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Abstract

In this work, we simulate a scenario, where a publicly available ASV system is used
to enhance mimicry attacks against another closed source ASV system. In specific, ASV
technology is used to perform a similarity search between the voices of recruited attackers
(6) and potential target speakers (7,365) from VoxCeleb corpora to find the closest targets
for each of the attackers. In addition, we consider ‘median’, ‘furthest’, and ’common’
targets to serve as a reference points.

Our goal is to gain insights how well similarity rankings transfer from the attacker’s
ASV system to the attacked ASV system, whether the attackers are able to improve their
attacks by mimicking, and how the properties of the voices of attackers change due to
mimicking. We address these questions through ASV experiments, listening tests, and
prosodic and formant analyses. For the ASV experiments, we use i-vector technology in
the attacker side, and x-vectors in the attacked side. For the listening tests, we recruit
listeners through crowdsourcing.

The results of the ASV experiments indicate that the speaker similarity scores transfer
well from one ASV system to another. Both the ASV experiments and the listening tests
reveal that the mimicry attempts do not, in general, help in bringing attacker’s scores
closer to the target’s. A detailed analysis shows that mimicking does not improve attacks,
when the natural voices of attackers and targets are similar to each other. The analysis
of prosody and formants suggests that the attackers were able to considerably change
their speaking rates when mimicking, but the changes in F0 and formants were modest.
Overall, the results suggest that untrained impersonators do not pose a high threat
towards ASV systems, but the use of ASV systems to attack other ASV systems is a
potential threat.
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1. Introduction

Security is of key importance in today’s society where information processing gets
increasingly digital, automated and lacks human-to-human communication. We need
new ways to protect our data records from unauthorized access. Alongside with the
traditional means of user authentication, biometric technology has emerged as one of
the potential solutions. The use of human voice for strong user authentication is at-
tractive especially under remote, unattended scenarios and due to the readily available
infrastructure (namely, telephones) to scale it up easily.

Similar to the traditional means of user authentication, however, biometric systems
are prone to malicious attacks by hackers. It is no longer news, neither to the research
community nor to the general public, that biometric systems can be fooled through
various representation attacks [1, 2], also known as spoofing attacks. A spoofing attack
involves an adversary (attacker) who aims at masquerading oneself as another targeted
user to gain illegitimate access to the targeted person’s data. Unprotected automatic
speaker verification (ASV) systems can be easily spoofed using replay, voice conversion
(VC) and text-to-speech (TTS) attacks [3]. Since the attacks are typically not perfect but
contain either processing artifacts or display degraded audio quality, they can be detected
to a certain extent. To this end, community-driven challenges such as ASVspoof [4] and
AVspoof [5] were launched for an organized study of spoofing countermeasures. In the
context of security, the continuous arms race between attacks and their defenses is well
known [6]: so as to develop effective countermeasures, it is necessary to understand the
attacks. The speech synthesis community has independently launched voice conversion
challenges [7, 8] to advance VC methods (though targeted primarily for human listeners
rather than for ASV spoofing). To sum up, within the past few years, active and dynamic
communities both at the ‘attack’ and ‘defense’ sides of ASV have emerged. There is now
a far better understanding of the technology-based attacks and their defenses against
ASV systems than half a decade ago — see [9] for an up-to-date review.

In this study we focus on a nearly-forgotten ASV attack – mimicry (impersonation).
Unlike the technology-induced attacks, mimicry involves human-based modification of
one’s voice production. The question of recognizer vulnerability against mimicry was
addressed at least around half a century ago [10, 11] and has remained a cursory topic
within the ASV field [12, 13, 14, 15, 16, 17]. While ASV vulnerability caused by technical
attacks is widely reported, less (reliable) information is available on effectivess of mimicry,
primarily due to adoption of small and proprietary datasets. The only conclusions that
one can possibly extrapolate from the prior studies on mimicry effect against ASV is
that the results depend on a specific study. This suggests that mimicry is less consistent
attack compared to replay, VC and TTS that are repeatable reported to be successful in
spoofing ASV systems.

The authors are aware of the difficulties in collecting mimicry data from professional
artists [16], whose prevalence in the general population is arguably very low. Nonetheless,
if mimicry attacks could be shown to be a threat to ASV, it would be conceivably chal-
lenging to devise countermeasures: natural human speech lacks processing artifacts that
enable detection of technical attacks. Thus, we argue that it is important to keep mimicry
also in the list of potential attacks against ASV. Besides the security aspect, mimicry
could potentially help us in the design of better ASV methods for voice comparison.

Of particular interest in this work are mimicry attacks against persons whose voice
2
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Figure 1: Automatic speaker verification (ASV) assisted mimicry attack: attacker uses a public-domain
ASV system to select target speakers matched with his/her voice from a public celebrity database. The
attacker then practices target speaker mimicry, intended to attack another independently developed ASV
system.

data is exposed in a public domain in large quantities — such as celebrities or anyone
streaming or uploading massive amounts of his/her videos to the Internet. In line with
the recent EU’s General Data Protection Regulation (GDPR) [18], intended to protect
the privacy of individuals, it is important to assess potential risks associated with mul-
timedia data in the public domain; we elaborate on this emerging problem further in
Section 2. Differently from most prior studies, we focus on technology-assisted mimicry
attacks. In specific, we use the ASV technology itself to identify potential target speakers
to be subjected to mimicry attacks. The idea is to identify targets whose voice is a priori
similar to that of the attacker’s voice in terms of acoustic parameters. The assumption is
that nearby target speakers might be easier to mimic due to potentially fewer articulatory
or voice source modifications required. Two related prior studies are [12] and [19] which
involve search of either targets [12] or attackers [19] from a pool of candidates. The au-
thors of [12] used a Gaussian mixture model (GMM) system to find closest, intermediate
and furthest target speakers from YOHO corpus for two naive impersonators, leading
to substantially increased false acceptance rate for the closest targets. In [19], the au-
thors selected impersonators (rather than targets) through a commercial crowd-sourcing
platform based on self-judgment and further refinement using ASV.

Our study can be seen as an attempt to reproduce the findings of [12] using up-
to-date ASV technology and a far larger target candidate set (7, 365 celebrities pooled
from VoxCeleb1 [20] and VoxCeleb2 [21]). Besides the order of magnitude larger target
speaker pool and adoption of state-of-the-art ASV systems, there is a key difference
in the research methodology as well: unlike [12] that used a single GMM recognizer,
we include two different ASV systems as illustrated in Fig. 1. We argue that it is
unrealistic for the attacker to interact many times with the targeted ASV, as done in
that past work. In our attack model, therefore, the attacker uses an offline, publicly
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available substitute ASV system to first identify which speakers to attack; ideally, the
substitute system would behave similar to the attacked ASV system. This idea bears
some resemblance to black box attacks [22] in adversarial machine learning [6], though
our adversary is not a machine learning algorithm but a human. Further, those methods
use either classifier output score or decision to optimize the attacks, while we assume
that the attacker receives no feedback from the attacked system in any form. Thus, we
expect that our attacks are not strong, but we argue that they are realistic given the
abundance of both voice data and ASV implementations in the public domain. We seek
to answer the question whether the use of ASV technology itself could increase the risk
of an attacker being falsely accepted by (another) ASV system.

A preliminary version of this work appears in [23]. Our preliminary findings in that
work suggested a negative result — i.e. that mimicry attempts, even when the target
speakers were selected with automatic speaker identification, would not have left the
attacked ASV systems vulnerable. We are not entirely content with just this finding,
however — we are interested to understand the reasons. To this end, the present work
substantially extends [23] by contrastive automatic, perceptual, prosody, and formant
analyses. In particular, we include (i) analysis of domain mismatch in ASV score
domain (presented in Section 6), (ii) a human benchmark of speaker similarity (pre-
sented in Section 7), and (iii) prosody and formant analysis (presented in Section 8).
Additionally, (iv) Section 2 provides a broad background context to our work. None of
the above were provided in [23]. The score domain analysis seeks to answer whether the
negative finding might have been due to condition differences across our attacker and
celebrity corpora. The human benchmark, implemented via crowdsourcing, serves for a
reference point to the automatic methods. Finally, the prosody and formant analyses
serve to study changes in the speaking rate, fundamental frequency (F0), and formants
induced by mimicry. Our hypothesis is that some of these ‘broad’ speech parameters
might be among the prominent cues that a naive mimic attempts to primarily modify
towards the target speaker. While this article is intended to be as self-contained as pos-
sible, the interested reader may consult additional online material [24] for further details
about our text prompts and target speakers.

2. Attacks on speaker verification systems with found data

The amount of personal data that people upload to the Internet increases year by year.
Enabled by popular social media platforms and other picture/video sharing services,
people upload (or stream) their self-portraits (selfies), voice samples and video clips much
more easily — perhaps more carelessly — than in the past. The general public may be
unaware that their face photos, videos and voice samples contain biometric traits and
form potentially their ‘unique’ identifiers2. Somewhat paradoxically, of a specific concern
is the rapidly advancing biometric technology itself. The aim of biometric technology,
similar to the traditional ways of user authentication, is to regulate access to a restricted
domain. The basic premise is that a biometric database administrator (such as the police,
a border control officer, or a bank) has sufficient security countermeasures to protect their

2The authors argue that ‘unique’ is a misleading term in the context of biometrics where decisions
are not based on exact pattern matching but probabilistic reasoning.
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biometric database and systems from being hacked or tampered. But what if the user
decides to voluntarily expose his or her biometric data to the public? Very few of us would
purposefully upload our credit card number or a photo-copy of our passport to a public
website, but uploading our face and voice data does not seem to concern many. It is
important to address the potential risk scenarios of misuse of personal data, and to make
the general public aware of the potential risks of uploading their data to a public domain.
Awareness on the potential risks among the professional community has increased due
to initiatives such as EU’s IC1206 COST action3 that focused on de-identification and
privacy protection of multimedia data (see [25] for a review). The overall picture is not
yet complete, however, and human voice has received far less attention than image-based
biometric traits in this context.

One potential risk is that biometric data that is not searchable or indexable using
today’s technology might become so tomorrow. Imagine a search engine that uses face or
speaker recognition to cross-link someone’s sensitive personal multimedia data — such as
sexually explicit photographs shared confidently with one’s partner but leaked to a porn
website; or a video portraying someone under the influence of drugs — with his or her
personal website or social media profile. Other risks could include fabricating a ‘digital
clone’ of someone using machine learning — recent warning examples are provided by
the so-called deepfakes [26, 27, 28], realistic-appearing but fabricated or tampered videos
portraying a targeted person created with the aid of deep learning (the interested reader is
pointed to to [29] for a detailed review of potential societal, ethical and legal implications
of deepfakes). In the context of speaker verification in specific, [30] addressed voice
cloning of a well-known celebrity (the former US president Barack Obama). Even if the
result was essentially negative (the cloned voice samples were detectable as artificial ones
using a spoofing countermeasure), machine learning, including voice cloning techniques,
do not stand still.

As current machine learning models require large training sets, one may argue that
persons who have more (and of technically higher-quality) data in the Internet might
become more easily exposed to novel, yet unforeseen, types of attacks and misuse in
the future. Our present study is framed in the context of celebrity voices (due to the
adoption of the VoxCeleb corpus) but we intend it as a proxy to address a specific risk
associated with anyone having large quantities of biometric data in a public domain,
often referred to as found data. In specific, we carry out empirical assessment of attacks
on voice biometric system with the help of found audio data. This type of attacks have
received surprisingly little attention in the literature. Unlike the use of publicly available
tools for voice cloning of a specific target, we look for a speaker with the most similar
voice and use him/her as an imposter. We use target speaker’s publicly available voice
data and publicly available ASV tool for the voice similarity search.

The potential threat of natural impersonated voice, also known as mimicry [16], has
been studied in a limited number of target speakers and mimickers [10, 12, 16, 31].
The present work is related to the study on the impact of the voice impersonation in
ASV where the impersonator and potential target speakers are selected from large set of
speakers. This enables us to choose the those impersonator-target pairs who are already
similar in their natural voice. Surprisingly, the studies involving the search of potential

3https://www.cost.eu/actions/IC1206
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attackers and the assessment of their ability to break the biometric security system
are very limited. For other behavioral biometric traits (than voice), perhaps the only
related study is done with shoulder surfing attack in the context of touch input implicit
authentication [32]. This demonstrated that when potential attackers are selected and
trained to perform targeted mimicry, this authentication method is highly prone to such
attacks.

The closest prior work in spirit to our study is [13] where the authors studied the
effect of mimicry in ASV with two professional imitators and four non-professional im-
itators. The closest speaker for each imitator was chosen from YOHO corpus of 138
speakers using Gaussian mixture model (GMM) based likelihood. The study indicated
that, when mimicking the most similar speaker, the professionals did not achieve better
mimicry performance than non-professional imitators. On the other hand, the profes-
sional imitators were more successful at mimicry when the target speaker is different
from the most similar speaker. In another study crowdsourcing is used to select the best
imitator for a set of 53 target speakers [19]. The authors used GMM-based ASV system
for finding the imitators from a set of 176 participants. As a first step, the participants
were asked to speak in natural and mimicked voices. Then an ASV system was used
to filter the candidates by assessing the closeness of their voice samples to the target
speakers. Finally, a set of good imitators were confirmed based on the performance of
filtered candidates on multiple imitation tasks.

In contrast to the studies in [12, 13, 19] with limited number of target speakers
(and use of a single ASV system only), the current work uses two large publicly available
datasets, VoxCeleb1 and VoxCeleb2, consisting of more than 7,000 speakers to search the
targets corresponding to the six recruited participants who are native Finnish speakers.
In addition to the impersonator-specific closest, median, and furthest targets, we also
consider a common celebrity target. This is to evaluate the impersonator’s natural ability
to mimic a known person. Further, the target speakers are chosen from both Finnish
and non-Finnish speakers to assess impersonator’s success rate for native and non-native
targets.

3. ASV-assisted mimicry attacks

3.1. Attack implementation
Let T = {Tj}Jj=1 denote a set of unique, publicly known target speaker identities

and let A = {Ak}Kk=1 denote a set of attacker identities. The aim of an attacker
A ∈ A is to masquerade him/herself as a specific target T ∈ T that he/she pre-selects
using automatic speaker recognition technology. We assume that J � K — that is,
an attacker is relatively infrequent, but there are many natural persons who have their
voice samples available in a public domain. Celebrities and anyone actively uploading or
streaming their video or voice data to social media platforms are representative examples.

Given a pair of speech utterances (or a pair of collections of multiple utterances),
(Ui, Uj), an automatic speaker verification (ASV) system (speaker detector), D(Ui, Uj)
computes a detection score, sij ∈ R, typically a log-likelihood ratio (LLR),

sij = log
p(Ui, Uj |H0)

p(Ui, Uj |H1)
, (1)
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where the null hypothesis H0 states that Ui and Uj originate from the same speaker and
its complement H1 states they originate from two different speakers. In this work, utter-
ances are represented as fixed-sized embeddings using either identity vectors (i-vectors)
[33] or x-vectors [34]. If either Ui or Uj consist of multiple utterances, their embed-
dings are averaged. The LLR computation uses probabilistic linear discriminant analysis
(PLDA) [35] scoring. The higher the LLR score, the stronger the support for the null
hypothesis. We consider two different types of ASV systems. The first one, attacker’s
ASV (Dpub), is a public-domain ASV implementation while the latter, black-box ASV
(Dblack 6= Dpub), is the system which the attacker attempts to hack into as a specific tar-
get. The attacker does not have access to the internal workings of Dblack or its outputs
to optimize mimicry attacks. The attack proceeds as follows:

ASV-assisted target speaker selection for mimicry attack
1. Attacker A ∈ A records his/her natural voice sample, Unat (one or several utterances).
2. A uses Dpub to compute scores {sj}Jj=1 between Unat and all the targets in a public

domain. A picks the closest target, j∗ = argmaxJ
j=1Dpub(Unat, Uj), where Uj contains

all the public recordings of target Tj .
3. A further uses Dpub to pick the top-scoring utterances of Tj∗ similarly.
4. A listens to the selected utterance(s) and tries to adjust his/her voice towards the

target. Once completed practicing, A submits a mimicked test utterance Umimic to
Dblack(Umimic, Uj∗) with identity claim Tj∗ (aiming to be accepted as Tj∗).

Note that in our model, the attacker uses the public-domain ASV system only to
select the target speakers. In some prior work, such as [31], ASV score was provided
as feedback for the impersonators to improve their mimicry skills. We do not provide
ASV (or other) feedback signals to our attackers. The main reason is that the ASV
score is not necessarily intuitive to humans. For instance, a low attacker-to-target ASV
score does not suggest how to modify one’s voice production so as to improve the score.
Providing intuitive feedback, for instance in terms of suggested articulatory or voice
source modifications, would require a different system (and user interface) design. In
our model, the attacker uses a readily-available public-domain ASV system to rank and
select potential target speakers, but without any further numerical feedback or system
optimization. Such ‘passive’ ASV system could be, for instance, a voice search service
that finds most similar speakers to the user’s voice from a public video archive — see
[36, 37] as examples.

Both the attacker’s and the attacked ASV systems are text-independent, i.e. none
assumes the spoken contents of the compared enrollment and test utterances to match.
Even if properly-optimized text-dependent ASV systems can provide higher recognition
accuracy, text-independent ASV systems provide more flexibility and are justifiable in
certain authentication applications, such as secure teleconferencing and telephone bank-
ing. The use of text-independent ASV systems in this study was, in fact, necessary as
we have no control over the text content in the celebrity corpus (VoxCeleb).

3.2. Public-domain (attacker’s) ASV system
The attacker’s ASV system uses i-vector front-end [33] and probabilistic discriminant

analysis (PLDA) [35] back-end to compute speaker similarity scores. The system’s acous-
7



Table 1: Details of the speaker verification systems used to simulate targeted impersonation attack
against automatic speaker verification. The attacker is assumed to not have information about the
attacked system, and hence the attacker’s system differs from the attacked system.

Attacker’s ASV system Attacked ASV system
(Dpub) (Dblack)

Type Text-independent Text-independent

Implementation MSR Identity Toolkit (MATLAB) Kaldi (c++)

Sampling rate 16 kHz 16 kHz

Acoustic features 60 MFCCs (20 static+20-∆+20-∆∆),
RASTA, SAD, CMVN

30 MFCCs (no deltas), Sliding CMN
normalization, SAD

Embedding type i-vector (400-D) x-vector (512-D)

Back-end / scoring LDA (250-D)+PLDA (simplified, 200-D) LDA (200-D)+PLDA (2-cov)

Development data Librispeech (train-clean-360 and train-
clean-100 subsets), WSJ0 and WSJ1

VoxCeleb2, training part of VoxCeleb1

Data augmentation None Reverberation, noise, music, babble

EER* 12.84 (%) 3.11 (%)
* EER for VoxCeleb1 test protocol

tic front-end4 extracts 20 mel-frequency cepstral coefficients (MFCCs) per frame using 20
filters, leading to 60 features per frame after including deltas and double-deltas. The cho-
sen MFCC configuration is commonly used in speaker recognition experiments [38, 33].
The features are processed with RASTA filtering [39] and cepstral mean and variance nor-
malization (CMVN). Non-speech frames are omitted using energy-based speech activity
detector (SAD) (described in Section 5.1 of [40]).

The universal background model (UBM), i-vector extractor, linear discriminant ana-
lyzer (LDA), and PLDA, are trained using Wall Street Journal (WSJ) and Librispeech
corpora. LDA is used to reduce 400-dimensional i-vectors to 250 dimensions before cen-
tering, whitening, and length normalization. Simplified PLDA with 200-dimensional
speaker subspace is used for scoring. For further details, refer to Table 1 of the current
work and Section 2.2 of [23].

3.3. Attacked ASV system
In our experiments, we regard the x-vector system [34], based on pre-trained Kaldi

[41] recipe, as the ASV system to be attacked. To emulate the scenario of attacker’s
limited knowledge of this system, the attacker’s ASV is made intentionally different from
the attacked ASV system in terms of feature extractor set-up, embedding type, and
development corpora (Table 1). The attacked system is the Kaldi x-vector recipe for
VoxCeleb, while the attacker’s system uses i-vectors. Unlike the i-vector extractor, the
x-vector extractor is trained discriminatively using speaker labels.

4. Corpus of target speakers: VoxCeleb
The attacker’s ASV is used as a voice search tool to find the closest speakers from the

combination of VoxCeleb1 [20] and Voxceleb2 [21] to each of the locally recruited subjects

4http://cs.joensuu.fi/~sahid/codes/AntiSpoofing_Features.zip
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(described in Section 5). The combined VoxCeleb corpus contains about 1.3 million
speech excerpts extracted from more than 170,000 YouTube videos from J = 7, 365
unique speakers. This totals to about 2,800 hours of audio material, most of which is
active speech. Both VoxCeleb corpora were collected using automated pipeline exploiting
face verification and active speaker verification technologies [21].

VoxCeleb1 contains mostly English speech, while VoxCeleb2 is more diverse in na-
tionalities and languages. The nationality information of the target speakers was of our
interest, as the recruited local speakers are Finnish and we wanted to see if Finnish peo-
ple do better job at imitating Finnish rather than non-Finnish targets. According to
the VoxCeleb1 metadata, there are no Finnish speakers in VoxCeleb1. VoxCeleb2 did
not include nationality metadata but we extracted the nationalities automatically using
Google’s Knowledge Graph API5. This way we identified a total of 44 Finnish speakers
from VoxCeleb2.

5. Locally recruited attackers

5.1. Speakers and recording gear
We recruited K = 6 voluntary local speakers (4M + 2F) to serve as ‘attackers’.

The selected terminology, ‘attacker’, is made for convenience to reflect the focus of ASV
vulnerability study; it should be understood that all speakers took part voluntarily and
were not asked to ‘hack’ any computer systems in the sense understood in the security
field. In fact, most of our speakers are considered naive to the study aims: two of the
male subjects knew the specific goals of the study but the remaining four subjects were
not informed that the text and target speakers were tailored for them, nor where the
target voices were obtained from. The speakers were not informed that the study relates
to ASV vulnerability, but were asked to mimic the target speakers as accurately as they
could. All the subjects signed an informed consent form to use their speech data for
research, and were rewarded with movie and coffee tickets.

All six attackers are native Finnish speakers with an age range between 24 to 44
years old. They are naive impersonators who lack formal training in mimicry. We
adopt the same recording setup from [42] and text prompts are described in detail in
[24]. As illustrated in Fig. 1, the subjects took part to three recording sessions. The
first session, produced in the subject’s natural voice, is used for VoxCeleb target speaker
selection, while the remaining two sessions serve for vulnerability analysis of the attacked
systems. The tasks in the recording sessions differed, while the recording set-up was
the same: recordings took place in a silent laboratory room with a portable Zoom H6
Handy Recorder using an omnidirectional headset mic (Glottal Enterprises M80) with
44.1 kHz sampling and 16-bit quantization. Three other channels (two smartphones and
electroglottograph) were also collected, but are not used in this study.

5.2. The first recording session (data for target search)
The first session, used for the targeted VoxCeleb speaker search, consists of four tasks

in the speaker’s natural voice. The tasks consisted of spontaneous speech and read text
(13 sentences) in both Finnish and English. The read texts in Finnish are the same
used in [42]. Their corresponding English versions were added for this study. We have

5https://developers.google.com/knowledge-graph/
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approximately six minutes of speech (before speech activity detection) per speaker from
Session 1. Detailed description of the material used in data collection can be found in
the online supplementary material [24].

5.3. Attacked target speaker search and utterance selection
For the purpose of targeted speaker search, we compute a single averaged i-vector for

each of the six speakers resulting from 28 individual utterances from Session 1. Similar
to [12], we use the ASV system to pick for each attacker the closest, median, and
furthest speakers among the VoxCeleb speakers. The closest one is most relevant for
vulnerability analysis while the other two serve for reference purposes. We do this ASV-
assisted search separately for all the VoxCeleb speakers (unconstrained search from 7,365
speakers) and for the subset of 44 Finnish speakers. We pool all the speech data of the
VoxCeleb speakers to compute average i-vector per target. The selected target speakers
per attacker are presented in Tables 2 and 3.

Table 2: Target speakers (closest, median and furthest) per attacker. Selection of potential targets from
44 Finnish celebrities in VoxCeleb2.

Attacker ID Celebrity Profession Spoken language
M1 Samuli Edelmann Actor, singer Finnish, English

Paavo Väyrynen Politician Finnish
Antti Tuisku Pop singer Finnish

M2 Samuli Edelmann Actor, singer Finnish, English
Paavo Väyrynen Politician Finnish
Mika Kojonkoski Ski jumper, politician Finnish, English

M3 Joni Ortio Ice hockey player Finnish, English
Elastinen Rap musician Finnish
Perttu Kivilaakso Musician English

M4 Samuli Edelmann Actor, singer Finnish, English
Tuomas Holopainen Musician Finnish, English
Jyrki Katainen Politician Finnish, English

F1 Anna Puu Pop singer Finnish
Karita Mattila Opera singer Finnish, English
Tarja Halonen Politician Finnish, English

F2 Sofi Oksanen Writer Finnish, English
Kaisa Mäkääräinen Biathlete Finnish, English
Tarja Halonen Politician Finnish, English

In addition to the three ASV-selected targets, we include common target matched
with the speaker’s gender, in both Finnish and English. The common Finnish speaking
targets are Päivi Räsänen (female, politician) and Ilkka Kanerva (male, politician), and
the common English speaking targets are Hillary R. Clinton (female, politician) and
Leonardo DiCaprio (male, actor). The choice of the common targets is arbitrary but
based on a loose, subjective criterion as famous as possible. We first identified a short-
list of VoxCeleb celebrities that we thought are well-known. We then ran an e-mail survey
among our friends and colleagues (23 responded), asking each one to indicate the three
most famous persons (in their opinion). We combined their votes to select the common
targets. Even if the selected targets are well-known, from the viewpoint of ASV they are
random target speakers with no strong presuppositions how similar their voices are to
our attackers.

In summary, for each of our four male and two female subjects, we select six cus-
tomized targets (three ASV-ranks × two languages) and two common gender-matched
ones (one Finnish, one English). This gives a theoretical total of 3 × 2 × 4male +

10



Table 3: English speaking celebrities (closest, median and furthest) per attacker. Selection from 7321
potential targets in VoxCeleb1 and VoxCeleb2. * indicates speakers from VoxCeleb1.

Attacker ID Celebrity Profession Spoken language
M1 Valentin Inzko Politician English (Austrian)

Elijah Cummings Politician American English
Chris Colfer * Actor American English

M2 Jeremy Irons * Actor British English
Karan Tacker Actor Indian English
Ryan Ochoa * Actor American English

M3 Éric Boullier F1 manager English (French)
Guillaume Canet * Actor, director English (French)
Bill Gilman Singer American English

M4 Ciarán Hinds Actor Irish English
Ian Kinsler Baseball player American English
Phil Mickelson Golf player American English

F1 Jessie J * Singer British English
Candace Cameron * Actress American English
Lin Shaye * Actress American English

F2 Fay Ripley Actress, author American English
Belcim Bilgin Actress English (Turkish)
Anne Hathaway * Actress American English

2 common male + 3 × 2 × 2 female + 2 common female = 40 target speakers. But as
the reader can see from Table 2, not all of the ASV-selected targets are unique: one
Finnish male celebrity (Edelmann) was the closest target for three attackers, one Finnish
male celebrity repeated as the median speaker for two male attackers (Väyrynen), and
one Finnish female celebrity (Halonen) is the furthest speaker for both female attack-
ers. These collisions might be explained by the the limited number of Finnish celebrities
(30M, 14F) in VoxCeleb. The total number of unique celebrity targets is 36.

For each of the 36 target speakers, we selected multiple short utterances so that,
when combined, each target would have at minimum 30 seconds of active speech. The
selected utterances were used to evaluate the ASV system attacks. We selected only
short utterances for two reasons. First, the duration of most of the VoxCeleb excerpts
varies between five to ten seconds. Second, we deemed shorter utterances to be easier
for our attackers to imitate. Detailed description of these utterances is provided in an
online supplementary material [24].

The selection of the VoxCeleb excerpts was done by utilizing attacker’s ASV system.
For the closest and furthest targets we selected, respectively, the highest and lowest scor-
ing utterances. For the median speakers, we selected the utterances closest to the mean.
This was further accompanied by manual inspection: if the audio quality (determined
subjectively by listening) in a given utterance was not deemed high enough, we discarded
it and moved on to the next ones in the ranked list.

5.4. Speech transcription and the mimicry recordings
Unlike the first recording session (common to all subjects), the second and third

sessions were tailored for each subject. This process involved the use of speech tran-
scripts of the selected target utterances. To this end, we used Amazon’s Mechanical
Turk6 (MTurk), a commercial crowdsourcing service, to transcribe the English language

6https://www.mturk.com/
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audio. The Finnish transcripts were produced by two native Finnish speakers. The 35
MTurk crowdworkers and the two Finnish transcribers were asked to transcribe all the
nuances of conversational speech, including repetitions, hesitations, filler words etc. Fi-
nally, two reviewers audited the quality of all the transcripts. All the final transcriptions
are provided in the supplementary material [24].

In Session 2, which took place five to six weeks after Session 1, the subject was
provided with the transcripts of the selected target utterance(s) and was asked to read
the sentences twice in his or her natural voice. The speaker was not informed whose
speech the transcripts corresponded to. The rationale of including this session was to
familiarize each attacker with the target speaker sentences. We adopted the general
idea to include a session with reference text only and another one with audio from the
design used in [14]. In that study, the target speakers were public personalities that each
impersonator knew. Each impersonator completed three scenarios with an increasing
level of detail about the target speakers. The impersonator was first asked to produce
prototypical target speech without knowledge of text (other than common category, e.g.
everyday sentences). The impersonator was then revealed the target speaker texts to be
impersonated and, finally, he would be provided audio reference of target.

In the last session, which took place two to six days after Session 2, the subjects were
provided with the same transcript as in Session 2. Additionally, they were now provided
access to the actual target speaker audio excerpts. The transcripts were provided on a
printed paper and the audio was presented through headphones connected to a tablet
computer with an interactive webpage. The subject was allowed to interact with the
audio samples and could listen to the target utterance(s) as many times as needed, and
he/she then tried to mimic the voice according to their best skills. Again, the subject
was asked to mimic each sentence twice. In the experiments, we use only the second
recording of each sentence.

Following standard convention in the context of spoofing and countermeasure studies
[3], we refer to the speech recordings of the second session as zero-effort. This is to signify
that the attackers were instructed to produce target speaker texts in their own modal
voice, i.e. without dedicated effort to sound like the target. The recordings from the last
session, in turn, are simply referred to as mimicry utterances.

6. Results: mimicry attacks against automatic verification system

In the following, we evaluate the effectiveness of mimicry attacks against ASV sys-
tems. The target speaker models used in the experiments were enrolled using all available
segments except those selected for testing as described in Section 5.3.

Figure 2 displays how the PLDA scores of genuine and attack trials compare to each
other. The general findings are as expected. First, the order of the closest, the median,
and the furthest speakers transfers from the attacker’s ASV system to the attacked
ASV system, implying that the ASV-assisted speaker selection can help in ASV attacks.
Second, in general, the attackers’ natural and mimicry scores are significantly (by a wide
margin) below the target scores. Additionally, we find no significant difference between
the zero-effort and mimicry attacks (except for the closest category). Finally, as the
recruited attackers are Finnish, attackers’ scores against the Finnish targets are higher
than for the non-Finnish targets (within each rank category).
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Figure 2: Comparison of attackers’ ASV scores (log likelihood ratios) to the targets’ scores for both
of the ASV systems involved in the study. The scores are averaged over all attackers and all speech
segments. The error bars represent 95 % confidence intervals for the means.

Table 4: Score differences between attacks with impersonated voices and attacks with natural voices.
Differences are averaged over attackers, target nationalities, and utterances. ± indicates 95 % confidence
intervals. In the case of the closest target speakers, impersonation attempts are counterproductive.

ASV system Closest Median Furthest Common
Attacker’s ASV -9.7 ± 5.2 2.2 ± 4.3 5.9 ± 7.1 -7.2 ± 4.3
Attacked ASV -5.2 ± 3.9 9.2 ± 3.3 6.1 ± 4.3 -0.5 ± 3.8

We further display the difference of mimicked and natural speech scores in Table
4. Interestingly, and contradictory to what we assumed, if the target speaker’s voice is
already close to the attacker’s voice, the impersonation attempts degrade the score. The
same finding was noted in situations where the target is a well known public figure (as
the targets in the common category are). We suspect that the effect might be due to
people having higher tendency to overact someone they already know well. However, if
the targets are not close to the attackers (i.e., median and furthest categories) or are less
well known, impersonation is potentially helpful (though, not by a statistically significant
margin).

Our attackers are native Finnish speakers recorded with a specific set-up which may
differ from the target domain (VoxCeleb) conditions. This raises a question whether our
mimicry attacks might have been unsuccessful due to domain mismatch. To address this
question, we studied target-domain, attacker-domain, and cross-domain non-target score
distributions as well as target-domain and attacker-domain target score distributions.
It was not possible to construct cross-domain target trials as we do not have speakers
common to both domains. The main interest in this specific study is to compare target-
domain non-target scores to cross-domain non-target scores. If the cross-domain scores
(the case of attacks) do not fall below the target-domain scores, it suggests that the
attacker does not get penalized by the domain mismatch. The scores for the study were
obtained from the attacked x-vector based ASV system.

Figure 3 indicates that when the nationality mismatch is present (non-Finnish target-
domain speakers), the cross-domain non-target scores are, on average, slightly lower
than the the target-domain non-target scores. If, however, the target-domain speakers
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Figure 3: Distributions of target and non-target scores in different domains. Cross-domain non-target
scores are obtained by scoring speakers from the attacker domain against the speakers from the target
(VoxCeleb) domain. The simulated mimicry attacks in this work fall under the category of cross-domain
trials. As the cross-domain score distributions overlap almost perfectly with the target-domain non-
target distributions, the domain mismatch does not seem to make attacking more difficult, at least when
the targets are Finnish.

are Finnish, like our recruited attackers are, the non-target speaker distributions overlap
almost perfectly. This suggests that the Finnish attackers attacking the Finnish VoxCeleb
targets did not seem to get penalized by the domain mismatch. The domain mismatch can
be observed by comparing target and non-target scores of attacker-domain and target-
domain. As the attacker-domain is has much less variability in the conditions, the scores
in attacker-domain tend to be higher.

7. Perceptual evaluation of mimicry attacks

Next, we evaluated how ASV assisted mimicry attacks perform against human lis-
teners. Further, we compared the findings of perceptual test to those obtained from the
attacks against the ASV system. To avoid nationality mismatch between targets and
attackers, we restricted our experiments to Finnish targets only.

7.1. Listening test setup
In total, we had 625 pairs of speech samples (trials) to be evaluated by the listeners.

These trials can be divided into five groups of 125 trials (4 to 7 trials for each of the 24
attacker-target combinations). The first three groups are related to the mimicry attacks:
1) target vs. target (reference point), 2) target vs. attacker (zero-effort mimicry), and 3)
target vs. attacker (mimicry). For each set of three trials, the same target enrollment
utterance is used. The speech content of the test utterances is the same in all three
cases, but different from that of the enrollment utterance (i.e. text-independent speaker
comparison). The two last types of trials focus on the attacker. They are 4) attacker
(zero-effort) vs. attacker (zero-effort) and 5) attacker (zero-effort) vs. attacker (mimicry).
These two cases are included, respectively, to study the listeners’ performance for the
same-speaker trials with fixed recording conditions, and to study how much the attackers
modify their voices relative to their natural voices when mimicking. In the cases 4) and
5), the enrollment utterances are selected from the English part of the data described in
Section 5.2. Similarly as above, for each set of two trials, the enrollment utterance is fixed
and the two test utterances have the same content. In all of the cases, the enrollment
utterance was selected from the available utterances so that its duration is close to the
duration of the test utterances.
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Figure 4: Results from the listening test (target speaker enrollment vs. test segment). Each attacker (in
columns) has 4 targets speakers (in rows: closest, median, furthest, common). For each attacker-target
combination, there are three different trial types (denoted by circled digits) as described in the left-hand
side legend. The last column shows the results when trials from all the attackers are combined.

The listening trials were accompanied with a question “How similar the two speakers
in the two voice samples sound to you?”, to which the listeners answered using a 4-point
scale with options Very dissimilar, Dissimilar, Similar, and Very similar. The 4-point
scale was selected to enforce the listeners to make up their mind regarding speaker
similarity. When presenting the trials, the order of the two voice samples in a trial
was randomized so that the enrollment utterance was not always played the first. Each
trial was presented individually and their order was randomized as well. For each of the
625 trials, we asked opinions from five different listeners, so in total we collected 3125
responses from the listeners.

We recruited the listeners using the Amazon’s MTurk service. All the listeners were
either native English speakers or had advanced English skills. In total, 225 crowdworkers
participated the listening trials. Five workers rated more than 100 trials, whereas 130
completed less than five. On average, a crowdworker completed 3125/225 ≈ 14 trials.
Out of the 225 listeners, 40 provided information about their mother tongue: 26 English,
4 Italian, 4 Portuguese, 2 German, 2 Spanish, 1 Estonian, 1 Tamil.

7.2. Listening test results
We present the main results of the listening test in Figure 4, which presents the listener

judgements of speaker similarity for all the studied attacker-target combinations. First,
the listeners regard the two samples from the same target speaker (target vs. target cases)
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Figure 5: Results from the listening test (attacker enrollment vs. attacker test segment). Listeners eval-
uate each attacker’s enrollment samples against attacker’s zero-effort and mimicry-effort attack samples.
The voice modification induced by mimicry attempt makes the attackers sound less like themselves.

similar or very similar to each other, as expected. However, there are individual cases
that turned out to be difficult for the listeners. For example, the median target of the
male attacker 1 was considered dissimilar or very dissimilar sounding to himself in most of
the answers. Informal listening of the utterances of this target revealed that the target’s
voice sounded different each time mostly due to differences in speaking style, recording
conditions, and audio processing. For example, in one sample, the target speaker (Finnish
politician) is being interviewed in a talk show, whereas in another sample he is giving a
public speech in very different conditions.

How are the listeners opinions affected by mimicry? On average (see the last column
of Figure 4), mimicry does not seem to help to make the attackers sound more like the
targets. At the individual level, we find, however, that male attackers 1 and 2 got higher
ratings for their mimicked speech. Further, we find that ASV assisted target speaker
selection can help in choosing attacker-target pairs that sound similar to each other.
That is, the furthest targets get lower similarity ratings than the closest targets. Even if
automatic systems and humans based their speaker similarity judgments differently, the
broad rank categories seem consistent.

Figure 5 displays listening test results for those trial types where attacker’s enrollment
utterances are compared to attacker’s test segments with and without mimicry effort. The
same-speaker trials have higher similarity ratings in comparison to those in Figure 4).
This is expected since our attacker corpus is practically free from channel variation and
background noise unlike the VoxCeleb collections. In addition, we find that when the
attackers are trying to mimic the voices of the target speakers, they sound a little bit
less like themselves.

7.3. Comparison of human listeners and automatic speaker verification system
To compare human opinions to ASV system scores, we scored the same trials using

both the attacker’s ASV system and the attacked ASV system. All the individual scores
for three different trial types are displayed in Figure 6. The scores for the content
matching test utterances are connected with lines and thus form score-triplets. This
allows us to see how close the attacker’s scores are to the target’s scores and how successful
were the mimicry attempts in individual cases. The results agree with the results of
Figure 2, as expected — the only difference with the earlier ASV protocol is the number
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Figure 6: The scores of the ASV systems for the trials used in the listening test. The scores in each
score triplet (described in the legend) are from the trials that have the same target speaker enrollment
utterance and the speech content is the same in all the three test segments. Scores for male and female
attackers are shown in separate groups. The right side of each graph displays the mean values of the
score groups together with standard error of the mean multiplied by 1.96.

of target speaker enrollment utterances, which is now only one7.

7In general, data processing capacity of ASV systems and listeners differ: ASV systems can process
multiple enrollment utterances and large number of trials, but humans have limited attention span and
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In general, the findings from the listening test are similar to what the ASV system
scores imply. The ASV-assisted target speaker selection helps to bring attacker’s scores
closer to the target’s scores, while the mimicry attempts do not seem to help much to
bring the scores closer to the target’s scores.

8. Prosody and formant analysis of mimicry attacks

To gain further insight how attackers’ change their voices to mimic their targets,
we carried out a study of the changes in fundamental frequency (F0), speaking rate,
and formants. Our main motivation to study these qualities is to see whether attackers
changed more their prosody than spectral cues. If this is the case, the changes might not
be reflected by ASV scores as our systems are based on spectral features.

8.1. Estimation of fundamental frequency and speech rate
Speaking rate, in terms of syllable rate (the number of syllables per second), was mea-

sured using a Praat [43] implementation [44] that automatically calculates the number
of syllables per sample duration by detecting syllable nuclei [45] and pause duration. As
for F0 extraction, we adopt an autocorrelation-based method [46] implemented in Praat.
We use gender-specific frequency ranges set to [75, 200] Hz for males and [100, 300] Hz
for females. We initially tested F0 extraction with wider F0 ranges but it was observed
that the selected ranges were appropriate to exclude possible tracking errors and outliers
in the F0 contour. The parameters to select the F0 candidates at 10ms intervals were
set at their default values in Praat: silence threshold 0.03, voicing threshold 0.45, octave
cost per octave 0.01, octave-jump cost 0.35, and voiced-unvoiced transition cost 0.14.

We summarize F0 values of each utterance using two summary statistics, namely,
median and standard deviation. They reflect, respectively, the average pitch range and
pitch dynamics within a given utterance. We study changes in these summary statistics
between the zero-effort and mimicry attempts, with the aim of studying whether or not
our attackers attempt to match their broad prosody characteristics with those of their
targets upon their mimicry attempts.

8.2. Estimation and alignment of formant frequencies
We performed formant analysis by comparing formant information of aligned utter-

ances. First, we extracted formant center frequencies of the first three formants (F1, F2,
and F3) using VoiceSauce [47] with Praat backend. Next, we aligned attacker’s utter-
ances (natural & mimicry) with target’s utterance using dynamic time warping (DTW)
[48]. The aligning process was done similarly as in [49]. This process involves using au-
tomatic selection of active speech frames that are well aligned and have reliable formant
information. The alignment of utterances turned out to be challenging due to differences
in speaking styles, acoustic conditions, and small deviations in spoken texts caused by
mumbling. Thus, in addition to the automatic frame selection, we listened the aligned

memory and cannot process many trials (or excessively long utterances). For the maximum benefit of
the ASV system, the earlier ASV protocol used in Fig. 2 used multiple enrollment utterances, while
the scaled-down ASV protocol (single enrollment utterance) used in Fig. 6 was designed to facilitate
perceptual speaker comparisons.
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Figure 7: Differences of attacker’s (M1, M2, M3, M4, F1, F2) prosodic and formant parameters to
target’s parameters for all attacker-target combinations. Differences are shown for non-effort speech
(black arrow) and for mimicked speech. The effect of mimicry is displayed with a green arrow if it
made attacker’s and target’s parameters closer to each other and with a red arrow otherwise.

utterances in order to discard the the badly misaligned ones. Finally, after getting the
aligned formant data, we measured the formant difference d between utterances a and b
as

d(a, b) =
1

3T

T∑
t=1

3∑
n=1

|fa(t, n)− fb(t, n)| , (2)

where T is the number of aligned frames and fa(t, n) is the center frequency of formant
n of utterance a at frame t.

8.3. Results of prosody and formant analysis
In Figure 7a, we show the results for the analysis of speech rate differences. For each

attacker-target combination, the displayed speech rates are obtained by averaging the
speech rates of the available utterances (4 to 7 utterances per combination). The results
indicate that the speech rates of the attackers were, in general, slower than the targets’
speech rates, when the attackers were not mimicking. This was anticipated, since the
attackers were reading prompted text from a paper yielding slower speaking rates as
opposed to those of the targets samples obtained from conversational situations. After

19



listening to target’s speech, the attackers were in most cases able to change their speech
rates towards the targets’ speech rates. At the individual level, we find that the male
attacker 1 (M1) was good at adjusting his speech rate, while the male attacker 3 (M3)
had naturally fast reading pace so that in some cases (common target) his speech rate
was already too fast.

A similar comparison regarding F0 statistics is shown in Figures 7b and 7c. We
find that the attackers M1, M2, and M3 did not change their F0 considerably while
mimicking, whereas attackers M4, F1, and F2 had some mimicry attempts with clearly
different F0 than what their natural F0 is. We do not observe clear differences between
closest, median, and furthest target categories in terms of distances in F0 parameters
between attackers and targets.

Finally, in Figure 7d, we depict the formant differences between targets and attackers
as defined in (2). Again, we find that the mimicking did not have major impact to the
similarity of the formant frequencies. In 14 out of 24 cases, mimickers managed to get
slightly closer to their targets in terms of the given metric. We further find that the
formant differences are larger in the furthest category than in the closest category, which
is expected as the location of formants affect the spectral features used in the target
speaker selection.

9. Conclusion

Biometric data uploaded to the Internet in large quantities, including human voice
samples, opens up potential for misuse whenever the same biometric identifiers are
adopted for strong user authentication to regulate access to personal data records, bank
accounts and other services. Our study addressed a potential risk related to combination
of public-domain automatic speaker verification (ASV) technology and public-domain
voice data. The former is used as a search tool to identify potential target speakers to
be mimicked.

Our results suggest that human mimicry is a rather special skill and less effective in
spoofing modern ASV systems compared to voice conversion, text-to-speech, and replay.
In specific, none of our six attackers received high detection scores for their attacks
from our simulated8 public-domain or attacked ASV systems. Similar negative findings
have been reported in earlier studies and are often speculated to be due to difficulty of
humans to mimic accurately low-level spectral cues employed by ASV systems. One of our
motivations was to re-assess whether speech mimicry — one of the weakest known attacks
against ASV — might be made substantially stronger (or more practical) when the target
speakers are selected using ASV. We approached this question from two perspectives. On
the one hand, we wanted to find out how the score ranges associated with broad target
speaker rank (closest, median, further) transfer from the attacker’s ASV to the attacked
ASV. This is the technology dimension of our attack model. On the other hand, we
wanted to isolate the effect of the mimicry effort by collecting attackers’ voice samples
both ‘before’ (zero-effort attack) and ‘after’ (mimicry attack) listening to the target

8The ASV implementations combine scripts/tools (e.g. MSR Identity Toolkit, Kaldi) that are all
public-domain code. They should be considered as proxies of modern ASV technology, rather than
end-user software.
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speaker’s voice. This allows us to analyze the changes in attacker-to-target log-likelihood
ratio (LLR) scores due to mimicry effect alone. This is the human dimension of our
attack model. Concerning the broad target speaker rank, the score relations generalize
well from the attacker’s ASV system to the attacked ASV system: LLR(closest target) >
LLR(median target) > LLR(furthest target) relationship was retained both for Finnish
and non-Finnish targets. This suggests that one could, indeed, use one ASV system
(here, i-vector PLDA) to emulate the broad speaker ranking of another, targeted ASV
system (here, x-vector PLDA). We find this result interesting and worthwhile of future
work. Even if the VoxCeleb corpora are among the largest (public) speaker corpora at
this time, they are still tiny compared to the number of voice samples in the Internet. It
would be interesting to repeat a similar study design to ours in a few years, perhaps with
an order of magnitude larger target speaker corpus and, at this stage, unforeseen ASV
technology. It would be important to uncover the conditions under which such emulation
succeeds (or fails). With an increasing number of video and voice samples posted online,
it is not only the security, but user privacy, that deserves attention.

Concerning the impact of mimicry effort, the attacker-to-target LLRs remained low,
and substantially below the target-to-target LLRs in both zero-effort and mimicry sce-
narios. Curiously, while the LLR scores for the furthest target speakers indicated some
increase between zero-effort and mimicry scenarios, for the closest targets the LLR scores
decreased (but significantly only for the non-Finnish target speakers). To sum up, the
broad target speaker rank generalized across the ASV systems, while the mimicry effect
itself lead to negative (or no difference) effect. These findings reinforce the conjecture
that voice mimicry by itself may not pose a strong attack against ASV; but ASV-based
target speaker selection may.

We hypothesized that while our attackers’ mimicry efforts did not have major impact
on the ASV scores, they might have impact on human perception. Human listeners might,
to some degree, focus on different cues of speaker identity than the ASV systems, which
mostly focus on spectral characteristics of speech. However, the results of our listening
test did not support the above hypothesis, as the results showed similar patterns to those
we saw from the ASV scores.

So as to understand better the mimicry strategies implemented by the attackers, we
also analyzed changes in formant frequencies and prosody statistics (F0, speaking rate).
Even if some attackers were able to adjust their average formant frequencies towards
those of their target speakers, the relative change in attacker-to-target formant distance
(from zero-effort to mimicry) was minor. Adjustments in F0 statistics were minor as
well. The most prominent adjustments towards the targets were seen in the speaking
rate.

Our study has a number of limitations that one should take into account in future
studies. First, the number of attackers (six) is admittedly small. This limitation, familiar
to some of the authors [16], is common to most speech mimicry studies and relates to
difficulties in data collection. The number of attackers varies from 1 to half dozen (or
so) [3]. Here, additional complications were caused by tailored target speaker selection,
involving tedious speech transcription and several stages of data quality auditing. In
future work, it might be practical to drop the transcription step and ask the attackers to
impersonate their targets based on audio only. Another way to scale up the study would
be attacker recruitment through crowdsourcing [19]. This will, however, introduce new
uncontrolled variations (such as attacker microphone differences). All our attacks were
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recorded using the same gear in the same room.
The second limitation relates to the cross-domain data conditions: our attackers

are native Finnish speakers, while VoxCeleb consists of many different nationalities and
accents. Further, VoxCeleb consists of conversational speech while our attackers read
text passages in an office environment. These differences induce style differences and
might make the impersonation task harder for the attackers. This limitation is primarily
due to lack of large Finnish celebrity corpus at the authors’ exposure, as well as our
preference to interact with the attackers conveniently. It would be interesting to repeat
selected experiments using a larger target speaker corpus with matched mother tongue.
In VoxCeleb, we are limited to 44 Finnish target speakers. Future work could therefore
either adopt a larger Finnish celebrity corpus, or to recruit native American English
attackers. Given the nature of found data, controlling all the variations will be difficult.

Our attacks could also be made stronger in a number of ways. First, the attacker
might use the public-domain ASV system in a more proactive way, such as optimizing
its detection accuracy further in off-line experiments. Second, the attacker could po-
tentially utilize more detailed feedback from a dedicated ASV system — in this work,
attackers used ASV for speaker ranking while some prior work has used ASV score as
a feedback signal [31]. Third, assuming there would be an actual monetary (or other
strong) motivator to seriously mimic someone — similar to practicing to forge someone’s
signature — the attacker might use substantially more effort to get familiar with the
speaking style of his or her targets. He or she might perhaps use feedback from prosody
measurements in addition to ASV score. In our study, given the extensive work required
to prepare the tailored targets and collect the data, all the above had to be relaxed to
complete recordings in a reasonable time. The mimicry attacks (with audio reference of
the target) took place in a single session and our attackers completed their mimicry tasks
relatively fast. Nonetheless, in future work it would be interesting to evaluate whether
mimicry attacks could be improved with further, and more proactive, training. Another
interesting target would be studying combination of automatic target speaker selection
with voice conversion (or other technical) spoofing attacks.

It would be also interesting to address whether, and how, one may benefit from
current (or suitably modified) ASV methods to provide intuitive feedback to improve
one’s mimicry skills. This would be potentially helpful in suggesting specific articulatory
or voice source modifications required to increase the ASV score. The present study was
framed to the context of ASV attacks but such methods could be potentially useful for
mimicry artists, voice actors, and language learners as well.
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