)). Fifty parameters of the AAM are fed to a classi-

fier and the problem is formulated as a regression problem.

The BIF features have been investigated for age estima-

tion in (Han et al. (2013)). The ageing subtly on faces are

encoded using standard deviation (STD) operator. The

normalization with the STD operator reveals local varia-

tion capturing vital ageing information like wrinkles and

eyelid bags. A series of local descriptors and their combi-

nations which fuse and exploit texture as LBP and SURF

and local appearance-based descriptors as HOG have been

evaluated under a diversity of settings and the extensive

experiments carried out on two large databases: Morph

and FRGC (Huerta et al. (2014)).

To better explore the connections between facial fea-

tures and age labels, distance metric learning and dimen-

sionality reduction are performed in addition to the tra-

ditional two-step framework of age estimation algorithms

(ageing patterns learning + age estimator learning). Re-

ducing the dimensionality of the extracted features can al-

leviate the over-fitting problem (Chao et al. (2013)). The

number of samples for each age is not balanced in differ-

ent datasets. To overcome the potential data imbalance

problems, a label-sensitive concept and several imbalance

analysis are introduced in (Chao et al. (2013)).

Age estimation accuracy is improved through a com-

bination of the proposed hybrid features and the hierar-

chical classifier. The wrinkle feature is extracted using a

set of region-specific Gabor filters, each of which is de-

signed based on the regional direction of the wrinkles, and

the skin feature is extracted using a local binary pattern

(LBP), capable of extracting the detailed textures of skin

(Choi et al. (2011)).

Shallow age estimator: the age estimator learns

from the ageing patterns how to predict the age. It can

be considered as a classification problem, when each age is

taken as a class label. On the other hand, age estimation

can also be considered as a regression problem, where each

age is used as a regression value. Other approaches com-

bine regression and classification. In these approaches, the

age estimator can be modeled as a classifier and a regressor

respectively, and then the two models are complementary

fused for better performance (Liu et al. (2015)). In fact,

hybrid approaches which combine the classification and

the regression methods improve the accuracy of age esti-

mation systems by taking advantage of the merits from

both (Fu et al. (2010)).

The hand-crafted ageing patterns are fed to shallow clas-
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sifiers or regressors for age estimator learning. A locally

adjusted robust regressor (LARR) is used for learning and

predicting the human age using Support Vector Regressor

(SVR) (Guo et al. (2008)). An improved hierarchical clas-

sifier based on support vector machine (SVM) and support

vector regressor (SVR) is proposed in (Choi et al. (2011)).

In order to avoid the over-fitting, the dropout-SVM ap-

proach is used for face attribute learning (Eidinger et al.

(2014)). An age-oriented local regression algorithm named

KNN-SVR (K nearest neighbors support vector regression)

definitely outperforms SVR thanks to the use of the local

regression after performing manifold learning (Chao et al.

(2013)).

3.2. Deep age learning

Recently, high-level semantic features are designed

based on deep Neural Networks architectures for AAE.

The multi-level Neural Networks perform a series of trans-

formations on the face image. On each transformation, a

denser representation of the face is learnt. More and more

abstract features are learnt in the deeper layers and can al-

low a better prediction of the class of the ageing patterns.

High-level semantic features extracted by deep learning

algorithms usually perform better than hand-crafted fea-

tures. The several proposed frameworks present the same

pipeline starting with face detection then face alignment

and finally a deep features representation using CNNs to

estimate the age of a person (Rothe et al., 2016; Ranjan

et al., 2015). These frameworks can be divided into two

categories depending on the input data fed to the CNNs.

Some approaches feed the full image to the CNN (Wang et

al., 2015; Rothe et al., 2016; Yang et al., 2013; Ranjan et

al., 2015; Liu et al., 2015; Pan et al., 2018) and other ap-

proaches crop the input face image into many local patches

(Yi et al., 2014; Dong et al., 2016). All the patches are

fed to independent convolutional sub-networks. The re-

sponse of each patch is combined at the fully connected

layer to estimate the age. Less deep architectures are used

when several sub-networks learn the ageing patterns from

several patches (Yi et al. (2014)). The proposed CNN ar-

chitectures for extracting deep learned age features present

the same components in different order and with different

depths: convolutional layers, pooling layers, normalization

layers and fully connected layers. The different structures

of the CNNs are summarized in Table 2. In (Yang et

al. (2013)), the network model is slightly different. Their

DeepRank+ comprises a 3-layer wavelet scattering net-

work (ScatNet) (Bruna and Mallat (2013)), a dimension-

ality reduction component by principal component analy-

sis (PCA) and a 3-layer fully connected network. It is a

multi-task ranker: first, it performs between category clas-

sification and then within category age estimation. In the

ICCV2015 Look for People Apparent Age Estimation, the

first ranked approach of CVL-ETH employs 20 VGG deep

neural networks and the second ranked approach employs

8 GoogLeNets (Liu et al. (2015)). The deeper architecture

which leads to much more computation cost gives the best

results.

Different strategies of age encoding are proposed and

AAE is approached in different ways: classification with

coarse categories, per-year classification, regression, la-

bel distribution learning or even ranking (Antipov et al.

(2017)). The ordinal regression problem for AAE by us-

ing CNN is adressed by Niu et al. (2016) to simultane-

ously conduct feature learning and regression modelling.

For that, a series of binary classification sub-problems are

solved with multiple output CNNs learning algorithms.

Ranking-CNN, which consists on a series of basic CNNs

trained with ordinal age labels, is more likely to get smaller

estimation errors when compared with multi-class classifi-

cation approaches (Chen et al. (2017)). Label Distribution

Age Encoding (LDAE) is an intermediate approach be-

tween the discrete classification and continuous regression.

It encodes a notion of neighbourhood between different age

classes. Thus, AAE becomes a label distribution learning

problem where Kullback-Leibler divergence between the

predicted and ground truth age distributions (Gao et al.
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(2017), Huo et al. (2016)) or a mean-variance loss (Pan

et al. (2018)) are considered. In a recent work, Antipov

et al. (2017) studied the optimal way of training CNNs

for AAE by analyzing experimentally: (1) the age encod-

ing and the loss functions, (2) CNN depths and (3) pre-

training and training strategies. They have concluded that

first, Label Distribution Age Encoding (LDAE) is more ef-

fective for CNN training for AAE than pure classification

and regression age encoding. Second, AAE requires deep

CNN architectures when trained from scratch. Third, Face

Recognition pretraining improves the robustness of deep

CNNs for AAE and it is more suitable for the target task

than the general task. Finally, multi-task training helps

AAE when CNN is trained from scratch. Deep Multi-task

learning (DMTL) is also studied by Wang et al. (2017)

and Han et al. (2018). The DMTL learns jointly multi-

ple CNN models to handle various attributes. It addresses

the prediction of one category of homogeneous attributes

on two stages: the features extraction stage shared by

all attributes categories contains five convolutional layers

and two fully connected layers. The multi-task estima-

tion stage contains two sub-networks, each is designed to

fine-tune the shared features for attribute category-specific

prediction. Different loss functions are designed for multi-

task learning. Errors of related tasks are back-propagated

jointly for shared features learning. An overview of the

most important methods and result on Age Estimation is

tabulated in Table 1.

3.3. Cross-domain Age estimation

Human ageing is determined by genes and influenced

by intrinsic and extrinsic factors. Previous studies have

demonstrated that ageing among populations is different

and that learning age jointly with gender and/or ethnicity

and/or expression is a more challenging task than learning

age independently from these factors (Guo et Mu (2010),

Guo and Zhang (2014), Bhattarai at al. (2016), Geor-

gopoulos et al. (2018)).

The influence of gender and ethnicity on AAE on the large

Morph dataset has been studied in (Guo et Mu (2010)).

It has been shown that cross either race or gender or both

decreases performance in AAE. Guo and Zhang (2014) in-

troduced Cross-population discriminant analysis for AAE.

The ageing patterns are projected into a common space us-

ing Linear Discriminant Analysis and they are correlated

with different populations. The low dimensional projec-

tion for cross domain age estimation has also been studied

in (Bhattarai at al. (2016)) followed by a regression. The

projected ageing patterns are fed to a regressor which pre-

dicts the age from the domain aligned features. Only few

examples from the target domain are used in the training,

along with more examples from the source domain and it

has been demonstrated that it could be sufficient to predict

very well ages from the target domain.

The influence of facial expressions on AAE has been

studied in (Alnajar et al. (2014), Lou et al. (2017)). Fa-

cial expressions cause changes in facial muscles and an

overlap with ageing patterns. The age and the expression

are jointly learned using a graphical model with a latent

layer between the expression/age and the ageing patterns

(Alnajar et al. (2014), Lou et al. (2017)). The latent

layer encodes changes in face appearance by learning the

relationship between the age and the expression from a

training data. The proposed expression-invariant age pre-

dictor predicts the age across different facial expression

without prior-knowledge of the expression labels (Alnajar

et al. (2014), Lou et al. (2017)). More recently, learning

the age jointly with the expression is studied by combining

scattering and convolutional neural networks (Yang et al.

(2018)). The CNN model includes two parallel columns

composed on ConvNet and ScatNet , two fully connected

layers and an output layer. To better extract the ageing

patterns, the CNN is followed by a dimensionality reduc-

tion technique for more compact representation.

Therefore, ageing patterns are directly affected by gen-

der, race and expressions. Thus, it is more challenging

to design an age estimator which generalizes for different
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Table 1: Overview of Age Estimation Methods. * The IMDB-WIKI was used to pre-train the model. ** different protocols and pre-training

on half cleaned IMDB-WIKI.

Paper Method Datasets MAE / Accuracy
Hand-crafted based methods

Lanitis et al.

(2002)

AAM + regression private 4.3 (case2)

Guo et al. (2008)
Locally adjusted robust regressor(LARR) FG-NET 5.07

UIUC-IFP-Y/F 5.25
UIUC-IFP-Y/M 5.30

Gunay and Nabiyev

(2008)

LBP FERET + private 80% (6 class)

Guo et al. (2009)
Bio-inspired features (BIF) FG-NET 4.77

Private YGA:F 3.91
Private YGA:M 3.47

Choi et al. (2011)
Gabor + LBP + hierarchical classifier based

on SVM

FG-NET 4.65

BERC 4.68
PAL 4.32

Chao et al. (2013) Label-sensitive relevant component analysis FG-NET 4.4

Han et al. (2013)
component and holistic BIF FG-NET 4.6

MORPH 2 4.2
PCOS 5.1

Edinger et al. (2014) LBP + FPLBP + dropout-SVM Adience collection 45.1% (8 class)
GALLAGHER Bench-

mark

66.6% (7 class)

Huerta et al. (2014) LBP + SURF + HOG + CCA MORPH 4.25
FRGC 4.17

Deep-learning based methods

Yang et al. (2013)
ScatNet + PCA + Fully connected layers MORPH II 3.49

LIFESPAN 5.19
FACES 7.04

Yi et al. (2014) multi-scale CNN, sub-network per patch MORPH II 3.63

Wang et al. (2015) CNN + dimensionality reduction MORPH II 4.77
+ classification (SVR, PLS, CCA) FG-NET 4.26

Niu et al. (2016) Multiple output CNN learning algorithm MORPH II 3.27
AFAD 3.34

Han et al. (2018) Deep Multi-task learning (DMTL) MORPH II 3.0
LFW+ 4.5

Rothe et al. (2016) * VGG-16 architecture MORPH II 2.68
FG-NET 3.09

Pan et al. (2018) mean-variance loss + CNN MORPH II 2.41
FG-NET 4.10

Pan et al. (2018) * mean-variance loss + CNN MORPH II 2.16
FG-NET 2.68

Antipov et al. (2017) VGG-16 + LDAE MORPH II 2.99/2.35 **
FG-NET 2.84
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categories.

3.4. Datasets for Automatic Age Estimation

Several datasets have been used for AAE in the litera-

ture: Morph (Wang et al., 2015; Yi et al., 2014; Niu et

al., 2016; Rothe et al., 2016; Yang et al., 2013), FG-NET

(Wang et al., 2015; Rothe et al., 2016), AFAD (Niu et

al. (2016)), Lifespan (Yang et al. (2013)), Faces (Yang et

al. (2013)), ICCV-2015 challenge dataset (Ranjan et al.,

2015; Liu et al., 2015), IMDB-WIKI (Rothe et al. (2016)),

AgeDB (Moschoglou et al. (2017)), Audience collection

(Eidinger et al. (2014)), CACD (Chen et al. (2015)), Web

Image Mining DB (Ni et al. (2009)), FERET (Phillips et

al. (1998)) et PIE (Sim et al. (2002)). A comparison of

the different cited datasets is given in Table 3.

CNNs require large training datasets. Morph is the most

popular dataset for AAE from face images. It contains

more than 55000 face images and can overcome the over-

fitting problem when training deep networks.

4. Proposed Methodology

In this comparative analysis, the framework for age es-

timation contains five steps which are illustrated in Figure

1. Given a full color image, the face is first detected then

aligned. Then, the image is resized to 224× 224 to have a

unique input size. Each aligned face is then passed through

a deep CNN to compute ageing patterns required for age

estimation. Finally, a 1-layer neural network performs a

regression on these patterns to estimate the apparent age.

The details of the different steps are presented in the fol-

lowing sections.

4.1. Face Detection and Alignment

The first step concerns the detection and the alignment

of the faces mainly because many datasets used in this

work do not show centered faces. For better accuracy of

AAE, the face images fed to the CNNs must be with min-

imum background, centered and aligned to a normalized

position. A facial landmark detector is used in this work

(Sagonas et al., 2013; Kazemi and Sullivan, 2014). Facial

landmarks are used to localize and represent salient regions

of the face (eyes, eyebrows, nose, mouth and jawline). A

fully discriminative model based on a cascade of boosted

decision forests to regress the position of landmarks from a

sparse set of pixel intensities is performed and it provides

accurate landmarks in the majority of cases.

Since faces are detected, facial alignment is realized.

The CNNs can tolerate small alignment errors and copes

well with such level of precision. The alignment is sim-

ply a transformation from an input coordinate space to

an output coordinate space such that all the faces are cen-

tered, eyes lie on a horizontal line, and faces are scaled such

that the faces sizes are nearly identical. Facial landmarks

show better performance for face alignment than Haar cas-

cades or HOG detectors since the bounding box provided

less precision to estimate the eye location as compared to

landmarks indexes.

4.2. Deep ageing patterns learning

Once the face is aligned, ageing patterns are learned.

Different CNN architectures are used and different frame-

works are performed: VGG16 (Simonyan et al. (2014)),

VGG19 (Simonyan et al. (2014)), ResNet50 (He et al.

(2016)), InceptionV3 (Szegedy et al. (2016)) and Xcep-

tion (Chollet (2017)).

The first CNN architecture is the VGG-16 which is formed

of 13 convolutional layers, and 3 top fully connected layers.

Another architecture that we used is the VGG-19 archi-

tecture, which is similar to the VGG-16 architecture, but

with 3 more convolutional layers. With the third CNN

architecture, a deep residual learning is applied (He et al.

(2016)) to train deeper networks with lower complexity.

The residual network is called ResNet. It is formed of

blocks of convolutional layers, with the addition of the

residual shortcut connections. We also studied the incep-

tionV3 neural network (Szegedy et al. (2016)), which is

an improvement of the original inception model. This net-

work uses inception modules. An inception module is a
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Table 2: Comparison of different CNN architectures for AAE from face images. The different proposed architectures present the same

components in different order and with different depths: convolutional layers, pooling layers, normalization layers and fully connected layers.

(*): category-specific feature learning

Ref Architecture Number of layers Input sizeConvolutional Pooling FC Others
Wang et al. (2015) 3 2 1 - 6 60× 60

Yi et al. (2014) 1/sub-net 1/sub-net - 1 local-connected/sub-net 3× 23 sub-net + 1 48× 48
Dong et al. (2016) 4 3 1 - 8 39× 31
Niu et al. (2016) 3 2 1 3 normalization 9 60× 60

Rothe et al. (2016) 13 - 3 - 16 256× 256
Yang et al. (2013) - - 3 3-layer ScatNet + PCA 6 64× 64

Ranjan et al. (2015) 10 5 2 4 normalization 21 100× 100
Han et al. (2018) 5 3 2 5 normalization + (*) 15 -

Table 3: Datasets for AAE from 2D face images. More datasets with age labels exist in the literature. In this table, we mention the most

known datasets with large number of images which are required to train deep networks.

Public dataset Ref Age range Images Nb Subjects Nb Emotion Expression Gender Ethnicity
MORPH II Ricanek and Tesafaye (2006) 16-77 55,134 13,618 Neutral Unbalanced Unbalanced
FG-NET Panis et al. (2016) 0-69 1,002 82 with expressions Unbalanced Unbalanced
AFAD Niu et al. (2016) 15-40 160k - with expressions Unbalanced Unbalanced
Lifespan Minear and Park (2004) 18-93 1,046 580 Neutral and expressions Unbalanced Unbalanced
Faces Ebner et al. (2010) 19-80 2,052 171 6 expressions Balanced Unbalanced
IMDB-WIKI Rothe et al. (2016) - 523,051 100,000 with expressions Unbalanced Unbalanced

2015 ICCV challenge Ranjan et al. (2015) 0-100 4,699 - with expressions Unbalanced UnbalancedLiu et al. (2015)
AgeDB Moschoglou et al. (2017) 1-101 16,458 568 without expressions Unbalanced Unbalanced
Adience collection Eidinger et al. (2014) 0-60+ 26,580 2,284 without expressions Unbalanced Unbalanced
CACD Chen et al. (2015) - 163,446 2000 without expressions Balanced Unbalanced
Web Image Mining DB Ni et al. (2009) 1-80 219,892 - without expressions Unbalanced Unbalanced
FERET Phillips et al. (1998) - 14,126 1,199 without expressions Unbalanced Unbalanced
PIE Sim et al. (2002) - 41,638 68 with expressions Unbalanced Unbalanced

Fig. 1: Overview of the proposed approach for AAE. For each image, the face is detected and aligned. Then, the image is resized to 224×224.

Each aligned face is passed through a CNN for features extraction. Finally, a regression output layer estimates the apparent age. In this

example, the Xception architecture is used in step 4.
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block of different convolutional sequences, performed sep-

arately on their unique given input, and concatenated at

the end into the block’s output. The last studied architec-

ture is Xception network, it is based on depthwise sepa-

rable convolution layers. A depthwise separable convolu-

tion consists in performing convolution separately on each

channel of the input.

4.3. Age estimation

The pre-trained CNNs for ImageNet classification task

have an output softmax layer of 1000 channels, one for

each of the object classes. However, the age estimation is

a non-linear regression problem. We want to predict the

age which is a continuous value rather than a set of dis-

crete classes.

Thus, the last softmax layer from each CNN architecture is

removed and replaced with 1-layer neural network to learn

the age regression function. In this work, the real age esti-

mation is considered as a regression and not a classification

problem.

To avoid overfitting due to the small number of training

data comparing to the high dimension of the features, a

dropout layer is added before the last layer. The regression

is learned by optimizing the mean squared error (MSE)

loss function defined by:

L = 1/N

n∑
i=1

(Yi − Ŷi)2 (1)

where L is the average loss for all the training samples, Yi

is the estimated age and Ŷi is the real age.

5. Experiments and Results

5.1. Datasets

In our experiments, several datasets are used:

• MORPH Dataset: is the largest publicly avail-

able longitudinal face database (Ricanek and Tesafaye

(2006)). Album 2 of the dataset is used. It contains

55134 images of more than 13000 subjects, spanning

from 2003 to late 2007. Ages range from 16 to 77

years. The average number of images per subject is 4.

However, the ethnicity and gender distributions are

very unbalanced as shown in Table 4.

• FACES Dataset: is a database of facial expres-

sions in younger, middle-aged and older men and

women, conceived between 2005 and 2007 (Ebner et

al. (2010)). It contains face images of 171 subjects

with ages ranging from 19 to 80 years old. Each in-

dividual has faces in two sets of six facial expression

(neutrality, sadness, disgust, fear, anger, and happi-

ness), resulting in a total of 2052 images. For more

details, refer to Table 3.

• FG-NET Dataset: is a public ageing database, re-

leased in 2004 (Panis et al. (2016)). It contains 1002

images from 82 different subjects with ages ranging

from 0 to 69 years old. It displays considerable vari-

ability in resolution, illumination, viewpoint and ex-

pressions. This variability is due to the fact that im-

ages were collected by scanning photographs of sub-

jects found in personal collections. Some of the images

present occlusion problems, hats and bears.

5.2. Experimental settings

CNNs require a lot of training data due to the large

number of parameters in the model to learn. Contrari-

wise, not all the datasets used in our experiments con-

tain enough images to train the deep CNNs. Besides, the

training process is very time-consuming, it can take from

hours to months on the optimization. Meanwhile, using a

GPU with its parallel architecture can considerably reduce

the computational time. The larger the number of GPUs,

the less the computational time of training. To overcome

these problems, a transfer learning strategy (Pan and Yang

(2010)) is set up with two steps:

• pre-training step: the randomly initialized networks

are first trained by a related task that owns enough

labeled images,
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Table 4: MORPH Dataset distribution by Gender and Ethnicity.

African European Asian Hispanic “Other” Total
Male 36832 7961 141 1667 44 46645
Female 5757 2598 13 102 19 8489
Total 42589 10559 154 1769 63 55134

Fig. 2: Illustration of good and bad results of AAE from different datasets using the Xception architecture. Row 1: examples from MORPH

dataset, row 2: examples from FGNET dataset, row 3: examples from FACES dataset.

Fig. 3: Performance comparison of CNNs on AAE under the percentage of unfrozen layers. The unfreezing concerns the trainable layers

which are mostly the convolution layers. The different networks are pre-trained on ImageNet and fine-tuned on Morph dataset.
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• fine-tuning step: the parameters learnt in the pre-

training step are used as initialization for new task.

All of the networks have been initialized with weights

from training on ImageNet for classification. Then, the

CNNs are fine-tuned on the dataset to test. Adam opti-

mizer with its default configuration is used in the training

of all the CNNs. The training rate is set experimentally

to 0.001. This rate is reduced when the loss value stops

decreasing. The batch size is fixed to 32 samples. An early

stopping is performed when the accuracy stops improving

after 10 epochs. The train-test split was performed using

a stratified approach that ensures the same distribution of

ages in each of the training and testing dataset. Like in

(Niu et al., 2016; Rothe et al., 2016), the MORPH dataset

is randomly divided into 80% for training and 20% for

testing. During the training phase, 90% of the training set

is used for learning the weights and 10% is used for vali-

dation. For the FG-NET dataset, we do not perform the

same split percentage as for the MORPH dataset because

there is much fewer data. Consequently, a split of 90% for

training and 10% for testing is chosen.

5.3. Performance of age estimation

To evaluate the performance of the different frameworks

in terms of Mean Absolute Error (MAE), a set of empir-

ical experiments have been conducted. The experiments

consists of progressive unfreezing of the deep CNNs layers

ranging from 0% to 100% with 25% gradually increasing,

as shown in Fig. 3. The progressive unfreezing allows to

train a subset of the hidden layers while freezing the oth-

ers, which allows a detailed evaluation of the model in the

different configurations.

5.3.1. Layer-wise Transfer Learning Evaluation

Total Transfer Learning Effect. To evaluate the abil-

ity of each model to transfer the learned features from

the Image-Net initial weights, 0% unfreezing of the hid-

den layers is applied. As shown in Fig. 3, VGG (VGG16,

VGG19) deep models family gets the best results while

the Inception (InceptionV3, Xception) deep models family

gets the worst results. Consequently, the learned features

from VGG (VGG16, VGG19) as well as ResNet can be

transferred from the domain of object recognition to the

domain of facial ageing estimation and they are more rele-

vant for AAE than the features learned by the more com-

plex convolutional layers of the Inception (InceptionV3,

Xception). Furthermore, the best MAE achieved by the

VGG16 is 4.43 when 0% unfreezing of the hidden layers is

applied. Thus, only the late fully connected layer of the

VGG16 need to be fine-tuned for AAE.

Unfreezing Effect [Partial Transfer Learning Ef-

fect]. To study the unfreezing effect [Partial Transfer

Learning] through different convolutional layers, 25%,

50%, 75% unfreezing of the hidden layers is applied, as

shown in Fig. 3. With regard to ResNet model, the more

layers being unfrozen, the more accurate results the model

can get, which means that the residual connections helps

the ResNet model to fuse/transfer more relevant features

from the frozen layers to the unfrozen layers. On another

hand, the VGG (VGG16, VGG19) and the Xception mod-

els do not improve the performance gradually for unfreez-

ing effect and the behavior of the layer-wise transfer learn-

ing is non-smooth and changes for the different groups of

unfrozen convolutional layers. With regard to InceptionV3

model, compared to 0% unfreezing, the model becomes

much more accurate, although the accuracy of the model

is almost constant through the different partial unfreezing

configurations. Besides, the best MAE of the VGG19 is

3.14 and it is achieved when unfreezing 75% of the hidden

layers. Thus, for AAE, only 75% of the hidden layers of

the VGG19 requires to be fine-tuned.

NO Transfer Learning . In this phase, each model is

trained with 100% unfrozen layers, trying to grasp the best

features to get the best accuracy. As shown in Fig. 3, the

Xception, the InceptionV3 and the ResNet50 obtain the

best MAEs compared to the previous unfreezing configu-

rations of 2.35, 2.47 and 2.53 respectively. Thus, for these
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three models, all layers should be fine-tuned for AAE task.

Conclusion and discussion about the layer-wise

transfer learning experiment . In convolutional neu-

ral networks, the early layers learn low-level features which

are abstract and general. While, the later layers are more

specific to the application. Thus, we can expect that fine-

tuning the last few layers should be sufficient. However, in

our work, progressively unfreezing the convolutional layers

of the different deep neural networks shows different and

non-smooth behavior with respect to the unfreezing per-

centage for different networks. In fact, the optimal number

of layers to unfreeze depends on several factors as shown

in previous studies in the literature:

• the size of the training set: In Khan et al. (2019),

for different size of the training set, the behavior of

the layer-wise transfer learning for alzheimer diagnosis

from MRI images changes.

• the training data: In Khan et al. (2019), the

trained VGG16 using entropy-based selected images

outperforms both training from scratch and random

selection with transfer learning.

• the application or the classification task: the

required layers to be fine-tuned differs from one ap-

plication to another. For example, only the late fully

connected layer needs to be fine-tuned in pulmonary

embolism detection, while the late and the middle lay-

ers should be fine-tuned in colonoscopy frame clas-

sification. On another hand, all layers require fine-

tuning for better accuracy for interface segmentation

and polyp detection (Tajbakhsh et al. (2016)).

In this work, two others factors are considered in the layer-

wise transfer learning: different depths of the networks

and different layers types. Thus, we can conclude from

our study that the optimal number of layers to fine-tune

for age estimation from face images task depends on the

depth and the convolutional layers type of the network.

5.4. Best configuration and Robustness

Best configuration for each architecture based on

Morph Dataset. From the previous evaluations, in case

of No Transfer Learning, we can conclude that the Xcep-

tion deep network is the best model followed by Incep-

tionV3, ResNet, VGG19, and VGG16 respectively for

AAE. In case of Transfer learning, VGG16 model is the

best followed by VGG19, ResNet, Xception, and Incep-

tionV3 respectively. In case of partial Transfer learn-

ing, ResNet model gets the best performance followed by,

VGG19, VGG16, Xception, and InceptionV3 respectively.

An illustration of some of the good and bad results of AAE

from MORPH dataset is shown in Figure 2, first row.

Computational Complexity. For the experiments, we

used a Tesla K80 GPU with a 12 Gb memory and 61 Gb

RAM. The computation complexity for the different meth-

ods is summarized in Figure 4. We can conclude from Fig-

ure 4 that the Inception family has the best performance

with reasonable computation time which satisfies the real

time applications.

Robustness to noise of the best deep age estimator.

The experiments in Figure. 5 demonstrate the robustness

of the best deep age estimator based on the Xception ar-

chitecture to two types of noises with different levels. In

the first three experiments, the test images are generated

by adding the Gaussian noise of mean 0 and variance 0.01,

0.05 and 0.1 respectively. In the last three experiments,

the test images are blurred by convolving them with a PSF.

The angle of the blur is fixed in the different experiments

to 45% and three lengths of the blur in pixels are consid-

ered 10, 20 and 30 respectively. The simulated blur is one

of the frequent image degradation that can be caused by

many factors like motion during the image capture or an

out-of-focus.

It can be seen that, when Gaussian noise is less (variance

is small), the Xception model can estimate accurately the

human age. However, with the increasing of variance, the
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accuracy of the age estimation get worse. In general, sat-

isfactory results have been obtained by using the deep age

estimator based on Xception architecture for the images

added with Gaussian noise and the resulting MAE is vary-

ing from 2.52 to 4.63 for a variance from 0.01 to 0.1 . On

the contrary, this model is more sensitive to blur noise

than Gaussian noise and the Xception based model shows

an MAE varying from 2.96 to 12.73 for a blur length from

10 to 30 pixels. Thus, the age estimation framework based

on Xception model is robust to small amounts of Gaussian

noise and motion blur.

5.5. Generalization of the pre-trained CNNs on MORPH

to other datasets

To evaluate the performance of the different CNN archi-

tectures trained on MORPH dataset, the model is tested

on another dataset. MORPH is a standard dataset and

the images are taken in the same conditions. We tested

the CNN architectures on FG-NET dataset which displays

a big variability. The face images in FG-NET are collected

from personal photographs. Thus, the images present dif-

ferent illuminations, different viewpoints and expressions.

The results are shown in Table 7. Testing on FG-NET

dataset without any fine-tuning presents an MAE varying

from 10.8 to 13.2, VGG16 outperforms other architectures

but the error increases by more than 7 years in the differ-

ent tests. When a fine-tuning is applied, the accuracy of

AAE increases and Xception CNN outperforms the other

trained CNNs and achieves an MAE of 3.6 years. The tran-

sition from ideal conditions of faces acquisition (MORPH

dataset) to faces in the wild conditions (FG-NET dataset)

shows an increased error rate, a fine-tuning improved con-

siderably the results.

Based on our results, regarding the experiments on the

two different datasets (MORPH and FG-NET), we can

conclude that the Xception model is the best model for

AAE. An illustration of some of the good and bad results

of AAE from FG-NET dataset is shown in Figure 2, second

row.

5.6. Knowledge transfer for AAE

The used CNNs are pre-trained on ImageNet, this is

not optimal as large scale face recognition datasets are

now available and facial age estimation task can bene-

fit from pre-training with face related tasks (Antipov et

al. (2017)). Thus, an evaluation framework of knowledge

transfer from related task (face recognition) and from gen-

eral task (ImageNet) for AAE is performed. Two more

experiments are then realized. In the first experiment, the

Xception model is pre-trained using the Public Figures

Face (PubFig) dataset and in the second experiment, it

is pre-trained using CASIA-Web face dataset. An MAE

of 2.01 years is obtained when pre-training with CASIA-

WEB dataset and it outperforms the MAE of 2.35 when

pre-training with ImageNet. However, the MAE reaches

4.07 years when pre-training with PubFig dataset. It can

be explained by the fact that PubFig dataset contains less

images (58K) than CASIA-Web face dataset (500k).

Pre-training on ImageNet outperforms pre-training using

PubFig on age estimation task. Xception has a large num-

ber of parameters (22 millions) and a lot of data is needed

to train it. Therefore, PubFig dataset does not contain

enough data to train the upper layers of the deep network.

Consequently, training the lower layers of Xception model

using ImageNet recognizing shapes and sizes and refining

the upper layers using faces achieves better results. Thus,

AAE can benefit more from general task when several mil-

lions of images are used in pre-training than face related

task when the face related task dataset is small.

5.7. Comparison with existing methods of AAE from face

images

The proposed frameworks with well-known CNN ar-

chitectures are compared with existing shallow and deep

learning based methods tested on Morph II dataset (see

Table 6). The state-of-the-art approaches based on hand-

crafted features are tested mainly on small datasets and

few approaches are tested on Morph II. The reported

MAEs of the hand-crafted based methods are between
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(a) The average computation time. (b) Number of trainable parameters per network.

Fig. 4: Computation Complexity

(a) Gaussian Noise. (b) Blur Noise.

Fig. 5: Robustness of the age estimation framework based on inception model to noise. (a) When adding Gaussian noise of zero mean and

variance 0.01 , 0.05 and 0.1. (b) When adding a blur noise of a fixed angle of 45% and a blur length of 10, 20 and 30 pixels.

Table 5: Performance of Xception CNN under extrinsic and intrinsic factors. Three factors are tested. First, AAE under facial expression

changes (training on neutral faces and testing on faces with expressions and vice versa). Second, AAE under crossing gender (training on male

and testing on female faces and vice versa). Third, AAE under crossing ethnicity (testing one ethnic group after training on the remaining

ethnic groups)

Factors Datasets Subfactors MAE Average MAETrain Test

Facial Expressions Crossing MORPH FACES Neutral → With Expressions 10.98 13.43FACES MORPH With Expressions → Neutral 15.89

Gender Crossing MORPH MORPH Male → Female 4.33 4.25Female → Male 4.18

Ethnicity Crossing MORPH MORPH
H, B, W, O → Asian 2.62

3.47A, B, W, O → Hispanic 3.11
A, B, H, O → White 3.43
A, H, W, O → Black 4.73
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6.49 years (Chang et al. (2010)) and 3.6 years (Han et

al. (2015)). Deep models outperform traditional shallow

age learning methods and thus high-level semantic ageing

patterns extracted by deep learning algorithms perform

better than hand-crafted features. With more data and

deep networks, AAE can achieve better performances.

As shown in Table 6, Xception architecture performs the

best among all the existing approaches for AAE from face

images on Morph II dataset. The VGG-16 architecture

presented by Antipov et el. (2017) pretrained on half

cleaned IMDB-WIKI dataset with the optimal CNN train-

ing strategies for AE and on their best protocol of split

train/test performs exactly like our Xception based frame-

work without FR transfer learning. The Xception, Incep-

tionV3 and ResNet50 architectures present very good per-

formances comparing to the existing methods. All three

architectures present deep networks and could learn more

information about the ageing process than other shallow

networks.

To the best of our knowledge, our proposed framework

based on Xception outperforms all the existing deep CNN

architectures in the literature for AAE from face images

and achieves an MAE of 2.35 when pre-trained on Ima-

geNet and an MAE of 2.01 when pre-trained on CASIA-

Web Face dataset. The approach proposed by Pan et

al. (2018) presents the second best MAE of 2.41 be-

cause it benefits from not only distribution learning but

also the additional constraints introduced to the distribu-

tion via mean-variance loss. Pre-training the same model

on IMDB-WIKI improves the performance of the network

and achieves an MAE of 2.16 which is previously the best

reported MAE for AAE in the literature. The work re-

ported in (Rothe et al. (2016)) presents an MAE of 2.68

years and it is achieved due to the additional fine-tuning

on the IMDB-WIKI dataset before the fine-tuning on the

MORPH dataset. With almost the same number of images

used in the pre-training with CASIA-Web Face dataset,

our framework based on Xception network achieves a bet-

ter MAE of 2.01 years. Rothe et al. (2016) approached

AAE as 101 age classification problem and to improve the

accuracy of the prediction, the softmax expected value is

computed.

We can conclude: (1) AAE is complex task which requires

a lot of training data; and (2) age encoding strategy is im-

portant for AAE but it is possible to reach the best accu-

racy without using distribution learning based age encod-

ing and its corresponding loss function if the deep network

is pre-trained on face related task with very large dataset.

5.8. Robustness to extrinsic and intrinsic factors

Ageing is a non-uniform and non-linear process, and the

facial patterns varies from one person to another. Several

intrinsic and extrinsic factors influence the age progres-

sion. Intrinsic, or chronological ageing, is the inevitable

genetically determined process that naturally occurs. The

extrinsic, or preventable environmental factors may mag-

nify intrinsic ageing. Most premature ageing is caused

mainly but not only by repetitive facial expressions, sun

exposure or smoking. The AAE may be influenced by

these extrinsic and intrinsic factors. In this section, the

impact of three factors on the ageing process is studied

using deep learning scenarios. First, we study the AAE

under facial expressions changes. Then, the influence of

crossing ethnicity and crossing gender on AAE.

AAE under facial expression changes: in pre-

vious studies based on shallow learning methods, the

AAE under facial expressions changes is studied (Guo and

Wang, 2012; Nguyen et al., 2014). It is demonstrated that

facial expressions affect the age estimation accuracy. In

this study, the cross-expression age estimation is studied

and the robustness of the best deep age estimator is ver-

ified under facial expression changes. The crossing situ-

ations from neutral faces of MORPH to all other expres-

sions available in FACES dataset are considered. The re-

verse scenario from faces with expressions to neutral faces

is also evaluated.
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For the first scenario, the Xception architecture is fine-

tuned on the neutral faces of MORPH dataset. The

trained model is tested over the six face expressions of

FACES dataset. The experimental results on FACES

dataset is shown in Table 5. An MAE of 10.98 is obtained.

The error increases by 8.63 years in average. The perfor-

mance of the deep age estimator decreases considerably

with expression changes.

For the second scenario, the Xception architecture is

fine-tuned on the Faces of FG-NET and tested over the

neutral faces of MORPH. An MAE of 15.8 years is reached

(Table 5). The error is even more important in the second

scenario than the first one. Thus, it is more challenging

for a deep age estimator trained on faces with expressions

to estimate correctly the age of neutral faces.

The cross-expression age estimation using shallow learn-

ing framework by considering crossing situations from neu-

tral to only one of the five expressions in FACES dataset

(happy, disgust, fearful, sad and angry) shows an MAE

varying from 8.66 to 11.87 years (Guo and Wang (2012)).

The shallow age estimator gets a big error as in a deep age

estimator under facial expression changes. Consequently,

the age estimation under facial expression changes is a

hard task, the face ageing patterns under facial expression

changes is different from the face ageing patterns under

neutral faces and they need to be learned for an accurate

age estimator.

Another experiment is realized to study the impact of

transferring knowledge from facial expression task to age

estimation task and its capacity to improve the perfor-

mance of the deep age estimator under facial expression

changes. For that, the Xception architecture trained on

the neutral faces of MORPH dataset is fine-tuned on the

facial expression images of the extended Cohn-Kanade

(CK+) dataset and tested on the FACES dataset. The

CK+ includes 593 sequences from 123 subjects. The im-

age sequence varies in duration between 10 and 60 frames

and goes from the onset (neutral face) to peak facial ex-

pression (Lucey et al. (2010)). In our experiment, we chose

to consider the first three frames as neutral faces and from

the fourth to the last frame as facial expression. An MAE

of 8.86 is achieved and it demonstrated that transferring

knowledge from facial expression recognition task helps to

learn age jointly with the expression.

An illustration of some of the good and bad results of

AAE from FACES dataset is shown in Figure 2, third row.

The influence of crossing ethnicity on AAE: the

individuals of the same ethnic group may share mutual

face characteristics: skin color, skin texture and facial

shape traits. The age estimation performance under vari-

ation across ethnicity has been studied based on shallow

learning approaches (Guo and Mu, 2010; Ricanek et al.,

2009). In (Guo and Mu (2010)), the MAE for “no cross”

age estimation is 4.96 years. It increases to 7.41 years in

“crossing ethnicity” age estimation. Thus, AAE is affected

by ethnicity significantly as its crossing causes large error

increase. In this paper, we investigate the performance

of deep learning approaches in AAE across ethnic groups.

We use MORPH dataset, four tests have been realized:

• training on Asian, Black, White and others and test-

ing on Hispanic,

• training on Asian, black, Hispanic and others and

testing on White,

• training on Asian, white, Hispanic and others and

testing on black,

• training on black, white, Hispanic and others and test-

ing on Asian.

The results of the different experiments are shown in Ta-

ble 5. MAEs between 2.62 and 4.73 years are obtained.

Testing on Hispanic or white gives very close MAEs, while

testing on black gives the higher MAE. Thus, we can em-

pirically conclude that hispanic, white and asian races

share some close ageing features. On the other hand,

blacks have more unique ageing features that cannot be

learned from other ethnicities.
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The influence of crossing gender on AAE: pat-

terns in adult human faces reflect the masculinization

or feminization that occurs at puberty: larger jawbones,

more prominent cheekbones and thinner cheeks and lips

are the patterns of male faces that differentiate them from

female faces (Little et al. (2011)). The influence of cross-

ing gender on AAE based on shallow learning has been

studied in (Guo and Mu (2010)). The average MAE

changes to 8.38 years in “cross gender” age estimation.

It has been demonstrated that gender affects the AAE

in shallow learning scenario. In this paper, we studied

the cross-gender age estimation using CNN architecture

trained on MORPH dataset. Two experiments are per-

formed:

• training on man face images and testing on women

face images. An MAE of 4.33 years is obtained (Ta-

ble 5),

• training on women face images and testing on man

face images. An MAE of 4.18 years is obtained (Ta-

ble 5).

The deep age estimator performs well across gender and

better than shallow learning scenario.

6. Conclusion and Future Works

In this paper, we studied the performance of several

frameworks based on CNN architectures. The framework

based on Xception network outperforms the state-of-the-

art methods based on deep or shallow learning for auto-

matic age estimation with an MAE of 2.35 years when

pre-trained on ImageNet and an MAE of 2.01 when pre-

trained on CASIA-Web face dataset. The knowldge trans-

fer evaluation demonstrates that AAE can benefit more

from general tasks when several millions of images is used

in pre-training than face related task when the face related

task dataset is small. The layer-wise transfer learning eval-

uation demonstrates that the optimal number of layers to

fine-tune on AAE task depends on the depth of the net-

work, on its architecture and on its layers types. Using

the best deep age estimator, we investigate the effects of

gender, expression changes and ethnicity on AAE. Despite

the fact that deep CNNs have improved the performance of

AAE, we confirmed that facial expressions crossing affects

considerably age estimation. On another hand, the deep

estimator performs well and almost equally across gen-

der. The experimental results showed that testing on black

faces and training on other ethnicity present the highest

error in the crossing ethnicity tests. We can conclude that

they have a more unique ageing patterns than others. In

future work, we are interested in studying age estimation

from face images under occlusion and different illumina-

tion conditions.
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